

Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Kanchanmani Poudel
Department of Civil Engineering
Roorkee Institute of Technology, Roorkee
ABSTRACT:
TheseismicdesignoftheframebuildingproposedinthisprojectisbasedonISl893-2OO2andIS8OO.Theaimofthepresent project is to determine the multi-storey and multi-bay (G+5) building frame according to seismic forces. It was designed accordingtoISl893andlaterIS8OO:2OO7.Theframeissix-fold,withthreepartitionsinthehorizontaldirectionandfive partitionsinthehorizontaldirection.Theselectionofasegmentdependsonanumberofcriteria.Thetwomethodsusedfor analysisaretheequivalentstaticchargemethodandtheresponsespectrummethod.
The results obtained from the two methods were compared in terms of storey displacement, storey displacement and foundationshear.FrameswerealsoanalyzedwithP-ΔanalysisandtimetocorrectforIBCcode.Then,basedonthisanalysis process,atime-resistantsteelframewasdesignedaccordingtoIS-8OO:2OO7.Checkthedesignagainandcomparetheresults bymaterial.
Thecost-effectivenessofthetwomethodswascompared.Finally,theconnectionbetweentheinsideandoutsideoftheframeis createdandcalculated.Inaddition,theconstructionofthebaseplatefoundationconformstoIS8OO:2OO7.Thesoftwareused foranalysisanddesignisSTAADPRO.Adequatebibliographyandcomparisonshavebeenmadeduringbothdesignandreview.
KEYWORDS:Frame,SeismicLoad,Multi-storey,Multi-bay.
1. INTRODUCTION
1.1. General
Today,thefirstfloorsofmanyurbanmulti-storeybuildingsinIndiaareopenasadefensemechanism.Thisisimportantto preventmefromwritingthemainstory'sentree.Althoughallseismicpatternsduringanearthquakehaveanegativeperiod, theseismiccycleisnotindependentofthemagnitudeandspreadoftheearthquake.
Thebehaviorofstructuresduringanearthquakefoundationdependsontheoverallshape,sizeandgeometry,regardlessof howtheearthquakeforceistransmittedtotheground.Earthquakeforceoccursindifferentfloorsandstructuresandshouldbe brought to the ground in the easiest way; any variation or combination or movement will cause its structure to show a dangerousresult.
Amodelwithavertical view(liketheservicemodel,hasawiderstorythantheothers)willcauseanearthquake,feature shakinginsize.Astructurethathasnocracksorsplitsinacertainpastwillcreatedamageanddestructionineverypast. Duringthe2OOlBhujearthquake,manybuildingsinGujaratwerepreparedtopreventcollapseorseriousdamage.Inthe middleofthestory,thereisastructurewithapartthatisfloatingorfloatingontheionicline,andthisstructureiswrong,there isaninconsistencyinthatstructure.
TheIndianSubcontinenthasearthquakesmarkedinthebackground.
ThereasonbehindthisistheintensityandfrequencyofseismictremorsastheIndianplateslammedintoAsiaat47mmper year.Anotherstudynotedthattheearthquakehadamagnitudeof8.5orgreaterwhenithitthefocalpointoftheHimalayas.
Suchiaiseismicitremoricouldimurderioriharmiaihugeinumberiofiindividualsiseparatedifromicausing inever-seen iannihilationiiniUttarakhandiandiHimachaliPradesh.iQuakesifariandiwideiareiwithoutianyihelpiinichargeiofithe idecimationitoilifeiandipropertyiinienormousinumbers.iSoiasitoialleviateisuchiperils,iitiisicriticalitoiconsolidate istandardsithatiwilliimproveitheiseismicipresentationiofistructures.

As iindicated iby ithe iSeismic iZoning iMap iof iIS il893:2OO2, iIndia iis iisolated iinto ifive iseismic izones, iin iclimbing irequestiofiaispecificizoneifactoriwhichiisiappointeditoithemibasedionitheiriseismicipower..i
Thei4-storyiRCiStructureibeingibrokeidowniinithisispecificiventureiisitheiprivateistructureiofRoorkeeiwhichiis iunderidevelopment,iwhichiisisituatediatiallidefenselessizoneiforiexampleizoneiIV.Subsequently,iitimightibombiin icase iof iany irespectably isolid istructural iaction iin iits iregion. iContemplating ithe iexhibition iof ithe istructure iand irecommendingiappropriateiretrofitimeasuresiforitheistructureiwouldiinithisimanneribeiaineed.
l.2 iProposed iWork iand iObjective
Myresearchprojectisseismicassessmentofstructures.PartisprobablybecauseitwascreatedsomewhereinIreland5Oyears ago,soIwon'tbedisappointedinthefirstplace.Afterlearningthatitsstructurewillcollapseforeverwhensubjectedtoseismic loads.BeforeusingtheEquivalentStaticMethod,anideatakenfromthefoundthatthestructurewouldcollapseimmediately whentheiwassubjectedtoseismicthrustloads.
TheDemandCapacityRatio(DCR)isdeterminedintheinitialhistoryofitsaxisandsegment.Weseeaninfiniteaxisandcross sectionatthebendinglimit.ButmostofthesepeoplearewhatIseewhenIhearit.Section
Consideringmyconclusions,Ifocusonto-Section
STAADhasdevelopedaplantoguidetheanalysisoftheseismicrepresentationofthestructure.Prov8i
l.3 iOutline iof ithe iWork
Partiliisiaishortipresentationiaboutiquakes,itheineeditoiexamineiexecutioniofistructuresiwheniexposeditoiseismic ipowers.iItilikewiseicondensesitheigoalitoibeiaccomplishediinithisispecificiundertaking.I
Parti2icontainsianioutlineiofiallitheiwritingiwhichihasibeenisurveyeditoipickiupiinformationiaboutitheidifferent isortsiofiretrofittingiestimatesiwhichicanibeiconnecteditoistructuresiandifeaturesitheiexaminationiterritoryiforithe iequivalent.I
Parti3icontainsitheifundamentalihypothesisiandistrategyiwhichihasibeeniutilizeditoibreakidownitheistructureiand itheiplan.I
Parti4itiesitogetherieveryioneiofitheioutcomesiacquiredifromitheiexamination,iwhichiaidesiinipointingioutiwhich iindividualsiwilliflopiiniflexureiandiadditionallyisheariandirecognizeianiexample.iTherefore,icertainiendsihaveibeen ideterminediandiscopeiforifutureiworkihasilikewiseibeeniexpressed.
METHODOLOGY:
1) 3.2.l. Geometry iand iSection ispecification
Theistructureiisianiunder-developmentibuildingisituatediiniRoorkee.iThisiisitoibeiutilizediforiprivateireasoniasiit iwere. iThere ithe iestimation ihas ibeen itaken ifrom istructure. iAt ithat ipoint ithe iarrangement iis idrawn iutilizing iAutoCADiSoftware.iThisiisiaiG+3istructure.iTheisizeiofistructureiisi42'ixi3l'.iTheistatureiofitheistructureiisi4Oift iandieachiflooriisiofilOift.i
FigurelidemonstratesitheiPlaniofitheistructureiatiGroundiFloor.iFigure2idemonstratesitheiPlaniofitheistructureiat ifirstifloor.iFigure3idemonstratesitheiPlaniofitheistructureiatisecondifloor.iFigure4idemonstratesitheiPlaniofithe istructureiatithirdifloor.iThereiarei3iroomioneachionisecondiandithirdifloor.










Theiwidthiofitheistructureiisi3Oiftiwhichihaveitwoiinverseiroom.iEachiroomihaveitheiwidthiofitheil5ift.iFigure i3.4idemonstratesitheiarrangementiperspectiveionitheistructureiofipillaricourseiofiaction.iSoilengthiofibariinithis istructureiisil2iftialongitheilengthiandil2iftialongitheiwidthiofitheistructure.
Sectioniofitheibeami=iO.23imiXiO.45im
Sectionioficolumni=iO.23imiXiO.23im
LOADS CALCULATION
Wheniearthquakeiforcesiareiconsideredioniaistructure,itheseishallibeicombinediwhereitheitermsiDL,iILiandiEL istandiforitheiresponseiquantitiesidueitoideadiload,iimposediloadiandidesignatediearthquakeiloadirespectively.iIn itheilimitistateidesigniofireinforcediandipre-stressediconcreteistructures,itheifollowingiloadicombinationsishallibe iaccountedifor:
1) l.5(iDL+lL)
2) l.2(iDL+IL+EL)
3) l.5(iDL+EL)
4) O.9DL*il.5EL




CONSTRUCTION FEATURES
AReinforcedConcrete(RCC)framedstructureisacommonstructuralsystemusedinconstruction,especiallyforbuildings and infrastructure that require strength, stability, and durability. This construction approach involves a framework of columns and beams made of reinforced concrete to provide structural support. Here are some of the key construction featuresandcomponentsofanRCCframedstructure:
1.1 Foundation:
The construction begins with the foundation, which is designed to transfer the loads from the structure to the ground. Foundations may include isolated footings, strip footings, raft foundations, or piles, depending on soil conditions and structuralrequirements.

10.2 Columns:
Verticalconcretecolumnsareconstructedtosupporttheloadofthebuildingabove.Columnsaretypicallyreinforced withsteelbars(rebar)toenhancetheirstrengthandductility.
Columnsizesandreinforcementaredeterminedbystructuralengineersbasedontheloadstheyneedtocarryandthe building'sdesign.
10.3 Beams:
Horizontalconcretebeamsconnectthecolumnsandprovidesupporttotheslabsandothercomponentsofthestructure. Likecolumns,beamsarealsoreinforcedwithrebar.
Beamshelpdistributetheloadsfromtheslabsandwallstothecolumnsandensureevenloadtransfer.
10.4 Slabs:
Concreteslabsareusedforfloorsandceilings.Slabscanbeone-wayortwo-way,andtheirthicknessandreinforcement dependonthespan,load,anduseofthefloor.
Slabsareoftencastontopofformworkthatprovidesthedesiredshapeandfinish.
10.5 Walls:
Concreteormasonrywallscanservedualfunctionswithinabuilding,eitherasintegralcomponentsofthestructural system or as internal partitions. Load-bearing walls play a pivotal role in fortifying the overall structural integrity of the framework
In specific scenarios, structures may include shear walls or specially engineered walls, strategically integrated to counteractlateralforcessuchaswindorseismicimpacts.
10.6 Reinforcement:
Reinforcementintheformofsteelbars(rebar)isplacedwithintheconcreteelements,includingcolumns,beams,slabs, andwalls.Rebarprovidestensilestrengthandductilitytothestructure.
Theproperplacementandspacingofrebararecrucialtoensurestructuralintegrityandpreventcracks.
10.7 Formwork:
Temporary formwork is used to Mold the concrete into the desired shapes of columns, beams, and slabs during construction.
Formworkcanbemadefromtimber,plywood,steel,orothermaterialsandisremovedaftertheconcretehascured.
10.8 Concrete Mix Design:
The selection of the concrete mix design, including the type and proportions of aggregates, cement, water, and admixtures,iscrucialtoachievethedesiredstrength,durability,andworkabilityoftheconcrete.
10.9 Construction Joints:
Construction joints are planned locations where concrete work is temporarily halted and then resumed. Proper constructionjointsareimportantformaintainingstructuralintegrity.
10.10 Curing:
Adequatecuring,whichinvolveskeepingtheconcretemoistandprotectedfromdryingout,isessentialtoachievethe desiredstrengthanddurabilityoftheconcreteelements.
10.11 Quality Control:
Quality control measures are implemented throughout the construction process to ensure that materials and workmanshipmeetthespecifiedstandardsanddesignrequirements.
10.12 Finishes:
Afterthe structural componentsarein place,finishessuchasplaster, paint, flooring, andcladdingareadded to the buildingasneededforaestheticsandfunctionality.
TESTING
TestinginthecontextofaresearchpaperonR.C.C.framedstructuredesignandanalysisusingSTAADProinvolvesverifying theaccuracy,reliability,andefficiencyofthesoftwareinsimulatingreal-worldstructuralbehaviour.Thetestingphaseaimsto ensure that the results obtained from STAAD Pro align with established engineering principles and standards. Here's a breakdownofthetestingprocess:
1. Model Verification:
-Validatetheaccuracyofthe3DmodelscreatedinSTAADProbycomparingthemwitharchitecturalandengineering drawings.
-Checktheconsistencyofthemodelledgeometry,memberconnectivity,andboundaryconditionsagainsttheintended designspecifications.

2. Material and Design Code Compliance:
-Verifythatthematerialpropertiesassignedtoconcreteandreinforcementelementsalignwiththespecifieddesigncodes andstandards(e.g.,ACI,Eurocode).
-EnsurethatSTAADProcorrectlyimplementstheselecteddesigncodesinitsanalysisanddesigncalculations.
3. Load Application Testing:
-Applyarangeofloadstothestructure,includingdeadloads,liveloads,windloads,andseismicloads.
-ValidatethecorrectapplicationofloadsinSTAADProbycomparingthemwithmanualcalculationsbasedonrelevant designcodes.
4. Analysis Method Verification:
-TestdifferentanalysismethodsavailableinSTAADPro,suchasstatic,dynamic,andnonlinearanalyses.
-Verifytheconsistencyandaccuracyofresultsobtainedfromdifferentanalysismethodsforagivensetofinputconditions.
5. Comparison with Analytical Solutions:
-ComparetheresultsobtainedfromSTAADProwithanalyticalsolutionsforsimplifiedstructuralconfigurations.
-ValidateSTAADPro'sabilitytoaccuratelypredictstructuralresponsesunderbasicloadingscenarios.
6. Benchmarking Against Empirical Data:
-BenchmarkSTAADProresultsagainstempiricaldatafromwell-documentedcasestudiesorreal-worldstructureswith knownperformance.
-Evaluatethesoftware'sperformanceinpredictingdeflections,memberforces,andoverallstructuralbehaviouragainst observedoutcomes.
7. Sensitivity Analysis:
-Conductsensitivityanalysesbyvaryinginputparameters,suchasmaterialproperties,loadingconditions,andsupport conditions.
-AssesshowchangesininputparametersaffecttheoutputresultsandensurethatSTAADProprovidesconsistentand logicalresponses.
8. Comparative Analysis with Alternative Software:
-UsealternativestructuralanalysisanddesignsoftwaretoanalysethesameR.C.C.framedstructures.
-ComparetheresultsobtainedfromSTAADProwiththosefromothersoftwaretoidentifyanydiscrepanciesorvariations.
9. Case Study Validation:
-ValidatetheresultsofthecasestudiesconductedwithinSTAADProagainstobservedbehavioursofactualstructureswith similarconfigurations.
-ConfirmthatthesoftwareaccuratelypredictstheperformanceofR.C.C.framedstructuresinreal-worldscenarios.
10. Documentation of Testing Procedures:
-Documenttheentiretestingprocess,includinginputparameters,softwaresettings,andstep-by-stepprocedures.
-Provideatransparentaccountofthetestingmethodologyandresultsforreproducibilityandpeerreview.
CONCLUSION
STAAD iPRO ihas ithe iability ito icompute ithe isupport irequired ifor iany isolid iarea. iThe iprogram icontains ivarious iparametersiwhichiareiplannediaccordingitoiSeemsitoibe:i456(2OOO).iShaftsiareiintendediforiflexure,isheariand itorsion.i
PlaniforiFlexure:i
Mostiextremeihangingi(makingimalleableiworryiatitheibaseiessenceiofitheipillar)iandihoardingi(makingitractable iworry iat ithe itop iface) iminutes iare idetermined ifor iall idynamic iburden icases iat ievery ione iof ithe ipreviously imentioned iareas.iEvery ioneiofitheseiareas iareiintended itoiopposeibothiofitheseibasic idroopingiandihoarding iminutes.iAnyiplaceitheirectangulariareaiisiinsufficientiasiseparatelyistrengthenedisegment,idoublyifortifiedisegment iisiattempted.I

PlaniforiShear:i
Shearisupportiisidetermineditoiopposeibothishearipowersianditorsionaliminutes.iShearilimiticomputationiativarious iareasiwithoutitheishearisupportidependsionitheigenuineiductileifortificationigivenibyiSTAADiprogram.iTwo-legged istirrupsiareigivenitoidealiwithitheiparityishearipowersifollowingiupionitheseiareas.i
ShaftiDesigniOutput:i
Theidefaulticonfigurationiyieldiofitheibaricontainsiflexuraliandishearisupportigaveialongitheilengthiofitheibar.i
SegmentiDesign:i
Segmentsiareiintendediforihubipowersiandibiaxialiminutesiatitheifinishes.iAllidynamiciburdenicasesiareitriedito ifigure ifortification. iThe istacking iwhich iyield imost iextreme isupport iis iknown ias ithe ibasic iburden. iSegment iconfigurationiisiaccomplishediforisquareiarea.iSquareisegmentsiareistructurediwithifortificationicirculatedionieach isideisimilarlyiforitheisegmentsiunderibiaxialiminutesiandiwithisupportiappropriatedisimilarlyiinitwoiappearances ifor iareas iunder iuni-pivotal iminute. iEvery isingle isignificant ifoundation ifor ichoosing ilongitudinal iand itransverse ifortificationiasistipulatedibyiSeemsitoibe:i456ihaveibeenidealtiwithiinitheisegmentiplaniofiSTAAD.
REFERENCE
[l] K,K.H.,&Professor,A.(2O2O).Analysis&DesignofMulti-StoryBuildingUsingStaadProandE-Tabs.InternationalResearch JournalofEngineeringandTechnology. www.irjet.net.
[2] Wadekar, A., & G. Dahake, A. (2O2O). Analysis and Design of a Multi-Storey Building by Using Staad Pro: a Review. InternationalJournalofAdvancedResearch,O8(O4),67–76.https://doi.org/lO.2l474/ijarOl/lO746
[3] IS l893 (Part l). (2Ol6). IS l893 (Criteria for Earthquake resistant design of structures, Part l: General Provisions and buildings).BureauofIndianStandards,NewDelhi,l893(December),l–44.
[4] Sasidhar,T.,Manadeep,T.B.,SivaKishore,I.,&Surjana,N.(2Ol7).Analysinganddesigningofahigh-risebuilding(G+lO)by STAAD.Pro.InternationalJournalofCivil EngineeringandTechnology,8(4),654–658.
[5] Jayakrishna,T.,Murali,K.,Satish,P.,&Seetunya,J.(2Ol8).Seismicanalysisofregularandirregularmulti-storeybuildingsby usingstaad.pro.InternationalJournalofCivilEngineeringandTechnology,9(l),43l–439.
[6] Qureshi,M.A.,Shah,D.,Solanki,B.,Baldaniya,D.,Patel,D.,&Shah,K.(2Ol8).EarthquakeBehaviorofBuildingUsingStaad Pro.486–49l.
[7] Kalra,M.,Kumar,G.,&Choudhary,L.(2Ol8).SeismicresponseofRCCframedstructurewithfloatingcolumns.International JournalofSustainableBuildingTechnologyandUrbanDevelopment,9(l),l8-3O,https://doi.org/lO.227l2/susb.2Ol8OOO38.8
[8] Georgoussis,G.,Tsompanos,A.,&Makarios,T.(2Ol5).Approximateseismicanalysisofmulti-storybuildingswithmassand stiffnessirregularities.ProcediaEngineering,l25,959–966.https://doi.org/lO.lOl6/j.proeng.2Ol5.ll.l47
[9] Gomasa Ramesh, Dharna Ramya, Mandala Sheshu Kumar; “Health Monitoring of Structures by Using Non-Destructive TestingMethods”,InternationalJournalofAdvancesinEngineeringandManagement(IJAEM)Volume2,Issue2,pp:652-654, DOI:lO.35629/5252-45l22323,ISSN:2395-5252,ISO9OOl:2OO8CertifiedJournal.
[lO] Gomasa Ramesh, Doddipati Srinath, Mandala Sheshu Kumar; "Earthquake Resistant of RCC Structures" Published in InternationalJournalofTrendinScientificResearchandDevelopment(ijtsrd),ISSN:2456-647O,Volume-4,Issue-5,August 2O2O,pp.8O8-8ll.
[ll] Griffith M. C., Pinto A. V. (2OOO), “Seismic Retrofit of RC Buildings - A Review and Case Study”, University of Adelaide, Adelaide,AustraliaandEuropeanCommission,JointResearchCentre,IspraItaly.

[l2] Sanghanibharatk.andPareshGirishbhaiPatel,2Oll,“BehaviourofBuildingComponentinVariousZones,”International JournalofAdvancesinEngineeringSciences,Vol.l,Issuel(Jan.2Oll)
[l3] Poonam,KumarAnil andGupta Ashok K,2Ol2,“StudyofResponseofStructural IrregularBuildingFramestoSeismic Excitations,”InternationalJournalofCivil,Structural,EnvironmentalandInfrastructureEngineeringResearchandDevelopment (IJCSEIERD),ISSN2249-6866Vol.2,Issue2(2Ol2)25-3l.
[l4] AshikS.ParasiyaandPareshNimodiya(2Ol3),“Areviewoncomparativeanalysisofbraceframewithconventionallateral loadresistingRCframeusingsoftware.
[l5] Mr.KiranKumarandMr.papaRaoG(2Ol3),“ComparisonofpercentageofsteelandconcretequantitiesofaRCbuildingin differentseismiczones.
[l6] ChandurkarP.P(2Ol3),“SeismicanalysisofRCCBuildingwithandwithoutShearwall-Aliteraturereviewonexperimental study.
BIOGRAPHIES

Er.KanchanmaniPoudel
Department of Civil Engineering
Roorkee Institute of Technology, Roorkee