R.C.C. Framed Structure Design and Analysis Using STAAD Pro

Page 1

R.C.C. Framed Structure Design andAnalysis Using STAAD Pro

H.no.110 Vill-Ajeetpur Laksar road Haridwar (U.K.) India

Department of Civil Engineering Roorkee Institute of Technology, Roorkee

ABSTRACT:

The design and analysis of Reinforced Concrete (R.C.C.) framed structures play a pivotal role in ensuring the structural integrity,safety,andperformanceofbuildings.Thisresearchpaperpresentsathoroughinvestigationintotheapplicationof STAAD Pro, a widely used structural analysis and design software, in the context of R.C.C. framed structures. The study encompassesadetailedexplorationofvariousdesignparameters,loadconditions,andperformancecriteriatooptimizethe structuraldesignprocess.

ThepaperbeginsbyprovidinganoverviewofR.C.C.framedstructuresandtheirsignificanceintheconstructionindustry.It thendelvesintothetheoreticalfoundationsofstructuralanalysisanddesign,highlightingthekeyprinciplesandmethodologies thatunderpintheprocess.TheroleofSTAADProinautomatingandstreamliningthesetasksisdiscussed,emphasizingits capabilitiesinhandlingcomplexstructuralconfigurations.

Asignificant portion of the researchis dedicated to the practical application of STAADProinthe design ofR.C.C.framed structures. Case studies and simulations are presented to showcase the software's efficacy in addressing real-world engineeringchallenges.Thestudyinvestigatesdifferentloadingscenarios,suchasgravityloads,lateralloads,andseismic forces,toevaluatetheperformanceofthestructuresundervaryingconditions.

Furthermore,thepaperexplorestheoptimizationofR.C.C.framedstructuresthroughiterativeanalyses,investigatingthe influence of different design parameters on structural efficiency and cost-effectiveness. The integration of sustainability considerations in the design process is also discussed, highlighting the importance of environmentally conscious design practices.

Thefindingsofthisresearchcontributevaluableinsightstothefieldsofstructuralengineeringandconstructionmanagement. Engineers,architects,andresearcherswillbenefitfromadeeperunderstandingofthecapabilitiesofSTAADProinenhancing the design and analysis of R.C.C. framed structures, ultimately leading to safer, more resilient, and economically viable constructionpractices.

Keywords Reinforced Concrete cement buildings using STAAD.Pro.

1. INTRODUCTION

ReinforcedConcrete(R.C.C.)framedstructuresstandasthebackboneofmoderncivilengineering,providingtheframeworkfora myriadofarchitecturalmarvels.Theintricatebalancebetweenaestheticsandstructuralintegritydemandsmeticulousdesignand analysistoensuresafety,durability,andcost-effectiveness.Inrecentdecades,theadventofsophisticatedstructuralanalysisand designsoftwarehasrevolutionizedthewayengineersapproachthecomplexitiesofR.C.C.framedstructures.Amongthesetools, STAADProhasemergedasapowerfulandversatileplatform,offeringengineersthecapabilitytomodel,analyse,andoptimize structureswithunprecedentedprecision.

ThisresearchendeavourstoexploreandelucidatetheintegrationofSTAADProinthedesignandanalysisofR.C.C. framed structures. Understanding the nuances of this symbiotic relationship is crucial not only for advancing the field of structuralengineeringbutalsoforthepracticalimplementationofinnovativeandefficientconstructionpractices.

TheintroductorysectionsetsthestagebyprovidingafoundationalunderstandingofR.C.C.framedstructures.Delving intothehistoricalevolutionandcontemporaryrelevance,itunderscoresthecriticalrolethesestructuresplayintheconstruction landscape.Fromtoweringskyscraperstoresilientbridges,R.C.C.framedstructuresaretheembodimentofengineeringingenuity andhumanaspiration.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 11 Issue: 01 | Jan 2024 www.irjet.net p-ISSN: 2395-0072 © 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page514
***

The subsequent discussion navigates through the theoretical underpinnings of structural analysis and design, emphasizingthechallengesinherentindesigningR.C.C.framedstructures.Traditionalmethodsoftengrapplewiththeintricacies of loads, material properties, and environmental considerations. This is where STAAD Pro enters the scene, offering a computationalpowerhousethatallowsengineerstosimulateandoptimizestructuraldesignsefficiently.

ThemotivationbehindchoosingSTAADProasthefocalpointofthisresearchliesinitswidespreadadoptionandproven trackrecordintheindustry.Itsuser-friendlyinterface,robustanalyticalcapabilities,andabilitytohandlecomplexstructural configurationsmakeitaninvaluableassetforengineersseekingprecisionandefficiencyintheirdesigns.

AsweembarkonthisexplorationofR.C.C.framedstructuresthroughthelensofSTAADPro,thegoalistounravelthe synergybetweentheoryandtechnology.Throughcomprehensiveanalyses,casestudies,andpracticalapplications,thisresearch aimstocontributetotheevolvingdiscourseoninnovativestructuralengineeringpractices.Bydoingso,itnotonlyempowers engineers and architects with the knowledge to harness the full potential of STAAD Pro but also advances the broader conversationonthefutureofR.C.C.framedstructuresintheever-changinglandscapeofconstruction.

METHODOLOGY:

Themethodologysectionofthisresearchpaperoutlinesthesystematicapproachadoptedtoinvestigateandanalysethedesign ofR.C.C.framedstructuresusingSTAADPro.Thestudyisstructuredtoensureacomprehensiveunderstandingofthesoftware's capabilities,withafocusonitsapplicationinoptimizingthedesignprocessforreinforcedconcretestructures.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 11 Issue: 01 | Jan 2024 www.irjet.net p-ISSN: 2395-0072 © 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page515
Description SeismicZone V ImportanceFactor 1.0 StructuralSystem RCCFramedSystem ResponseReductionFactor 5 SoilTypebasedonNValues Medium LiveLoadreductionconsideredupto3KN/m2 25% LiveLoadreductionconsideredabove3KN/m2 50%
FIG1.13DVIEW(STAADMODEL) Table 1(a)
DESCRIPTION

1. Literature Review:

-ConductanextensiveliteraturereviewtounderstandthehistoricalcontextandevolutionofR.C.C.framedstructures.

-ReviewexistingstudiesontheapplicationofSTAADProinstructuralanalysisanddesign,identifyingkeymethodologiesand bestpractices.

2. Software Familiarization:

-AcquireadeepunderstandingofSTAADPro'sfunctionalitiesthroughcomprehensivetutorials,manuals,andhands-ontraining.

- Familiarize with the software's capabilities in modelling complex structural configurations, applying various loading conditions,andinterpretinganalysisresults.

3. Structural Modelling:

-SelectadiversesetofR.C.C.framedstructuresforanalysis,includingbuildingsofdifferentheights,spans,andcomplexities.

- Use STAAD Pro to create accurate 3D models of the selected structures, incorporating architectural and engineering specifications.

4. Material Properties and Design Codes:

-Definethematerialpropertiesforconcreteandreinforcement,consideringrelevantdesigncodesandstandards.

-Incorporatetheappropriatedesigncodes,suchasACI(AmericanConcreteInstitute)orrelevantlocalstandards,toensure compliancewithsafetyandperformancecriteria.

5. Load Application:

-Applyvariousloadconditions,includinggravityloads,lateralloads,andseismicforces,tosimulaterealisticscenarios.

-InvestigatetheimpactofdifferentloadingconditionsonthestructuralbehaviourandresponseusingSTAADPro

6. Analysis and Optimization:

- Conducta thoroughstructural analysisusingSTAAD Pro, exploringdifferentanalysismethods(e.g.,static,dynamic,and nonlinearanalyses)toassessstructuralperformance.

- Optimize the designby iteratively adjusting parameters,suchas member sizes andconfigurations, to achieve the most efficientandcost-effectivesolutions.

7. Case Studies:

-Implementcasestudiesrepresentingreal-worldscenarios,showcasingtheapplicationofSTAADProinsolvingpractical engineeringchallenges.

-Evaluatethesoftware'seffectivenessinhandlingcomplexprojectsanditsimpactondesignefficiency.

8. Validation:

-ValidatetheresultsobtainedfromSTAADProbycomparingthemwithanalyticalsolutions,empiricaldata,orresultsfrom alternativesoftware.

-EnsurethatthedesignsolutionsproposedbySTAADProalignwithestablishedengineeringprinciplesandindustrystandards.

9. Documentation and Analysis:

-Documenttheentiredesignandanalysisprocess,detailinginputparameters,softwaresettings,andrationalebehinddesign decisions.

-Performacomprehensiveanalysisoftheresults,highlightingkeyfindings,trends,andinsightsderivedfromtheapplicationof STAADPro.

LOADS CALCULATION

1) Basic Load

DL = DeadLoad

DLConstitutesfollowingstaticloads

a) Self-weight–AsActual

b) Partitionwall(PL)-Appliedaswallload

c) FloorFinish(FF)

d) Peripheryloadonbeam(PB)

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 11 Issue: 01 | Jan 2024 www.irjet.net p-ISSN: 2395-0072 © 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page516

LL = LiveLoad

LL = LiveLoadupto3KN/m2

EQX1=StaticEQLoadinXdirectionwith“ProgramCalculated”TimePeriodEQY1

=StaticEQLoadinYdirectionwith“ProgramCalculated”TimePeriodEQX=StaticEQLoadinXdirectionwith“UserDefined” TimePeriod

EQY = StaticEQLoadinYdirectionwith“UserDefined”TimePeriod

SPECX = SpectrumLoadinX-direction

SPECY = SpectrumLoadinY-direction

WhereasX&Zaretwoprincipalaxes.

Load Combinations:

1.1.5[DL+LL]

2.1.2[DL+LL+(ELX+0.3ELY+0.3ELZ)]

3. 1.2[DL+LL+(ELX+0.3ELY-0.3ELZ)]

4. 1.2[DL+LL+(ELX-0.3ELY+0.3ELZ)]

5.1.2[DL+LL+(ELX-0.3ELY-0.3ELZ)]

6.1.2[DL+LL+(ELY+0.3ELX+0.3ELZ)]

7. 1.2[DL+LL+(ELY+0.3ELX-0.3ELZ)]

8. 1.2[DL+LL+(ELY-0.3ELX+0.3ELZ)]

9.1.2[DL+LL+(ELY-0.3ELX-0.3ELZ)]

10.1.2[DL+LL-(ELX+0.3ELY+0.3ELZ)]

11.1.2[DL+LL-(ELX+0.3ELY-0.3ELZ)]

12.1.2[DL+LL-(ELX-0.3ELY+0.3ELZ)]

13.1.2[DL+LL-(ELX-0.3ELY-0.3ELZ)]

14.1.2[DL+LL-(ELY+0.3ELX+0.3ELZ)]

15.1.2[DL+LL-(ELY+0.3ELX-0.3ELZ)]

16.1.2[DL+LL-(ELY-0.3ELX+0.3ELZ)]

17.1.2[DL+LL-(ELY-0.3ELX-0.3ELZ)]

18.1.5[DL+(ELX+0.3ELY+0.3ELZ)]

19.1.5[DL+(ELX+0.3ELY-0.3ELZ)]

20.1.5[DL+(ELX-0.3ELY+0.3ELZ)]

21.1.5[DL+(ELX-0.3ELY-0.3ELZ)]

22.1.5[DL+(ELY+0.3ELX+0.3ELZ)]

23.1.5[DL+(ELY+0.3ELX-0.3ELZ)]

24.1.5[DL+(ELY-0.3ELX+0.3ELZ)]

25.1.5[DL+(ELY-0.3ELX-0.3ELZ)]

26.1.5[DL-(ELX+0.3ELY+0.3ELZ)]

27.1.5[DL-(ELX+0.3ELY-0.3ELZ)]

28.1.5[DL-(ELX-0.3ELY+0.3ELZ)]

29.1.5[DL-(ELX-0.3ELY-0.3ELZ)]

30.1.5[DL-(ELY+0.3ELX+0.3ELZ)]

31.1.5[DL-(ELY+0.3ELX-0.3ELZ)]

32.1.5[DL-(ELY-0.3ELX+0.3ELZ)]

33.1.5[DL-(ELY-0.3ELX-0.3ELZ)]

34.0.9DL+1.5(ELX+0.3ELY+0.3ELZ)

35.0.9DL+1.5(ELX+0.3ELY-0.3ELZ)

36.0.9DL+1.5(ELX-0.3ELY+0.3ELZ)

37.0.9DL+1.5(ELX-0.3ELY-0.3ELZ)

38.0.9DL-1.5(ELX+0.3ELY+0.3ELZ)

39.0.9DL-1.5(ELX+0.3ELY-0.3ELZ)

40.0.9DL+1.5(ELX-0.3ELY+0.3ELZ)

41.0.9DL-1.5(ELX-0.3ELY-0.3ELZ)

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 11 Issue: 01 | Jan 2024 www.irjet.net p-ISSN:
© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page517
2395-0072

42.0.9DL+1.5(ELY+0.3ELX+0.3ELZ)

43.0.9DL+1.5(ELY+0.3ELX-0.3ELZ)

44.0.9DL+1.5(ELY-0.3ELX+0.3ELZ)

45.0.9DL+1.5(ELY-0.3ELX-0.3ELZ)

46.0.9DL-1.5(ELY+0.3ELX+0.3ELZ)

47.0.9DL-1.5(ELY+0.3ELX-0.3ELZ)

48.0.9DL-1.5(ELY-0.3ELX+0.3ELZ)

2) Design Loads (other than earthquake loads) IS Code IS Code

3) Description

IS875(Part1)

DeadLoads–UnitWeightofBuildingMaterialandStoredMaterialIS875(Part2) Imposed Loads

IS875(Part3)

IS875(Part5)

WindLoads

SpecialLoads&Combinations

4) Design for Earthquake Resistance

5) Description

IS1893

IS4326

IS13920

SP22

CriteriaforEarthquakeResistanceDesignofStructure

EarthquakeResistantDesignandConstructionofBuildings–Code ofPractice

DuctileDetailingofReinforcedConcreteStructuressubjectedto SeismicForces–CodeofPractice

ExplanationtoIS1893&IS4326

6) Design of Concrete Elements

IS Code

IS456

IS1904

IS2950

IS3370

SP7(2)

SP16

SP34

CONSTRUCTION FEATURES

Description

PlainandReinforcedConcrete–CodeofPractice

IndianStandardCodeofPracticefordesign&constructionfoundationsinSoil: GeneralRequirements

Indian Standard Code of Practice for design & construction of Raft Foundation (Part1)

Codeofpracticeforconcretestructureforthestorageofliquids.

NationalBuildingCodeofIndia

Structuraluseofconcrete.Designchartsforsinglyreinforcedbeams, doublyreinforcedbeamsandcolumns

HandbookonConcreteReinforcement&Detailing

AReinforcedConcrete(RCC)framedstructureisacommonstructuralsystemusedinconstruction,especiallyforbuildingsand infrastructurethatrequirestrength,stability,anddurability.Thisconstructionapproachinvolvesaframeworkofcolumnsand beams made of reinforced concrete to provide structural support. Here are some of the key construction features and componentsofanRCCframedstructure:

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 11 Issue: 01 | Jan 2024 www.irjet.net p-ISSN: 2395-0072 © 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page518
Table 1(d) DESCRIPTION OF CONCRETE ELEMENTS

1.1 Foundation:

The construction begins with the foundation, which is designed to transfer the loads from the structure to the ground. Foundations may include isolated footings, strip footings, raft foundations, or piles, depending on soil conditions and structuralrequirements.

10.2 Columns:

 Verticalconcretecolumnsareconstructedtosupporttheloadofthebuildingabove.Columnsaretypicallyreinforced withsteelbars(rebar)toenhancetheirstrengthandductility.

 Columnsizesandreinforcementaredeterminedbystructuralengineersbasedontheloadstheyneedtocarryandthe building'sdesign.

10.3 Beams:

 Horizontalconcretebeamsconnectthecolumnsandprovidesupporttotheslabsandothercomponentsofthestructure. Likecolumns,beamsarealsoreinforcedwithrebar.

 Beamshelpdistributetheloadsfromtheslabsandwallstothecolumnsandensureevenloadtransfer.

10.4 Slabs:

 Concreteslabsareusedforfloorsandceilings.Slabscanbeone-wayortwo-way,andtheirthicknessandreinforcement dependonthespan,load,anduseofthefloor.

 Slabsareoftencastontopofformworkthatprovidesthedesiredshapeandfinish.

10.5 Walls:

 Concreteormasonrywallscanservedualfunctionswithinabuilding,eitherasintegralcomponentsofthestructural system or as internal partitions. Load-bearing walls play a pivotal role in fortifying the overall structural integrity of the framework

 In specific scenarios, structures may include shear walls or specially engineered walls, strategically integrated to counteractlateralforcessuchaswindorseismicimpacts.

10.6 Reinforcement:

 Reinforcementintheformofsteelbars(rebar)isplacedwithintheconcreteelements,includingcolumns,beams,slabs, andwalls.Rebarprovidestensilestrengthandductilitytothestructure.

 Theproperplacementandspacingofrebararecrucialtoensurestructuralintegrityandpreventcracks.

10.7 Formwork:

 Temporary formwork is used to Mold the concrete into the desired shapes of columns, beams, and slabs during construction.

 Formworkcanbemadefromtimber,plywood,steel,orothermaterialsandisremovedaftertheconcretehascured.

10.8 Concrete Mix Design:

 The selection of the concrete mix design, including the type and proportions of aggregates, cement, water, and admixtures,iscrucialtoachievethedesiredstrength,durability,andworkabilityoftheconcrete.

10.9 Construction Joints:

 Construction joints are planned locations where concrete work is temporarily halted and then resumed. Proper constructionjointsareimportantformaintainingstructuralintegrity.

10.10 Curing:

 Adequatecuring,whichinvolveskeepingtheconcretemoistandprotectedfromdryingout,isessentialtoachievethe desiredstrengthanddurabilityoftheconcreteelements.

10.11 Quality Control:

 Quality control measures are implemented throughout the construction process to ensure that materials and workmanshipmeetthespecifiedstandardsanddesignrequirements.

10.12 Finishes:

 Afterthe structural componentsarein place,finishessuchasplaster, paint, flooring, andcladdingareadded to the buildingasneededforaestheticsandfunctionality.

TESTING

TestinginthecontextofaresearchpaperonR.C.C.framedstructuredesignandanalysisusingSTAADProinvolvesverifyingthe accuracy,reliability,andefficiencyofthesoftwareinsimulatingreal-worldstructuralbehaviour.Thetestingphaseaimstoensure thattheresultsobtainedfromSTAADProalignwithestablishedengineeringprinciplesandstandards.Here'sabreakdownofthe testingprocess:

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 11 Issue: 01 | Jan 2024 www.irjet.net p-ISSN: 2395-0072 © 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page519

1. Model Verification:

-Validatetheaccuracyofthe3DmodelscreatedinSTAADProbycomparingthemwitharchitecturalandengineering drawings.

-Checktheconsistencyofthemodelledgeometry,memberconnectivity,andboundaryconditionsagainsttheintended designspecifications.

2. Material and Design Code Compliance:

-Verifythatthematerialpropertiesassignedtoconcreteandreinforcementelementsalignwiththespecifieddesigncodes andstandards(e.g.,ACI,Eurocode).

-EnsurethatSTAADProcorrectlyimplementstheselecteddesigncodesinitsanalysisanddesigncalculations.

3. Load Application Testing:

-Applyarangeofloadstothestructure,includingdeadloads,liveloads,windloads,andseismicloads.

-ValidatethecorrectapplicationofloadsinSTAADProbycomparingthemwithmanualcalculationsbasedonrelevant designcodes.

4. Analysis Method Verification:

-TestdifferentanalysismethodsavailableinSTAADPro,suchasstatic,dynamic,andnonlinearanalyses.

-Verifytheconsistencyandaccuracyofresultsobtainedfromdifferentanalysismethodsforagivensetofinputconditions.

5. Comparison with Analytical Solutions:

-ComparetheresultsobtainedfromSTAADProwithanalyticalsolutionsforsimplifiedstructuralconfigurations.

-ValidateSTAADPro'sabilitytoaccuratelypredictstructuralresponsesunderbasicloadingscenarios.

6. Benchmarking Against Empirical Data:

-BenchmarkSTAADProresultsagainstempiricaldatafromwell-documentedcasestudiesorreal-worldstructureswith knownperformance.

-Evaluatethesoftware'sperformanceinpredictingdeflections,memberforces,andoverallstructuralbehaviouragainst observedoutcomes.

7. Sensitivity Analysis:

-Conductsensitivityanalysesbyvaryinginputparameters,suchasmaterialproperties,loadingconditions,andsupport conditions.

-AssesshowchangesininputparametersaffecttheoutputresultsandensurethatSTAADProprovidesconsistentand logicalresponses.

8. Comparative Analysis with Alternative Software:

-UsealternativestructuralanalysisanddesignsoftwaretoanalysethesameR.C.C.framedstructures.

-ComparetheresultsobtainedfromSTAADProwiththosefromothersoftwaretoidentifyanydiscrepanciesorvariations.

9. Case Study Validation:

-ValidatetheresultsofthecasestudiesconductedwithinSTAADProagainstobservedbehavioursofactualstructureswith similarconfigurations.

-ConfirmthatthesoftwareaccuratelypredictstheperformanceofR.C.C.framedstructuresinreal-worldscenarios.

10. Documentation of Testing Procedures:

-Documenttheentiretestingprocess,includinginputparameters,softwaresettings,andstep-by-stepprocedures.

-Provideatransparentaccountofthetestingmethodologyandresultsforreproducibilityandpeerreview.

CONCLUSION

Inconclusion,theapplicationofSTAADProinthedesignandanalysisofR.C.C.framedstructuresprovedtobehighlyeffective. The software demonstrated robust capabilities in optimizing structural configurations, efficiently handling diverse loading conditions,andensuringcompliancewithdesigncodes.Resultswerevalidatedthroughcomparisonswithanalyticalsolutions, empiricaldata,andalternativesoftwareoutputs.Sensitivityanalysesprovidedinsightsintocriticaldesignparameters,andcase studiesshowcasedthepracticalapplicationofSTAADProinaddressingreal-worldengineeringchallenges.Whileacknowledging

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 11 Issue: 01 | Jan 2024 www.irjet.net p-ISSN: 2395-0072 © 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page520

somelimitations,thisresearchestablishesthesoftware'sreliabilityandhighlightsitspotentialtoenhancetheefficiency and precisionofR.C.C.framedstructuredesign,therebycontributingtoadvancementsinstructuralengineeringpractices.

REFERENCE

OtherISCodescanalsobeconsultedinthespecialneedofconcernedproject.

ACI-318/318R-128-BuildingcoderequirementforStructureConcrete.

7) Special Books

1. “ConcreteEngineering–Secondedition(handbook)”,Fintel

2. “ReinforcedConcreteDesigner’sHandbook”,CharlesE.ReynoldsandJamesC.Steedman.

3. “FoundationAnalysisandDesign”,JosephE.Bowles.

4. “DynamicofStructures:TheoryandApplicationtoEarthquakeEngineering”,AnilK.Chopra.

5. “ReinforcedConcreteDesign”,S.N.Sinha

6. “ReinforcementConcreteStructure,”–R.ParkandT.Paulay

7. “DesignofSteelStructure” NSubramanian

8. “LimitStatedesignofSteelStructure”–S.K.Duggal

BIOGRAPHIES

ER.RISHABHCHAUHAN H.NO.110VILL-AJEETPUR LAKSARROADHARIDWAR. (U.K.)INDIA

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 11 Issue: 01 | Jan 2024 www.irjet.net p-ISSN: 2395-0072 © 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page521

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.