Enhanced Battery Management : Thermal Propagation Protection Strategies

Page 1


International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Enhanced Battery Management : Thermal Propagation Protection Strategies

Department of Electrical & Electronics Engineering

NRI Institute of Information Science & Technology, Bhopal, Madhya Pradesh, India -***

Abstract - Battery management and thermal propagation protection are critical aspects in the development of robust and reliable energy storage systems. As the demand for efficient and high-performance batteries continues to grow across various industries, the need for advanced strategies to enhance battery management and mitigate thermal propagationrisksbecomesincreasinglyparamount.Inrecent years, battery technology has advanced revolutionized numerous sectors, including electric vehicles, renewable energy storage, and portable electronic .But these developments also present a challenge in terms of managing thecomplexinterplaybetweenperformanceoptimizationand safety concerns, particularly regarding thermal issues. Thermal propagation is the quick dispersion of heat in a battery, poses a serious threat to its integrity and overall safety.This involves the integration of sophisticated control algorithms and monitoring systems that actively regulate charging, discharging, and overall battery health. A pivotal aspect of this strategy is the incorporation of thermal propagation protection mechanisms. .This introduction sets thestagefor a deeperexploration ofthe keycomponents and methodologies employed in enhanced battery management with a focus on thermal propagation protection.

Keywords : ThermalPropagationProtection,Battery ManagementSystem,ThermalManagement,Energy StorageSystem,StateofCharge

1. INTRODUCTION

[1] Paper 1, Explores a dual functionality battery thermal design.Theauthorsinvestigateanovelapproachtodelay batterythermalrunawaypropagationtime,emphasizingthe integrationofphasechangematerialandpyroblocklining. [2] The authors delved into the intricacies of this field, providinginsightsintocrucialaspectsofelectricvehicle technology.Theirworkservesasafoundationalresourcefor understandinganddevelopingeffectivestrategiesinbattery thermal management. [3] The intricate interplay between electrochemicalprocessesandthermalbehavior,aimingto enhancebatteryperformanceandsafety.Thepaperdelves into the complexities of battery temperature regulation,

presenting a comprehensive analysis that contributes to advancements in battery technology.[4] challenges and insights related to thermal safety in lithium-ion batteries. Theauthorsdelveintocurrentissuessurroundingthermal managementandprovideperspectivesonenhancingsafety measures. The study contributes valuable insights to the ongoing discourse on battery safety, a critical aspect of advancingenergystoragetechnologies.[5]comprehensive methodology for designing Battery Management Systems (BMS) with a focus on functional safety in automotive lithium-based batteries. They explore key aspects such as reliability, fault detection, and mitigation strategies, contributingvaluableinsightstothefieldofelectricvehicle safety. [6] existing safety strategies, emphasizing the paramountimportanceofaddressingsafetyconcernsinthe rapidlyevolvingfieldofenergystorage.[7]enhancesafety measures, aiming to mitigate the risks associated with thermal runaway events. The results illuminated the possibilitiesoftheseinterstitialmaterialsinsuppressingand controlling thermal propagation within battery modules, contributingvaluableinsightstothefieldofbatterysafety. [8] Prior research has focused on identifying overchargeinducedrisks,suchasthermalinstabilityandpotentialfire hazards.haveexploredvariousmethodologiesforpredicting andpreventingthermalrunawayinlithium-ionbatteries.[9] Prior research has focused on identifying overchargeinducedrisks,suchasthermalinstabilityandpotentialfire hazards.haveexploredvariousmethodologiesforpredicting andpreventingthermalrunawayinlithium-ionbatteries. [10]Explorethecriticaldomainofthermalrunawaywarning inlithiumironphosphatebatteriesusedforenergystorage. Focusing on a safety management system, the authors presentinsightsandmethodologiestoaddresstheinherent risksassociatedwiththesebatteries.[11]Theintegrationof temperaturemonitoringandfireprotectionmechanismsis pivotalforensuringthesafetyandoptimalperformanceof electricvehiclebatteries.Thisstudyaddsvaluableinsightsto the ongoing research in the field, emphasizing the significanceofadvancedBMSfeaturesfortheefficientand secureoperationofelectricvehicles.[12]Theauthors meticulouslyexplorevariousdimensionsofBMS,offering

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

insights into its functionalities, challenges, and advancements. The comprehensive overview and developmentsinBMStechnology,sheddinglightonitsrole in enhancing the performance, efficiency, and lifespan of electricvehiclebatteries.

2. METHODOLOGY

A. System architecture and design

The enhanced battery management system integrates advancedthermalmonitoringandcontrolmechanisms.The

core components include temperature sensors, a Micro controller. Sure, designing a Battery Management System (BMS)forthermalpropagationprotectioninvolvesseveral keycomponents:

Fig.-1: SystemArchitectureofEnhancedbatterymanagementsystemforthermalPropagationprotectionstrategy

1. Temperature Sensors:-

Integratetemperaturesensors(NTC)withinthebattery packtomonitorindividualcelltemperatures

- Usehigh-precisionsensorstoensureaccurate Temperature.

- Usehigh-precisionsensorstoensureaccuratetemperature readings.

2. Control Unit :

-Implementacentralcontrolunitresponsibleforprocessing temperaturedata.

- Utilize a microcontroller or FPGA to manage real-time decisions.

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page2237

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

3. Communication Interface:

- Establish a communication interface (e.g., CAN bus) to facilitate data exchange between the BMS and external devices.

-Enableremotemonitoringandcontrolcapabilities.

4. Voltage Monitoring:

-Includevoltagemonitoringcircuitrytotrackindividualcell voltages.

- Implement algorithms to detect overvoltage and under voltageconditions.

- Provide diagnostic information to facilitate troubleshooting..

5. Current Monitoring:

-Integratecurrentmonitoringcircuitrytomeasurecharging anddischargingcurrents.

-Implementsafeguardstopreventovercurrentsituations.

6. State of Charge (SOC) Estimation:

-DevelopalgorithmsforaccurateSOCestimationbasedon voltage,current,andtemperaturedata.

-Usesophisticatedmodelstoaccountforbatteryagingand temperatureeffectsonSOC.

7. Safety Disconnect:

- Include a safety disconnect mechanism to isolate the batteryfromthesystemincaseofcriticalfaults.

-Ensurefail-safedesignstopreventunintendeddisconnects.

8. Energy Balancing:

- Implement energy balancing circuits to equalize charge/dischargeamongindividualcells.-Enhanceoverall packperformanceandlongevity.

9. Software Architecture:

-Developrobustandmodularsoftwarearchitectureforthe BMS.

-Includefailovermechanismsanderrorhandlingtoenhance systemreliability.

10. User Interface:

-Provideauserinterfaceformonitoringsystemparameters andreceivingalerts.

11. Redundancy:

-Incorporate redundancy in critical components for increasedreliability.

-Implementbackupsystemstohandlefailuresgracefully.

12. Documentation:

-Maintaincomprehensivedocumentationcoveringsystem architecture,designrationale,andoperationalguidelines.

13. Thermal Management:

-Implementathermalmanagementsystemtoregulatethe batterytemperature.

-Includecoolingsystems(e.g.,fans,liquidcooling)activated basedontemperaturereadings.

14. Fault Detection and Diagnostics:

-Integratefaultdetectionmechanismstoidentifyandisolate malfunctioningcells

15. Compliance and Standards:

-Ensurecompliancewithrelevantsafetystandardsand

-Ensurecompliancewithrelevantsafetystandardsand regulationsforbatterysystems.

-Conductthoroughtestingandvalidationtomeetindustry requirements.

16. Redundancy :

- Incorporate redundancy in critical components for increasedreliability.

-Implementbackupsystemstohandlefailuresgracefully.

-Implementbackupsystemstohandlefailuresgracefully.

3. RESULT DISCUSSION

ThiscomprehensiveapproachaimstocreateaBMSthat effectivelymonitors,manages,andprotectsabatterypack fromthermalpropagationandrelatedsafetyissues.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Material Required:

1.HeatingCoil/Filament.

2.DCPowerSupply.

3.DataLogger.

4.Thermocouples.

5.CANToolforCommunicationwiththeBattery

Step – 2 Prepare Test Setup

ConnectthePowersupplytothecoilterminalsandwritethe programfor100Wpower.supplyintheIT9000Application. Voltage=25V,A=4.0Afor10mins.

6.BatteryModule/PackPreparedforthethermal Propagationtest.

Step – 1 Prepare the Module or Battery Pack forthe test.

ConnecttheBMStothePCMasterwiththeCANtool.Verify theCanCommunicationestablishedornot

.OnceCANCommunicateditdisplayalltheBMSdataasshow below.

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008

Fig–2:TargetedCellTopCorner,CenterandBottomCorner
Fig-3: Bi-directionalPowerSupplydelivering>100WPower

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

Step – 3 Pre-test requirements/verification

Batterypackfullycharged>90%.

Step – 4

Test Procedure

A.Runthepowersupplyprogramof100Wpowertothecoil

: Powersupplyprogramof100Wpowertothecoil

Fig–4: BMSdataobservationinPCmaster
Fig-5: Thermocouplestemperaturesinthedataloggerapplication
Fig
6

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072 © 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008

Shouldperformasperthebelowlogic:

–8: BMSalarmbuzzerlogicwiththermaleventprocessflow

Fig–7: Buzzerperformancegraph
B. BMSBuzzer
Fig

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

4. CONCLUSIONS

The implementation of an enhanced Battery Management System (BMS) incorporating MOSFET-based isolation for load connection proves to be a crucial advancement in ensuring the safety and reliability of battery systems. The MOSFET-based isolation effectively isolates the load from thebatteryduringthermalrunwaytests,mitigatingtherisk ofthermalrunawaypropagationandpotentialcatastrophic failures.BMS performed as per buzzer alarm logic, buzzer clearlyaudible.Alarm arevisibleonthe PCMaster screen through CAN Communication and LED also indicate . Through comprehensive analysis and simulation, this test hasprovidedvaluableinsightsintothethermalbehaviorof batteries under diverse conditions. The integration of advanced protection mechanisms enhances the overall resilience of batteries, safeguarding against thermal propagation and potential cascading failures. This comprehensive approach aligns with the industry's continuouseffortstoaddresssafetyconcerns,fosteringthe developmentofmorerobustanddependableenergystorage solutions.

REFERENCES

[1]Talele,Virendra,MaheshSureshPatil,SatyamPanchal, Roydon Fraser, and Michael Fowler. "Battery thermal runaway propagation time delay strategy using phase change material integrated with pyro block lining: Dual functionalitybattery thermal design." Journal of Energy Storage65(2023):107253.

[2] Kim, Gi-Heon, and Ahmad Pesaran. "Battery thermal management design modeling." World Electric Vehicle Journal1,no.1(2007):126-133.

[3] Bahiraei, Farid, Amir Fartaj, and Gholam-Abbas Nazri. "Electrochemical-thermal modeling to evaluate active thermal management of a lithium-ion battery module." ElectrochimicaActa254(2017):59-71.

[4] Srinivasan, Rengaswamy, Plamen A. Demirev, Bliss G. Carkhuff,ShriramSanthanagopalan,JudithA.Jeevarajan,and Thomas P. Barrera. "thermal safety management in Liion batteries:currentissuesandperspectives."Journal ofThe ElectrochemicalSociety167,no.14(2020):140516.

[5]Marcos,David,MaitaneGarmendia,JonCrego,andJosé Antonio Cortajarena. "Functional Safety BMS Design Methodology for Automotive Lithium-Based Batteries." Energies14,no.21(2021):6942.

[6]Chombo,PiusVictor,andYossapongLaoonual."Areview of safety strategies of a Li-ion battery." Journal of Power Sources478(2020):228649.

[7] Yuan, Chengchao, Qingsong Wang, Yu Wang, and Yang Zhao."Inhibitioneffectofdifferentinterstitialmaterialson thermalrunawaypropagationinthecylindricallithium-ion batterymodule."Appliedthermal engineering153(2019) 39-50.

[8] Menz, Fabian, Bruno Bausch, Joaquín Klee Barillas, OlafBarillas,OlafBöse,MichaelA.Danzer,andMarkusHölzle "Preventing thermal runaway propagation in lithiumion batteries: Model-based optimization of interstitial heatabsorbingthermalbarriers."JournalofPowerSources 584(2023):233578.

[9] Lin, Jiayuan, Xinhua Liu, Shen Li, Cheng Zhang, and ShichunYang."Areviewonrecentprogress,challengesand perspective of battery thermal management system." InternationalJournalofHeatandMassTransfer167(2021): 120834.

[10]Ji,Changwei,ZhizuZhang,BingWang,ShouqinZhang, andYangyiLiu."Studyonthermalrunawaywarningmethod of lithium-ion battery." Journal of Loss Prevention in the ProcessIndustries78(2022):104785.

[11]Zhou,Haikuo,ChaohuaDai,YangLiu,XuetingFu,and Yun Du. "Experimental investigation of battery thermal managementandsafetywithheatpipeandimmersionphase change liquid." Journal of Power Sources 473 (2020): 228545.

[12] Hartmann, Mark, and Joe Kelly. "Thermal runaway preventionofLiionbatteriesbynovelthermalmanagement system." In 2018 IEEE Transportation Electrification ConferenceandExpo(ITEC),pp.477-481.IEEE,2018.

[13] Chen, Siqi, Xuezhe Wei, Guangxu Zhang, Xinyu Rui, Chengshan Xu, Xuning Feng, Haifeng Dai, and Minggao Ouyang. "Active and passive safety enhancement for batteries from force perspective." Renewable and SustainableEnergyReviews187(2023):113740.

[14]Xu,Gaojie,LangHuang, ChenglongLu,XinhongZhou, andGuangleiCui."Revealingthemultilevelthermalsafetyof lithiumbatteries."EnergyStorageMaterials31(2020):7286.

[15] Wang,Ze,LeiZhu,JianweiLiu,JiananWang,andWei Yan. "Gas sensing technology for the detection and early warning of battery thermal runaway: a review." Energy & Fuels36,no.12(2022):6038-6057.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.