Experimental investigation of the crashworthiness performance of laminated composites using CPVC pip

Page 1

1P.G

Crashworthiness includes crushing load, absorb and dissipatethecollisionenergy,anditisdecidedbytheplastic failuresorbrittlefractureofthestructurewhenacollisionor the accident takes place. It is very necessary to evaluate

and

Crashworthiness, FEA analysis, structural analysis, woven carbon fiber matt, plastic tube, laminated composite.

*** Abstract

Mostofthepartsinautomobilevehiclearemadefrom plastic fiber material like mudguard, wind shield, mirror case,bonnet,whenaccidenttakesplacethendestructionin plasticpartsoccurs.Thereforeitisnecessarytomakeplastic material enough hard so that it cannot break easily in accidents,byusingcarbonfiberasreinforcementmaterial, and Whenever accidents happens in vehicle plastics parts getsscratchesandeasilydestructed,soitisnecessarytodo analysis on plastic parts using carbon fiber mats as laminatedreinforcement.

,

paperisallaboutthefirstrequirementof crashworthiness testing parameter i.e. “high inertial force andmaterial”used.Aluminium,steel,rubber,plastics,fiber andarefournormallyusedinautomobilesproduction,this project deals with laminated composites of plastic and carbonfiber. Fig -1 WovencarbonfibermattonCPVCpipe

the

Ability to protect its occupants in the event of an ANSYSresultsthecarcrashidentifytwistingMechanicalpotentialresponsibleincludingcriteriamalfunctionproperty.crashingaccidentCrashworthinessroleaccidentofvehicleiscalledascrashworthiness.itplayamajorinenergylossandthereforeincaraccidents,andisaboutcarsafetyduringacaraccident,notprevention.Incaraccidents,thedestructionofforcesiscriticaltosavinglivesandprotectingImpacttypecomesinvehiclehavedifferentwhicharearisinginthestructure.Anumberofareusedtoassessthelikelihoodofasuddenshock,patternsofvehiclecollapse;accelerationisforthedestructioninthevehiclesimpact,andtheforinjurypredictedbyhumanbodymodels.parameterssuchaspower,acceleration,orareresponsibleforinjuryduringtheaccident.Tocrashworthiness,carmanufacturersconductextensivetestingonthevehicles,toidentifypotentiallyinjuriousdefects.Thisresearchpaperwillprovidethebehaviorofspecimenunderforceandcomparestheexperimentalwiththestructuralanalysisofthespecimenusingsoftware

.

1. INTRODUCTION

Automobileaccidentsareafewoftheprimarycauses of mortality in current society. Within the automotive industry, protection is one of the important design considerations.Whenthereisaprogressivecrumbleofthe automobileshapeduringafrontalcrash,twofundamental necessitiesmustbefulfilledforpreventingdeathorextreme harmtotheoccupants.

2Professor,

Carbonfiberincludescarbonatomsbondedtogetherto shapeaprolongedchain.Thefibersareratherstiff,strong, andmoderate,andareusedinplentyofstrategiestocreate remarkablebuildingmaterials.Thehousesofacarbonfiber’ strengthfactorarenearthatofsteelandtheloadisnearthat ofplastic.Thisresearch

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p ISSN: 2395 0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1123

performance of

2. CRASHWORTHINESS INDICATORS AND PARAMETERS

Experimental investigation of crashworthiness laminated composites using CPVC pipe woven carbon fiber mat

Key Words:

Mr. Abhijeet P.S1 Prof. Patil S.H2 Student, Government College of engineering, karad Dept. of mechanical, Government College of engineering, karad

2.4 Minimum force/load (Fmin)

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p ISSN: 2395 0072

2.1 Energy absorption (EA)

crashworthinessoftheenergyabsorptioncomponentsofthe components.Thecrashworthinessindicatorsinclude: 1.Energyabsorption(EA) 2.Specificenergyabsorption(SEA)

2.3 Maximum force/load (Fmax)

 Duetothefacteverytypeoftool.Metalhaspreciseor exclusivemechanicalproperties,the.  Minimum compression force of each additionally differs.

 Itplaysimportantroletoevaluatethecrashworthiness calculations.

 Since the energy absorbing up fabric allows taking in (reduce) the effect force, and spreads it over a larger location. 2.2 Specific energy absorption (SEA)

RatiooftheFmeantotheFmaxiscalledasCrushingforce efficiency(CFE),definedasfollows: 3. MANUFACTURING PROCESS AND TESTING

TheFmaxishavingmorecrushingforceduringthe accident,whichisresponsibleforlowenergyabsorption in the specimen or the structure. Its high value will causetheinjuryseriousnessthatcomestopassengers while the impact of the accident. Larger Fmax can give highcollisionacceleration,whichwillagainbringmore injuriestopassengerswhiletheimpactoftheaccident. Therefore,a largeFmaxshouldbeavoidedinthe designprocess.Onthisspecimen,therelativepositions ofmoleculesoftheobjectchangeincaseofcompression force.

 ItisratiooftheEAandmassofthespecimen.

3.Initialpeakforce(Fmax) 4.Meancrushingforce(F Mean) 5. Crushingforceefficiency(CFE). These above crashworthiness indicators decide the failureofthecomponentintensiletest,compressivetestof thespecimen.

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1124

Energyabsorptionintheunitdisplacementduring the accident is called as Minimum force/load it gives the overall energy absorption capability or capacity of the specimen,definedasfollow:  Most amount of power from an impulse or surprise loadingthataclothcanfaceupto.

 d=Crushingdisplacement,and largertheFmean is,the bettertheenergyabsorption

Forthisprojectmainlythreematerialareselectedthe are woven carbon fiber matt, CPVC pipe as base material plasticandAralditeepoxyresinwithhardener.  Dimensions of specimen: Decision of Criteria for manufacturingisasfollows,  CPVCpipespecimen

 Itreflectsthematerialutilizationduringthecrushing,.  SEAistheenergyabsorbedconsistentwiththemassof thespecimen,anditsunitiskJ/kg.

 It isatotalenergyabsorbedbythestructuresat some pointofthewholecrushingmanner

2.5 Crushing force efficiency (CFE)

 It is able tobereceivedbyintegratingthe load displacementcurves.  Commonlyits milesrequired to be asmassiveasviableforsafeshape Higher the energy absorptionsafetyis higher. Where, o Crushingforce o D=Crushingdisplacement.

 It can be calculated from the equation and defined as follows: Where M= massofthespecimen.  Valueofthe SEAought tobe asbigasviablewithin thedesignfor crashworthiness andlightweightof theenergyabsorptionstructures

Fig 4 CompressiontestonReinforcedtube

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p ISSN: 2395 0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1125 o ExternalDiameter(40mm) o ExternalDiameter(34mm) o Thickness(6mm) o Length(100mm)  FivereinforcedCPVCpipespecimenwithincreasein number of lamination of carbon fiber matt of thickness of 0.5 mm.Total five types of specimens arecreated: o Non‐reinforcedtubes(OnlyCPVCpipe) o OnelayerofcarbonfiberonCPVCpipe o TwolayersofcarbonfiberonCPVCpipe o ThreelayersofcarbonfiberonCPVCpipe

4. EXPERIMENTAL RESULTS

Fig 2 Typesofspecimens

Buttheresultwill depend ondeformationunderload and the Crushing force efficiency (CFE) and that is deformation should be less and Crushing force efficiency (CFE)shouldbehigher.Readingsofthespecimensaretaken by using the UTM machine and the deformation and the forceatwhichthespecimenisfailingatthatpointreadings aretaken.

Followingarethereadingsofdeformationandload whicharehelpfultofindthecrashworthinessindicatorsfor theexperiment.

Fig 3 Compressiontestonnon reinforcedtube

Thecrashworthinessindicatorwilldecidewhetherthe structureissafeoritfails,CFEshouldbeincreasedasmuch aspossibleInordertoavoidgreatinjuriestopassengersor damages to goods, and the better the energy absorption capabilityofthestructuresisthelargertheFmean is.

The experiment of crashworthiness is done with the helpofUTMandvarious4readingaregetfortheanalysisfor thefollowingspecimensandAll theloadanddeformation readingaretakenforthreetimesandtakingtheirmeanso wewillgettheneartotheexactvalue.

Asinglenonlaminatedtrailspecimenistestedunderthe load and that fails at 30 KN, so that for further readings taken nearerto30 KN becausethecomponent/specimen getsfailsatthatpointoftheload.

Fmax should be less in the design of the energy absorption structures. And SEA should be as large as possible in the design perspective. EA required being as large as possible for safe structure for Higher energy absorptionsosafetyishigher.

Table 1: Experimentalresults Type of specimens L(KN) M.L(KN) D(MM) M.D(MM)

Non‐reinforced tubes 30.78 30.48 8.67 8.13 30.20 7.72 30.48 8.00

One layer of carbonfiberonCPVC pipe 30.24 30.20 6.37 6.98 30.08 7.87 30.28 6.72

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p ISSN: 2395 0072

Twolayersofcarbon fiberonCPVCpipe 6.13MM 0.99901

Two layers of carbonfiberonCPVC pipe 30.76 30.58 6.05 6.13 30.20 5.80 30.78 6.55

Non‐reinforced ML MD=8.13=30.48 264.0 4.8854.04g 30.78 30.4 00.99 Onelayer ML MD=6.98=30.20 210.7 3.7656.04g 30.28 30.2 70.99 Two MD=6.13ML=30.58layers 187.4 3.2g58.048 30.60 30.5 90.99 Threelayers ML MD=5.023=30.23 182.0 60.0g 3.0 30.2 30.2 90.99 For this project the crashworthiness can be determined by the deformation results and the crushing forceefficiency(CFE)ofthespecimens. Table 3: MeandeformationandCrushingforceefficiency CFEreadings

ByusingtheMeanload(MN)andmeandeformation (MD)crashworthinessparameterscanbecalculatedbytheir formulasmentionedasabove. Table 2: Reading’sresults

For this analysis ANSYS software is used, And to performanalysisfourtypesofspecimensareusedtheyare Non‐reinforced tubes (Only CPVC pipe), single layer of carbonfiberonCPVCpipe,doublelayersofcarbonfiberon CPVCpipe,ThreelayersofcarbonfiberonCPVCpipe.Two types of main materials are used they are Epoxy_Carbon_Woven_395GPa_Prepreg, CPVC pipe. Fine meshing is applied on the specimens. And the force is appliedverticallydownwarddirectionwithbottomisfixed. Fourreadingresultsaretakenoutoftotaldeformation.

Non‐reinforcedtubes (OnlyCPVCpipe) 8.13MM 0.99025 Onelayerofcarbon fiberonCPVCpipe 6.98MM 0.99735

Chart 2:CFEVSNO.OfwovencarbonFiberlamination

Type of specimens (KJ)EA )(KJ/KGSEAFmax (KN) Fmean (KN) CFE

Type of specimens (MD) (CFE)

Three layers of carbonfiberonCPVC pipe 30.25 30.23 5.39 5.023 30.23 4.48 30.23 5.20

5. FINITE ELEMENT ANALYSIS

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1126

Threelayersofcarbon fiberonCPVCpipe 5.023MM 0.99933 Theresultscanbeshowedbyusingthegraphasfollows:

Chart 1:DeformationVSNO.Ofwovencarbonfiber lamination

OSR.N Type of specimen deformationTotal in MM 1. Non reinforcementpipe (CPVCpipeonly) 8.075 2. (CPVCpipe+1laminationof wovencarbonfiber) 6.274 3. (CPVCpipe+2laminationof wovencarbonfiber) 6.086 4. (CPVCpipe+3laminationof wovencarbonfiber) 5.082 By analyzing the above data we can plot the graph between Total deformations VS number of woven carbon fiberlaminationisasfollows: Chart -3:TotaldeformationVSNo.ofwovencarbonfiber lamination

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p ISSN: 2395 0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1127 Fig 5 Non reinforcementpipe Max.Deformation=8.075MM Fig 6 CPVCpipe+1laminationofwovencarbonfiber Max.Deformation=6.2742MM Fig 7 CPVCpipe+2laminationofwovencarbonfiber Max.Deformation=6.086MM Fig-8 CPVCpipe+3laminationofwovencarbonfiber Max.AsDeformation=5.0828completionofFEAandanalyzingtheresultsofTotal deformation, as the number of windings of woven carbon fiber matt on the CPVC tube increases the deformation is decreasingmoderatelyasfollows: Table 4: Deformationresults

CPVClayerTwosofcarbonfiberonpipe 30.5 6.13 187.4 3.258.0g2 30.6 30.5 0.99901

CPVCfiberlayerOneofcarbononpipe 30.2 6.98 210.7 3.756.0g6 30.2 30.2 0.99735

CPVClayersThreeofcarbonfiberonpipe 30.2 5.023 182.0 3.060.0g32 30.2 30.2 0.99933

7. CONCLUSION

Fromtheabovedataofcrushingforcesefficiency(CFE) Experimentalwecanplotthechart: Chart 5 Crushingforceefficiency

By studying the specimens under load condition as deformationgetsreducedwhenthenumberofWindingsof wovencarbonfiberlaminationincreasesonthesurface of CPVCpipe.Thecrushingforceefficiency(CFE)dependson

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p ISSN: 2395 0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1128 6. FINAL RESULTS 6.1 Results For final conclusion need to study the comparison betweenthedeformationresultsbetweenandexperimental the crushing force efficiency (CFE). Comparison analysis between Experimental results and ANSYS (Analysis) software results for deformation. After completing the experimentation and software analysis the results of deformationforallthespecimenswegot,theyareasfollows and When the same amount of load is applied on all the specimensi.e.OneNon‐reinforcedtubes(OnlyCPVCpipe), singlelayerofcarbonfiberonCPVCpipe,doublelayersof carbonfiberonCPVCpipe,Threelayersofcarbonfiberon CPVC pipe and The results of deformation get they are as follows: Table 5: Deformationresults NOSR. Type of specimen alExperimentresults ANSYS Result ndeformatioTotalinMM indeformationTotalMM 1. pipereinforcementNon 8.13 8.075 2. (CPVC pipe +1 laminationC.F) 6.98 6.274 3. (CPVC pipe +2 laminationC.F) 6.13 6.086 4. (CPVC pipe +3 laminationC.F) 5.024 5.082 FromtheabovedataofdeformationforExperimental resultsandANSYSResultwecanplotthecomparisonchart: Chart 4 ExperimentalandFEAanalysisresults) And experimental the crushing forces efficiency (CFE) resultsareasfollows: Table 6:Experimentalthecrushingforcesefficiency (CFE)results specimenTypeofs (KN)loadMean (d)DeformaMeantion(MM) (KJEA) SEA(KJ/KG) Fma x (KN) Fme an (KN) CFE Non‐r einforcedtubes(OnlyCPVCpipe) 30.4 8.13 264.0 4.854.0g8 30.7 30.4 0.99025

for

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified 1129

4. Jakubczak,JarosławBienias “Thecollationofimpact behaviouroftitanium/carbon,aluminium/carbonand conventional carbon fibers laminates”. Published in 2020Thin WalledStructures155(2020)106952.

6. K.Karthik,D.Rajamani,A.Manimaran,J.Udayaprakash et.al, “Evaluation of tensile properties on Glass/Carbon/Kevlar fiber reinforced hybrid composites” Accepted 2 June 2020 Materials Today: Proceedings.

theFmax andFmeanwhichiseventuallydependsontheEA (Energyabsorption)andSEA(SpecificEnergyabsorption). The crushing force of efficiency tends to increases graduallywhenthesameamountoftheloadisappliedonall specimensonebyone.SotheEA(Energyabsorption)and SEA (Specific Energy absorption) will also increase as laminationincreasesonsurfaceofCPVCpipeincreases. Alsotheresultsoftotalelasticstraingetincreasesas thenumberofwindingsofwovencarbonfiberlamination increasesonthesurfaceofCPVCpipe.Thestressproduced in the specimen also gets reduced under the loading condition when the number of winding increase on CPVC pipesurface.

7. Yushun Zhao , Fuhua Xue , Linlin Miao, Chao Wang , Chao Sui Qingyu Peng , Xiaodong et.al, “ Roles of twisting compression operations on mechanical enhancementofcarbonnanotubefibers”Accepted27 September 2020 published in Dec 2020 Carbon 172 (2021)41e49.

8. EsfandiarPakdel*,SimaKashi,RussellVarley,Xungai Wanget.al, “Recentprogressinrecyclingcarbonfiber reinforced composites and dry carbon fiber wastes” Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, VIC, 3216, Australia Resources,Conservation&Recycling.

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p ISSN: 2395 0072

2. Malepati Vineeth Choudary, A. Nagaraja “Characterization of laminate sandwiched with stainless steel and glass fiber”. Published in 5 November2019MaterialsToday:Proceedings.

5. ŞahinYavuza,⁎,MehmetMertİlmanb,BatuhanBinici ŞahinYavuza,⁎,MehmetMertİlmanb,BatuhanBinici et.al, “Modeling approach and analysis time comparison of single link flexible steel and epoxy glass/carbon fibercompositemanipulators”published in2020Structures26(2020)396 405.

Journal | Page

REFERENCES

3. N. Mahaviradhan, S. Sivaganesan “Experimental investigationonmechanicalpropertiesofcarbonfiber reinforced aluminium metal matrix composite”. Accepted 16 September 2020 Composite Structures 251(2020)112655.

1. SamerGowid,ElsadigMahdiJamilRenno,SadokSassi Ghais Kharmanda, Abdallah Shokry “Experimental investigation of the crashworthiness performance of fiber and fiber steel reinforced composites tubes”, published in 2020 Composite Structures 251 (2020) 112655.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.