JEE-Repeater-Math Module 2

Page 1


JEE IL ACHIEVER SERIES FOR MATHEMATICS

MODULE-2

2nd Edition

ILAchieverSeriesMathematicsforJEEModule2

ISBN978-81-985539-3-5[SECONDEDITION]

Thisbookisintendedforeducationalpurposesonly.Theinformationcontainedhereinisprovidedonan“as-is”and “as-available”basiswithoutanyrepresentationsorwarranties,expressorimplied.Theauthors(includinganyaffiliated organizations)andpublishersmakenorepresentationsorwarrantiesinrelationtotheaccuracy,completeness,or suitabilityoftheinformationcontainedinthisbookforanypurpose.

Theauthors(includinganyaffiliatedorganizations)andpublishersofthebookhavemadereasonableeffortsto ensuretheaccuracyandcompletenessofthecontentandinformationcontainedinthisbook.However,theauthors (includinganyaffiliatedorganizations)andpublishersmakenowarrantiesorrepresentationsregardingtheaccuracy, completeness,orsuitabilityforanypurposeoftheinformationcontainedinthisbook,includingwithoutlimitation, anyimpliedwarrantiesofmerchantabilityandfitnessforaparticularpurpose,andnon-infringement.Theauthors (includinganyaffiliatedorganizations)andpublishersdisclaimanyliabilityorresponsibilityforanyerrors,omissions, orinaccuraciesinthecontentorinformationprovidedinthisbook.

Thisbookdoesnotconstitutelegal,professional,oracademicadvice,andreadersareencouragedtoseekappropriate professionalandacademicadvicebeforemakinganydecisionsbasedontheinformationcontainedinthisbook.The authors(includinganyaffiliatedorganizations)andpublishersdisclaimanyliabilityorresponsibilityforanydecisions madebasedontheinformationprovidedinthisbook.

Theauthors(includinganyaffiliatedorganizations)andpublishersdisclaimanyandallliability,loss,orriskincurred asaconsequence,directlyorindirectly,oftheuseand/orapplicationofanyofthecontentsorinformationcontainedin thisbook.Theinclusionofanyreferencesorlinkstoexternalsourcesdoesnotimplyendorsementorvalidationbythe authors(includinganyaffiliatedorganizations)andpublishersofthesame.

Alltrademarks,servicemarks,tradenames,andproductnamesmentionedinthisbookarethepropertyoftheir respectiveownersandareusedforidentificationpurposesonly.

Nopartofthispublicationmaybereproduced,stored,ortransmittedinanyformorbyanymeans,includingwithout limitation,electronic,mechanical,photocopying,recording,orotherwise,withoutthepriorwrittenpermissionofthe authors(includinganyaffiliatedorganizations)andpublishers.

Theauthors(includinganyaffiliatedorganizations)andpublishersshallmakecommerciallyreasonableeffortsto rectifyanyerrorsoromissionsinthefutureeditionsofthebookthatmaybebroughttotheirnoticefromtimetotime.

AlldisputessubjecttoHyderabadjurisdictiononly.

Copyright © 2025 Rankguru Technology Solutions Private Limited. Allrightsreserved.

A Tribute to Our Beloved Founder

Dr.B.S.Rao,thevisionarybehindSriChaitanyaEducationalInstitutions,iswidelyrecognisedfor hissignificantcontributionstoeducation.Hisfocusonprovidinghigh-qualityeducation,especially inpreparingstudentsforJEEandNEETentranceexams,haspositivelyimpactednumerouslives. ThecreationoftheILAchieverSeriesisinspiredbyDr.Rao’svision.Itaimstoassistaspirantsin realisingtheirambitions.

Dr.Rao’sinfluencetranscendsphysicalinstitutions;hiseffortshavesparkedintellectual curiosity,highlightingthateducationisajourneyofempowermentandpursuitofexcellence. Hisadoptionofmodernteachingtechniquesandtechnologyhasempoweredstudents,breaking throughtraditionaleducationalconstraints.

AswepayhomagetoDr.B.S.Rao’senduringlegacy,weacknowledgetheprivilegeof contributingtothecontinuationofhisvision.Hisremarkablejourneyservesasapoignant reminderoftheprofoundimpacteducationcanhaveonindividualsandsocieties.

With gratitude and inspiration

Team Infinity Learn by Sri Chaitanya

Key Features of the Book

Chapter Outline

1.1 Definition and Representation of a Set

1.2 Types of Sets

This outlines topics or learning outcomes students can gain from studying the chapter. It sets a framework for study and a roadmap for learning.

Solved Examples

Specific problems are presented along with their solutions, explaining the application of principles covered in the textbook.

Try yourself:

1.Findthevaluesof a,b if(3a –2, b+3)=(2a–1,3)

Ans: a 1,= b 0=

Solved example

1. If n ( A )=4and n ( B )=3,thenfindthe numberofrelationsdefinedfromtheset A toset B.

Sol.Given: n(A)=4and n(B)=3 Hence,thenumberofrelationsdefined fromtheset A toset B is24×3=212

Try Yourself enables the student to practice the concept learned immediately.

This comprehensive set of questions enables students to assess their learning. It helps them to identify areas for improvement and consolidate their mastery of the topic through active recall and practical application.

TEST YOURSELF

1.If  R ={(x,y)/x, y ∈ Z, x2+ y2≤4} isa relationin Z,thenthedomainof R is (1){0,1,2}(2){0,–1,–2} (3){–2,–1,0,1,2}(4){0,1,2,3}

Organised as per the topics covered in the chapter and divided into three levels, this series of questions enables rigorous practice and application of learning.

These questions deepen the understanding of concepts and strengthen the interpretation of theoretical learning.

JEE MAIN LEVEL

LEVEL 1, 2, and 3

Single Option Correct MCQs

Numerical Value Questions

THEORY-BASED QUESTIONS

Single Option Correct MCQs

Statement Type Questions

Assertion and Reason Questions

JEE ADVANCED LEVEL

FLASHBACK

CHAPTER TEST

This comprehensive test is modelled after the JEE exam format to evaluate students’ proficiency across all topics covered, replicating the structure and rigour of the JEE examination. By taking this chapter test, students undergo a final evaluation, identifying their strengths and areas needing improvement.

Level 1 questions test the fundamentals and help fortify the basics of concepts. Level 2 questions are higher in complexity and require deeper understanding of concepts. Level 3 questions perk up the rigour further with more complex and multi-concept questions.

This section contains special question types that focus on in-depth knowledge of concepts, analytical reasoning, and problem-solving skills needed to succeed in JEE Advanced.

Handpicked previous JEE questions familiarise students with the various question types, styles, and recent trends in JEE examinations, enhancing students’ overall preparedness for JEE.

Chapter Outline

4.1 Measurement of Angles

4.2 Trigonometric Ratios and Identites

4.3 Compound Angles

4.4 Multiple and Submultiple Angles

4.5 Transformations

4.6 Periodicity and Extremum Values

Introduction to Trigonometry:

■ Trigonometry studies relationships between angles and sides of triangles.

■ It is widely used in physics, engineering, and computer science.

■ Trigonometric functions help analyze the relationship between angles and sides.

■ Applications include:

‰ Measuring heights and distances.

‰ Analyzing wave behavior in physics.

4.1 MEASUREMENT OF ANGLES

■ An angle XOP is formed by two rays OX and OP, as shown in figure. The point O is called the vertex and half lines are called sides of the angle.

CHAPTER 4

TRIGONOMETRIC FUNCTIONS

■ An angle is generated by revolving a ray from the initial position OX to a terminal side OP. Here, the line OX is called initial side and OP is called terminal side of the angle.

■ An angle is positive, if the direction of rotation is anti-clockwise. An angle is negative, if the direction of rotation is clockwise.

Measurement of angles:

■ There are three systems of measurement of angles.

‰ Sexagesimal measure

‰ Centesimal measure

‰ Radian measure

Sexagesimal measure or degree measure:

■ An angle is said to have a measure of one degree, if a rotation from the initial side to terminal side is th

of a revolution.

It is represented as 1°.

1° = 60 ' (60 minutes), 1' = 60" (60 seconds)

Centesimal Measure:

■ In this system, a right angle is subdivided into 100 grades, with each grade further divided into 100 minutes, and each minute further segmented into 100 seconds.

Radian measure:

■ The radian (C) is defined as the measure of central angle subtended by an arc of length equal to the radius of the circle.

Try yourself:

■ The relation between systems of measurement of angle is 2 90100 DGR π ==

‰ 1Radian180=degree=5717'15'' ° π

‰ 1degreeradian=0.0175rad 180 = π

Solved example

1. If the angles A, B, C of a triangle ABC are in arithmetic progression, then find the measure of angle B in radians.

Sol. Let A,B,C are angles in a triangle ABC, given that 2B=A+C and A + B + C = 180° Hence, B = 60°.

The radian measure is 180 π times of 60°

It implies that 3 B π =

CHAPTER 4: Trigonometric Functions

1. Express 5 3 π in degrees. Ans: 300°

TEST YOURSELF

1. The degree measure corresponding to the radian measure 8 c π 

is

(1) 22°30' (2) 26°30'

(3) 24°30' (4) 28°30'

2. The length of an arc of a circle of radius 5 cm subtending a central angle measuring 15° is

(1) 5 cm 12 π (2) 5 cm 6 π

(3) 7 cm 12 π (4) 7 cm 6 π

3. The angle subtended at the centre of a circle of diameter 50 cm by an arc of length 11 cm in degrees is

(1) 25°12' (2) 28°12'

(3) 23°12' (4) 25°18'

4. The angle through which a pendulum swings, if its length is 50 cm and the tip describes an arc of length 10 cm, in degree, is

(1) 11°27' (2) 11°27'16'' (3) 12°27'16'' (4) 12°27'

5. A horse is tied to a post by a rope. The horse moves along a circular path of length 88 m, when it has traced out 72° at centre. Then the length of the rope is

(1) 70 m (2) 65 m

(3) 60 m (4) 75 m

6. If the degree measure corresponding to the radian measures 2 15 c π    is k°, then k =______.

7. If the radian measures corresponding to the following degree measures 340° is kc m π  

, then k + m = ______.

8. If the radian measure corresponding to the degree measure 75° is 12 kc π  

, then k =

Answer Key

(1) 1 (2) 1 (3) 1 (4) 2 (5) 1 (6) 24 (7) 26 (8) 5

4.2 TRIGONOMETRIC RATIOS AND IDENTITIES

■ Trigonometric ratios define relationships between angles and sides of triangles.

■ Key ratios: sine (sin), cosine (cos), and tangent (tan).

■ Used in geometric analysis and spatial calculations.

4.2.1 Introduction to Trigonometric Ratios

■ A ray OP makes an angle q with x–axis as shown in the figure. Here, q is acute angle O r Y y P(x,y

sinOppositeside

Hypotensue y r q ==

cosAdjacentside Hypotensue x r q ==

tanOppositeside Adjacentside y x q ==

cotAdjacentside Oppositeside x y q ==

secHypotenuse

Adjacentside r x q ==

cscHypotenuse

Oppositeside r y q ==

■ Among the trigonometric ratios, sin q , csc q are reciprocals to each other, i.e., 1 sin;cos,sec csc = qqq q are reciprocals to each other, i.e., 1 cos sec q q = and tan q , cot q are reciprocals to each other, i.e., 1 tan cot q q =

Trigonometric Identities

■ sin2 x + cos2 x = 1 for all x ∈ R

■ 1 + tan2 x = sec2 x for all ()21, 2 xRnnZ π

■ 1 + cot2 x = csc2 x for all x ∈ R–{nπ, n ∈ Z}

Points to Remember:

■ The identity 1 + tan 2 x = sec 2 x can be written as sec 2 x – tan 2 x= 1. It implies that (sec x – tan x ), (sec x + tan x ) are reciprocals to each other.

■ The identity 1 + cot 2 x = csc 2 x can be written as csc2 x – cot2 x= 1. It implies that (csc x – cot x), (csc x + cot x) are reciprocals to each other.

Solved example

2 Prove that cos1cossin 1sin1cossin xxx xxx ++ = -+-

Sol Consider right hand side of the equation and multiply both numerator and denominator with 1 + cos x – sin x and then simplify

LHS: 1cossin 1cossin xx xx ++ = +()

1cossin1cossin

RHS: 1cossin1cossin 1cossin 1cossin 1cos2cos1cos 21cos2sin1cos 2coscos1cos 21cos1sin1sin xxxx xxxx xx xx xxx xxx xxx xxx +++-

RHS: 1cossin1cossin 1cossin 1cossin 1cos2cos1cos 21cos2sin1cos 2coscos1cos 21cos1sin1sin xxxx xxxx

CHAPTER 4: Trigonometric Functions

Therefore, cos1cossin 1sin1cossin xxx xxx ++ = -+-

Try yourself:

2. If 10 sin 4 x + 15 cos 4 x = 6 then find the value of 27 csc 6x + 8 sec 6x.

Ans: 250

4.2.2 Properties of Trigonometric Ratios

■ Transformation of trigonometric ratios in terms of other trigonometric ratios is represented in the following table.

■ Sign convention of trigonometric ratios in each quadrant: The sign of trigonometric ratios of angle q depends on the value of q.

‰ If the angle q lies in the first quadrant

2 qπ

then all the trigonometric ratios are positive.

‰ If the angle q lies in the second quadrant 2

, then sin q , csc q are positive and all other trigonometric ratios are negative.

‰ If the angle q lies in the third quadrant 3 2

then

sine

cosine

tangent

cotangent

secant

cosecant

Increases from 0 to1

Decreases from 1 to 0

Increases from 0 to ∞

Decreases from ∞ to 0

Increases from 1 to ∞

Decreases from ∞ to 1

positive and all other trigonometric ratios are negative.

‰ If the angle q lies in the fourth quadrant 3 2 2

then cos q , sec q are positive and all other trigonometric ratios are negative.

■ Trigonometric ratios of Special angles:

4. The variations of trigonometric ratios in each quadrant are as shown in the table.

Decreases from 1 to 0

Decreases from 0 to –1

Increases from – ∞ to 0

Decreases from 0 to – ∞

Increases from – ∞ to –1

Increases from 1 to ∞

Decreases from 0 to –1

Increases from –1 to 0

Increases from 0 to ∞

Decreases from ∞ to 0

Decreases from –1 to – ∞

Increases from – ∞ to –1

Increases from –1 to 0

Increases from 0 to 1

Increases from – ∞ to 0

Decreases from 0 to – ∞

Decreases from ∞ to +1

Decreases from –1 to– ∞

Solved example

3. If 1 cos 2 x =- and 2 x π <<π , then find the value of 4 tan2 x – 3 csc2 x.

Sol. Given that x lies in the second quadrant, and numerically, 1 cos 2 x =-

Since x lies in the second quadrant, tan x is negative and csc x is positive.

Hence,

1cos tan3 cos x x x

=-=- and

Therefore, 4 tan2 x – 3 csc2 x= 8.

Try yourself:

3. Find cos x, if 26 sin 5 x =- and x lies in the third quadrant.

Ans: 1 5 -

4.2.3 Graphs of Trigonometric Functions

■ The graph of y = sin x

The domain of y= sin x is R and its range is [–1, 1].

CHAPTER 4: Trigonometric Functions

■ The graph of y = cos x

The domain of y = cos x is R and its range is [–1, 1].

■ The graph of y = tan x y

The domain of y = tan x is ()21; 2 RnnZ π  -+∈  and its range is (– ∞ , ∞ ). The function y = tan x is not defined at odd multiples of 2 π .

■ The graph of y = csc x y

y = csc x

The domain of y = csc x is R–{nπ : n ∈ Z} and its range is (– ∞ , –1] ∪ [1, ∞ ). The function y = csc x is not defined at all multiples of π.

■ The graph of y = sec x

The domain of y = sec x is ()21; 2 RnnZ π

and its range is (–∞, –1]∪[1, ∞). The function y = sec x is not defined at odd multiples of 2 π .

■ The graph of y = cot x

The domain of y = cot x is R–{nπ : n ∈ Z} and its range is (– ∞ , ∞ ). It is not defined at all multiples of π.

Solved example

4. Draw the graph of 2cos 6 yx

=-

Sol. Given: 2cos 6 yx

The

shifts the graph of y = cosx to 6 π units right.

=-

The transformation () 2cos 6 fxx

stretch vertically the graph of

Therefore the graph of

Try yourself:

4. Draw the graph of

4.2.4 Values of Trigonometric Ratios of Allied Angles

■ Two angles are said to be allied when their sum or difference is either zero or a multiple of 2 π

■ The angles allied to x are 33 ,,,,,,, 2222 xxxxxxx --+-+-+ ππππ

and so on.

■ Trigonometric ratios of (– x):

The angle (–x) lies in the fourth quadrant. Cosine and secant functions are positive, remaining all trigonometric ratios are negative

‰ sin(–x) = –sin x, csc(–x) = –csc x

‰ cos(–x) = cos x, sec(–x) = sec x

‰ tan(–x) = –tan x, cot(–x) = –cot x

Important Points:

■ If f (– x ) = f ( x ), then the function f ( x ) is called even function.

■ If f (– x ) = – f ( x ), then the function f ( x ) is called odd function.

■ The functions sin x , csc x , tan x , cot x are odd functions; cos x , sec x are even functions.

■ Trigonometric ratios of 2 x π   : Let x be an acute angle

The angle 2 x π   lies in the first quadrant. In first quadrant all trigonometric ratios are positive.

i. sincos,cossin 22 xxxx

ππ  -=-=

ii. cscsec,seccsc 22 xxxx

iii. tancot,cottan 22 xxxx

■ Trigonometric ratios of 2 x π

+ 

:

The angle 2 x π

+ 

lies in the second quadrant. In this quadrant, sine and cosecant functions are positive and the remaining trigonometric ratios are negative.

CHAPTER 4: Trigonometric Functions

functions are positive and the remaining trigonometric ratios are negati ve.

‰ sin(π + x ) = –sin x , cos (π + x ) = –cos x

‰ csc(π + x ) = –csc x , sec (π + x ) = –sec x

‰ tan(π + x) = tan x, cot(π + x) = cot x

■ Trigonometric ratios of 3 2 x π   :

The angle 3 2 x π   lies in the third quadrant. In this quadrant, tangent and cotangent functions are positive and the remaining trigonometric ratios are negative.

‰

‰

‰

33 sincos,cossin 22 xxxx ππ  -=--=-

33 cscsec,seccsc 22 xxxx

33 tancot,cottan 22 xxxx ππ  -=-=

■ Trigonometric ratios of 3 2 x π  + 

:

‰ sincos,cossin 22 xxxx

ππ  +=+=- 

‰ cscsec,seccsc 22 xxxx

‰ tancot,cottan 22 xxxx ππ  +=-+=-

■ Trigonometric ratios of (π – x):

The angle (π – x ) lies in the second quadrant. In this quadrant, sine, cosecant functions are positive and the remaining trigonometric ratios are negative.

‰ sin(π – x) = sin x, cos (π – x) = –cos x

‰ csc(π – x) = csc x, sec (π – x) = –sec x

‰ tan(π – x) = –tan x, cot(π – x)= –cotx

■ Trigonometric ratios of (π + x):

The angle (π + x) lies in the third quadrant. In this quadrant tangent and cotangent

‰

‰

The angle 3 2 x π  +   lies in the fourth quadrant. In this quadrant, cosine and secant functions are positive and the remaining all trigonometric ratios are negative.

33 sincos,cossin 22 xxxx ππ

33 cscsec,seccsc 22 xxxx ππ

‰ 33 tancot,cottan 22 xxxx ππ

■ Trigonometric ratios of (2π – x):

The angle (2π – x ) lies in the fourth quadrant. In this quadrant, cosine and secant functions are positive and the remaining all trigonometric ratios are negative.

‰ sin(2π – x) = –sin x, cos(2π – x) = cos x

‰ csc(2π – x) = –csc x, sec(2π – x) = sec x

‰ tan(2π – x) = –tan x, cot(2π – x) = –cot x

Solved example

5. Find the value of csc (390°).

Sol. Express 390° = 4.90° + 30°. It lies in the first quadrant.

Since the number 4 is even, there is no change in the trigonometric function.

Hence, csc(390°) = csc(30°) = 2

Try yourself:

5. Find the value of 11 sin 3 π

■ If a cos q – b sin q = c then sincos222 ababc qq+=±+-

■ If a cos q + b sin q = a and a sin q≠ 0 then a sin q – b cos q = b

■ If a cos q + b sin q = b and a cos q≠ 0 then b cos q – a sin q = a

■ If a sec q + b tan q = c and a tan q + b sec q = k then a2 – b2 = c2 – k2

■ If a csc q + b cot q = c and a cot q + b csc q = k, then a2 – b2 = c2 – k2

■ cot2 q – cos2 q = cot2 q cos2 q , tan2 q – sin2 q = tan2q sin2 q , and csc2 q + sec2 q = csc2 q sec2 q.

■ qqqqq +=-=44222 1 sincos12sincos1sin2 2 qqqqq +=-=44222 1 sincos12sincos1sin2 2

Ans: 3 2

4.2.5 Standard Results on Trigonometric Ratios

■ For any x ∈ R,

■ 66222 3 sincos13sincos1sin2 4 qqqqq +=-=66222 3 sincos13sincos1sin2 4 qqqqq +=-=-

■ sin 2 q + cos 4 q = cos 2 q + sin 4 q = 1– sin 2 q cos2 q

‰ sin2 x + csc2 x ≥ 2

‰ cos2 x + sec2 x ≥ 2

‰ tan2 x + cot2 x ≥ 2

■ If n is odd, then

‰ sin x + sin(π+ x) + sin(2π + x)+ ......... + sin(nπ + x) = 0

‰ cos x + cos(π+ x) + cos(2π + x)+ ....... + cos(nπ + x) = 0

■ If n is even then

‰ sin x + sin(π+ x) + sin(2π + x)+ ......... + sin(nπ + x) = sin x

‰ cos x + cos(π+ x) + cos(2π + x)+ ....... + cos(nπ + x) = cos x

■ If a cos q + b sin q = c then sincos222 ababc qq-=±+-

■ If P n = cos n q + sin n q, then 222 2 sincos nn n PP P +qq=

Solved example

6. Prove that (sinx + cosecx)2 + (cosx + secx)2 = tan2x + cot2x + 7

Sol. (sinx + cosecx)2 + (cosx + secx)2

= sin2x + coec2x + 2 + cos2x + sec2x + 2

= 1 + 4 + 1 + cot2x + 1 + tan2x = tan2x + cot2x + 7

Try yourself:

6. Find the value of (1+ cot x – cosec x ) (1+ tanx+ sec x).

Ans: 2

TEST YOURSELF

1. If q lies in the first quadrant and 5 tan q = 4, then 5sin3cos sin2cos qq qq= + (1) 5/14 (2) 3/14 (3) 1/14 (4) 0

2. If tan q= 1 4 p p, then sec q- tan q= (1) () 1 2or 2 p p (2) () 1 or2 2 p p(3) 1(or)2 2 p p - (4) () 1 or2 2 p p

3. If sin2q = K2 (0<k<1) and 180° < q<270°, then qq +-=2 2 cot1.sec 1 K K K (1) 2 (2) –2 (3) 1 (4) 0

4 If 2 sin x + 5 cos y + 7 sin z = 14, then 7tan4cos6cos 2 x yz +-= ______.

5. If 3 cot 4 A = and 2cos3sin 4cossin AA AA + =k, then 8k is __________.

6. The graph y = cosx is decreasing in (1) [0, π ] (2) [– π , 0 ] (3) [ π , 2 π ] (4) none

7. Sin 4530° = (1) 1 2 (2) 1 2(3) 3 2 (4) 3 2 -

8. If tan 35° = k, then the value of 00 00 tan145tan125 1tan145tan125= + (1) 2 2 1 k k(2) 2 2 1 k k + (3) 12 2 k k(4) 2 2 1 1 k k+

CHAPTER 4: Trigonometric Functions

9. () 3 2 1 cos21 12 k k = π ∑-= (1) 0 (2) 1 2 (3) 1 2(4) 3 2

10. log tan1° + logtan2° + ....+ log tan 89° = (1) 1 (2) 0 (3) –1 (4) 2

11. cos2 5° + cos210° + cos215° + .....cos2360° = (1) 18 (2) 27 (3) 36 (4) 45

12. ++++=2222 sin5sin10sin15...sin180 oooo

13. = cos1cos2cos3............cos179 oooo

14. If qqqπ +++…∞=+<< 12sinsin423,0 and , 2 qπ ≠ then q (1) , 63 ππ (2) 5 , 36 ππ (3) 2 , 63 ππ (4) 2 , 33 ππ

15. If 15 sin4a + 10 cos4a = 6, for some R a ∈ then the value of aa + 2766 sec8cosec is equal to _____.

16. If 1+ 4 tan q = 4 sec q, then 8 17 cosq -=__.

17. Let f and g be function defined by f ( q ) = cos2 q and g( q ) = tan2q. Suppose a and b satisfy 2f( a ) – g( b ) = 1. Then the value of 2f( b ) – g( a ) is __.

Answer Key

(1) 1 (2) 2 (3) 4 (4) 11 (5) 18 (6) 1 (7) 2 (8) 3 (9) 4 (10) 2 (11) 3 (12) 18

(13) 0 (14) 4 (15) 250 (16) 0 (17) 1

4.3 COMPOUND ANGLES

■ The algebraic sum of two or more angles is called a compound angle.

4.3.1 Trigonometric Ratios of Compound Angles:

■ Trigonometric ratios of sum or difference of two angles:

For any A,B ∈R, the trigonometric ratios of A+B and A–B

‰ () Sinsincoscossin ABABAB +=+

‰ () Sinsincoscossin ABABAB -=-

‰ () coscoscossinsin ABABAB +=-

‰ () coscoscossinsin ABABAB -=+

■ Sum or difference of trigonometric ratios of compound angles

‰ ()() sinsin2sincos ABABAB ++-=

‰ ()() sinsin2cossin ABABAB +--=

‰ ()() coscos2coscos ABABAB ++-=

‰ ()() coscos2sinsin ABABAB +--=-

■ Suppose that A,B,A+B are not multiples of 2 π . Then () tantan tan 1tantan AB AB AB + += -

■ Suppose that A,B,A–B are not multiples of 2 π . Then () tantan tan 1tantan AB AB AB-= +

■ Suppose that A,B,A+B are not multiples of π. Then ()+= + cotcot1 cot cotcot AB AB BA

■ Suppose that A,B,A–B are not multiples of π. Then ()+ -=cotcot1 cot cotcot AB AB BA

■ ()() 22 22 sinsin sinsin coscos AB ABAB BA  +⋅-=

■ ()() 22 22 cossin coscos cossin AB ABAB BA -

+⋅-=

■ Trigonometric ratios of sum of three angles:

For any A,B,C ∈ R,

‰ sin(A+B+C) = ∑ sinA cosB cosC – sinA sinB sinC

‰ cos(A+B+C) = cosA cosB cosC – ∑ sinA sinB cosC

For suitable angles of A,B,C

‰ () tantan tan 1tantan AA ABC AB ∑-∏ ++= -∑

‰ () cotcot cot 1cotcot AA ABC AB ∑-∏ ++= -∑

Solved example

7. In a triangle ABC, 2 cos 3 A =- , find the quadratic equation whose roots are sin A , tan A.

Sol. Given: 2 cos 3 A =, Hence, the angle A is obtuse angle.

So, 5 sin 3 A = and 5 tan 2 A =-

Equation, having roots 5 sin 3 A = , 5 tan 2 A =- can be taken as 255550 2323 xx

 -++=   

This can be simplified as 2 65550 xx-+=

Try yourself:

7. Expand cos(A–B–C).

Ans: cos A cos B cos C + sin A sin B cos C+ sin A cos B sin C – cosA sin B sin C

4.3.2 Results on Compound Angles

■ Trigonometric ratios of 15°, 75°: Angle q 15°

sin q 31 22 - 31 22 +

cos q 31 22 + 31 22 -

tan q 23 - 23 +

cot q 23 + 23 -

■ Trigonometric ratios of 11 22,67 22 °° :

q 21 + 21 -

■ Some important results:

‰ sin q .sin(60– q ).sin(60+ q ) ()() 1 sinsin60sin60sin3 4 qqqq ⋅-⋅+=

‰ cos q .cos(60– q ).cos(60+ q )()() 1 coscos60cos60cos3 4 qqqq ⋅-⋅+=

‰ sin q +sin( q +120°)+sin( q –120°) = 0

‰ in q +sin( q +240°)+sin( q –240°) = 0

‰ cos q +cos( q +120°)+cos( q –120°) = 0

‰ cos q +cos( q +240°)+cos( q –240°) = 0

■ If A+B = 45° or A + B = 225°, then

‰ (1 + tan A)(1 + tan B) = 2

CHAPTER 4: Trigonometric Functions

‰ (1 – cot A)(1 – cot B) = 2

‰ (1 + cot A)(1 + cot B) = 2 cotA cotB

‰ 1 tan2221 2 °=-

■ If A+B = 135° or A + B = 315°, then

‰ (1 – tan A)(1 – tan B) = 2

‰ (1 + cot A)(1 + cot B) = 2

‰ (1 + tan A)(1 + tan B) = 2 tanA tanB

‰ 1 tan6721 2 °=+

■ If A+B+C is a multiple of π, then

‰ tanA + tanB + tanC = tanA tanB tanC

‰ cotA cotB + cotB cotC+ cotC cotA =1

■ If A+B+C is an odd multiple of 2 π , then

‰ tan A tan B + tan B tan C + tan C tan A = 1

‰ cotA+ cotB + cotC= cotA cotB cotC

Solved example

8. If 2 ABC π ++= , then find the value of () cos coscos BC BC∑

Sol. () cos cosBcosC cosBcosCsinBsinC cosBcosC 1tantan 3tantantantantantan 314 BC BC ABBCCA+ = =+ =+++ =+=

Try yourself:

8. If in a triangle ABC, the value of tan A tan B tan C is 6, and tan A tan B = 2, then find the values of tan A, tan B, tan C.

Ans: tanA =1, tanB = 2, tanC = 3

TEST YOURSELF

1.= +   tan225cot81.cot69 cot261tan21

(1) 1 (2) 1 2 (3) 3 (4) 1 3

2. If 1 sin,in,0A,B 4 1 105 AsB=<< π = , then A + B = (1) π 2 (2) π 3 (3) π 4 (4) π 5

3. If q=φ=11tanandtan 23 , then the value of q+φ is (1) π 6 (2) π (3) 0 (4) π 4

4. If π ++= , 2 ABC then () + ∑= cos coscos BC BC (1) 1 (2) 2 (3) 3 (4) 4

5. If== 37 cos,sin 525 AB and 90° < A < 180°, 0° < B < 90°, then 4|tan(A + B)| =

6. If A + B + C = 180°, then + ∑= + cotcot tantan AB AB

7. π  +q+q=   π  3 tan.tan 44 (1) 0 (2) –1 (3) 1 (4) 2

8. If tan 8A – tan 5A– tan 3A = k, tan 8A tan 5A.tan 3A, then k = (1) 1 (2) 2 (3) 3 (4) 4

9. If A and B are actue angles satisfying sin A = sin2B and 2cos2A = 3cos2B, then A + B = (1) 60° (2) 75° (3) 80° (4) 90°

10. (1 + cot 78°)(1 + cot 57°) = (1) 0 (2) 1 (3) 2 (4) 1 2

11. In triangle ABC, if tanA + tanB + tanC = 6 and tanA tanB = 2, then the values of tanA, tanB and tanC are, respectively, (1) 1, 2, 3 (2) 3, 2/3, 7 (3) 4, 1/2, 3/2 (4) 5, 2/5, 3/5

12. If tan b = 2sin a sin γ cosec( a + γ ), then cot a , cot b , and cot γ are in (1) AP (2) GP (3) HP (4) AGP

13. If 2 a+b+γ=π and cot a , cot b , and cot γ are in AP, then cot a , cot γ = ___.

14. If () ()+a+a=a∈ 

π 1tan1tan42,0, 10 , then 20 

a

= ___.

15. sin10° – sin110° + sin130° = ___.

Answer Key

(2)

4.4 MULTIPLE AND SUBMULTIPLE ANGLES

■ Let A be an angle. The measures of angles 2A, 3A, 4A are called multiple angles and the measures of angles ,,,... 234 AAA are called submultiple angles.

4.4.1 Trigonometric Ratios of Multiple and Submultiple Angles

■ For any A ∈ R, the trigonometric ratios of 2A

‰ sin(2A) = 2 sinA cosA ‰

‰ () 2 2tan tan2 1tan A A A = -

Here, A, 2A are not odd multiples of 2 π

‰ () 2 cot1 cot22cot 1 cottan 2 A AA AA 

Here, A , 2 A are neither integral multiples nor odd multiples of 2 π

■ Replace A with 2 A in the above relations to get the following.

‰

sin2sincos 22 AA A

‰ 22 2 2 cossin 22 cos12sin 2 2cos1 2 AA A A A

=-

‰ 2 2cos1cos 2 A A  =+

‰ 22 coscossin 22 AA A =-

‰ 2 2sin1cos 2 A A  =

■ 2 2tan tan2 1tan 2 A A A =Here , 2 A A are not odd multiples of 2 π

■ 2 cot1 cot2 2cot 2 A A A=

Here , 2 A A are not odd multiples of 2

CHAPTER 4: Trigonometric Functions

■ 2cotcottan 22 AA A =-

Here A is not an integral multiple of π and 2 A is neither an integral multiple nor an odd multiple of 2 π

■ Express sin2A, cos2A, tan2A in terms of tan A:

Suppose that the measure of angle A is not an odd multiple of 2 π , then

‰ 2 2tan sin2 1tan A A A = +

‰ 2 2 1tan cos2 1tan A A A= +

‰ 2 2tan tan2 1tan A A A = -

Here 2A is not odd multiples of 2 π

■ Substitute 2 A in place of A in the above formulae

‰ 2 2tan 2 sin 1tan 2 A A A

  =

+ 

Here, A is not an odd multiple of π.

‰ 2 2 1tan 2 cos 1tan 2 A A A  -  =  + 

Here, A is not an odd multiple of π.

‰ 2 2tan 2 tan 1tan 2 A A A

  =  - 

Here A is not an odd multiple of , 2 π π

■ Trigonometric ratios of triple angles: For any measure of angle A ∈ R,

‰ sin 3A = 3 sinA – 4 sin3A

‰ cos 3A = 4 cos3A – 3 cosA

‰ 3 2 3tantan tan3 13tan AA A A=3A,A are not odd multiples of 2 π

‰ 3 2 3cotcot cot3 13cot AA A A=3A,A are not multiples of π

Solved example

9. Find the value of22 22 sin3c3 os sincos AA AA

Sol. LHS:22 22 sin3c3 os sincos AA AA= = = = 2222 22 22 22 22 sin3coscos3sin

RHS: sincos sin2sin4 sincos 2sincos2sin2cos2 sincos 4sincos2sincoscos2 sincos 8cos2 AAAA AA AA AA AAAA AA AAAAA AA A

Try yourself:

9. Find the value of

4.4.2 Expressing the Trigonometric Ratios in Terms of cos 2A

■ We can express all trigonometric ratios in terms of cos 2A.

‰ For all A ∈ R, 1cos2 sin 2 A A=± ‰ For all A ∈ R, 1cos2 cos 2 A A + =± ‰ For all ()21;, 2 ARnnZ π  ∈-+∈

1cos2 tan 1cos2 A A A=± +

‰ For all {} ; ARnnZ π ∈-∈ , 1cos2 cot 1cos2 A A A + =± -

‰ For all ()21; 2 ARnnZ π  ∈-+∈

, 2 sec 1cos2 A A =± +

■ The sign (±) of the above trigonometric ratios are determined depending on the quadrant in which the angle A lies.

Substitute 2 A for A in the above results to get the following relations.

‰ 1cos sin 22 AA=± for all A ∈ R

‰ 1cos cos 22 AA + =± for all A ∈ R

‰ 1cos tan 21cos AA A=± + for all () {} 21; ARnnZ ∈-+π∈

■ The sign (±) of the above trigonometric ratios are determined depending on the quadrant in which the angle 2 A lies.

Solved example

10. If π < x < 2π, then find 1cos 1cos x x + -

Sol. 2 2 2 22 1cos2cos2 1cos2sin 2 cos 2 cot 2 sin 2 x x x x xx x x x π πππ <<⇒<< + ===-

Try yourself:

10. If π < x < 2π and 1cos1cos 1cos1cos xxk xx ++= -+ cosecx, then find the value of k.

Ans: –2

4.4.3 Finding the Trigonometric Ratios of Special Angles

■ To find the trigonometric ratios of special angles, use trigonometric ratios of submultiple angles.

■ The trigonometric ratios of 18°:

‰ 51 sin18 4°=

‰ 1025 cos18 4 °=+

■ The trigonometric ratios of 1 22 2 ° :

Substitute 1 22 2 ° in the formula of all trigonometric ratios in terms of sin,cos,tan 222 AAA to get the values of

CHAPTER 4: Trigonometric Functions

trigonometric ratios of 1 22 2 °

‰ 121 sin22 222°=

‰ 121 cos22 222 °=+

‰ 1 tan2221 2 °=-

‰ 1 cot2221 2 °=+

■ The trigonometric ratios of 36°:

Use the values of sin18°, cos18° to get sin36°, cos36°.

‰ 1025 sin36 4°=

‰ 51 cos36 4 °=+

■ The trigonometric ratios of 72°:

Use the values of sin18°, cos18° to get sin72°, cos72°

‰ 1025 sin72 4 °=+

‰ 51 cos72 4°=

11. Find the value sin2 24° – sin2 6°.

Sol. sin(24° + 6°) sin(24° – 6°) sin30° sin 18°

ππ

sinsin 610 15151 248 =×=

Try yourself:

11. Find the value of 22 2 sinsin 55 ππ -

Ans: 5 4

4.4.4 Expressing the Trigonometric Ratios of 2 A in Terms of sin A

■ Use the trigonometric ratios of multiple and submultiple angles formula to get the trigonometric ratios of 2 A in terms of sinA.

‰ ()()2cos1sisnn 2 1i A A A =±±++

‰ ()()2sin1sisnn 2 1i A A A =±±+-

‰ 2 11tan tan 2tan AA A -±+ = Let cos,sin 22 AA CS==

■ If , 244 A ππ  ∈-  then C+S > 0, C–S > 0

‰ 1sin1sin2cos 2 A AA ++-=

‰ 1sin1sin2sin 2 A AA +--=

■ If 3 , 244 A ππ  ∈ 

then C+S > 0, C–S < 0

‰ 1sin1sin2sin 2 A AA ++-=

‰ 1sin1sin2cos 2 A AA +--=

■ If 35 , 244 A ππ  ∈

then C+S < 0, C–S < 0

‰ 1sin1sin2cos 2 A AA ++-=-

‰ 1sin1sin2sin 2 A AA +--=-

■ If 57 , 244 A ππ  ∈ 

then C+S < 0, C–S > 0

‰ 1sin1sin2cos 2 A AA ++-=‰ 1sin1sin2sin 2 A AA +--=This can be represented as below.

or 44 ππ  -

53 or 44

■ Trigonometric ratios of 1 9,7 2 °° : The values of sin9°, cos9° are as below.

‰ 3555 sin9 4 °=+--

‰ 3555 cos9 4 °=++-

■ The values of 11 cot7,tan7 22 °° are as below.

‰ 1 cot76432 2 °=+++

‰ 1 tan76432 2 °=--+

Solved example

12. Find the value of tan 9° – tan 27° – tan 63° + tan 81°.

Sol. (tan 9° + cot 9°) – (tan 27° + cot 27°) 11 sin9cos9sin27cos27 2222 sin18sin54sin18cos36 88 4 5151 =°°°° =-=°°°° =-= -+

Try yourself:

12. Find the value of tan 6° tan 42° tan 66° tan 78°.

Ans: 1

4.4.5 Results on Multiple and Submultiple Angles

■ If a1, a2, .......a n are in arithmetic progression with common difference d then

‰ sin a1 + sin a2 + …+ sin a n = 1 sinsin 22 sin 2 n aand d + 

‰ cos a1 + cos a2 + …+ cos a n = 1 cossin 22 sin 2 n aand d + 

■ When q is not multiple of π and not multiple of 2 π :

‰ () tan1sectan 2 qqq +=

‰ () ()()tan1sec1sec2...1sec2 2 tan2 n n qqqq q +++ = (1+ sec q )(1+ sec2 q ).... (1+ sec2nq ) = tan2nq

‰ (2 cos q – 1)(2 cos q +1) = 2cos 2 q +1

‰ () () () () 1 2cos12cos212cos41.... 2cos21 2cos21 2cos1 n n qqq qq q+ -= +

■ For any q∈ R,

‰ cosq + cos(120 + q) + cos(120 – q) = 0

‰ sin q + sin(120 + q ) – sin(120 – q ) = 0

‰ ()()333 sinsin60sin60 3 sin3 4 qqq q +°--°+ =-

CHAPTER 4: Trigonometric Functions

‰ ()()333 sinsin120sin120 3 sin3 4 qqq q -°-+°+ =-

‰ ()()333 sinsin240sin240 3 sin3 4 qqq q -°-+°+ =-

‰ ()()333 sinsin300sin300 3 sin3 4 qqq q +°--°+ =-

‰ ()()333 coscos60cos60 3 cos3 4 -°--°+ = qqq q

‰ ()()333 coscos120cos120 3 cos3 4 +°-+°+ = qqq q

‰ ()()333 coscos240cos240 3 cos3 4 +°-+°+ = qqq q

‰ ()()333 coscos300cos300 3 cos3 4 -°--°+ = qqq q

■ If a = 60°, 120°, 240°, 300° then ‰ ()() 2223sinsinsin 2 qaqaq +-++=

‰ ()() 2223 coscoscos 2 qaqaq +-++=

‰ ()() 1 sinsinsinsin3 4 qaqaqq +-= ‰ ()() 1 coscoscoscos3 4 qqaqaq +-=

‰ tan q tan( q + a ) tan ( q – a ) = tan 3 q

■ When q , 3 q are not odd multiples of 2 π

‰ tan q + tan(60° + q ) + tan(120° + q ) = 3tan 3 q

‰ tan q + tan(120° + q ) + tan(240° + q ) = 3tan 3 q

‰ tan q + tan(240° + q ) + tan(300° + q ) = 3tan 3 q

iv. tan q + tan(60° + q ) + tan(300° + q ) = 3tan 3 q

■ When q is not a multiples of π:

‰ cos q cos2 q cos4 q .....cos(2n–1q )

()() 1 sin2 coscos2cos4...cos2 2sin n n n q qqqq q=

‰ If 21 n qπ = + then cos q cos 2 q cos 4 q .... () cos211 2 n n -q=

‰ If 21 n qπ =then cos q cos 2q cos 4q.... () cos211 2 n n -q=-

Solved example

13. Find the value of 24 coscoscos 777 πππ

Sol. 3 3 8 sin2sin7 2sin8sin 7 sinsin1 77 8sin8sin8 77 A A ==

Try yourself:

13. Find the value of 57 sinsinsin 181818 πππ Ans: 1/8

TEST YOURSELF

1. 22 22 tan2tan 1tan2tan qq qq= -

(1) tan 3 q cot q (2) cot 3 q tan q (3) cot 3 q cot q (4) tan 3 q tan q

2. π qq <+++=Ifthen2222cos8 16 (1) 1 8 (2) 2 cos q

(3) 2cos 2 q (4) 2cos 4 q

3. If A is not an integral multiple of π/2, then cosec 2A + cot 2A= (1) tan A

(2) cot A + 2cot 2A (3) tan A + 2cot 2A (4) tan 2A 4. += cottan cotcot 3tantan 3 xx xxxx

then tan 3x is equal to ____.

2234 coscos 55 += ππ (1) 4 5 (2)

7. sin6°sin42°sin66°sin78° = (1) 1 2 (2) 1 4 (3) 1 8 (4) 1 16

8. If A + B = 60°, then cos 2 A + cos 2 B –cosAcosB = (1)

3 9. If A – B = 60°, then sin2A + sin2B – sinAsinB = (1) 1 2 (2) 3 4 (3) 1 (4) 3 2 10. cos3110° + cos310° + cos3130° = (1) 3 8 (2) 3 4 (3) 33 8 (4) 33 4 11. 4 cos312° – 3 sin78° = (1)51 4 (2) + 51 4 (3)1025 4 (4) + 1025 4

12. 12 sinsin 1010 ππ

= 

(1) 1 (2)1 2 (3) 1 2 (4)1 4

13. If cos3A + cos3(120° + A) + cos3(120° – A) = 4 k cos3A, then k =______.

14. cos 2( a + b ) + cos 2( a – b ) – cos2 a cos2 b =_________.

15. If cos236° + cos272° = k, then 4k =_____.

Answer Key (1) 4 (2) 2 (3) 3 (4) 1 (5) 1 (6) 4 (7) 4 (8) 3 (9) 2 (10) 3 (11) 2 (12) 4 (13) 3 (14) 1 (15) 3

4.5 TRANSFORMATIONS

■ In this part, the sum or the difference of two trigonometric ratios transforms into products and vice versa.

■ Transformation of sum or difference into product of trigonometric functions:

For all C,D ∈ R,

CDCD CD +

i. sinsin2sincos 22

CDCD CD +

ii. sinsin2cossin 22

iii. coscos2coscos 22

CDCD CD + +=

iv. coscos2sinsin 22

CDCD CD + -=- 

■ Transformation of product into sum or difference of trigonometric functions

For all A,B ∈ R,

i. 2sinA cosB = sin(A+B) + sin (A–B)

ii. 2cosA sinB = sin(A+B) – sin (A–B)

iii. 2cosA cosB = cos(A+B) + cos (A–B)

iv. –2sinA sinB = cos(A+B) – cos (A–B)

CHAPTER 4: Trigonometric Functions

Results on transformations:

■ In a triangle ABC,A+B+C = 180°.

‰ sin2 A + sin2 B + sin2 C = 4 sin A sin B sinC

‰ sin2 A + sin2 B – sin2 C = 4 cos A cos B sinC

‰ sin2 A – sin2 B + sin2 C = 4 cos A sin B cosC

‰ cos2 A + cos2 B +cos2 C = –1–4 cos A cosB cosC

‰ cos2A + cos2B – cos2C = 1–4 sinA sinB cosC

■ If cos x + cos y = a and sinx + siny = b, then

‰ tan 2 xyb a +  =  ‰ () 22 2 sin ab xyab += + ‰ () 22 22 cos ab xyab+= +

‰ () 22 2 tan ab xyab += -

■ If cos x – cos y = a and sinx – siny = b, then

‰ tan 2 xya b +  =

‰ () 22 2 sin ab xyab +=+

‰ () 22 22 cos ba xyab+= +

‰ () 22 2 tan ab xyab +=-

■ If cos x – cos y = a and sinx + siny = b, then

‰ tan 2 xya b =

‰ () 22 2 sin ab xyab -=+

‰ () 22 22 cos ba xyab-= +

‰ () 22 2 tan ab xyba -=-

■ If cos x + cos y = a and sinx – siny = b, then

‰ tan 2 xyb a = 

‰ () 22 2 sin ab xyab -= +

‰ () 22 22 cos ab xyab-= +

‰ () 22 2 tan ab xyab -= -

■ If sin (y+z–x), sin (z+x–y), sin (x+y–z) are in arithmetic progression then tanx, tany, tanz are in arithmetic progression.

Solved example

14. Solve cos4cos3cos2 sin4sin3sin2 xxx xxx ++ ++

Sol. 4242 2coscoscos3 22 4242 2sincossin3 22

+ = + + = + ==

2cos3coscos3

2sin3cossin3 cos3(2cos1) sin3(2cos1) cos3 cot3 sin3 xxxx x xxxx x xxx xxx xx xx x x x

Try yourself:

14. Find the value of cos20° + cos 100° + cos140°.

Ans: 0

TEST

YOURSELF

1. sin47° + sin61° – sin11° – sin25° = (1) sin 7° (2) cos 7° (3) tan 7° (4) sin 14°

2. If +=+= 11 sinsin,coscos 43xyxy , then tan 2 xy +  =  (1) 1 4 (2) 1 2 (3) 3 4 (4) none

3. If a+b=γ, then cos2a + cos2b + cos2γ – 2 cos a cos b cos γ = (1) 1 (2) 0 (3) –1 (4) –2

4. The value of ()() () coscos 2cos ABCABC BC +++-= + (1) cosA (2) sinA (3) 2cosA (4) 2sinA

5. If α, β, and γ are any 3 angles, then cos a + cos b – cos γ – cos( a + b + γ ) = (1) 4coscoscos 222 a+bb+γγ+a (2) 4cossinsin 222 a+bb+γγ+a

(3) 4coscoscos 222 a+bb-γγ-a

(4) 4sincoscos 222 a+bb+γγ-a

6. () () () () coscos3sin8sin2 sin5sincos4cos6 α−αα+α = α−αα−α

(1) 2

(2) 3

(3) 1

(4) 4 7. 2 cos208sin10sin50sin70 sin80 °+°°° =

8. If 3 sinα = 5 sinβ, then

Answer Key

(1) 2 (2) 3 (3) 1 (4) 1 (5) 2 (6) 3 (7) 2 (8) 4

4.6 PERIODICITY AND EXTREMUM VALUES

4.6.1 Periodicity and Periodic Functions

■ Pe riodicity: A function repeats values at regular intervals (e.g., sine and cosine).

■ Periodic Function: f(x) is periodic if there exists a real number p such that: f(x+p) = f(x), ∀ x in domain of f

■ The smallest such p is the fundamental period.

■ If f(x) has period p, then: f(x+np) = f(x), n is an integer.

■ Constant functions are periodic with no fundamental period.

Period of Trigonometric Functions:

■ The fundamental period of sin x, cos x, sec x, csc x is 2π.

■ The fundamental period of tan x, cot x is π.

CHAPTER 4: Trigonometric Functions

■ Period of special functions:

‰ The period of sin(ax+b), cos(ax+b) is 2 a π

‰ The period of |sin( ax+b)|, |cos(ax+b)| is a π

‰ The period of sinnx, cosnx, secnx, cscnx is π when n is even.

‰ The period of sinnx, cosnx, secnx, cscnx is 2π when n is odd.

‰ The period of tannx, cotnx is π.

‰ The period of modulus of all six trigonometric functions is π.

‰ The period of x –[x] is 1 and the period of kx– [kx] is 1 k .

‰ The period of {x} is 1.

‰ The algebraic functions, 23 ,,, xxxx etc are not periodic functions.

■ Periods of some more functions

‰ Period of modulus of trigonometric functions is π.

‰ Period of a |sin x | + b |cos x | and a |csc x | + b |sec x | is 2 π if a=b and it is π when a≠b.

‰ Period of |sin x + cos x | and |sin x –cosx| is π

‰ Period of |tan x + cot x| and |tan x – cot x| is 2 π

‰ Period of sin2nx+ cos2nx, sec2nx+ csc2n x and tan2nx+ cot2nx is 2 π

Solved example

15. What is the period of 2sin3cos 2 4tan27sin3 x x xx + -

Sol. sinx period is 2π 2 cosperiodis4 21 2 x = π π tan2periodis2 sin3periodis23 2

23 x x

Try yourself:

15. What is the sine function whose period is 2 3

Ans: sin (3πx + b)

4.6.2 Extreme Values of Trigonometric Functions

■ Extreme values of standard trigonometric functions:

‰ Th e maximum and minimum values of both sin x, cos x are 1, –1 on set of all real numbers, these values are called extreme values.

‰ There are no extreme values to the other four trigonometric functions.

‰ The extreme values of k sin x, k cos x are k, –k.

■ Extreme values of a cosx + b sin x + c:

‰ The extreme values of a cosx + b sin x are 2222 , abab +-+

‰ The extreme values of a cosx + b sin x + c are 2222 , cabcab ++-+

‰ The extreme values of a cos(px+q) + b sin (px+q) + c are 2222 , cabcab ++-+

Solved example

16. Find the extreme values of sin 2x – cos 2x over R

Sol. The extreme values of a cosx + b sin x + c are 2222 , cabcab ++-+

The extreme values of sin 2 x – cos 2x are 011,011 2,2 -+++ =-

Try yourself:

16. Find the maximum and minimum value of 7cos x – 24 sin x + 5 over R

Ans: 30, –20

‰ Extreme values of a sin2 x + b cos x + c or a cos2 x + b sin x + c:

‰ Reduce the given quadratic equation in terms of either sin x or cos x

‰ Write the equation in completing square form, and then write the extreme values.

Solved example

17. What are the extreme values of sin2 x + 4 cos x + 7?

Sol. sin2 x + 4 cos x + 7

= 1– cos2x + 4 cosx + 7 = 12 – (cos2x – 4cosx + 4) = 12 – (cosx – 2)2

Minimum value = 12 – 9 = 3

Maximum value = 12 – 1 = 11

Try yourself:

17. What are the extreme values of 3 sin2x + 4?

Ans: 4, 7

■ The extreme values of a sin2 x + b sin x cos

x + c cos2 x are () 22 22 acbac ++±

■ a2 sec2 x + b2 cosec2 x ≥ (a+b)2 occurs at

b x a -

■ a 2 sin 2 q + b 2 csc 2 q≥2 ab , a 2 cos 2 q + b 2

sec2 q≥2 ab and a2 tan2 q + b2 cot2 q≥2 ab

■ For the function 22222222 cossinsincos, axbxaxbx +++

minimum value is a+b at x= 0 and the

maximum value is ()222 ab + and occurs at 4 x π = .

■ Extreme values of cossin k axbxc ++

Case (i) : If the range of a cos x + b sin x + c is [ p,q ], p<q when both p,q are posit ive. In this c ase the extreme values of cossin k axbxc ++ are , kk qp

Case (ii): If the range of a cos x + b sin x + c is [ p,q ], p<q , pq < 0. In this case, the extreme values of the function cossin k axbxc ++ has neither maximum nor minimum values.

CHAPTER 4: Trigonometric Functions

■ In a triangle ABC, the maximum value of

‰ sin A + sin B + sin C is 33 2

‰ cos A + cos B + cos C is 3 2

‰ sinsinsin 222 ABC is 1/8

‰ coscoscos 222 ABC is 33 8

‰ cos A cos B cos C is 1 8

■ In a triangle ABC, the minimum value of

‰ tan A+ tan B+ tan C is 33

‰ tan A tan B tan C is 33

‰ 222 tantantan 222 ABC ++ is 1

‰ 2 sinsin1 3 sin AA A ++ ≥

■ If range of f ( x ) is [– a , 0], then range of () 1 fx is 1 , a  -∞ 

Solved example

18. Find the range of 1 5sin12cos13 xx+.

Sol. f(x) = 5 sinx + 12 cosx – 13

Minimum value of f(x) is 22131326cab-+=--=-

Maximum value of f(x) is 2213130cab++=-+=

The range of f(x) is [–26, 0]

∴ The range of 1 ()fx is 1 , 26  -∞  

Try yourself:

18. Find the range of 1 3sin4cos5 xx-+ . Ans: 1 , 10  ∞ 

TEST YOURSELF

1. The period of sin2costan 234 xxx

(1) 4 (2) 6 (3) 12 (4) 24

2. The period of |sinx + cosx| is (1) 2 π (2) π (3) 4 π (4) 2 π

3. The period of sin6x + cos6x is (1) 3 2 π (2) 2 π (3) π (4) 2 π

4. The sine function whose period is 3 is (1) 2 sin 3 x π 

(3) 2 sin 3 x π

(2) 2 sin 3 x π

(4) sin 3 x

5. The period of |cot x | + |cos x | + |tan x | + |sinx| is (1) π (2) 2 π (3) 2 π (4) 4 π

6. The period of cosxcos(120° – x)cos(120° + x) is (1) 2 3 π (2) 3 π (3) π (4) 2 π

7. If () 22 sinsin, 8282 fxxx ππ  =+--

then the period of f is (1) π (2) 2 π (3) 3 π (4) 2 π

8. The range of 13cos33sin4 xx+- is (1) [–18, 10] (2) [10, 18] (3) (–18, 10) (4) –18, 10

9. The minimum value of 27tan2θ + 3cot2θ is (1) 15 (2) 18 (3) 24 (4) 30

10. The minimum value of 2cosx – 3cos2x + 5 is (1) –1 (2) 0 (3) 1 (4) 2

11. The range of cos2x + sin4x is (1) 1 ,1 2

(3) 3 ,2 2

(2) 3 1, 2

(4) 3 ,1 4

12. The maximum value of 3 5sin12cos19 xx-+ is (1) 1 (2) 1 2 (3) 1 3 (4) 1 4

Answer Key (1) 3 (2) 2 (3) 2 (4) 3

(5) 2 (6) 1 (7) 4 (8) 1 (9) 2 (10) 2 (11) 4 (12) 2

CHAPTER 4: Trigonometric Functions

# Exercises

JEE MAIN

Level – I

Trigonometric Ratios and Identities

Single Option Correct MCQs

1. If cot q = 3 4 - and q is not in the second

quadrant, then 5sin q +10cos q + 9sec q +16cosec q – 4cot q=

(1) 0 (2) –1

(3) 1 (4) 2

2. If tan q= 4 3, then sin q is

(1) 44 butnot 55 - (2) 44 or 55 -

(3) 44 butnot 55 - (4) 33 or 55 -

3. If 1 sincos 5 qq+= and 0, qπ≤< then tanq is

(1) –4/3 (2) –3/4 (3) 3/4 (4) 4/3

4. If 5 sinx + 4 cosx = 3, then 4 sinx – 5 cosx = (1) 4 (2) 42 (3) 32 (4) 2

5. The value of 2sec1 cot 1sin a a a  +  2sin1 sec 1sec + +  a a a is

(1) 0 (2) 1

(3) 2 (4) –2

6. (1 + tan a . tan b )2 + (tan a – tan b )2 =

(1) tan2a . tan2b (2) sec2a . sec2b (3) tan2a . cot2b (4) sec2a cos 2b

7. If sinx + siny +sinz +sinw = –4, then the value of sin400x + sin 300y + sin200z + sin100w is

(1) sin400x . sin 300y . sin200z + sin100w

(2) sinx . siny . sinz . sinw (3) 4 (4) 3

8. If sinx + sin2x = 1, then cos2x + cos4x = (1) 0 (2) 1 (3) 2 (4) –1

9. If cosx + cos2x = 1, then sin8x + 2sin6x + sin4x is

(1) 0 (2) 1 (3) 2 (4) –1

10. Which of the following is correct?

(1) sin1° > sin1 (2) sin1° < sin1

(3) sin1° = sin1 (4) sin1° = 180 π sin1

11. If y = cos2q + sec2q , , nZ≠∈qπ , then (1) y = 0 (2) y ≤ 2

(3) y ≥ –2 (4) y > 2

12. The value of cosec(75° + q ) – sec(15° – q ) – tan(55° + q ) + cot(35° – q )is

(1) –1 (2) 0 (3) 1 (4) 3 2

13. The value of x, in which sincosxx - is defined in [0, 2 π ], is (1) 0, 4 π 

(2) 57 , 44 ππ  

(3) 5 , 44 ππ 

 (4) 0, 2 π   

14. Which of the following is greatest?

(1) cosec 1 (2) cosec 2 (3) cosec 4 (4) cosec (–6)

15. If K is a positive integer, then sin( a + π ) + sin( a + 2 π ) + sin( a + 3 π ) +....+ sin( a + 2K π ) =

(1) 0 (2) 1 (3) sin a (4) – sin a

16. 424 2 1 sin2sin1cos Cos ec  +-+=   qqq q

(1) 1 (2) 0 (3) 1 2 (4) –1

17. If 3 cos 5 = q and q is not in the first quadrant, then ()() ()() 5tan4cos 5sec24cot2 +++ = --+ πqπq πqπq

(1) 4 5 (2) 4 5(3) 5 4 (4) 5 4 -

18. The value of 2 1sin140sec140 -°° is (1) 1 (2) –1 (3) 0 (4) –2

19. If ABCD is a quadrilateral, then 22 seccot 44 ABCD ++  -=

(1) 0 (2) 1 (3) –1 (4) 2

20. cos210° + cos30° + cos20° + cos200° =____. (1) 1 (2) 2 (3) –1 (4) 0

21.

sin2(2 π – x) = (1) sin2x (2) cos2x (3) – cos2x (4) –sin2x

22. If cot( a + b ) = 0, then sin( a + 2 b ) = (1) –sin a (2) sin a (3) ±cos b (4) both (2) and (3)

23. If ()() tan3,tan–1 abab +== , then tan6 b= (1) –1 (2) 0 (3) 1 (4) 2

24. If sin( a + b ) = 1 and sin( a – b ) = 1 2 , then tan ( a + 2 b ) tan(2 a + b ) = (1) 1 (2) –1 (3) 0 (4) 1 2

25. If a, and b are complementary angles, sina = 3 5 then sin a cos b – cos a sin b =_____.

(1) 7 25 (2) 7 25(3) 25 7 (4) 25 7 -

26. If a, and b are supplementary angles, then cos2a+ sin2b =______.

(1) 1 (2) –1 (3) 2 (4) 0

27. 379 tantantantan 10101010 +++= ππππ _______. (1) 0 (2) 1 (3) –1 (4) 2

28. 0000 sin24sin32sin204sin212 +++= _____. (1) –1 (2) 1 (3) 0 (4) 2

29. cos 5° + cos 24° + cos 175° + cos 204° + cos 300° =______. (1) 1 2 (2) 1 (3) 2 (4) 0

30. If 32 3 sincos tantantan cos xx axbxcxd x + =+++ then a + b + c + d= (1) 4 (2) –4 (3) 1 (4) –1

31. If q is acute and (1 – a2)sinq = (1 + a2)cosq, then sin q =

(1) () 2 4 1 21 a a+ (2) () 4 2 21 1 a a +(3) () 2 4 1 21 a a + + (4)

4 2 21 1 a a + +

32. If 8 cosx + 15sinx = 15 and cosx ≠ 0, then 8 sinx – 15 cosx =

(1) 8 (2) –8 (3) 15 (4) –15

33. If sinq + cosq = 3 cosq, then 2cosq – sinq =

(1) 3 sin q (2) – 3 sin q

(3) – 3 cos q (4) 3 sin q

34. 22 If; tanthen n nn n xasec ybxy ab q q =

=-

(1) 0 (2) –1 (3) 1 (4) 2

35. If a = x sec q + y tan q , b = x tan q + y sec q, then x2 – y2 =

(1) a2 – b2 (2) a2 + b2 (3) b2 – a2 (4) a2b2

36. If sin q + cos q =p and tan q + cot q =q, then q(p2 –1) = (1) 1 2 (2) 2 (3) 1 (4) 3

37. If x = a(cosecq + cotq), y = b(cosecq – cotq) then (1) x + y = ab (2) x – y = ab (3) xy = ab (4) xy = 0

38. 2222 Ifcoscoscos; coscossin; sincos,sin then xr yr zrr xyz abγ abγ abmb m = = == +++=

(1) r (2) 2r (3) r2 (4) 4r2

CHAPTER 4: Trigonometric Functions

Numerical Value Questions

39. If 3 sec a – 5 tan a = k and 6 sec a + k tan a = 5, then k2 = _______.

40. If 3333 cossincossin cossincossin AAAAk AAAA ++= +, then k =____

41. If tanA + cotA = 4, then tan4A + cot4A =____

42. (sin a + cosec a ) 2 + (sec a + cos a ) 2 = k + tan2a +cot2a, then k = _____.

43. The number of points of intersection of the graphs y = sinx and y = cosx in [0, 2 π ] is ____.

44. ()() 22 sin51sin39xx -++= 

45. The value of cosec (–1410)° is ______.

46. If sec x + sec 2 x = 1, then the value of tan 8 x – tan 4 x –2tan 2 x + 1 will be equal to_____.

47. If 4242 secsec10tantan qqqq +=++ ,then 2 5sin q = _______.

48. For 0, 2 A π << the value of 122 2 log1212cossec2 AA  +  ++  = _______.

49. Ifsin7sin3 then 21sin24sin14 πa-a a== a+a ______.

Compound Angles

Single Option Correct MCQs

50. 22 cossin 66 = π  +q--q   π (1) 1 cos2 2 q (2) 1 cos2 2 -q (3) 0 (4) 1

51. If 41 tanA,tanB 37 == , then A – B = (1) π 4 (2) π 2 (3) π (4) π 2 3

52. If == 171 tan,tan 1835 AB , then cos(A + B) = (1) 1 (2) 2 (3) –1 (4) 1 2

53.

cosA.cosBsinA.sin 4444 B (1) cos(A + B) (2) cos(A – B) (3) sin(A + B) (4) sin(B –A)

54. In ∆le ABC, cosA + cos(B – C) = (1) 2sinBsinC (2) 2cosBsinC (3) 2sinBcosC (4) 2cosBcosC

55. If sin( q + a ) = cos( q + a ), then tan q = (1) 1tan 1tan +a -a (2) 1sin 1sin +a -a (3) 1tan 1tan -a +a (4) 1cos 1cos +a -a

56. If += π AB 2 , then tanB + 2tan(A – B) = (1) cosA (2) sinA (3) tanA (4) cotA

57. tan20° + 2tan50° = (1) tan30° (2) cot20° (3) tan20° (4) cot40°

58. If tan40° + 2tan10° = cot x, then x = (1) 75° (2) 85° (3) 30° (4) 40°

59. If () 74 tan,tan 243 ABA-== , where A, and B are acute then A + B = (1) π 5 (2) π 4 (3) π 3 (4) π 2

60. If ()-= 3 cosAB 5 and tanAtanB = 2, then which one of the following is true ? (1) ()+= 1 sinAB 5 (2) ()+= 1 sinAB 5 (3) () 1 cosA+B 5 = (4) () 1 cosA+B 5=

61. ()() ()() +a+-a = +a+-a   tan45tan45 cot45cot45 (1) 1 (2) 2 (3) 3 (4) 4

62. If 0 2 <q<π and 2sin3cos10sin10q=+ , then q = (1) 40° (2) 50° (3) 70° (4) 80°

63.+= +  cos13sin131 cos13sin13cot 148 oo oo

(1) 1 (2) –1 (3) 0 (4) 1 2

64. cos40° + cos80° + cos160° + cos240° = (1) 0 (2) 1 (3) 1/2 (4) –1/2

65. tan25°.tan31° + tan31°.tan34° + tan34° tan25° = (1) 1 (2) 2 (3) 3 (4) 4

66. If tanA = 1, tanB = 2, tanC = 3, then A + B + C = (1) π ∈ ,nz 2 n (2) n π , n ∈ z (3) π ∈ ,nz 4 n (4) π ∈ 2 ,nz 3 n

67. ()() q+q = π  q+   3sincos sin 6 (1) –2 (2) 1 (3) 2 (4) –1

68. tan5x – tan3x – tan2x = (1) tan5x.tan3x.tan2x (2) sin5x.sin3x.sin2x (3) cos5x.cos3x.cos2x (4) cot5x.cot3x.cot2x

69. If a=b= ++ tanandtan1 121 m mm , then the least possible value of α + β is (1) π 4 (2) π 3 (3) π 6 (4) π 15

70. The value of tan32°.tan23° + tan23°.tan35° + tan35°.tan32° is (1) less than 1 (2) greater than 1 (3) equal to 1 (4) equal to 3

Numerical Value Questions

71. If () cotA3 cotB2andcosAB 5 =+= then 5sinAsinB = _______.

72. tan20° + tan25° + tan20° tan25° =

73. If tan22tan383tan22tan38 k +−=−   then k2 = _____.

74. The value of () () () () ++00 00 1tan221tan23 1cot331cot12 is

75. = 00 0 tan80tan10 tan70

76. If A = 35°, B = 15°, and C = 40°, then tanAtanB + tanBtanC + tanCtanA=_____.

77. In an acute angled triangle, cot B cot C + cotAcotC + cotAcotB =__________

78. If cos(x–y) = 3 cos(x+y), then cotx coty = ________.

Multiple and Submultiple Angles Single Option Correct MCQs

79. 44 442 cos2cossin cossin2sin2 ααα ααα + −= (1) 0 (2) 1 (3) 1/2 (4) 2

80. θ+θ = +θ+θ sinsin2 1coscos2 (1) θ tan 2 (2) θ t 2 co (3) tan θ (4) cot θ

81. 3cosec20sec20−=  (1) 2 (2) 3 (3) 1 (4) 4

CHAPTER 4: Trigonometric Functions

82. 2cosec20sec20 =  (1) 2 (2) 2sin20°cosec40° (3) 4 (4) 4sin45°cosec40°

83. cos2( θ – 45°) + cos2( θ + 15°) –cos2( θ – 15°) = (1) 1 2 (2) 1 3 (3) 1 2 (4) 1 3

84. If x cosθ = ycos(θ + 120°) = z cos(θ + 240°) then xy + yz + zx = (1) –1 (2) 2 (3) 0 (4) 3 4

85. If sin2θ = cos3θ is an acute angle, then sinθ equals (1) 51 4 (2)

(3) + 51 4 (4) 51 4

86. sin12° sin24° sin48° sin84° = (1) cos20° cos40° cos60° cos80° (2) sin20° sin40° sin60° sin80° (3) 3 15 (4) 1 2

87. cos276° + cos216° – cos76°cos16° = (1) 1 2 (2) 0 (3) 1 4 (4) 3 4

88. If sin( π cos θ ) = cos( π sin θ ) then sin2 θ = (1) 3 4 ± (2) 1 3 ± (3) 2 3 ± (4) 1 4 ±

89. A ∈ Q3, =⇒−−= 2 75 tan1816sin32sinsin 3222 AAA A =⇒−−= 2 75 tan1816sin32sinsin 3222 AAA A

(1) –6 (2) 11 (3) 5 (4) 10

90. If 2sec 2 a = tan b + cot b , then one of the values of α + β is (1) 4 π (2) 3 π (3) 2 π (4) π

91. cos66° + sin84° = (1) 153 4(2) 153 4(3) 153 4 + (4)

Numerical Value Questions

92. 300 cosec20sec20-= _____.

93. πππππ = cosm coscoscos2 481632n cosec then m + n = ____.

94. 3 3 11If2cos20then xx xx +=°+= ____.

95. ()() ()() 00 00 tan45tan45 cot45cot45 -a-+a = +a--a

96. If 4sin(60° + q )sin(60° – q ) – 1 = kcos2 q , then k = _____.

97. If

ππππ +++=44445711 coscoscoscos 12121212 k then 4k =

98. 2(cos36° – cos72°) =______.

99. tan9° – tan27° – tan63° + tan81° =

100. If +=λ   11 , cos2903sin250 then the value of 9 λ 4 + 81 λ 2 + 97 must be ______

101. + = 0000 20 cos208sin10sin50sin70 sin80 ______.

Transformations

Single Option Correct MCQs

102. sin5sin3 cos52cos4cos3 a-a = a+a+a

(1) t 2 co a (2) cot a (3) tan 2 a (4) none

103. sin3sin5sin7sin9 cos3cos5cos7cos9 q+q+q+q = q+q+q+q

(1) tan4 q (2) tan6 q

(3) tan2 q (4) cot6 q

104. () () + ==tan Ifsin2sin2,then tan xy xny xy

(1) 1 1 n n+ (2) 1 1 n n+

(3) 1 1 n n +(4) 1 1 n n + -

105. If cosx + cosy + cosa = 0, sinx + siny + sina = 0 then cot 2 xy + 

(1) sin a (2) cos a

(3) tan a (4) cot a

106. cos20° + cos30° + cos40° = (1) 1 – 2sin10°sin15°sin20° (2) cos20°cos30°cos40°

(3) 4 cos10°cos15°cos20° (4) 4cos25°cos30°cos35°

107. 1 + cos10° + cos20° + cos30° = (1) 4cos5°cos10°cos15°

(2) 4cos10°cos20°cos30°

(3) 4sin5°sin10°sin15° (4) 4sin10°sin20°sin30°

108. If sin10°sin50°sin60°sin70° = m and tan20°tan40°tan60°tan80° = n, then n m =

(1) 33 16 (2) 163 (3) 16 3 (4) 83

109. The value of sin 310° + sin350°– sin370° is equal to (1) 2 3 - (2) 3 4 (3) 3 4 - (4) 3 8 -

110. 357 sinsinsinsin 14141414 ππππ ⋅⋅⋅⋅ 91113 sinsinsin 141414 πππ ⋅⋅=

(1) 1/64 (2) 3/64 (3) 5/64 (4) 7/64

111. If x , y , z are in A.P, then sinsin coscos xz zxis equal to (1) tan y (2) cot y (3) sin y (4) cos y

112. If cos q 1 = 2cos q 2, then ()() 1212tantan 22 q+qq-q is equal to (1) 1/3 (2) –1/3 (3) 1 (4) –1

113. The value of 20152015 coscossinsin sinsincoscos ABAB ABAB

++ +=

(1) 0 (2) cot2015 2 AB +  

(3) cot2015 2 AB -

CHAPTER 4: Trigonometric Functions

114. If ()()() coscoscos2cos3 xxxx abcd +q+q+q === )()() coscos2cos3 xxx abcd +q+q+q === , then ac bd + = + (1) b c (2) a d (3) d a (4) c d

115. sinA + sin3A + sin5A + sin7A = (1) 4sinAcos2Acos4A (2) 4sinAcos2Acos3A (3) 4cosAsin2Asin4A (4) 4cosAcos2Asin4A

116. 42 coscos,coscos 57xyxy +=-= , then the value of 14.tan5.cot 22 xyxy -+  +

is (1) 0 (2) 1 (3)–1 (4) 2

117. The value of the expression 00 0 14.sin10.sin70 2.sin10(1) 1/2 (2) 1 (3) 2 (4) 1/3

Numerical Value Questions

118. sin10° + sin20° + sin40° + sin50° – sin70° – sin80° =_________.

119. If x+y+z = 180°, then sinsinsin coscoscos 222 xyz y xz ++ = _______.

Periodicity and Extremum Values

Single Option Correct MCQs

120. The period of x – [x] is_____ (where [x] represents the integral part of x) (1) 1 2 (2) 1 (3) 1 3 (4) 2

121. The period of 3x – [3x] is (where [.] denotes greatest integer function ≤ x) (1) 1 2 (2) 1 (3) 2 (4) 1 3

122. The period of 22 sin3cos xx ab ππ  + 

, when a = 12, b = 9, is (1) 18 (2) 36 (3) 108 (4) 54

123. The period of tan (x + 8x + 27x + …+n3x) is (1) 22 8 (1)nn π + (2) 22 4 (1)nn

(3) 22 2 (1)nn π + (4) () 4 1 nn π +

124. The period of cottan 44 1tantan 2 xx x x + +− is (1) 2 π (2) p (3) 4 p (4) 2 p

125. The period of 3sin5x + cos3x is (1) p (2) 2 p (3) 2 π (4) 3 2 π

126. Period of sincos 11 33 xx +

is (1) p (2) 2 π (3) 4 π (4) 2 p

127. The range of 2222 coscos 33 xx ππ  −++ 

is (1) 1 ,1 2

(3) 3 ,2 2

(2) 3 1, 2

(4) 13 , 22

128. If 3sincosxx + is maximum, then x = (1) 4 π (2) 3 π (3) 2 5

129. 16cos5x – 20cos3x + 5cosx ∈

(1) [–1, 1] (2) 11 , 44

(3) 33 , 44

(4) [–2, 2]

130. cos2(60°– x) + cos2(60° + x) ∈ (1) 11 , 22 

(3) 13 , 22 

Numerical Value Questions

(2) 1 ,1 2

(4) 3 ,2 2

131. Period of cos2cosec5tan 463 xxx πππ −+ is _____.

132. Period of 32 tan2sec5sin 435 xxx πππ

133. The period of () () sin2 sin2 xa xb π π + + is______.

134. The period of function f(x) = {x} + tan2πx + |sin3πx| is ______.

135. The maximum value of 66 1 , sincos y xx = + is _________.

136. Minimum value of 9sec2q + 4cosec2q + 7 is _______.

137. sin2x + 4sinx+5 ∈ [k,5k] ⇒ k=

Level – II

Trigonometric Ratios and Identities

Single Option Correct MCQs

1. If tan2a = 1 – p2, then seca + tan3acoseca= (1) () 3 222 p + (2) () 3 122 p + (3) () 3 222 p (4) () 3 122 p

2. If sincostan , xxxk abc === then 1 1 bcak ckbk ++ + is equal to (1) 1 ka a  +   (2) 11 a ka  +   (3) 2 1 k (4) a k

3. If 1 + sin q = 9 cos q and 0° < q <90°, then 5(1 – cos q ) = (1) sin q (2) 2 sin q (3) 4 sin q (4) tan q

4. cos q + cos( π + q ) + cos(2 π + q ) +....+ cos(20 π + q ) = (1) 0 (2) cos q (3) sin q (4) –cos q

5. πaa a aa== + Ifsin3sin23 ,then 19sin4sin16 (1) 1 (2) –1 (3) 0 (4) 1 2

6. If 24 coscos 33xyz  ==  ππ , then xy +yz +zx =_____. (1) 0 (2) 1 (3) –1 (4) 1 2

7. If () 246 sinsinsinlog28 xxx e +++…∞ = and 0 2 x << π , then cosx cosx+sinx = (1) 31 2 + (2) 31 2(3) 2 31 + (4) 2 31 -

8. If sinq, cosq, and tanq are in GP, then cos9q + cos6q + 3 cos5q =

CHAPTER 4: Trigonometric Functions

(1) 1 (2) –1

(3) 0 (4) 2

9. If π < α < 2 π , then 22 1 Sincotcosaaa =

(1) sinα (2) –sinα

(3) 1 sin a (4) 1

10. 33 32cos12sin 12sin32cos AA AA++

(1) 1 (2) 3 (3) 0 (4) –1

11. If m = sin q + cos q ; and n = sec q + cosec q, then

(1) n(m2 + 1) = 2m

(2) n(m2 – 1) = 2m

(3) 2n(m2 + 1) = m

(4) 2n(m2 – 1) = m

12. The equation 22 cosec 2 xy xy q+ = is () 0,0xy≠≠

(1) possible for x = y

(2) possible for all real values of x and y (3) impossible for all real values x and y (4) can’t be determined

13. If sin q + sin2q = 1 and acos12q + bcos10q + ccos8q + dcos6q –1 = 0, then bc ad + = +

(1) 1 (2) 2

(3) –2 (4) 3

14. If sinq + cosq = 3 cosq, then 2cosq – sinq =

(1) 3 sin q

(2) – 3 sin q

(3) – 3 cos q

(4) 3 sin q

Numerical Value Questions

15. If sinA, cosA, and tanA are in GP, then cot6A – cot2A =_______.

16. If 2 πqπ << , () 1sin1sin , 1sin1sin f -+ =+ +qqq qq then 2 3 f π  =  _______.

17. The minimum value of the function ()

22 sincos 1cos1sin tancot sec1cosec1 xx fx xx xx xx =+ ++ (whenever it is defined) is ______

18. If sinx + sin2x + sin3x = 1, then cos6x – 4cos4x + 8cos2x = ______.

19. cosec2Acot2A – sec2Atan2A – (cot2A – tan2A) (sec2Acosec2A – 1) =_____

20. 42 3(sincos)6(sincos) xxxx -+++ () 66 4sincosisequalto xx + ______.

21. If sin b is the GM between sin a and cos a , then |(cos a- sin a )2 – 2cos2b|=_____.

22. For 0, 2 A π << the value of 122 2 log1212cossec2 AA  +  ++  = _______.

23. The minimum value of 1 2cos2tan sin qq q ++ in 0, 2 π

is____

24. If sec6q – tan6q = a sec4q + bsec2q + c then a + b + c = _______.

25. If cosx + cos2x = 1, then sin12x + 3 sin10x + 3 sin8x +sin6x + 1= _______.

26. sin10sin20sin30sin360 +++……+=  

27. 2222 248 sinsinsinsin 18181818 ππππ +++ 2275 sinsin 1818 ππ ++=

28. If ()()() ()()() 000 00 sin660tan1050sec420 cos225cosec315cos510 k = then 3k = _______.

Compound Angles

Single Option Correct MCQs

29. The value of tan40° + tan11° + tan20° –tan56° + tan56° tan11° + = 300 tan40tan20 (1)31 (2) + 31 (3) 1 (4) 0

30. If B, A + B are acute angles, () 125sinB,sinB 1313 A +== , then sinA = (1)119 169 (2) 119 169 (3) 169 119 (4)169 119

31. If ππ  +q+-q=   tantana 44 then

ππ  +q+-q=   33 tantan 44 (1) 0 (2) a (3) 3a (4) a3 – 3a

32. cosx,cos,cosx 33 x  -+  π  π  are in HP, then cosx = (1) 3 2 (2) 1 (3) 3 2 (4) 3 2

33. In a ∆ le ABC if == A5B20 tan,tan 26237 , then = C tan 2

(1) 5 2 (2) 2 5 (3) 307 122 (4) 7 4

34. If () 11 0A,B,cosB 461 A + π <<= and ()-= 24 sinAB, 25 then sin2A + sin2B = (1) 684 1525 (2) 156 1525

(3) 168 305 (4) 168 1525

35. tan(A – B) + tan(B – C) + tan(C – A) =

(1) tanA tanB tanC (2) cotA cotB cotC

(3) tan(A – B)tan(B – C)tan(C – A)

(4) 0

36. In any triangle ABC, sin2A – sin2B +sin2C is always equal to

(1) 2sinAsinBcosC (2) 2sinAcosBsinC

(3) 2sinAcosBcosC (4) 2sinAsinBsinC

37. The expression cos2( a + b ) + cos2( a – b ) – cos2 a cos2 b is (1) –1 (2) 2

(3) independent of a and b (4) dependent on a and b

38. The value of cos 2 76° + cos 216°– cos 76°. cos16° =_____.

(1) 3 4 (2) 1 4 (3) 0 (4) 1 2

39. In a triangle ABC, if tanA + tanB + tanC = 6 and tanAtanB = 2 then the triangle is (1) right angled (2) isosceles (3) acute angled (4) obtuse angled

4: Trigonometric Functions

40. If () sin Asin B3cosBcosA+=- then

Sin3A + Sin3B =

(1) 0 (2) 2222 (3) 1 (4) –1

41. If A + B + C = 720°, then tanA + tan B + tanC =

(1) tanA tanB tanC

(2) tan2A tan2B tan2C

(3) tan2A + tan2B + tan2C (4) cotA cotB cotC

42. In ∆ABC, (cotB + cotC)(cotC + cotA) (cotA + cotB) =

(1) secA secB secC

(2) cosecA cosecB cosecC

(3) tanA tanB tanC (4) 1

43. () cosABC cotA+cotB+cotC sinAsinBsinC ++ += (1) cotA cotB cotC

(2) tanA tanB tanC (3) cosA cosB cosC (4) sinA sinB sinC

44. If () () () () q+qq-q += q-qq+q 1234 1234 coscos 0, coscos then cot q 1 cot q 2 cot q 3 cot q 4 = ____. (1) 1 (2) –1 (3) 2 (4) 1/2

Numerical Value Questions

45. If 2tanA + cotA = tanB then cotA + 2 tan (A – B) =

46. If a=b=- 5 cot1,sec 3 when ππ π<a<<b<π 3 , 22 then the quadrant in which a + b lies is ____

47. In a triangle ABC, ()∑= cosBC sinBsinC ____.

48. If == tan tantan , 235 y xz x + y + z = π and ++= 22238tantantanxyzK , then k = _____.

49. Let a,b,γ > 0 and 2 a+b+γ=π . If p = 7 + tan a tan b, q = 5 + tan b tan γ and r = 3 + tan γ tan a . Then the maximum value of () 1 3 pqr ++

50. If cot( q – a ), 3cot q , cot( q + a ) are in AP (where, π q≠a≠π∈,,) 2 nkkI then q a 2 2 2sin sin is equal to ______

51. Let πππ === 24 ,, 777 ABC and cosA cosB cosC = –1/8 then | ∑ tanAtanB| is ______.

Multiple and Submultiple Angles

Single Option Correct MCQs

52. = sin sin 8 x x

(1) 8coscoscos 842 xxx

(2) 8cossinsin 842 xxx

(3) 8sinsinsin 842 xxx

(4) 8sinsincos 842 xxx

53. 24 tan2tan4cot 555 πππ ++= (1) π 5 cot (2) π 2 5 cot (3) π 3 cot 5 (4) π 4 5 cot

54. If 5(tan2x – cos2x) = 2cos2x + 9, then the value of cos4x = (1)7 9 (2)3 5 (3) 1 3 (4) 2 9

55. The value of 4 sin27°

(1) +-+ 5535

(2) +-5535

(3) --+ 5535

(4) +-5535

56. If sina + sinb = a and cosa + cosb = b, then (1) a-b+=±   22 sin 24 ab

(2) a-b+ =  22 cos 24 ab

(3) a-b--=±

22 22 4 tan 2 ab ab

(4) a-b++=±

22 22 4 tan 2 ab ab

57. If ()-q+q q= q 1sin22 , 2cos2 fCos then value of 8f(11°). f(34°) is ______ (1) 4 (2) 1 (3) 3 (4) 2

58. If A = tan6°tan42°, B = cot66°cot78°, then (1) A = 2B (2) A = B

(3) B = 2A (4) 3A= 2B

59. If= 051 sin18 4 , then sin 81° = (1) ++ 511025 4242

(2) ++ + 511025 4242

(3) -+ + 511025 4242

(4) + 511025 4242

60. cos9° – sin9° = (1)55 2 (2) + 55 4 (3)1 55 2 (4)55

61. If x 1 and x 2 are two distinct roots of the equation a cos x + b sin x = c , then +    tan12 2 xx is equal to (1) a b (2) b a (3) c a (4) a c

Numerical Value Questions

62. If a=b=35 coscos 513 and then 65 a-b  =   2 cos 2

63. If ⋅= 1 tantan 2 AB , then (5 – 3cos2A) (5 – 3cos2B) =

64. tan46° tan14° – tan74° tan14° + tan74° tan46° is equal to____.

65. If 7315 cot2cotcot 16816 K πππ ++= . Then 2 2 K = _____.

66. If x ∈ [–20°,–5°] and f(x) = tan(50° + x) + cos(50° + x ) + cot(50° + x ), then global maximum value of f(x) is k. Then the value of [k2] is _____(where [.] denotes greatest integer function).

67. If ππππ +++=4444 357 coscoscoscos 8888 k then 2k = ____

Transformations

Single Option Correct MCQs

68. If 0, 2 AB π << satisfy the equations

CHAPTER 4: Trigonometric Functions

3 sin2A + 2sin2B = 1 and 3sin2A – 2sin2B = 0, then A + 2B =

(1) 0 (2) 2 π (3) 6 π (4) 3 2 π

69. cos66cos415cos210 cos55cos310cos xxx xxx +++ = ++ (1) cosx (2) sinx (3) 2 sinx (4) 2 cosx

70. Ifcostantan ,then cos xAxAyB yBxy + == +

(1) tan 2 AB +    (2) tan 2 AB

(3) t 2 AB co +  

(4) t 2 AB co

71. If coscos cos 1coscos q=a-b -ab , then qb

22 tantan 22 is (1) tan 2 a (2) 2tan 2 a (3) t 2 co a (4) t2 2 co a

72. If A + B + C = 180°, then sin3A + sin3B + sin3C =

(1) 333 4coscoscos 222 ABC (2) 333 4coscoscos 222 ABC -

(3) 333 14coscoscos 222 ABC(4) 333 14sinsinsin 222 ABC -

73. If 245730 coscoscoscoscoscos 151515151515 x ππππππ = then 1 8 x = (1) 4 (2) 1/4 (3) 8 (4) 4/3

74. If q 1, q 2, q 3, .... q n are in A.P. then 12 12 sinsinsin coscoscos n n q+q+…+q = q+q+…+q

(1) 0 (2) tan( q 1 + q n)

(3) tan1 2 n q+q    (4) tan1 2 n q-q 

75. sin2sin2sin2 In, sinsinsin ABC ABC ABC ++ ∆= ++

(1) 4 sinA/2sinB/2sinC/2

(2) 4 cosA/2cosB/2cosC/2

(3) 8 sinA/2sinB/2sinC/2

(4) 1 + 4 sinA/2sinB/2sinC/2

76. If A + B + C = 180° then sin2sin2sin2 coscoscos1 ABC ABC ++ = ++-

(1) 4 cosA/2cosB/2cosC/2

(2) 4 sinA/2sinB/2sinC/2

(3) 8 cosA/2cosB/2cosC/2

(4) 1 + 4 sinA/2sinB/2sinC/2

Periodicity and Extremum Values

Single Option Correct MCQs

77. The period of sin(sinx) + sin(cosx) is (1) π (2) 2 π (3) 2 π (4) 4 π

78. Let () cos. fxpx = where p = [a] (integral part). If the period of f(x) is π then a ∈ (1) [4, 5] (2) [4, 5) (3) (4, 5] (4) (4, 5)

79. If A = sin2x + cos4x then ∀ x ∈ R (1) 13 1 11 A ≤≤ (2) 1 ≤ A≤2 (3) 313 416 A ≤≤ (4) 3 1 4 A ≤≤

80. The maximum value of (cosα 1)(cos α 2)… (cosαn) under the restrictions 12 0,. 2 n π aaa ≤……≤ and cotα1 cotα2…cotα n = 1 is (1) /2 1 2n (2) 1 2n (3) 1 2n (4) 1

81. If A = sin 8θ + cos 14θ, then for all values of θ, (1) 0 < A ≤ 1 (2) 1 < 2A ≤ 3

(3) A ≥ 1 (4) 1 0 2 A ≤≤

Graphs

Single Option Correct MCQs

82. The graph y = sin x is incresing in the interval is (1) , 22

(3) 3 , 22 ππ 

(2) 3 , 22 ππ

(4) None

83. The asymtotes of the graph y = tanx is (1) x = 2 π (2) x = 0

(3) y = –x (4) None

84. For a given integer K, in the interval 2,2 22 kkππ ππ  -+   the graph of sinx is

(1) increasing from –1 to 1

(2) decreasing from –1 to 0

(3) decreasing from 0 to 1

(4) None of these

Level – III

Single Option Correct MCQs

1. If secα and cosecα are the roots of x2 – px + q = 0, then

(1) p2 = q(q–2) (2) p2 = q(q+2) (3) p2 + q2 = 2q (4) p2 – q2 = 2

2. If x = sin1, y = sin2, z = sin3, then (1) x < y < z (2) x > y > z (3) x < z < x (4) z < x < y

3. Let () 1 1(cot) fx = + q q and () 0 0 89 1 Sf = =∑ q q .

Then the value of 28 S -= (1) 8 (2) 9 (3) 10 (4) 12

4. If u n = cosnq + sinnq and u n –u n – 2 = Ku n - 4, then K = (1) 1 (2) sin2q (3) – sin2q cos2q (4) cos2q

5. If asin3x + bcos3x = sinx cosx and asinx = bcosx, then a2 + b2 = (1) 1/2 (2) 2 (3) 1 (4) 1/3

6. If a1cosq + b1sinq + c1= 0 and a2cosq + b2sinq + c2= 0, then (b1c2 – b2c1)2 + (c1a2 – c2a1)2 = (1) (a1b2 – a2b1)2 (2) (a2b2 – a1b1)2 (3) (c1 – c2)2 (4) (b2c2 – b1c1)2

7. A quadratic equation whose roots are 00 11 tan22andcot22is 22

(1) 2–2210xx += (2) 2 2–2210 xx += (3) 22210xx+-= (4) 2–2210xx -=

8. cos a .sin( b – γ ) + cos b sin( γ – a ) + cos γ . sin( a – b ) = (1) 0 (2) 1 (3) –1 (4) 4 cos a cos b cos γ

9. () cosABC cotA+cotB+cotC sinAsinBsinC ++ +=

(1) cotA cotB cotC (2) tanA tanB tanC (3) cosA cosB cosC (4) sinA sinB sinC

10. If a + b + γ = 2 π , then

(1) abγabγ ++= tantantantantantan 222222

(2) abbγγa ++= tantantantantantan1 222222

(3) abγabγ ++=tantantantantantan 222222

(4) ab  ∑=-

tantan1 22

11. If cos2A + cos2B + cos2C = 1, then ∆le ABC is

(1) equilateral

(2) isosceles

(3) right angled (4) right angled isosceles

12. In ∆ le ABC if cos A cos B cos C = 1/3 then tanAtanB + tanBtanC + tanCtanA = (1) 1 (2) 4 (3) 3 (4) 1/3

13. () sinABC tanA+tanB+tanCcosAcosBcosC ++ =

(1) tanAtanBtanC

(2) sinAsinBsinC

(3) cosAcosBcosC

(4) tanAtanB+ tanBtanC+ tanCtanA

14. The value of 1sin21sin2 1sin21sin2 AA AA +++-is, when |tanA| < 1 and |A| is acute. (1) cotA (2) sinA

(3) cosA (4) secA

15. = π ∑= 10 3 1 cos 3 r r

(1)1 8 (2)7 8 (3)9 8 (4) 1 8

16. If cos a + cos b = a , sin a + sin b = b and a – b = 2 q , then q = q cos3 cos

(1) a2 + b2 – 2 (2) a2 + b2 – 3

(3) 3 – a2 + b2 (4) (a2 + b2)/4

17. Iftan3sin3 ,then tansin AA a AA ==

(1) 2 1 a a (2) + 2 1 a a (3) + 1 a a (4) 1 a a

18. If A and B are acute angles satisfying 3sin2A + 2sin2B = 1 and 3 sin2A = 2sin2B, then cos( A + 2 B ) =

(1) 0 (2) 1 (3) 1 2 (4) 1 4

19. θ is in 3rd quadrant then ()4222 4sinsincos4cos 42

(1) 1 + 2sin θ (2) 2 (3) 1 (4) 2 + 4sin θ

20. If () 22 2sincos1cossin2, 2 xx

()π ≠+∈ 21,1 2 xnn then cos2x is equal to

(1) 1 5 (2) 3 5

(3) 4 5 (4) 1

21. The sum of the series, sin θ sec3 θ + sin3 θ sec32 θ + sin32 θ sec32 θ + .......... upto n terms, is

(1)  θ−θ  11 tan3tan3 2 nn

(2) [tan3nθ – tan θ ]

(3)  θ−θ  1 tan3tan 2 n

(4) () θ− 1 tan31 2 n

22. The value of cot 24 π is:

(1) −−+ 2326

(2) 3236

(3) +++ 2326

(4) ++− 2326

23. = 10 tan7 2

(1) 2213 31 (2) + 13 13

(3) + 1 3 3 (4) + 21 2

24. If A + B + C = 0° then sinA + sinB + sinC =

(1) 4 sinA/2sinB/2sinC/2

(2) – 4 sinA/2sinB/2sinC/2

(3) 4 cosA/2cosB/2cosC/2

(4) – 4 cosA/2cosB/2cosC/2

25. A + B + C = 2S ⇒ sinS + sin(S – A) + sin(S – B) – sin(S – C) = (1) 4coscoscos 222 ABC ⋅⋅

(2) 4coscossin 222 ABC

(3) 4cossincos 222 ABC ⋅⋅

(4) 4sinsinsin 222 ABC

26. If α , β are acute angles then 3cos21 cos2 3cos2 β− α= −β then (1) tan α = 2tan β

(2) tan2tanα=β

(3) tan22tanβ=α

(4) tan β = 2tan α

27. If cos α + cos β = a, sin α + sin β = b and 2,thencos3 cos θ α−β=θ= θ

(1) a2 + b2 – 3 (2) a2 + b2 – 2

(3) 3 – a2 + b2 (4) 22 4 ab +

28. cot16°cot44° + cot44°cot76° – cot76°cot16° is (1) 0 (2) 1 (3) 3 (4) 4

29. If ()()()tantantan y xz == q+aq+bq+γ

then () 2sin xy xy + ∑a-b= -

(1) 1 (2) –1

(3) 0 (4) none

30. If x = sin a + sin b , y = cos a + cos b then tan a + tan b =

(1) ()() ()222222 8 22 xy yxxyxy-+++-

(2) ()() ()222222 4 2 xy yxxyxy-+++-

(3) () ()2222 8 2 xy xyxy++-

(4) 4xy

31. If xy+yz+zx = 1, then 222111 y xz xyz ++= +++

(1) () () ()222 2 111xyz +--

(2) () () ()222 2 111xyz -+-

(3) () () ()222 2 111xyz +++

(4) () () 222 2 11(1) xyz -++

32. Which of the following is not the value of sin27° – cos27° =

CHAPTER 4: Trigonometric Functions

(1) 35 2- (2) 1sin54 --°

(3) 51 22- (4) 1sin54-°

33. If a + b + γ = 2 q , then cos q + cos( q – a ) + cos( q – b ) + cos( q – γ ) =

(1) 4sincossin 222 abγ ⋅⋅

(2) 4coscoscos 222 abγ ⋅⋅

(3) 4sinsinsin 222 abγ ⋅⋅

(4) 3sin a sin b sin γ

Numerical Value Questions

34. If xsin3q + ycos3q = sin q cos q and xsin q = ycos q, then x2 + y2 is equal to _____

35. For 12,,.0, 2 n qqqπ …∈   , if ln(sec q 1 –tan q 1) + ln(sec q 2 – tan q 2) +....+ ln(sec q n – tan q n ) + ln π = 0 , then the value of |cos((secq1 + tanq1) (secq2 + tanq2).... (secq n – tan q n))| is equal to _____.

36. If 161sin 5 a = and the value of 2248 1124 cos1sin1sin1sin aaaa +++ +++ is k, then 3 k    =________, where [.] is greatest integer function.

37. a, b, γ∈ (0, π/4), such that -a-b-γ=-a+b+γ 1(1tan)(1tan)(1tan)1(tantantan) 2 (1–tana)(1–tan b )(1–tan γ ) = 1–(tan a + tan b + tan γ ) then the value of tan( a + b + γ) is______.

38. If () ()() a+b-γγ=b≠γa-b+γb tantan , tantan , then sin2 a + sin2 b + sin2 γ = ______.

39. Let A and B be non-zero real numbers such that 2(cosB – cosA) + cosAcosB = 1. Then -= 22 tan3tan 22 AB ______.

40.

ππππ +++ 4444 235 coscoscoscos 8888

πππ +++= 444 678 coscoscos 888 ___.

41. If ()=+++ 2 23 sinsin3sin3 cos3cos3cos3 n fxxxx xxx ..... ()() 1 23 sin3,then/4/4 cos3 n n x ff x+π+π= ___.

42.

ππ  q-q-

3 16coscoscoscos 88 57 coscoscoscoscos4, 88

then the value of λ is

43. If πππ ++=2461 coscoscos 7772 and

πππ =2461 coscoscos, 7778 then the numerical value of 22223 coseccoseccosec 777 πππ ++ must be

44. If 4sin27 =a+b  , then sum of digits in ( a + b – ab + 2)4 =________.

45. 1 + cos2x + cos4x + cos6x – 4cosxcos2xcos3x = _________.

46. If the period of (() ) () cossin , tan/ nx nN xn ∈ is 6π, then n is_______.

47. If f(x) = 2(7cosx + 24sinx)(7sinx – 24cosx), for every x ∈ R , then maximum value of (f(x))1/4 is _______.

48. 357 8sinsinsinsin_____. 14141414 ππππ =

49. The number of ordered pairs (x, y), when x, y ∈ [0, 10] satisfies  -+⋅≤   22 1sec sinsin21 2 xxy , is ____.

50. cos2q + cos2(60° + q ) + cos2(60° – q ) = k, then 4k = _____.

51. The value of cos61cos62cos119 111 cos1cos2cos59

52. Given that () 2sin2 cos2cos4 fn n q=q q-q

()()()() sin 23, sinsin ffffn q+q+q+…+q=λq qmq then the value of μ – λ, is ________.

53. In a triangle ABC, 2 sinsin1 , sin AAk A

then k = _____.

54. Minimum value of 9sec2θ + 4cosec2θ + 7 is = ____.

THEORY-BASED QUESTIONS

Statement Type Questions

Each question has two statements: statement I (S-I) and statement II (S-II). Mark the correct answer as

(1) if both statement I and statement II are correct,

(2) if both statement I and statement II are incorrect,

(3) if statement I is correct but statement II is incorrect,

(4) if statement I is incorrect but statement II is correct.

1. S-I : The measurement of angle 2 lies in the second quadrant.

S-II : The measure of 1 radian is approximately equal to 57 °.

2. S-1 : If tansec3 xx+= , then the value of x is 5 6 π .

S-II : sec x + tan x , sec x – tan x are reciprocals to each other.

3. S-I : The domain of the function f(x) = tan x is the set of all real numbers other than odd multiples of right angles.

S-II : The graph of function f ( x ) = tan x intersect x-axis at all odd multiples of 2 π

4. S-I : If q lies in the second quadrant, then 2 1sincosqq-=.

S-II : If q lies in second quadrant, cos q is negative.

5. S-I : 1 + tan2 q= sec2q is valid for all real values of q.

S-II : An identity in terms of variable is an equation which is valid for all real values of x

6. S-I : The domain of y = sin x and y = cos x are same.

S-II : The range of y = sin x and y = cos x are same.

7. S-I : The domain of y = sec x and y = tan x are same.

S-II : The range of y = sec x, y = tan x are same.

8. S-I : Let 0, 2 qπ ∈   and πqq±=±

sinsin, 2 n when n is even.

S-II : Let 0, 2 qπ

and

CHAPTER 4: Trigonometric Functions

sincos, 2 n when n is odd.

9. S-I : If sin A + sin B + sin C = 3, then 2 ABC π === .

S-II : If cos A + cos B + cos C = –3, then A = B = C = π.

10. S-I : If A,B,C,D is a cyclic quadrilateral, then cosA + cosB + cosC + cosD=0.

S-II : If A,B,C,D is a cyclic quadrilateral, then sinA + sinB – sinC – sinD= 0.

11. S-I : If 2 sectan 3 xx+= , then measure of angle x lies in fourth quadrant.

S-II : If 1 csccot 5 qq+= , then measure of angle q lies in second quadrant.

12. S-I : If a = sec x – tan x and b = csc x + cotx, then 1 1 b a b + = -

S-II : If a = sec x – tan x and b = csc x + cotx, then 1 1 ba a + =.

13. S-I : If tan 15° + cot 195° = 2 a, then the value of 1 4 a a += .

S-II : tan195tan1523 °=°=+

14. S-I : If 1 tan 2 x = and 1 tan 3 y = , then 2(x+y) is right angle.

S-II : () tantan tan 1tantan xy xy xy + += -

15. S-I : tan 15° + cot 75° = 4

S-II : tan 15° + cot 15° = 4

16. S-I : cos 42° + cos 78° + cos 162° = 0

S-II : cos 162° = cos 18°

17. S-I : If cotcotcot3 ABC++= , then

the triangle ABC is an equilateral triangle.

S-II : If 3,1xyzxyyzzx ++=++= , then x=y=z .

18. S-I : In a triangle ABC , if 2 cos 3 A =, then cosB cosC are positive.

S-II : If A is acute angle, then all trigonometric ratios of angle A are positive.

19. S-I : In a triangle ABC, if C is acute angle, then tanA tanB > 1.

S-II : In a triangle ABC , if C is obtuse angle, then tanA tanB < 1.

20. S-I : tan50° – tan40° = 2 tan10°

S-II : tan70° – tan20° = 2 tan50°

21. S-I : 4 sin3 A + sin 3A = 3 sin A

S-II : 4 cos3 A – cos 3A = 3 cos A

22. S-I : 1 tan376432 2 °=-+-

S-II : 1 tan526432 2 °=+--

23. S-I : The quadratic equation whose roots are sin2 18°, cos2 36° is 16x2 – 12x + 1 = 0.

S-II : The product of values of sin 36°, cos 36° is unity.

24. S-I : 2 sin 54° sin 66° 1 cos12 2 =°+

S-II : 2 sinA sinB = cos (A–B) – cos (A+B)

25. S-I : If f ( x ) is a periodic function with period p, then f ( x+p ) = f ( x ) for all x ∈ domain of f.

S-II : If f ( x ) is a periodic function with period p, then f(x–p) = f(x) for all x ∈ domain of f.

26. S-I : The period of sin4 x + cos4 x is right angle.

27. S-I : The function cos x is not periodic.

S-II : The function cossin 2 x x π  +

is periodic.

Assertion and Reason Questions

In each of the following questions, a statement of Assertion (A) is given, followed by a corresponding statement of Reason (R). Mark the correct answer as

(1) if both (A) and (R) are true and (R) is the correct explanation of (A), (2) if both (A) and (R) are true but (R) is not the correct explanation of (A),

(3) if (A) is true but (R) is false,

S-II : The fundamental period of of sin2 x + cos2 x is not defined.

(4) if both (A) and (R) are false.

28. (A) : The radius of the circle whose arc of length 15π makes an angle of 3 4 π radian at the centre is 20 cm.

(R) : The radian is measure of central angle subtended by an arc of length equal to the radius of the circle.

29. (A) : sin2 is positive and cos2 is negative.

(R) : The real number 2 is approximately equal to 114°, and it lies in the second quadrant.

30. (A) : The trigonometric ratios for an angle 2nπ+ q , n ∈ Z, are the same as those of q.

(R) : The measures of angles 2nπ+ q and q are coterminal angles.

31. (A) : cos 1 > cos 2

(R) : Cosine function is decreasing function in the first quadrant.

32. (A) : If sin x + csc x = 2, then the value of sinnx + cscnx is 2.

(R) : If 1 2 x x += , then the value of x is 1.

33. (A) : The function tan x is an odd function. (R) : A function f ( x ) is said to be odd function if and only if f(–x) = –f(x).

34. (A): If the product of sin x and cos x is negative, then tan x is negative.

(R) : sin x and cos x are of different signs in second and fourth quandrants.

35. (A) : If A and B are complementary angles, then cos2 A + cos2 B = 1.

(R) : If A and B are complementary angles, then 2 AB π +=

36. (A) : The value of () sec1562 °=.

(R) : cos(45° – 15°) = cos 45° sin15° + sin 45° cos15°.

37. (A) : 1 tan2221 2 °=-

(R) : If A+B = 45°, then (1+ tan A)(1 + tan B) = 2

38. (A) : cos11sin11 tan34 cos11sin11 °-° °= °+°

(R) : cossin tan 4cossin AA A AA π-

39. (A) : If 2 AB π += , then 2 tan (A–B) –tanA + tanB = 0.

(R) : If A and B are complementary angles, then tanA + tanB = 1.

40. (A) : In a triangle ABC, if 3 cos 5 A =and 7 sin 25 B = , then 3 tan 4 C = .

(R) : In any triangle, there exists only one obtuse angle. Remaining two are acute angles.

41. (A) : tan70tan20 1 tan50=

(R) : sin(A–B) = sinA cosB – cosA sinB

42. (A) : If A =35°, B = 15°, C = 40°, then cot A + cot B + cot C= cotA cotB cotC

(R) : If A+B+C is odd multiple of , 2 π then cotA+ cotB+ cotC= cotA cotB cotC.

43. (A) : cos(5 x ) = 16 cos 5 x – 20 cos 3 x + 5

cos x

(R) : cos(5x) = cos(3x+ 2x) and cos 3x = 4 cos3 x – 3 cos x

44. (A) : 223 sinsin1 88 ππ +=

(R) : 223cossin 88 ππ =

45. (A) : sin 3x = sin x(2 cos 2x + 1)

(R) : cos 2x = 2 sin2 x – 1

46. (A) : tan6° tan42° tan66° tan 78° = 1

(R) : tan q tan(60° + q )tan(60° – q ) = tan 3 q

47. (A) : The value of sin20° sin40° sin60° sin

80° is 3 16

(R) : For any value of q, sinq + sin (60° + q) () 1 sin60sin3 4 qq°-= .

48. (A) : 2 cosA cosB = sin (A+B) + sin(A–B)

(R) : sin(A ± B) = sinA cosB ± cosA cosB

49. (A) : –2sinA sinB = cos (A+B) – cos(A–B)

(R) : cos(A ± B) = cosA cosB ± sinA sinB

50. (A) : cosx + cos(240° + x) + cos(240° – x) = 0

(R) : cos ( A+B ) + cos( A–B ) = 2 cos A cosB

51. (A) : The period of cos (2x + 3) is π.

(R) : The period of cos x is 2π.

52. (A) : The period of sin x + cos x is 2π.

(R) : The period of af 1( x ) + bf 2( x ) is the least common multiple of periods of f1(x), f2(x).

53. (A) : The period of sin(π sinx) is twice the period of cos(π cosx).

(R) : The period of f(x) is f(x+p) = f(x) for all x ∈ domain of f(x)

54. (A) : The extremum value of a2 sin2x + b2 csc2x is 2ab.

(R) : The extremum value of a2 sec2x + b2 csc2x is (a + b)2.

JEE ADVANCED LEVEL

Multiple; Option Correct MCQs

1. The value of expression (α tan γ + b cot γ ) (αcot γ + b tan γ ) – 4α b cot22 γ depends on (1) α (2) b (3) γ (4) 0

2. If 2sec 2 A – sec 4 A – 2cosec 2 A + cosec 4 A =15/4, then tan A is equal to

(1) 1 2 (2) 1 2

(3) 1 22 (4) 1 2 -

3. If 3 tanA + 4 = 0, then the value of 2cot A – 5cosA + sinA is equal to

(1) π <<π 23if 102 A

(2) π <<π 233if2 102 A

(3) π π<< 53if 102 A

(4) π π<< 533if2 102 A

4. The value of ()aaa =-+ 2 cos2cotfec

aa + 2 cosec2cot can be (1) 2cotα (2) – 2cotα (3) 2 (4) –2

5. (m + 2)sin q + (2m – 1)cos q = 2m + 1, if (1) 3 tan 4 q = (2) 4 tan 3 q = (3) () 2 2 tan 1 m m q =(4) () 2 2 tan 1 m m q = +

6. If cotq + tanq = x and secq – cosq = y, then (1) xsin q . cos q = 1 (2) sin2q= ycos q

(3) (x2y)1/3 + (xy2)1/3 = 1

(4) (x2y)2/3 – (xy2)2/3 = 1

7. If 32sin2cos1, 25 yxx y + =++ + then the value of y lies in the interval

(1) 8 , 3 ∞    (2) 12 , 5 ∞

(3) 812 , 35 

 - (4) 8 , 3 ∞

8. Four numbers n1, n2, n3 and n4 are given as n1 = sin15° – cos15°, n2 = cos93° + sin93°, n 3 = tan27° – cot27°, and n 4 = cot127° + tan127°. Then,

(1) n1 < 0 (2) n2 < 0

(3) n3 < 0 (4) n4 < 0

9. Let y = sin2x + cos4x. Then, for all real x, (1) the maximum value of y is 2 (2) the minimum value of y is 3 4 (3) y ≤ 1

(4) 1 4 y ≥

10. Suppose ABCD (in order) is a quadrilateral inscribed in a circle. Which of the following is/are always true?

(1) secB = secD

(2) cotA + cotC = 0

(3) cosecA= cosecC

(4) tanB + tanD = 0

11. If 11 cos 2 x x a  =+  and 11 cos,(0) 2 yxy y b  =+>   ,,,, xyR ab ∈ , then

(1) () sinsin R abγγ∀γ ++=∈

(2) coscos1;, R ab∀ab=∈

(3) 2 (coscos)4;,R ab∀ab +=∈

(4) sin(α + b + γ ) = sinα + sin b + sin γ ;

12. If 44 sincos1 235 xx += , then

(1) 22 tan 3 x =

(2)

88 sincos1 827125 xx +=

(3) 21 tan 3 x =

(4) 88 sincos2 827125 xx +=

13. If 0 ≤ q ≤ π and 22 sincos 818130 qq+= , then q is

(1) 30° (2) 60°

(3) 120° (4) 150°

14. If A and B are acute angles such that sin A = sin2B, 2cos2A = 3cos2B, then

(1) A = π /6 (2) A = π /2

(3) B = π /4 (4) B = π /3

15. If 2cos223secqq += , where q∈(0, 2π), then which of the following can be correct?

(1) 1 cos 2 q = (2) tan q = 1

(3) 1 sin 2 q =- (4) cot q = –1

16. Let f(x) = log(log1/3(log7(sinx + a))) define every real value of  x . Then, the possible value of a is

(1) 3 (2) 4 (3) 5 (4) 6

17. If b > 1, sint > 0, cost > 0 and logb(sint) = x, then logb(cost) is equal to

(1) ()12 2log1 x bb - (2) 2log(1 – bx/2)

(3) log12 x bb - (4) 12 x -

18. If x = sec φ – tan φ and y = cosec φ + cot φ , then

(1) 1 1 xy y + =(2) 1 1 xy y= +

(3) 1 1 x y x + =(4) xy + x – y + 1 = 0

19. If x = acos3q sin2q , y = asin3q cos2q, and ()() 22 (), p q xy pqN xy + ∈ is independent of q, then

(1) p = 4 (2) p = 5

(3) q = 4 (4) q = 5

20. For 0 < φ < π/2, if 22 00 cos,sinnn nn xy ∞∞ =φφ =

and 22 0 cossinnn n z ∞ =φφ

, then xyz =

(1) xy + z (2) xz + y

(3) x + y + z (4) yz + x

21. A circle centred at O has radius l and contains point A. Segment AB is tangent to the circle at A and AOB ∠q = . If point C lies on OA, and BC bisects the angle ABO, then OC equals

(1) sec q (sec q – tan q )

(2) 2 cos 1sin q +q

(3) 1 1sin+q

(4) 2 1sin cos q q -

22. Which of the following is/are correct?

(1) ()()() lnsinlnsin (tan)(cot),0,/4 xx xxx∀π>∈

(2) () lnln 45,0,/2 cosecxcosecx x ∀π<∈

(3) ()()() lncoslncos (1/2)(1/3),0,/2 xx x ∀π<∈

(4) ()()() lntanlnsin, 220,/2 xx x ∀π>∈

23. If tanq + tanφ = a and cotq + cotφ = b, and q – φ = a≠0, then

(1) ab > 4

(2) ab = 4

(3) ()a= + 2 2 4 tan () abab ab

(4) () + a=2 2 4 cot () abab ab

24. If 3 sin b = sin(2 a + b ), then tan( a + b ) –2tan a is

(1) independent of a (2) independent of b

(3) dependent on both a and b (4) independent of both a and b

25. If 0 ≤ x, y ≤ 180° and ()()-=+= 1 sincos, 2 xyxy then the values of x and y are given by

(1) x = 45°, y = 15° (2) x = 45°, y = 135°

(3) x = 165°, y = 15° (4) x = 165°, y = 135°

26. Suppose cosx = 0 and ()+= 1 cos 2 xz . Then the possible value(s) of z is (are).

(1)

27. If sinx + 7 cosx = 5, then () 1 cos, 2 x -φ= where

(1) φ= 7 cos 50 (2) φ= 7 cos 75

(3) φ= 1 sin 50 (4) φ= 26 sin 75

28. In cyclic quadrilateral ABCD, if== 312cotandtan 45 AB , then which of the following is (are) correct?

(1) = 12 sin 13 D

(2) () 16 sin 65 AB+=

(3)= 15 cos 13 D

(4) ()+= 16 sin 65 CD

29. The value of x in (0, π /2) satisfying the equation -+ += 3131 42 sincosxx is (1) π 12 (2) π 5 12

(3) π 7 24 (4) π11 36

30. If π a=<a<π 3 sin, 52 and -πb=π<b<53 cos, 132 then the correct statements is/are

(1) ()a-b= 63 tan 16

(2) ()a+b= 33 tan 56

(3)a= 24 sin2 25

(4)b= 119 cos2 169

31. In ∆ABC, if tanB + tanC = 5 and tanAtanC = 3, then

(1) ∆ ABC is an acute angled triangle

(2) ∆ ABC is an obtuse angled triangle

(3) sum of all possible values of tan A is 10

(4) sum of all possible values of tan A is 9

32. If ()-= 3 cos 5 AB and tanAtanB = 2, then

(1)= 1 coscos 5 AB

(2) = 1 coscos 5 AB

(3)= 2 sinsin 5 AB

(4) = 2 sinsin 5 AB

33. If (1 + tan a )(1 + tan4 a ) = 2, then a = (1) π 20 (2) π 30 (3) π 4 (4) π 2

34. If tan(2 a + b ) = x and tan( a + 2 b ) = y , then [tan3( a + b )][tan( a – b )] is equal to (wherever defined)

(1) +22 122 xy xy (2)+ 22 122 xy xy

(3) + + 22 122 xy xy (4)22 122 xy xy

35. For <q<π 0 2 , the solution (s) of () = -ππ q+

6 1 1 coseccosec42 44 m mm

36. Assume that a , b , γ satisfy 0 < a < b < γ < 2π. If cos(x + a)+ cos(x + b) + cos(x + γ) = 0 for all x ∈ R, then which of the following is/are correct?

(1) a-b=-π 2 3 (2) γ-b=π

37. If ()()() b-γ+γ-a+a-b=-

coscoscos 2 )() b-γ+γ-a+a-b=- 3 coscoscos 2 , then

(1) ∑ cos a = 0

(2) ∑ sin a = 0 (3) ∑ cos a sin a = 0 (4) ∑ (cos a+ sin a ) = 0

CHAPTER 4: Trigonometric Functions

38. If ()=≠ tan3 ;1 tan Akk A , then

(1)= 2 cos1 cos32 Ak Ak (2) 2 cos31 cos2 Ak Ak= (3) < 1 3 k (4) k > 3

39. Let f : (–1, 1) → R be such that ()q= -q 2 2 cos4 2sec f for 0,,. 442

Then, the value(s) of

1 3 f is/are

(1)3 1 2 (2) + 3 1 2 (3)2 1 3 (4) + 2 1 3

40. If cosb is the geometric mean between sina and cos a , where 0 < a , b < π /2, then cos2 b is equal to

(1) π

--a  22sin 4 (2) π

(4)

2 2cos 4

2 2cos 4

41. If cosx = sin a cot b , sinx = cos a, then the value of tan(x/2) is

(1) –tan( a /2)cot( b /2) (2) tan( a /2)tan( b /2) (3) –cot( a /2)tan( b /2)

(4) cot( a /2)cot( b /2)

42. If (x – a)cosq + ysinq = (x – a)cosφ + ysinφ = a and tan( q /2) – tan( φ /2) = 2b, then (1) y2 = 2ax – (1 – b2)x2

(2) q() =+ 1 tan 2 ybx x

(3) y2 = 2bx – (1 – a2)x2

(4) φ() =1 tan 2 ybx x

43. If () 35 2sinsin2sinsin 2222 n f qqqqq=+ 7 2sinsin 22 qq ++ ..... + () qq +∈2sinsin21, 22 nnN then which of the following is/are correct?

(1)

(2)

9 1 42 f

2 0, n fnN n

(3) 51 2 f π

(4) 9 51 42 f π

44. Let P = sin25° sin35° sin60° sin85° and Q = sin20° sin40° sin75° sin80°. Which of the following relation(s) is (are) correct?

(1) P + Q = 0 (2) P – Q = 0

(3) P2 + Q2 = 0 (4) P2 – Q2 = 0

45. Let f(x) = a1cos( a 1 + x) + a2cos( a 2 + x) + ..... + a ncos( a n + x). If f(x) vanishes for x = 0 and x = x1 (where x1≠ kπ, k ∈ Z), then

(1) a1cos a 1 + a2cos a 2 + ..... + a n cos a n = 0.

(2) a1sin a 1 + a2sin a 2 + ..... + a n sin a n = 0. (3) f(x) = 0 has only two solutions 0, x1 (4) f(x) is identically zero ∀ x.

46. Which of the following quantities are rational?

(1)

115 sinsin 1212

94 sec 105 cosec

(4)

248 1cos1cos1cos 999

47. The expressions (tan4x + 2tan2x + 1)cos2x, when x = π /12, can be equal to

(1) ()423 (2) () + 421

(3) 16cos2π /12 (4) 16sin2π /12

48. If cot3a + cot2a + cot a = 1, then (1) cos2 a .tan a = –1 (2) cos2 a .tan a = 1 (3) cos2 a – tan2 a = 1 (4) cos2 a – tan2 a = –1

49. Let ()()

2141 1cos1cos 44 kk kk . then, (1) ()= 1 3 16 P (2) ()=

50. Which of the following identities, wherever defined, hold(s) good?

(1) cot a – tan a = 2cot2 a

(2) tan(45° + a) – tan(45° – a) = 2cosec2a

(3) tan(45° + a ) + tan(45° – a ) = 2sec2 a (4) tan a + cot a = 2tan2 a

51. The equation 333 48 xx-=- is satisfied by (1)

52. If 

tansin 2 x cosecxx , then

2tan 2 x is equal to (1)25 (2)52

(3) () ()-+ 94525

(4) () ()+94525

53. If 1sin41 1sin41 A y A -+ = +, then one of the value of y is

(1) –tanA (2) cotA

(3) tan 4 A π  + 

-+

(4) cot 4 A π

54. If sin(x + 20°) = 2sinx cos40°, where x∈(0, π /2), then which of the following hold(s) good?

(1) cosx = 1/2

(2) cosec4x = 2

(3) sec62 2 x =-

(4) ()tan23 2 x =-

55. If p = sin(A – B)sin(C – D), q = sin(B – C) sin(A–D), r = sin(C – A)sin(B–D), then

(1) p+q–r = 0 (2) p+q+r = 0

(3) p–q–r = 0 (4) p3+q3+r3 = 3pqr

56. If 3sin b = sin(2 a + b ), then tan( a + b ) –2tan a is

(1) independent of α (2) independent of β (3) dependent of both α and β (4) independent of both α and β

57. If x = sin( a – b )sin( γ – δ ), y = sin( b – γ ) sin(a – δ) and z = sin(γ – a)sin(b – δ) then

(1) x+y+z = 0 (2) x+y–z = 0

(3) y+z–x = 0 (4) x3+y3+z3 = 3xyz

58. For α = π/7, which of the following hold(s) good?

(1) tan a tan2 a tan3 a = tan3 a – tan2 a –tan a

(2) cosec a = cosec2 a + cosec4 a

(3) cos a – cos2 a + cos3 a = 1/2

(4) 8cos a cos2 a cos4 a = 1

59. If cosx + cosy = a, cos2x + cos2y = b, cos3x + cos3y = c, then

(1) 22 coscos1 2 b xy+=+

(2) ()22 coscos 24 ab xy + ⋅=-

(3) 2a3+c = 3a(1+b)

(4) a+b+c = 3abc

60. If () () () 7 coscos2cos.cos32 222 7,sinsin2sin.sin32 222 n n f n qqq +q++…+q= qqq +q++…+then (1) 3 3 21 16 f π  =

(2) 521 28 f π  =+ 

(3) 723 60 f π  =+ 

(4) none of these

61. The value of the expression 248 tan2tan4tan8cot 7777 ππππ +++ is equal to (1) ππ + 22 coseccot 77

(2) tancot 1414 ππ(3) 2 sin 7 2 1cos 7 π π(4) 2 1cotcos 77 2 sinsin 77 ππ ++ ππ +

62. If xcos a + ysin a = xcos b + ysin b 20, 2 a π =<ab<  , then

(1) 22 4 coscos ax xy a+b= +

(2) 22 22 4 coscos ay xyab= +

(3) 22 4 sinsin ay xy a+b= +

(4) 22 22 4 sinsin ax xyab= +

63. If sin a + sin b = l, cos a cos b = m, and ()tantan1 22 n ab 

, then

(1) () 222 cos 2 lm a-b=+-

(2) () 22 22 cos ml mla+b= +

(3) 122 12 nlm nn ++ = -

(4) if 2 lm π a+b==

64. Iftansincos,then sincos q=a-a a+a

(1) sincos2sin a-a=±q

(2) sincos2cos a+a=±q

(3) cos2 q = sin2 a

(4) sin2 q + cos2 a = 0

65. coscossinsin sinsincoscos nn ABAB ABAB ++  +   (n:even or odd) is equal to (1) 2tan 2 nAB   (2) 2cot 2 nAB -

(3) 0 (4) None of these

66. If a function f(n) is defined from N → R (i.e., set of natural numbers to real numbers) such that 1 ()sincos n r fnrr nn ππ =

r ∈ N, and n ≥ 1, then which of the following option(s) is/are correct?

(1) f(n) contains only positive integers in its range.

(2) Number of real values of x, for which 2f(x) + 1 = 0, is 0.

(3) f(n) contains exactly one non-positive integer in its range.

(4) ()42 f =

67. Which of the following function(s) is/are periodic?

(1) ()[] 2 2 x fxx = where [ ] denotes greatest integer function

(2) g ( x ) = sgn { x } where { x } denotes the fractional part function

(3) h(x) = sin–1(cos(x2))

(4) ()()= 1 cossin kxx

68. Let f(x) = absinx + 2 1cos,1baxca-+< , b > 0

(1) maximum value of f(x) is b if c = 0

(2) difference of maximum and minimum values of f(x) is 2b

(3) f(x) = c, if x = –cos–1a

(4) f(x) = c, if x = cos–1a

69. In ∆ ABC, which of the following is true?

(1) 33 sin.sin.sin 8 ABC ≤

(2) 2229sinsinsin 4 ABC++≤

(3) sinA.sinB.sinC is always positive.

(4) sin2 A + sin2 B≤ 1 + cos C

70. If 1 5cos12sin a xx = + , then for all real x

(1) 1 13 a ≤

(2) the least positive value of a is 1 13

(3) 11 1313 a≤≤

(4) the greatest negative value of a is –1 13

=+∀∈

71. Given () 4 4 1 tan2tan0, tan4fxxx x π

and. If the value of f(sinx) + f(cosx), when 4 x π = , is k, then which is/are correct?

(1) k is divisible by 7.

(2) k is divisible by 4.

(3) Tens place of k is 9.

(4) k is even.

72. If 44 5 1 sincossin21 2 a xxx = +-+ . then a can be

(1) 2 (2) 3 (3) 4 (4) 5

Numerical/Integer Type Questions

73. If tan3q + cot3q = 52, then tan2q + cot2q = λ , where 2 λ equals to ____.

74. If S = () 89 12 1 1tan n n =° + ∑ , then 11 s   is____. (where [.] denotes GIF)

75. If x = a sec n q and y = b tan n q , then 22 nnxy ab 

________.

76. If 2tanq = secq, then 4cot2q – 3tan2q =_____.

CHAPTER 4: Trigonometric Functions

77. If p cosec q + q cot q = 2 and p 2 cosec 2 q –q2cot2q = 5, then the value of 8122 pqis ______.

78. If 0 4 x π << and 5 cossin 4 xx+= , then the value of 16(cosx – sinx)2 is____.

79. Suppose, for some angles x and y , the e qu ations 223sincos 2 a xy+= and 2 22 cossin 2 a xy+= hold simultaneously.

The possible value of a is ___.

80. If secAtanB + tanAsecB = 91, then the value of (secAsecB + tanAtanB)2 – 912 is equal to ____.

81. The value of the expression (2sin 2 91° –1)(2sin 292° – 1)...(2sin 2180° – 1) is equal to____.

82. 2sin1cossin 1cossin1sin qqq qqq -++++ is equal to____.

83. Suppose A and B are two angles such that (),0,AB ∈π , and they satisfy sinA + sinB = 1 and cosA +cosB = 0. Then, the value of  12 cos 2A + 4 cos 2B is ____.

84. If () = ∑+=88 o2 1 tanran1cot1, t oo r rK then K=____.

85. let 0 ≤ a, b, c, d ≤π where b and c are not complementary such that 2 cos a + 6 cos b + 7 cos c + 9 cos d = 0 2 sin a – 6 sin b + 7 sin c – 9 sin d = 0 If () () + = + cos cos adm bcn , where m and n are relatively prime positive integers then the value of m – n = _____.

86. tan15° + cot15° = ____

87. Let a and b be real numbers such that -<b<ππ <a< 0 44 If ()a+b= 1 sin 3 and ()a-b= 2 cos 3 then the greatest integer less than or equal to 2 9sincoscossin 4cossinsincos  abab +++  baba  is ___.

88. If A + B + C = π , then the value of ++ coscoscos sinsinsinsinsinsin ABC BCACAB is ___.

89. If a=b= ++ 1 tan,tan 121 m mm , then the value of a + b is π π+∈ , nnZ k . Then, the value of k is____.

90. πππ ++ 22223 cotcotcot 777 is equal to ____.

91. If cos5q = acosq + bcos3q + ccos5q + d, then ++ = 3 acd _____.

92. If a = 2π/13 then, 4(cos2a + cos22a + cos23a + cos24a+ cos25a+ cos26a) – 7=_______.

93. If °-°=cosec103sec10 k , then k equal to ____.

94. The exact value of the expression

sin40sin80sin20 sin80sin20sin40 ______.

95. For 2 13 π a= , 4|cos a cos5 a + cos2 a cos3 a + cos4 a cos6 a | = ____.

96. If k1 = tan 27 q – tan q and 2 sinsin3sin9 cos3cos9cos27 k qqq =++ qqq then 1 2 k k = ___.

97. ()()sin22tan Ifsinthen 5tan ABAB B A ++ == ____.

98. If A + B + C = π and sin2sin2sin2 sinsinsin sinsinsin222 ABCABC ABC ++=λ ++ , then the value of λ must be ___.

99. () () () () 6coscos3sin8sin2 ___. sin5sincos4cos6 a-aa+a = a-aa-a

100. sin212° + sin221° + sin239° + sin248° – sin29° – sin218° = ____.

101. The number of negative integers in the range of the function ()() 2 cossinsin3fxxxx =++ is ____.

102. sin2x + 4sinx + 5 ∈ [K, 5K] ⇒ K =____

103. The sum of the maximum and minimum values o f 2222 sinsin 33 ππqq  ++

is______.

104. If the period of (() ) cossin , tan nx nN x n ∈   is 6π, then n = ____.

105. If 3cos5cos3 3 ab π qq ≤+++≤   , then the value of () 2 bais

106. If 11 cos3 248yx π  =-  , then the period of 'y' is π.

107. The minimum value of 2cosx – 3cos2x + 5 is ____.

108. The maximum value of sin2 x + 2sin x + 3 is _____.

109. The minimum value of (sin q + cosec q )2 + (cos q + sec q )2 is ___.

Passage-based Questions

(Q: 110 – 112)

Let f( q ) = sin q – cos2 q – 1, where R q∈ and m ≤ f( q ) ≤ M.

110. Let N denote the number of solution of the equation f(q) = 0 in [0, 4π]. Then the value of () 22 loglog11 mm N N  + +  is equal to (1) 1 2 (2) 1 (3) 1 2(4) –1

111. The value of (4m + 13) is equal to (1) 0 (2) 4 (3) 5 (4) 6

112. Sum of the all values of x satisfying the equation 111 , x mmm ∞=+++……… is (1) 1 3 (2) 2 3 (3) 3 3 (4) 4 3

(Q: 113 – 114)

The method of eliminating ‘q’ from two given equations involving trigonometrical function of ‘ q ’. By using given equations involving ‘ q ’ and trigonometrical identities, we shall obtain an equation not involving ‘ q ‘. On the basis of above information answer the following questions.

113. If xsin3 q + ycos3 q = sin q cos q and xsin q –ycos q = 0, then (x, y) lies on (1) a circle (2) a parabola (3) an ellipse (4) a hyperbola

114. If cossin xy abqq = and 22 , cossin axbyab qq ==- then (x, y) lies on

CHAPTER 4: Trigonometric Functions

(1) a circle (2) a parabola (3) an ellipse (4) a hyperbola

(Q: 115 – 116)

In ∆ ABC, BC = 1, 123sin,sin,cos 222 ABA xxx === , and cos4 2 B x = with 20072006 13 24 0 xx xx

115. Length of side AC is equal to (1) 1/2 (2) 1 (3) 2 (4) can’t be determined

116. If 90 A ∠= , then area of ∆ ABC is

(1) 1/2 sq. units (2) 1/3 sq. units (3) 1 sq. units (4) 2 sp. units

(Q: 117 – 118)

If a, b, and c are the sides of ∆ ABC such that 2222222 22 32.330 aabcbc +++ -+= then

117. Triangle ABC is (1) equilateral (2) right angled (3) isosceles right angled (4) obtuse angled

118. If sides of ∆ PQR are a , b sec C , cosec C . Then, area of triangle is ____ units.

(1) 32 4 a (2) 32 4 b

(3) 32 4 c (4) 1 2 abc

(Q: 119 – 120)

The method of eliminating q from two given equations involving trigonometrical function of q. By using given equations involving q and

trigonometrical identities, we shall obtaining an equation not involving q. On the basis of the the above information, answer the following questions.

119. If tanq + sinq = m and tanq – sinq = n then (m2 – n2)2 is

(1) 4 nm (2) 4mn

(3) 16 mn (4) 16mn

120. If s in q + cos q = a and sin 3 q + cos 2 q = b , then we get λ a 3 + m b + n a = 0 when are independent of q , then the value λ 3+m 3+ n 3 is

(1) –6 (2) –18

(3) –36 (4) –98

(Q: 121 – 123)

Let f(x) = sin6x + cos6x + k(sin4x + cos4x) for some real number k

121. Value of k, for which f(x) is constant for all values of x, is

(1) –1/2 (2) 1/2

(3) 1/4 (4) –3/2

122. All real numbers k for which the equation f(x) = 0 has solution lie in

(1) [–1, 0] (2) 1 0, 2

(3) 1 1, 2    (4) none of these

123. Number of values of k, for which f(x) = 0 is an identity, is

(1) 0 (2) 1

(3) infinite (4) None of these

(Q: 124 – 126)

a , b , γ , and δ are angles in I, II, III, and IV quadrant respectively, and not one of them is an integral multiple of π /2. They form an increasing arithmetic progr ession.

124. Which of the following holds?

(1) cos( a + δ ) > 0

(2) cos( a + δ ) = 0

(3) cos( a + δ ) < 0

(4) Data is insufficient

125. If a + b + γ + δ = q and a = 70°,

(1) 400° < q < 580° (2) 470° < q < 650°

(3) 680° < q < 860° (4) 540° < q < 900°

126. Which of the following does not hold?

(1) sin( b + γ ) = sin( a + δ )

(2) sin( b – γ ) = sin( a – δ )

(3) tan2( a – b ) = tan( b – δ )

(4) cos( a + γ ) = cos2 b

(Q: 127 – 130)

If sin a = A sin( a + b ), A ≠ 0, then answer the following question.

127. The value of tan a is (1) b -b sin 1cos A A (2) b +b sin 1cos A A

(3) b -b cos 1sin A A (4) b +b cos 1cos A A

128. The value of tan b is

(1)

(2)

(3)

(4)

() a+b ab sin1cos coscos A A

() a-b ab sin1cos coscos A A

() a-b ab cos1sin coscos A A

() a+b ab cos1sin coscos A A

129. Which of the following is the value of tan( a + b )?

(1) b bsin sin A (2) aa b-a 2 sincos cossin A

(3) aa b+a 2 sincos cossin A (4) a asin cos A

58

(Q: 130 – 131)

In a ∆ ABC, if= 31 coscoscos 8 ABC and + = 33 sinsinsin 8 ABC , then

130. -= tantantan23___ ABC

131. ++-= tanantantantantan43___ AtBBCCA

(Q: 132 – 134)

Let a , b , γ , δ and be the solutions of the equation π q+=q  tan3tan3 4 , no two of which have equal tangents.

132. The value of tan a + tan b + tan γ + tan δ is (1) 1/3 (2) 8/3 (3) –8/3 (4) 0

133. The value of tan a tan b tan γ tan δ is (1) –1/3 (2) –2 (3) 0 (4) none of these

134. The value of +++ abγδ 1111 tantantantan is

(1) –8 (2) 8 (3) 2/3 (4) 1/3

(Q: 135 – 136)

If 7 q = (2n + 1) π , when n = 0, 1, 2, 3, 4, 5, 6, then, on the basis of the above information, answer the following q uestions.

135. The equation whose roots are cos π /7, cos3 π /7, and cos5 π /7, is (1) 8x3 + 4x2 + 4x + 1 = 0

(2) 8x3 – 4x2 – 4x + 1 = 0

(3) 8x3 – 4x2 – 4x – 1 = 0 (4) 8x3 + 4x2 + 4x – 1 = 0

136. The value of sec π /7 + sec3 π /7 + sec5 π /7 is (1) 4 (2) –4 (3) 3 (4) –3

CHAPTER 4: Trigonometric Functions

(Q: 137 – 138) Given () + + -+ qqq=q q 1 1 1 sin2 cos2cos2..........cos2

137. πππ = 91113 8sinsinsin_______ 141414

138. ()πππ

(Q: 139 – 140)

If a = sin10°, b = sin50°, c = sin70° then answer the following

139. The value of +  +  8 abcab c is equal to_____.

140. The value of +111 abc is equal to ______.

(Q: 141 – 142)

Let a and b are positive integers such that π

++=

832768cos a b then answer the following.

141. The value of a is ______.

142. The value of a + b is______.

(Q: 143 – 144)

The roots of unity can be taken as vertices of a regular polygon. One can make use of this interpretation to derive interesting identities. Use this idea to answer the two questions given below.

143. The value of sin2°sin4° .... sin(2k)° ... sin90° is λ 44 2 , where λ∈ N. Then, λ =_____.

144. The value of sin1°sin3° ... sin(2 k – 1)° ... sin179° is 1 2 k , where k ∈ N. Then k =___.

(Q: 145 – 147)

If sinsin11 andcoscos 43 a+b=a+b= , then answer the questions given below.

145. The value of sin( a + b ) is (1) 24 25 (2) 13 25 (3) 12 13 (4) none of these

146. The value of cos( a + b ) is (1) 12 25 (2) 7 25 (3) 12 13 (4) none of these

147. The value of tan( a + b ) is (1) 25 7 (2) 25 12 (3) 25 13 (4) 24 7

(Q: 148 – 149)

If the angles α, β, and γ of a triangle satisfy the relation

Then answer the following questions.

148. The measure of the smallest angle of the triangle is (1) 30° (2) 40° (3) 45° (4) 50°

149. Triangle is (1) an acute angled (2) right angled but not isosceles (3) isosceles (4) isosceles right angled

(Q: 150 – 151)

If 3 coscos 2 a+b= and 1 sinsin 2 a+b= and q is arithmetic mean of α and β.

150. sin2 q + cos2 q = _______.

151. cos( a – b ) = ____________.

(Q: 152 – 153)

Let f(x) = 3cosx + 4sinx + 15

152. The maximum value of f(x) is _____.

153. The minimum value of f(x) is ___.

(Q: 154 – 156)

The maximum and minimum values of a cos q± b sin q + c are 22cab ++ and 22cab -+ respectively i.e., 2222 cossin cababccab qq -+≤±+≤++

154. The maximum and minimum values 7cos q + 24sin q = (1) 25 and –25 (2) 24 and –24 (3) 5 and –5 (4) 10 and –10

155. The value of 5cos3cos3 3 qqπ +++   lies between (1) –4 and 10 (2) 4 and 10 (3) –4 and –1 (4) 4 and –10

156. If 3cos5sin 6 b aqqπ ≤+-≤   then ' a ' and 'b' are (1) 19,19

(2) 19,19(3) 19,19

(4) 19,19 -

(Q: 157 – 159)

If f1(x) and f2(x) are periodic functions with periods T1 and T2 respectively, then we have the period of h ( x ) = f 1 ( x ) + f 2 ( x ) = LCM

of { T 1, T 2} : If h ( x ) is not an even function (or) LCM of {T1, T2 } : If f1(x) and f2(x) are complementary function and even.

157. Let f(x) = cot2x, g(x) = cotx, then the period of f(x) . g(x) is

(1) π (2) 2 π (3) 2 π (4) 2

158. If ()()cot,sin2 2 x fxgxx π =π = , then the period of f(x). g(x) is

(1) π (2) 2 π (3) 2 π (4) 2

159. If f(x) = cosec2x, g(x) = cosec 2x, then the period of f(x).g(x) is (1) π (2) 2 π (3) 2 π (4) 2

Matrix Matching Questions

160. If sincostanxxxk abc === , then match the items of List I with the items of List-II and choose the correct match.

List I List II

(A) bc (p) 22 1 bk

(B) a2 + b2 (q) 1 ak

(C) 1 1 ak ckbk + + (r) a k

(D) a2 + b2+c2 (s) 2 1 k

(A) (B) (C) (D)

(1) r s q p

(2) s p r q

(3) p q s r

(4) q r p s

CHAPTER 4: Trigonometric Functions

161. Match the items of List-I with items of List-II and choose the correct option

List I List II

(A) If a = xcos2a + ysin2a , then (x – a)(y – a) + (x + y)2sin2α cos2α = (p) 2

(B) If x = cot q + tan q ; y = sec q – cos q, then (x2y)2/3 – (xy2)2/3 = (q) 2a2/3

(C) If n = asin3q + 3a cos2q sin q and m = acos3q + 3a cos q sin2q, then (m+n)2/3 + (m–n)2/3 = (r) 1

(D) cossin1xy ab qq+= and sincos1,xy ab -=qq then 22 22 xy ab += (s) 0

(A) (B) (C) (D)

(1) s r q p

(2) p r q s

(3) s q r p (4) r s q p

162. Match the items of List-I with items of List-II and choose the correct option.

List I List II

(A) 3 tanx + 27 cotx ≥ (x ∈ Q1) (p) 24

(B) 5sec2x + 125 cos2x ≥ (q) 18

(C) 16 cosec2x + 9sin2x ≥ (r) 50

(A) (B) (C)

(1) p q r

(2) r p q

(3) q r p

(4) r q p

163. Match the items of List-I with the items of List-II and choose the correct option.

List I

List II

(A) Least value of 3cos2q + 4sin2q (p) 1

(B) If A > 0, B > 0, and 3 AB π += , then maximum value of tanA tanB (q) 0

(C) The value of 6(sin6q + cos6q ) – 9(sin4q + cos4q ) + 4 (r) 2

(D) If A+B+C = π and cosA = cosB cosC, then value of tanB tanC is (s) 1/3 (t) 3

(A) (B) (C) (D)

(1) r t p s

(2) p s r q

(3) t s p r

(4) r q p s

164. If 4 1 cos–sin, 0 5 qq=<q<π , then match List-I with items of List-II and choose the correct option.

List I

List II

(A) cos q + sin q (p) 4 5

(B) sin2 q (q) 7 5

(C) cos2 q (r) 24 25

(D) cos q (s) 7/25

(A) (B) (C) (D)

(1) p q r s

(2) q r s p

(3) r s p q

(4) s p q r

165. Match the items of List-I with the items of List-II and choose the correct option.

List I List II

(A) If 2 AB π += , then tanB + 2tan(A–B) (p) 2tanA tanB

(B) If 4 AB π += , then (1+tanA)(1+tanB)= (q) tanA

(C) If 5 4 AB π += , then cotcot (1cot)(1cot) AB AB = ++ (r) 2

(D) If 3 4 AB π += , then (1+tanA)(1+tanB)= (s) 1 2

(A) (B) (C) (D)

(1) p q r s (2) q r s p

(3) r s p q

(4) s p q r

166. Match the items of List-I with the items of List-II and choose the correct option.

List I

(A) cot.cot 44

List II

ππqq (p) () 1 1sin2 2 +q

(B) sin(45°+ q ) cos(45°– q ) (q) tan56°

(C) cos11sin11 cos11sin11 °+° °-° (r) 3 2

(D) sin2 75° – sin2 15° (s) 1

(A) (B) (C) (D)

(1) p q s r

(2) p s q r

(3) s p q r

(4) p q r s

167. Match the items of List I with the items of List II and choose the correct option.

List I

List II

(A) sin(410°–A)cos (400° + A) + cos (410° – A) sin (400° + A) = (p) –1

(B) 22 cos1cos2 2sin3sin1 °-° °° (q) 0

(C) sin(–870°)+cosec (–660°)+ tan(–855°) + 2 cot(840°) + cos (480°) + sec (900°) (r) 1 2

(D) If 4 cos 5 q = where 3 ,2 2 π qπ

and 3 cos 5 φ = where 0, 2

then cos( q – φ )= (s) 1 (t) 2

(A) (B) (C) (D)

(1) s r p q

(2) s r t p

(3) s p r t

(4) r s p q

168. Match the items of List I with the items of List II and choose the correct option.

List I List II

(A) ππ  +q--q=

tantan 44 (p) 1

(B)

(C)

(D)

tant 44 co (q) 4sec22q

ππ

tan.tan 44 (r) 2sec2q

22 coscos 44 ecec (s) 2tan2q

(A) (B) (C) (D)

(1) s r p q

(2) p s q r

(3) q p r s (4) r q s p

169. Match the items of List I with the items of List II and choose the correct option.

List I

List II

(A) +000 cos20cos803cos50 (p) –1

(B) πππ +++ 023 cos0coscoscos 777

πππ +++ 456 coscoscos 777 (q)3 4

(C) cos20° + cos40° + cos60°–4cos10°cos20°cos30° (r) 1

(D) cos20°cos100° + cos100° cos140° –cos140°cos200°

(A) (B) (C) (D)

(1) s r p q

(2) r s p r

(3) r s q p

(4) p r q s

(s) 0

170. Match the items of List I with items of List II and choose the correct option.

List I

List II

(A) In ∆ ABC, if cos2A + cos2B+ cos2C = –1 then we can conclude that triangle is (p) Equilateral triangle

(B) In ∆ ABC, if tanA > 0, tanB > 0 and tanAtanB < 1, then triangle is (q) Right angle triangle

(C) In ∆ ABC, if cos3 A + cos3 B + cos C = 3cosAcosBcosC then triangle is (r) Acute angle triangle

(D) In ∆ ABC cot A > 0, cot B > 0 and cot Acot B < 1, then triangle is

(s) Obtuse angle triangle

(A) (B) (C) (D)

(1) q s p r

(2) q p r s

(3) r s q p

(4) r s p q

171. Match the items of List I with items of List II and choose the correct option.

List I

List II

(A) In triangle ABC, if 3sin A + 4cosB = 6 and 3cos A+4sinB = 1, then C∠ can be (p) 60°

(B) In any triangle, if (sinA+ sinB + sinC) (sinA + sinB – sinC) = 3sinAsinB, then the angle C∠ is (q) 30°

(C) If 8 sin x cos5 x –8sin5 x cos x = 1, then x is (r) 165°

(D) ‘O’ is the center of the inscribed circle in a 30,60,90 ∠°∠°∠° triangle ABC with right angled at C.If the circle is tangent to AB at D, then the angle COD∠ is (s) 7.5°

(A) (B) (C) (D)

(1) p q r s

(2) r s p q

(3) q p s r

(4) r q p s

172. Match the items of List I with the items of List II and choose the correct option and choose the correct option.

List I

(A) Maximum value of sin4x + cos4xis (p) 3

(B) Maximum value of is 1 + 8sin2xcos2x is (q) 4

(C) Minimum value of cos4x– sin4x is (r) 1

List II

(D) Minimum value of 4cos2x + 5sin2x is (s) –1

(A) (B) (C) (D)

(1) r s p q

(2) p q r s

(3) r p s q

(4) p q s r

173. Match the items of List I with items of List II and choose the correct option.

List I List II

(A) The minimum value of  2sin2q+3 cos2q is (p) 1

(B) The maximum value of sin2q+ cos4q is (q) 2

(C) The least value of 4[sin4q+ cos2q] is (r) 3

(D) The greatest value of 4[sin2014q+ cos2010q] (s) 4

(A) (B) (C) (D)

(1) q p r s

(2) p q s r

(3) q p s r

(4) p q r s

174. Match the items of List I with the items of List II and choose the correct option.

List I List II

(A) If maximum and minimum values of () 2 2 76tantan 1tan qq q ++ for all real values of q≠(2 n +1) 2 π are λ and m respectively then

(B) If maximum and minimum values of 5cos + 3cos( q + 3 π )+3 for all real values of q are λ and m respectively then

(C) If maximum and minimum values of 1 + sin( 4 π + q ) + 2cos( 4 π – q ) for all real values of q are λ and m respectively, then

(p) λ + m=2

(q) λ – m=6

(r) λ + m=6

(s) λ – m=10

(t) λ – m=14

(A) (B) (C)

(1) r,s p,q t

(2) r,s r,t p,q

(3) p q,r s,t

(4) p,q r p,s

4: Trigonometric Functions

FLASHBACK (P revious JEE Q uestions )

JEE Main

1. Let the set of all a ∈R such that the equation cos2x+asinx = 2a–7 has a solution [ p,q ] and , 1 tan9tan27tan81 cot63 r =--+

Then, pqr is equal to _____. (27th Jan 2024 Shift 1)

2. For b ∈ (0, 2 π ), let 3sin( a + b ) = 2sin( a – b ) and a real number k be such that tan a = k tan b . Then, the value of k is equal to ___. (30th Jan 2024 Shift 2)

(1) 2 3 - (2) –5 (3) 2 3 (4)5

3. If ()22 1 tan,tan 11 x AB xxxxx == ++++ and () 1 tan3212,0,,, 2 CxxxABC π =++<< then A+B is equal to ___. (1 st Feb 2024 Shift 1)

(1) C (2) π – C

(3) 2 π –C (4) 2 π –C

4. The value of tan9°–tan27°–tan63°+tan81° is ______. (6th Apr 2023 Shift 2)

5. The value of 36(4cos29°–1)(4cos227°–1) (4cos281°–1)(4cos2243°–1) is

(8th Apr 2023 Shift 2)

(1) 18 (2) 36

(3) 54 (4) 27

6. 24816 96coscoscoscoscos 3333333333 πππππ is equal to (10th Apr 2023 Shift 1)

(1) 4 (2) 3

(3) 1 (4) 2

7. If the line x=y=z intersects the line xsinA+y sinB+zsinC – 18 = 0 = x sin2A+y sin2B+zsin2C–9, where A, B, and C are the angles of a triangle ABC, then 80sinsinsin 222 ABC    is equal to ____. (15th Apr 2023 Shift 1)

8. If f : R → R is a function defined by ()(){} log2sincos2fxmxxm =-+for some m , such that the range of f is [0, 2], then the value of m is ____. (25th Jan 2023 Shift 2) (1) 5 (2) 3 (3) 4 (4) 2

9. If 11 tan15tan1952 tan75tan105 a +++=   , then the value of 1 a a  +   is (30th Jan 2023 Shift 1) (1) 4 (2) 2 (3) 3 53 2 - (4) 423 -

10. 3579 2sinsinsinsinsin 2222222222 πππππ

is equal to (25th Jul 2022 Shift 2) (1) 3 16 (2) 1 16 (3) 1 32 (4) 9 32

11. The value of 2sin(12°)–sin(72°) is: (25th Jul 2022 Shift 2) (1) ()513 4 - (2) 15 8(3) ()315 2(4) ()315 4 -

12. 16sin(20°)sin(40°)sin(80°) is equal to: (26th Jul 2022 Shift 2) (1) 3 (2) 23 (3) 3 (4) 43

13. Let () 9 1 0,:

Then, (27 th Jul 2022 Shift 2) (1) 12 S π

14. The value of 246 coscoscos

is equal to: (27th Jun 2022 Shift 1) (1) –1 (2) 1 2(3) 3 1 - (4) 4 1 -

15. a = sin36° is a root of which of the following equations? (27th Jun 2022 Shift 2)

(1) 10x4–10x2–5 = 0

(2) 16x4+20x2–5 = 0

(3) 16x4–20x2+5 = 0

(4) 16x4–10x2+5 = 0

16. If cotα = 1 and 5 sec 3 b =- where ππ πabπ <<<< 3and 22 , then the value of tan(α+β) and the quadrant in which α+β lies, respectively are: (28th Jun 2022 Shift 2)

(1) 1 7 - and IVth quadrant

(2) 7 and Ist quadrant

(3) –7 and IVth quadrant

(4) 1 7 and Ist quadrant

17. If sin2(10°)sin(20°)sin(40°)sin(50°)sin(70°)

= α–1 16 sin(10°), then 16+ α–1 is equal to___

(26th Jun 2022 Shift 1)

JEE Advanced

18. Let α and β be real numbers such that 0 44 ππ ba -<<<< . If sin(α+β)

= 1 3 and cos(α–β) = 2 3 , then the greatest integer less than or equal to 2 9sincoscossin 4cossinsincos abab baba

is __

(2022 Paper 2)

19. For non-negative integers n, let ()

Assuming cos –1 x takes value in [0, π ], which of the following options is/are correct? (2019 Paper2)

(1) () 3 4 2

(2) () lim1 2 n fn

(3) If α = tan(cos–1f(6)), then α2+2α–1 = 0 (4) sin(7cos–1f(5)) = 0

CHAPTER TEST – JEE MAIN

Section - A 1. 23456 cotcotcotcotcotcot 161616161616

(1) 0 (2) 1 (3) 1 2 (4) 2

CHAPTER 4: Trigonometric Functions

2. If 2 31 ,then2cot 4sin π aπa a <<+ is equal to

(1) 1 + cotα (2) –1 – cotα (3) 1 – cotα (4) –1 + cotα

3. If sin q + cos q = a, then sin4q + cos4q = (1) () 12211 2 a +- (2) () 12211 2 a ++

(3) () 12211 2 a (4) () 12211 2 a -+

4. If () 1 sincos kk k fxxx k =+ , k = 1, 2, .., then xR∀∈ the value of f4(x) – f6(x) is (1) 1 5 (2) 1 12(3) 1 12 (4) 5 12

5. If cos x + cos y + cos z = 0 = sin x + sin y + sinz, then tan(x – y) = (1) 2 (2) - 3 (3) 1 3 (4)1 3

6. In a triangle PQR, ∠=π R 2 . If   

tanandtan 22 PQ are the roots of ax2 + bx + c = 0, a ≠ 0 then (1) a = b + c (2) c = a + b (3) b = c (4) b = a + c

7. If oo oo 11 tan15tan1952, tan75tan105 a +++= then the value of  +   1 a a is:

(1) 4 (2)423

(3) 2 (4)3 53 2

8. If cos22 coscos 33 y xz qππ qq ==  -+   ,

then x + y + z is equal to (1) 1 (2) 0 (3) –1 (4) 2

9. 2sin2b + 4cos( a + b )sin a sin b + cos2( a + b ) =

(1) sin2 a (2) cos2 a (3) tan2 a (4) cot2 a

10. cos4a + sin4a – 6sin2a cos2a = (1) cos2 a (2) sin2 a (3) cos4 a (4) sin4 a

11. sin3 q .cos3q + cos3 q .sin3q = (1) 3sin4 q (2) 3 sin4 2 q (3) 3 sin4 4 q (4) 2sin4 q

12. tan2 a – tan a (1 + sec2 a ) = (1) sin a (2) cos a (3) 0 (4) tan a

13. If, in a triangle ABC, cos3A + cos3B + cos3C = 1, then one angle must be exactly equal to (1) 3 π (2) 2 3 π (3) π (4) 4 3 π

14. cos( a + b + γ ) + cos( a – b – γ ) + cos( b – γ – a ) + cos( γ – a – b ) = (1) 2cos a cos b cos γ (2) 3cos a cos b cos γ (3) 4cos a cos b cos γ (4) 6cos a cos b cos γ

15. If A+C=2B, then cosCcosA sinAsinC=(1) cotB (2) cot2B (3) tan2B (4) tanB

16. sin70cos40 cos70sin40 + = +   (1) 3 (2) 3 (3) 1 3 (4) 1/2

17. Period of sinx sin(120° – x)sin(120° + x) is (1) 2 3 π (2) 3 π (3) π (4) 2 π

18. The period of ()() sincos !1!fxxx nn ππ =+ is (1) (n + 1)! (2) n! (3) 2((n + 1)!) (4) (n – 1)!

19. The  minimum and maximum values of cos32sin6 4 xx π  +++   are (1) 11, 1 (2) 6, 5 (3) 5, 6 (4) 1, 11

20. If 0 ≤ x < π/3, then the range of () secsec 66 fxxx ππ  =-++  is (1) 4 , 3  ∞ 

(3) 4 0, 3  

(2) 4 , 3  ∞

(4) 4 0, 3

Section – B

21. If 10sin4α + 15cos4α = 6 and the value of 9cosec4α + 4sec4α is S, then the value of 25 S is equal to______.

22. If 44 sincos1 549 xx += , then the units digit of the product of digits of 66 64125 cossinxx + is ___.

23. If 2tanA + cotA = tanB, then cotA + 2tan(A – B) = _____.

24. If π  a=a∈π  13 cot,, 22 and -πb=b∈π  5 sec,, 32 , then the value of tan( a + b ) is _______.

25. If sin 2 (10°)sin20° sin40° sin50° sin70° sin10 16 ° =a- then 16 + a–1 is equal to ____.

CHAPTER TEST – JEE ADVANCED

2022 P1 Model

Section – A

[Numerical Value Questions]

1. If A + B + C = π and sin2sin2sin2 sinsinsin ABC ABC ++ = ++ sinsinsin 222 ABC λ

, then the value of λ must be _______.

2. The positive integer value of n > 3 satisfying the equation 111 23 sinsinsin nnn πππ =+

is _______.

3. If 4sin27° = ab - then the sum of the digits in (α + β – αβ + 2)4 is_______.

4. If sinθ + sin3θ + sin5θ +.... + sin(2 n – 1)θ = 2 sin sin n λq q , then the value of λ is______.

5. The maximum value of 66 1 sincos y xx = + is_____.

6. Period of 32

is _________.

7. The period of function f(x) = {x} + tan2πx + |sin3πx|:({.} denotes fractional part of ) is_____.

8. If 35costhen32sinsin 422 AA A  =

=_____.

CHAPTER 4: Trigonometric Functions

Section – B [Multiple Option Correct MCQs]

9. If A > 0, B > 0 and A + B = 3 π , then which the following is not the maximum value of tanAtanB ? (1) 1 3 (2) 1 3 (3) 1 2 (4) 3

10. Let y = sin2x + cos4x. Then, for all real x, (1) the maximum value of y is 2 (2) the minimum value of y is 3 4 (3) y≤ 1 (4) y ≥ 1 4

11. If the equation sinx(sinx + cosx) = k has real solutions, then k may lie in the interval

(1) 21 0, 2  +    (2) 23,23  -+  (3) 0,23  (4) 1212 , 22  -+

12. coscossinsin sinsincoscos nnABAB ABAB ++  +  

(n even or odd) is equal to (1) 2tan 2 nAB   (2) 2cot 2 nAB  

(3) 0 (4) 2tan 2 nAB +   

13. If 3sinβ = sin(2 α + β), then tan( α + β) –2tanα is

(1) independent of α (2) independent of β (3) dependent on both α and β (4) independent of both α and β

14. The value of the expression 248 tan2tan4tan8cot 7777 ππππ +++ is equal to

(1) ππ + 22 coseccot 77

(2) tancot 1414 ππ -

(3) 2 sin 7 2 1cos 7 π π(4) 2 1coscos 77 2 sinsin 77 ππ ππ ++ + Section – C

[Matrix Matching Questions]

15. Let α and β be the solutions of the equation 3cos2θ + 4sin2θ = 5. Then match the following and chosee the correct answer from the options.

List I List II

(A) tanα + tan β (p) 0

(B) tan(α + β) (q) 4 3

(C) tan(α – β) (r) 1 4

(D) tanα.tan β (s) 1

(A) (B) (C) (D)

(1) s q p r

(2) q s r p

(3) r q p s

(4) r p q s

16. Match the fundamental period of the following functions. Choose the correct answer from the options given below:

List I List II

(A) 1 sincosxx + (p) 2 π

(B) |sinx + cosx| (q) π

(C) |sinx + cosx|+ |sinx –cosx| (r) 3 2 π

(D) sinsin coscos xx xx + (s) 2 π

(A) (B) (C) (D)

(1) s q p r

(2) q s r p

(3) p q p s

(4) r p q s

17. Match the items of List I with items of List II and choose the correct answer from the options given below.

List I List II

(A) The value of  +   2 o o 4sec20 cos20 ec is (p) 1

(B) The minimum value of 2 1cos28sin 2sin2 xx x ++

() ,0,/2, x ∈π (q) 2

(C) The value of 000 0 8sin40.sin50.tan10 cos80 (r) 3

(D) If cos5sin5 cossin AA AA + = a + bcos4A, then a2/b is (s) 4

(A) (B) (C) (D)

(1) s q p r

(2) q s r p

(3) p q p s

(4) r q s p

18. If cosα + cosβ = 1 2 and sin α + sinβ = 1 , 3 then match the items of List I with the items of List II. Choose the correct answer from the options.

List I List II

ANSWER KEY

JEE Main

CHAPTER 4: Trigonometric Functions

(r) 3 13 ± (D) tan 2

(s) 131 13 ±

(A) (B) (C) (D)

(1) s q p r

(2) r p q s

(3) p q p s

(4) r q s p

Theory-based Questions

JEE Advanced Level

(39) 1,2 (40) 1,2 (41) 1,2 (42) 1,2,4 (43) 1,2,3,4(44) 2,4 (45) 1,2,4 (46) 1,2,3,4(47) 1,4 (48) 1,3 (49) 1,2,3,4 (50) 1,3 (51) 1,2 (52) 2,3 (53) 1,2,3,4 (54) 1,3,4 (55) 2,4 (56) 1,2,4 (57) 1,4 (58) 1,2,3 (59) 1,2,3 (60) 1,2,3 (61) 1,3,4 (62) 1,2,3,4 (63) 1,2,3,4 (64) 1,2,3,4(65) 2,3 (66) 2,4 (67) 1,2,4 (68) 1,2,3,4 (69) 1,2,3,4 (70) 2,4 (71) 1,2,3,4(72) 2,3,4 (73) 7 (74) 4 (75) 1 (76) 11 (77) 4 (78) 7 (79) 1 (80) 1 (81) 0 (82) 0 (83) 8 (84) 1 (85) 4 (86) 4 (87) 1 (88) 2 (89) 4 (90) 5 (91) 7 (92) 4 (93) 4 (94) 3 (95) 1 (96) 3 (97) 3 (98) 8 (99) 6 (100) 1 (101) 2 (102) 2 (103) 2 (104) 6 (105) 7 (106) 8 (107) 0 (108) 6 (109) 9 (110) 3 (111) 2 (112) 4 (113) 1 (114) 3 (115) 2 (116) 1 (117) 2 (118) 1 (119) 4 (120) 2 (121) 4 (122) 3 (123) 1 (124) 1 (125) 3 (126) 2 (127) 1 (128) 2 (129) 2 (130) 3 (131) 5 (132) 4 (133) 1 (134) 2 (135) 2 (136) 1 (137) 1 (138) 2 (139) 2 (140) 6 (141) 4 (142) 28 (143) 45 (144) 89 (145) 1 (146) 2 (147) 4 (148) 2 (149) 3 (150) 1.4 (151) 0.25 (152) 20 (153) 10

Chapter Test – JEE Main

Chapter Test – JEE Advanced

4: Trigonometric Functions

Chapter Outline

5.1 Introduction to Trigonometric Equations

5.2 Principal Solutions of Trigonometric Equations

5.3 General Solutions of Trigonometric Equations

5.4 Solving Trigonometric Inequalities

■ Trigonometric equations involve sine, cosine, tangent, etc., to find variable values that satisfy them.

■ These equations appear in physics, engineering, and mathematics.

■ Applications include:

‰ Signal processing

‰ Wave mechanics

‰ Navigation

‰ Other areas involving periodic phenomena

5.1 INTRODUCTION TO TRIGONOMETRIC EQUATIONS

■ Trigonometric equations are equations involving trigonometric functions of one or more variables.

Example: sin 2x – sin 4x + sin 6x = 0.

‰ A trigonometric identity is satisfied by all values of unknown angles.

‰ A trigonometric equation is satisfied by certain finite or infinite values.

CHAPTER 5

TRIGONOMETRIC EQUATIONS

‰ If the equations are not satisfied by any unknown angle, then those equations are called impossible equations.

‰ The value of an unknown angle which satisfies given trigonometric equation is called a solution.

‰ Since the trigonometric functions are periodic the trigonometric equations may have infinite number of solutions.

‰ Solutions of trigonometric equations are of two types: (1) principal solution (2) general solutions.

5.2 PRINCIPAL SOLUTIONS OF TRIGONOMETRIC EQUATIONS

■ The least values of the unknown angle that satisfy the equation are called principal solutions. Principal intervals of the trigonometric functions are given below.

5.2.1 Principal Solutions of Tigonometric Functions

■ Equation in the form of sin q = k: There exists unique value a in , 22 ππ    satisfying sin a = k for k ∈ [–1, 1]. This a is called principal value of q or principal solution for the equation sin q = k. The principal solution for the equation 1 sin 2 θ = is 6 π

■ Equation in the form of cos q = k: There exists unique value a in [0, π] satisfying cos q = k. for k ∈ [–1, 1]. This a is called principal value of q or principal solution for the equation cos q = k

The principal solution for 3 cos 2 θ = is 6 π .

■ Equation in the form of tanq = k: There exists unique value a in , 22

satisfying tan a = k for k ∈ (– ∞,∞ ). This a is called principal value of q or principal solution for the equation tan q = k. The principal solution for 1 tan 3 θ = is 6 π

■ Equation in the form of cot q = k : The principal value of q satisfying the equation cotq = k for k ∈ (– ∞,∞ ) lies in ,00, 22

The principal solution for cot3 θ = is 6 π

■ Equation in the form of sec q = k : The principal value of q satisfying the equation

sec q = k for k ∈ (– ∞ , –1] ∪[1,∞) lies in 0,, 22

The principal solution for 2 sec 3 θ = is 6

■ Equation in the form of csc q = k : The principal value of q satisfying the equation csc q = k for k ∈ (– ∞ , –1] ∪[1,∞) lies in ,00, 22

The principal solution for csc q = 2 is 6 π

Solved example

1. Find the principle solution for 2 cos 2 q = 1

Sol. 21 cos 2 θ= q = 45°, 135°

CHAPTER : Trigonometric Equations

Try yourself:

1. Find the principal solution for 51 cos2, 4 θ=+ q∈ [0, 2π].

Ans: 10 πθ=

5.2.2 The Principal Solutions for the Simultaneous Equations

■ If two or more equations are there to be solved, then find the solutions for the individual equations and then take the intersection of those solution sets to get the solution for the given simultaneous equations.

Solved example

2. Principal value of θ satisfying both the equations 11 sin;tan 23 θ=θ= Sol. 1 11 sin0;tan0 23 6 Q θ=>θ=>

∴θ∈

∴θ=π

Try yourself:

2. Find the principal solution of the equations 1 sin 2 x = and 3 cos 2 x =

Ans: 5 6 x π =

TEST YOURSELF

1. The principal solution of 13 cos 22 θ= (1) 75° (2) –75° (3) 105° (4) –15°

2. The principal solution of 12 sin 22 is θ=+ (1) 10 22 2 (2) 10 67 2 (3) 72° (4) 9°

3. If cot q – tan q = 2, then principal value of q is (1) 4 π (2) 2 π (3) π 8 (4) 3 4 π

4. The principal solution of  tan32 is (1) π 12 (2) 12 (3) 11 12 π (4) 13 12 π

5.3 GENERAL SOLUTIONS OF TRIGONOMETRIC EQUATIONS

■ The set of all solutions of a trigonometric equation is called solution set or general solution.

‰ The general solution should be given unless the solution is required in a specified interval.

5.3.1 General Solutions of the Equation

sinq = k

■ The general solution of the equation s in q = k , k ∈ [–1, 1] is { n π + (–1) n a:

n ∈ Z }, where , 22 ππ α

is the principal solution for the equation

sinq = k. General solution for the equation

sin q = 0 is q = {nπ, n ∈ Z}.

■ The general solution of the equation csc q = k , k ∈ (– ∞ , –1] ∪[1,∞) is { n π + (–1) n a:

n ∈ Z }, where ,00, 22 ππ α

is the principal solution for the equation

csc q = k.

Solved example

3. Find the solution set of 1025 sin 3 4 θ=+

Sol. () () 10256 sin 3sin 415 6 321 15 2 1: 315 n nnnZ +πθ==

Try yourself:

3. Find the solution for the equation 6 sin2 x –5 sin x –1 = 0 . Ans: )(1: 6 n nnZ π

5.3.2 General Solutions of the Equation cosq = k

■ The general solution of the equation cosq = k, k∈[–1, 1] is {2nπ ±a: n∈Z} where a∈[0,π] is the principal solution for the equation cosq = k General solution for the equation cos q = 0 is q = { () 21 2 n π + , n ∈ Z .

■ The general solution of the equation sec q = k, k ∈ (– ∞ , –1] ∪[1,∞) is {2nπ ±a : n ∈ Z} where 0,, 22 ππ απ

∈∪

  is the principal solution for the equation sec q = k.

Solved example

4. Find the general solution of 2 sin2q = 3 cosq.

Sol. () () () 2 2 2 2sin3cos 21cos3cos 2cos3cos20 2cos1cos20 θ=θ −θ=θ θ+θ−= θ−θ+= 1 cos,cos2 2 θ=θ=− not posible

CHAPTER : Trigonometric Equations

coscos 3 2; 3 nnZ

Try yourself:

4. If 2 cos2 q + cos q – 1 = 0, then find q .

Ans: 5 2:2: 36 nnZnnZ ππ 

5.3.3 General Solutions of the Equation tanq = k

■ The general solution of the equation tan q = k, k ∈ R is {nπ +a : n ∈ Z} where , 22

is the principal solution for the equation tanq = k General solution for the equation tan q = 0 is q = {nπ, n ∈ Z}.

■ The general solution of the equation cot q = k , k ∈ R is { nπ +a : n ∈ Z } where ,00, 22 ππ α 

is the principal solution for the equation cot q = k.

Solved example

5. Find the solution set for the () 2 tan13tan30 θ−+θ+= . Sol. ()() () () 2 tantan3tan30 tantan13tan10 tan1tan30 tan1,tan3 ,, 43 nnZnnZ θ−θ−θ+= θθ−−θ−= θ−θ−=

Try yourself:

5. Find the general solution of 2 sinsec3tan0 θθ+θ= . Ans: q = nπ, n ∈ Z

5.3.4 General Solutions for the Equation Involving Square Functions

■ General solutions for the equation sin2q = sin2a is q = {nπ ±a , n ∈ Z} where a is the principal solution for the equation sin q = sin a

■ General solutions for the equation cos2q = cos2a is q = {nπ ±a , n ∈ Z} where a is the principal solution for the equation cos q = cos a .

■ General solutions for the equation tan2q = tan2a is q = {nπ ±a , n ∈ Z} where a is the principal solution for the equation tan q = tan a.

Solved example

6. The value of 'x' satisfying 4 sin2 x = 1 is

Try yourself:

6. If 11 sin2x + 7 cos2 x = 8 then find x.

Ans: , 6 nnZ π

5.3.5 General Solutions of Two Simultaneous Equations

■ First, find the value of unknown angle q lying between 0 and 2π, satisfying the two or more given equations separately. Select the angle q which satisfies the both the equations, then general solution is given by q = {2nπ + a, n∈Z}, and a is the principal solution of q lying between 0 and 2π.

Solved example

7. Find most general values of θ satisfying the equation ()() 22 123tan10 Sin +θ+θ−= .

Sol. ()() 22 3 12sin3tan10 12sin03tan10

sin'&tan' 7 66 7 2: 6 vevein nnZ +θ+θ−=

Try yourself:

7. Find the most general value of θ which satisfies both the equations tan q = –1 and 1 cos 2 θ= Ans: 7 2, 4 nnZ π π+∈

5.3.6 General Solution for the Equation a cosq + b sin q = k

■ We know that the range of the expression a cos q + b sin q is 2222 , abab  −++  

■ If 2222 , kabab∉−++  then the solution set for the equation a cos q + b sin q= k is empty set.

■ If 2222 , kabab∈−++  then the general solution for the equation a cos q + b sin q= k is 2nπ ±a + b, where a is principal solution for the equation () 22 cos k ab θβ−= + , 22 cos, a ab β = + and 22 sin b ab = + β

Solved example

8. If 3cossin2, θ+θ= then find q .

Sol. 3cossin2 311 cossin 222 coscos 64 /62/4 n θ+θ= ⇒θ+θ=

Try yourself:

8. If 3 cos q + 4 sin q = λ has a solution. Then find the range of λ.

Ans: [–5, 5]

5.3.7 Solving Trigonometric Equations Involving sin x and cos x

■ If the equation is homogeneous equation in sinx, cosx then divide the equation by cosx and reduce the equation as product of elementary equations. Hence, it can be solved.

‰ If the given equation is of the form a cos2x + b sin2 x + c sin x cos x + d = 0 then divide the equation on both sides with cos2x and then solve it.

■ If the equation is in the form of f (sin x –cosx, sinx cosx) = 0, then substitute sinx – cos x=t , reduce the given equation as 12 ,0 2 ftt

. Hence can be solved.

. Hence can be solved.

■ If the equation is in the form of f (sinx + cosx, sinx cosx) = 0, then substitute sinx + cos x=t , reduce the given equation as 21 ,0 2 ftt

Solved example

9. If 0 ≤ x ≤ 2π, then find the number of solutions of 3(sinx + cosx) – 2(sin3x + cos3x) = 8.

Sol. The given equation is 3(sinx + cosx) – 2(sin3x + cos3x) = 8 or (sin x + cos x)[3–2 sinx cosx] = 8 or (sin x + cos x) [sin2 x + cos2 x + 2 sinx cosx] = 8 or (sin x + cos x) = 8 or sin x + cos x = 2. The above solution is not possible. Hence, the given equation has no solution.

Try yourself:

9. Find the general solution of the equation sincos22sincos0 xxxx +−=

Ans: 12:(1): 644 nZnxnnZn +

5.3.8 Solving Trigonometric Equations Based on Extreme Values

■ If the equation is in the form of sin q = 1 x x + , check the range of functions of both sides. The range of sin q is [–1, 1]and the range of 1 x x + is (– ∞ , –2] ∪[2,∞) . Since the range sets are disjoint, the given equation has no solution.

Solved example

10. Find the solution of 222 2 1 2cossin 2 x xx x  =+

CHAPTER y: Trigonometric Equations

Try yourself:

10. Find the solutions for the equation sin 4 x = 1 + tan8 x.

Ans: φ

5.3.9 Solving Trigonometric Equations Using Graphs

■ Consider equation f(x) = g(x) where f(x) is a trigonometric function and g ( x ) is either trigonometric or non-trigonometric function. In many cases, we cannot find the exact values of x which satisfy the equation. To find the number of roots of the equation, we draw the graphs of y = f(x), y = g(x), and then find the number of their point of intersection.

Solved example

11. Find the interval in which the sm allest positive root of the equation tan x – x = 0 lies.

Therefore, the required interval is

Try yourself:

11. Find the number of roots of the equation x2 = cot x in [0, 2π].

Ans: 2

5.3.10 Number of Solutions and Particular Solutions

■ To find the solution in the given interval (a,b):

‰ Solve the given trigonometric equation.

‰ Write the general solution.

‰ Put n = 0, ± 1, ± 2, ...... in the general solution and check whether they belong to the specified interval ( a,b) or not.

‰ The above step gives the solution of the trigonometric equation in the interval (a,b).

Solved example

12. Find the number of solutions of |cosx| = sinx, 0 ≤ x ≤ 4π.

Sol. cossin04 cossin(cos0)

tan1 4 cossin(cos0) 3 tan1 4

No.ofsolutions2in(0,2) xxx xxx xx xxx xx =≤≤π => π =⇒= −=< π =−= π Therefore, The number of solutions: 4 in (0, 4π).

Try yourself:

12. Find the number of roots of the equation, ()() 22 sincos 818130 xx += in the interval [0, π].

Ans: 2

TEST YOURSELF

1. For n ∈ Z, 2sin2q = cos2 q implies q 2 =

(1) 2 3 n (2) n 6

(3) n 212

(4) 2 12 n

2. If tantantant 23an, 23 then the general solution of q is

(1) 31 3 nnZ :

(2) 31 9 nnZ :

(3) 31 6 nnZ :

(4) 21 9 nnZ :

3. If 4cos q cos(120° + q ) cos(120° – q )= 1 2 then q =

(1) nornnZ 31 9 ,

(2) nnZ n 3 1 6 ,

(3) 2 39 nnZ , (4) nnZ 318 , 4. The solution set of sin3 1025 4 is

(1) nnZ n 3 1 6 :

(2) nnZ n 3 1 12 :

(3) nnZ n 3 1 2 15 :

(4) nnZ n 3 1 8 :

5. The general solution of 41co025 s

(1) 2 3 10 nnZ :

(2) nnZ n 1 3 10 : (3) nnZ 10 : (4) 2 5 nnZ :

6. If cos cos 3 221 1 2 , then (1) nnZ 3 :

(2) 2 6 nnZ :

(3) 2 3 nnZ : (4) nnZ 6 :

7. If the sum of all solutions of the equations 8 66 1 2 co1 scoscos xxx in [0, π] is kπ, then [k] = ______. (where [.] represents greatest integer function).

8. The number of solutions of sin3 x = cos2x in the interval 2 , is ________.

9. If 0 2 x , then the number value of x satisfying sinx – sin2x + sin3x = 0 is ___.

CHAPTER y: Trigonometric Equations

5.4 SOLVING TRIGONOMETRIC INEQUALITIES

■ To solve the trigonometric inequation of the type f(x) ≤ a or f(x) ≥ a where f(x) is some trigonometric ratio, the following steps should be taken:

‰ Draw the graph of y = f(x) in an interval length equal to the fundamental period of f(x).

‰ Draw the line y=a.

‰ Take the portion of the graph for which the inequation is satisfied.

‰ To generalise, add nT and take the union over the set of integers, where T is the period of f(x).

Solved example

13. If 4 sin2 x – 8 sinx + 3 ≤ 0, 0 ≤ x ≤ 2π, then find x.

Sol. () () 2 4sin8sin30,02 2sin32sin10 sin1,1 2 5 , 66 xxx xx x

Try yourself:

13. Find the solution set of sin x < 1. Ans: 2, 2 RnnZ

TEST YOURSELF

1. The solution set of sin x 1 2 is

(1) 2 6 2 6 nn , (2) 2 6 2 7 6 nn , (3) 2 4 2 7 4 nn , (4) 2 6 2 5 6 nn ,

2. The solution set of cos x > 0 is (1) 2 2 2 2 nnnZ ,,

(2) 2 2 2 2 nnnZ ,,

(3) nnnZ ,, 1

(4) nnnZ 3 1 ,,

3. If A = {x ∈ [0, 2 π ]/ tan x – tan2 x > 0} and Bxx 02 1 2 ,/sin , then A ∩B is (1) 0 6 , (2) , 7 6

(3) 0 4 7 6 ,,

(4) 0 6 5 6 7 6 ,,

4. If sincos 31 then (1) 33 (2) 44 (3) 62 (4) 22

5. All the pairs (x, y) that satisfy the inequality 225 4 1 2 2 sinsin sin xx y also satisfy the equation: (1) 2sinx = 2 siny (2) sinx = 2 siny (3) sinx = |siny| (4) 2|sinx| = 3 siny

6. If 0 ≤ x ≤ 2π and 2 1 2 12 co22 s ecx yy then number of ordered pairs of (x, y) is __. Answer Key (1) 2 (2) 2 (3) 1 (4) 3 (5) 3 (6) 2

Important points to solve trignometric equations:

■ Avoid squaring the equation whenever possible during the solution of trigonometric equations. If squaring becomes necessary, carefully examine the solution to identify and eliminate extraneous values.

■ Ensure that the denominator does not become zero at any stage while solving the equation.

■ Refrain from cancelling terms that contain unknown variables on both sides of the equation when they are in product form, as doing so may lead to a loss of valid solutions.

■ Verify that the solution set not only satisfies the given equation but also falls within the specified domain of the variable in the equation.

# Exercises

JEE MAIN

Level – I

Principle Solutions of Trigonometric Equations

Single Option Correct MCQs

1. If 2 222 2 cos ,then the value of q is (1) π 16 (2) π 32 (3) π 64 (4) π 128

2. If cos q – sin q = 1, then q =

3. If1+cosα+cos2α+...=2–20 ,then is

4. The smallest value of q satisfying the equation 3(tan+cot)=4 θθ is (1) 2 3 π (2) π 3 (3) π 6 (4) π 12

5. If sin cot cos tan 44 and q is in the first quadrant, then q = (1) π /3 (2) π /2 (3) π /4 (4) π /6

6. If tan q + sec q = 3 , then the principal value of 6 is (1) π 3 (2) π 4 (3) 2 4 π (4) π 2

CHAPTER y: Trigonometric Equations

General Solutions of Trigonometric Equations Single Option Correct MCQs

7. If 32 cossin,then (1) nnZ n 1 46 ; (2) 2 46 nnZ ; (3) nnZ 6 ; (4) 2 6 nnZ ;

8. The set of solutions of the equation 31312 sincos is

(1) 2 412 nnZ ; (2) 2 412 nnZ ; (3) 21 412 nnZ n ;

(4) nnZ n 1 412 ;

9. If sect12an, 1 then (1) 2 3 2 2 nnZnnZ ,; (2) 22 4 nnZnnZ ,; (3) 2 5 2 6 nnZnnZ ,; (4) 2 7 2 3 nnZnnZ ,;

10. The set of values of x for which tantan tantan 32 132 1 xx xx is

(1) φ (2) { π ⁄ 4}

(3) nnz 4 ; (4) 2 4 nnz ;

11. If tanθ . tan(120° – θ)tan(120° + θ) = 1 3 , then θ =

(1) nnZ 312 :

(2) nnZ

318 :

(3) nnZ

318 :

(4) nnZ 312 :

12. If sin θ sin(60° – θ)sin(60° + θ) = 0.25, then θ =

(1) nπ + (–1)n π/6: n ∈ Z

(2) 2n π ± π/3: n ∈ Z

(3) 2n π/3 + π/6: n ∈ Z

(4) n π/3 ± π/6: n ∈ Z

13. The general solution of x satisfying sin2x secx + 3 tanx = 0 is given by

(1) x = nπ 2 : n ∈ Z (2) x = nπ 3 : n ∈ Z

(3) x = nπ: n ∈ Z (4) x = nπ: n ∈ Z

14. xRxx :cosco22s2 2

(1) 2 3 n ,nZ

(2) nn 3 ,Z

(3) nn 6 ,Z

(4) 2 6 nnZ ,

15. If 1 + cos2θ = 3sinθ cosθ, then θ =

(1) nπ + π 4 , nπ – tan–1 1 2 ; n ∈ Z

(2) nπ –π 4 , nπ – tan–1 2; n ∈ Z

(3) nπ + π 4 , nπ + tan–1 2; n ∈ Z

(4) nπ –π 4 , nπ + tan–1 1 2 ; n ∈ Z

16. sin x = 2sin x cos 2x is satisfied. If x belongs to

(1) n nnZ 22 ,

(2) n nnZ 33 ,

(3) n nnZ 46 ,

(4) nnnZ 6 ,

17. The general solution of sec x cos 5x + 1 = 0 is (n ∈ Z)

(1) (2n + 1) π 2 , n π

(2) 2n π± π 6

(3) (2n + 1) π 6 ,(2n – 1) π 4

(4) (2n + 1) π 12 ,(2n – 1) π 8

18. Number of solutions of |cos x| = sinx, 0 ≤ x ≤ 4π, is

(1) 8 (2) 4 (3) 2 (4) 6

19. The general solution x for the equation, 9cosx – 2.3cosx + 1 = 0 is

(1) n π: n ∈ Z

(2) nπ 2 : n ∈ Z

(3) 2n π: n ∈ Z

(4) () 21 2 n : n ∈ Z

20. If sin42x + cos42x = sin 2x cos 2x, then x =

(1) (2n + 1) 4 π : n ∈ Z

(2) (4n + 1) 2 π : n ∈ Z

(3) (4n + 1) 8 π : n ∈ Z

(4) (2n + 1) 8 π : n ∈ Z

21. The number of solutions of the equation tan x tan 4x = 1 for 0 < x < π is (1) 5 (2) 1 (3) 2 (4) 8

22. The general solution of cos 2 x – 2tan x + 2 = 0 is

(1) (2n + 1) 3 π , n ∈ Z

(2) (n + 1) 3 π , n ∈ Z

(3) n π + 3 π , n ∈ Z

(4) n π + 4 π , n ∈ Z

23. The equation 3 sinx + cosx = 4 has

(1) Only one solution

(2) Two Solution

(3) Infinitely many solutions

(4) No solution

24. The equation a sin x + cos2 x = 2 a – 7 possesses a solution if

(1) a > 6 (2) 2 ≤ a ≤ 6

(3) a > 2 (4) a ≥ 7

25. 4 cosθ – 3 secθ = tanθ, then θ = (1) θ = n π + (–1) n β; n ∈ Z where

sin 117 8

(2) θ = nπ + (–1)n β; n ∈ Z where

sin 117 8

CHAPTER y: Trigonometric Equations

(3) θ = nπ + (–1)n β; n ∈ Z where

sin 117 4

(4) θ = nπ + (–1)n β; n ∈ Z where

sin 117 4

26. If the solutions of cos pθ + cos qθ = 0 are in AP, then the common difference of AP is

(1) pqpq or (2) 22 pqpq or (3) 22 ()() pqpq or (4) 2 2 pqpq or ()

Numerical Value Questions

27. The number of solutions of sec x cos 5x + 1 = 0 in the interval [0,2 π ] is ___.

28. Number of solutions of the equation tan q + sec q = 2 cos q in [0,2 π ] is ________

29. The number of solutions of sin ex x x 1 is _____.

30. The number of solutions satisfying the equation 11 2 2 si4 nsinsin xxx in [0, 4π] equals____.

31. Total number of solutions of cotcot sin ,, xx x x 1 03 is _____.

32. If α is a root of 25 cos2q + 5 cos q – 12 = 0, 2 , then 25|sin 2 α | is equal to ___.

33. If sincos 222 nn n , where n ∈ z, then the number of value of n between 4 and 8 for which the equation is true is ______

34. The number of values of θ in the interval , 22 ππ  

satisfying the equation () 2 sec 3 θ = tan4θ + 2tan2θ is _______.

35. The number of solutions of the equation 2cosx = |sinx| in [–2π, 2π] is _____.

Solving Trigonometric Inequalities

Single Option Correct MCQs

36. The solution set of x in [0, π], for which 2sin2x – 3sinx + 1 ≥ 0 is

(1) 5 0,, 626 πππ π

(2) , 63

(3) 5 , 6

(4) 2 3 π 

37. The set of all x in , 22 ππ

satisfying |4sinx – 1|< 5 is given by (1) 3 , 1010

(3) 3 , 105 ππ

(2) , 105

(4) 3 , 510

38. The values of θ ∈ (0, 2π) for which 2sin2θ – 5sinθ + 2 > 0, are

(1) 5 0,,2 66

(3) 5 0,, 866

(4) 41 , 48 π π

39. The solution set of sin x < 1 is (1) R

(2) , 2 RnnZ π π  −+∈

(3) 2, 2 RnnZ π π

(4) , 2 RnnZ π π

40. The number of values of x ∈ [0, 4π] satisfying 3cossin2 xx−≥ is (1) 2 (2) 0 (3) 4 (4) 8

Level – II

General Solutions of Trigonometric Equations

Single Option Correct MCQs

1. If sin q , 1, and cos2 q are in GP, then the general solution of q is

(1) nnZ n 1 2 ;

(2) nnZ n 1 2 1 ;

(3) nnZ n 1 6 ;

(4) nnZ n 1 6 1 ;

2. The general solution of tan q+ tan 2q + tan 3 q = 0 is

(1) nnZ /,6only

(2) nnZ,,tawheren1 2

(3) Both 1 and 2

(4) nnZ,,wheretan 1 5

3. 1 6 sin,cos,tan qqq are in GP, then q is equal to (n ∈ Z)

(1) 2 3 n (2) 2 6 n

(3) n n 1 3 (4) n 3

4. The general solution of the equation sin x – 3sin 2x + sin3 x = cos x – 3cos2 x + cos 3x is ___ (n ∈ Z)

(1) n 8 (2) n 28

(3) 1 28 nn (4) 2 2 3 1 n cos

5. The value of coscoscoscos sincoscos yxyx yxx 22 2 s sin 2 y is 0, if

(1) x = 0

(2) y = 0

(3) x = y

(4) xnynZ 4

6. One solution of the equation 4cos2θ sinθ – 2sin2θ = 3sinθ is

(1) θ = nπ + (–1)n 3 10 : n ∈ Z

(2) θ = nπ + (–1)n 3 10 : n ∈ Z

(3) θ = 2nπ ± π 6 : n ∈ Z

(4) None

7. The number of solutions of 670 2 cossincos xxx

(1) 1 (2) 0 (3) 3 (4) 4

CHAPTER y: Trigonometric Equations

8. If cosx xx sins2in 3 2 1 21 then x =

(1) {nπ + (–1)n π 6 : n ∈ Z} ∪ {nπ: n ∈ Z}

(2) {(2n + 1) π 6 : n ∈ Z}

(3) {n π±π 4 : n ∈ Z}

(4) {2n π±π 8 : n ∈ Z}

9. Common roots of the equations of cos 2 x + sin 2x = cot x and 2cos2 x + cos2 2x = 1

(1) 2n π : n ∈ Z

(2) n π : n ∈ Z

(3) () 21 4 n : n ∈ Z

(4) () 21 2 n : n ∈ Z

10. General solution of (sinsin)co 35s0 2 xxx

(1) (2n + 1) π –π 6 , n ∈ Z

(2) 2n + π 6 , n ∈ Z

(3) 2n π± 5 6 π , n ∈ Z

(4) n π± π 4 , n ∈ Z

11. If 32tan8 θ = 2cos2α – 3cosα and 3cos2θ = 1, then the general value of α is

(1) 2n π, n ∈ Z

(2) n π± 3 π n ∈ Z

(3) 2n π± 3 π , n ∈ Z

(4) 2n π± 2 3 π , n ∈ Z

12. The least difference between the roots of 4cos x(2–3sin2 x) + (cos 2x+1)= 0; 0 ≤ x≤ 2 π

(1) 2 π (2) 3 π (3) 6 π (4) 4 π

13. For n ∈ Z , the general solution of the trigonometric equation

sin3cos4sin 2 xxx −+ 43cos2sin 33cos 30xxx −+−= (1) 28 nππ + (2) 26 nππ + (3) 26 nππ ± (4) 2 6 n π π±

Numerical Value Questions

14. If 0 ≤ x ≤ 2π, then the number of real values of x, which satisfy the equation cos x + cos2 x + cos3 x + cos 4 x = 0, is ______.

15. The number of solutions of the equation sin A – sin2 A = cos A – cos2 A in (0, π ) is _____.

16. The number of values of q satisfying 4 cos q + 3 sin q=5 as well as 3 cos q + 4 sin q = 5 is ________ .

17. If the sum of the roots of the equation cos4x +6 = 7cos2x in the interval [0, 314] is k π , k ∈ R, then (k – 4948) is _____.

18. The number of solutions of the equation coscos 2 3 8 3 1 x in the interval [0, 10 π ] is __ .

19. The number of solutions of the trignometric equation 1 – cos x. cos 5x = sin2 x in [0, 2π] is ______.

20. The number of common roots of simultaneous equations cos2x + sin2x = cotx and 2cos2 x+ cos22x = 1, x ∈ [– π , π ] is ______.

21. The number of solutions of sin2x cos2 x = 1 + cos2 x sin4 x in the interval [0, 2π ] is ______.

22. The number of solutions of the equation cos6 x + tan 2 x + cos6 x tan 2 x = 1, in the interval [0,2 π ] is _______

23. The sum of solutions of sin π x + cos π x = 0 in [0,100] is _____.

24. Number of solutions of the equation sinx = [x], where [ ] denotes greatest integer function, is _____.

Solving Trigonometric Inequalities

Single Option Correct MCQs

25. In which of the following sets, the inequality sin6x + cos6x > 5 8 does not hold good?

(1) , 88 ππ

(3) 3 , 44

(2)

35 , 88 ππ 

(4)

79 , 88 ππ

26. If x,y ∈ [0,15], then the number of solutions (x,y) of the equation 2 cosecx12 34421 yy ×−+≤ is (1) 13 (2) 17 (3) 15 (4) 5

27. The complete set of values of ,, 2 xx π

satisfying the inequality cos2 x > |sinx| is

(1) , 66 ππ 

(2) 5 ,, 2666

(3) 5 ,, 266 πππ π

(4) 5 ,, 666 πππ π

Multiple Concept Questions

Single Option Correct MCQs

28. Solution set of the equation 33 33sincos33sincos1 xxxx ++= , is

(1) ()1, 66 n xnnI ππ π  =+−−∈ 

(2) ()21, 6 xnnI π =+∈

(3) 2, 3 xnnI π π =+∈

(4) ()1, 3 n xnnI π π =+−∈

Numerical Value Questions

29. Number of solution of the equation sinx = [x] (where [.] denotes the greatest integer function) is ________.

30. The number of solutions of equation 8[x2 –x ] + 4[x] = 13 + 12[sinx],([.] denotes GIF) is ______.

Level – III

Single Option Correct MCQs

1. If acosx + bcos3x ≤ 1 ∀ x ∈ R, then |b| (1) is equal to 1 (2) ≤ 1 (3) ≥ 1 (4) None of these

2. For the equation 1 – 2x – x2 = tan2(x + y) + cot2(x + y), (1) exactly one value of x exists (2) exactly two values of  x exist

(3) y = –1 + n π + 4 π , n ∈ Z

(4) y = 1 + n π + 4 π , n ∈ Z

3. If tan3x + 3 > 3tanx + tan2x, then

(1) x ∈ ,,; 3234

n ∈ Z

CHAPTER y: Trigonometric Equations

(2) x ∈ ,,; 4244 nnnn

n ∈ Z

(3) x ∈ ,,; 6244 nnnn  −+∪−+

n ∈ Z

(4) x ∈ ,,; 3244 nnnn  −+∪−+

n ∈ Z

4. The number of ordered 5 – tuple (u,v,w,x, y) where u,v,w,x,y ∈ [1,11] which satisfy the inequality 22222 sin3cossincoscos 235uvwxy ++ ⋅⋅

≥720, is_____.

(1) 432 (2) 430 (3) 340 (4) 240

5. Let [x] denote the largest integer ≤ x. If the number of solutions of 22 sin4cos 1 xx xx xx +−   = −+

, the value of 2tan kx

is k, then for , 43 x ππ

(1) is 1

(2) lies between 21 and 23

(3) 0

(4) lie between 3 11 and 22

6. The equation sin4x – (k + 2)sin2x – (k + 3) = 0 possesses a solution, if (1) k > –3 (2) k < –2 (3) –3 ≤ k ≤ –2 (4) k ∈ Z

Numerical Value Questions

7. Number of integral values of ' a ' satisfying the equation [cosx]2 + cosx = 2a is (where [ ] denotes GIF)

8. Number of solutions of sin{ x} = cos{x} in [0, 2π] is .(Here { x } is fractional part of x ).

9. If 0 ≤ a ≤ 3, 0 ≤ b ≤ 3, and the equation x2 + 4 + 3cos( ax + b ) = 2 x , has at least one solution, then the value of [a + b] is _____ ([.] denotes GIF).

10. The number of solutions satisfying the equation 23 1coscoscos··· 24 xxx ++++∞ = ,(– π< x <π) is _______.

S-II : The principle solution for the equation tan q = k is a means a is solution for the equation tan q = k and , 22 ππ α

2. S-I : If k ∈ (–1, 1) then the number of solutions for the equation csc q = k is zero.

S-II : If k ∈ (–1, 1), then the number of solutions to the equation is infinite.

3. S-I : Number of solutions to the equation cos x tan x = 1 in [0, π] is zero.

________.

11. If cosx + cosy + cosz=0 and sinx + siny + sinz = 0 then 82 cos 2 xy  =

12. If tanA = 1 2 and tanB = 1 7 , principal value of (2A – B) = k π then k – 1 is _____.

13. Number of solution of sin x x = 10 is______

14. If 3 2 3 19 9 si2 ncos xxxx then sum of values of x is _______.

15. The number of values of α in [0, 2 π ] for which 2sin 3 α – 7 sin 2 α + 7sinα = 2, is

THEORY-BASED QUESTIONS

Statement Type Questions

Each question has two statements: statement I (S-I)and statement II (S-II). Mark the correct answer as

(1) if both statement I and statement II are correct,

(2) if both statement I and statement II are incorrect,

(3) if statement I is correct, but statement II is incorrect,

(4) if statement I is incorrect, but statement II is correct.

1. S-I : The general solution for the equation tan q = k is n π + a, where a is principal solution for the equation tan q = k.

S-II : Number of solutions to the equation cos x = 1 in [0, π] is 1.

4. S-I : The general solution for the equation sin2 q = sin2 a is nπ ±a.

S-II : The general solution for the equation tan2 q = tan2 a is nπ ±a.

Assertion and Reason Questions

In each of the following questions, a statement of Assertion (A) is given, followed by a corresponding statement of Reason (R). Mark the correct answer as

(1) if both (A) and (R) are true and (R) is the correct explanation of (A),

(2) if both (A) and (R) are true but (R) is not the correct explanation of (A),

(3) if (A) is true but (R) is false, (4) if both (A) and (R) are false.

5. (A) : The general solution for the equation 1 sin 2 θ = is () 1 6 n n θππ =+− .

(R) : The principal solution for the equation 1 sin 2 θ = is 6 θπ =

6. (A) : The general solution for the equation sec2 θ = is 2 4 n θππ =±

(R) : The principal solution for the equation 1 cos 2 x = is 4 θπ = .

7. (A) : One of the principal solution for the equation sin2x – 2sinx cosx – 3 cos2x = 0 is 4 π

(R) : 4 π is not a principal solution for the equation tan2x – tanx – 3 = 0.

8. (A) : The solution set of the inequality 3 sin 2 θ > in [0, 2π] is 2 , 33 ππ   

(R) : The sine function is increasing function.

9. (A) : The principal solution for the equation tan2tan 1 1tan2tan xx xx = + is 4 x π = .

(R) : tan(2)tan2tan 1tan2tan xx xx xx + −= ++

JEE ADVANCED LEVEL

Multiple Option Correct MCQs

1. what is the value of x in 0, 2 π    satisfying 3131 42 sincosxx −+ += ? (1) 12 π (2) 5 12 π (3) 7 24 π (4) 11 36 π

2. The solution of the equation sec4θ – sec2θ =2 is

(1) ()21: 2 nnZ π +∈

(2) () 5 21:nnZ π +∈

(3) () 3 21:nnZ π +∈

(4) () 1 2 0 1: nnZ π +∈

3. The general solution of the equation cos2x + cos22x + cos23x = 1 is x =

CHAPTER y: Trigonometric Equations

(1) ()21: 2 nnZ π +∈

(2) () 3 21:nnZ π +∈

(3) () 4 21:nnZ π +∈

(4) () 6 21:nnZ π +∈

4. The solution(s) of the equation 9cos12x + cos22x + 1 = 6cos6xcos2x + 6cos6x – 2cos2x is/are

(1) , 2 xnnl π π =+∈

(2) 142 cos, 3 xnnl π =±∈

(3) 12 cos, 3 xnnl π =±∈

(4) x = n π , n ∈ l

5. If sin 3θ + sinθcosθ + cos 3θ = 1, then θ = (n ∈ z)

(1) 2n π (2) 2n π+ 2 π

(3) 2n π –2 π (4) n π

6. Which of the following set of values of x satisfies the equation ()() 22 2sin3sin122sin3sin 229 xxxx −+−+ += ?

(1) x = n π± 6 π , n ∈ I

(2) x = n π± 3 π , n ∈ I

(3) x = n π , n ∈ I

(4) x = 2n π+ 2 π , n ∈ I

7. If ()() 33 cos3sin3 cossin m αθαθ θθ == , then

(1) 42 2 298 cos2 mm m α −+ =

(2) 22 cos m m α=

(3) 22 2 298 cos2 mm m α ++ =

(4) 22 cos m m α + =

8. The values of  x, between 0 and 2π, satisfying the equation cos3x + cos2x = 3 sinsin 22 xx + are

(1) 7 π (2) 5 7 π (3) 9 7 π (4) 13 7 π

9. The expression cos3θ + sin3θ + (2sin2θ – 3) (sinθ – cosθ) is positive for all θ in

(1) 3 2,2, 44 nnnI ππ ππ  −+∈ 

(2) 2,2, 26 nnnI ππ ππ  −+∈

(3) 2,2, 33 nnnI ππ ππ  −+∈ 

(4) 3 2,2, 44 nnnI ππ ππ  −+∈ 

10. If 7cos2x + sinxcosx – 3 = 0 then x =

(1) x = n π + 3 4 π ; n ∈ Z

(2) x = k π + tan–1 4 3    ; k ∈ Z

(3) x = k + tan–1 4 3    ; k ∈ Z

(4) x = n π + 3 π ; n ∈ Z

11. If sinx + cosx = 1 y y + for x ∈ [0, π], then

(1) x = 4 π (2) y = 0

(3) y = 1 (4) x = 3 4 π

12. The number of solutions of the equation

8sinx = 31 cossinxx +

(1) 6 if x ∈ (0, 2 π )

(2) 4 if x ∈ (0, π )

(3) 5, if x ∈ 3 0, 2 π   

(4) no solution exists

13. Number of solutions of equation

cosx + cosy + cosz = –3

(1) one if x,y,z, ∈ [0, π ]

(2) one, if x,y,z, ∈ [0, 2 π ]

(3) two, if x,y,z, ∈ [0, 2 π ]

(4) zero, if x,y,z, ∈ [0, π ]

14. If x + y = 4 π and tanx + tany = 1, then (n ∈ Z)

(1) sinx = 0 always

(2) when x = n π + 4 π , then y = –n π

(3) when x = n π –4 π , then y = n π

(4) when x = n π + 4 π , then y = n π –4 π

15. The number of solutions in [0, π] of the equation sin6x + cos6x = a is

(1) none, if a < 1 4

(2) three, if a = 1

(3) two, if a = 1 4

(4) three, if a = 5 4

16. If 2 2 1 cos cos x x  +   (1 + tan22y)(3 + sin3z)

= 4 (wherever defined), then

(1) x can be a multiple of π

(2) x cannot be an even multiple of π

(3) z can be a multiple of π

(4) y can be a multiple of 2 π

17. If cos(x + 3 π ) + cosx = a has real solutions, then

(1) number of integral values of a is 3

(2) sum of integral values of a is 0

(3) when a = 1, number of solutions for x ∈ [0, 2π] is 3

(4) when a = 1, number of solutions for x ∈ [0, 2π] is 2

18. For the smallest positive values of x and y the equation, 2(sinx + siny) – 2cos(x – y) = 3 has a solution. Then, which of the following is/are true

(1) sin1 2 xy + =

(2) 1 cos 22 xy  = 

(3) Number of ordered pairs ( x,y) is 2.

(4) Number of ordered pairs ( x,y) is 3.

Numerical/Integer Value Questions

19. The number of distinct solutions of the equation 5 4 cos22x + cos4x + sin4x + cos6x + sin6x = 2 in the interval [0, 2π] is ____.

20. The number of solutions of f '(x) = 0 in the interval 0,2, π   if f(x) = xcosx2 – sinx2 , is ____.

21. If α, β, γ, and δ are solutions of the equation tan 4 θπ  +   =3tan3θ, no two of which have equal tangents. Then 1111 tantantantan αβγδ +++= ____.

22. The number of solutions of tan x + secx = 2cosx in [0, 2 π ], is ____.

23. The number of real solutions of the equation sin(ex)cos(ex ) = 2x–2 + 2–x–2, is ____.

CHAPTER y: Trigonometric Equations

24. If the number of ordered pairs (x,y) where x,y ∈ [0, 10] satisfyies () 2 2sec 1 sinsin.21 2 y xx  −+≤   , is 2K, then K is ____.

25. The number of solutions of the equation |x| = cosx is ___.

26. Number of orders pairs ( x,y ) satisfying cosx.cosy = 1, where –π ≤ x ≤ π, –π ≤ y ≤ π, is ___.

27. The total number of solutions of sin4x + cos4x = sinxcosx in [0, 2π] is equal to___.

28. The sum of all distinct solutions of the equation 3 secx + cosecx + 2(tanx – cotx) = 0 in the set (),;0, 2 sxx π ππ  =∈−≠±

is equal to _____.

29. The number of solutions of the pair of equations 2sin2θ – cos2θ = 0 and 2cos2θ –3sinθ = 0 in the interval [0, 2π] is________.

30. The number of roots of the equation 2sin2θ + 3sinθ + 1 = 0 in (0, 2π) is_____.

31. The number of roots of (1 + tanθ)(1 + sin2θ) = 1 + tanθ for θ ∈ [0, 2π] is______.

32. The total number of solutions of tanx + cotx = 2cosec x in [–2π, 2π] is ______.

Passage-based Questions

(Q.33 – 34)

Consider the equation (cos x – sinx) 1 2tan cos x x  +   + 2 = 0.

33. Number of solutions in (0, 4 π ) is_____.

34. Number of solutions in (0, 40 π ) is _____.

(Q. 35 – 36)

α is a root of the equation (2sin x – cos x )

(1 + cosx) = sin2x, β is a root of the equation 3cos2x – 10cosx + 3 = 0, and g is a root of the equation 1 – sin2x = cosx – sinx: 0 ≤ α, β, γ ≤ 2 π .

35. If the value of sin(α – β) is equal to 126 3k then K = _____.

36. If cosα + cosβ + cosγ = 332 6 m + , then integral value of m is______.

(Q. 37 – 38)

Consider the system of equations xcos3y + 3xcosy sin2y = 14 --- (1) and xsin3y + 3xcos2ysiny = 13 ---- (2)

37. The number of values of y ∈ [0, 6π] is____

38. The value of sin2y + 2cos2y = ____.

(Q.39 – 41)

Consider the cubic equation x3 –(1 + cosθ + sinθ)x2 +(cosθsinθ + cosθ + sinθ)x – sinθcosθ = 0, whose roots are x1, x2 and x3

39. Number of values of θ in [0, 2π], for which at least two roots are equal, is ____.

40. Greatest possible difference between two of the roots, if θ ∈ [0, 2 π ], is ______.

(Q. 41 – 42)

Consider the system of equations sinxcos2y = (a2 – 1)2 + 1, cosxsin2y = a + 1.

41. The number of values of x ∈ [0, 2π], when the system has a solution for permissible values of a, is ______.

42. The number of values of y ∈ [0, 2π], when the system has a solution for permissible values of a, is ______.

(Q. 43 – 44) Let () 22 cossin 2cos21cos3sintan bxbx xxxx + = , b ∈ R

43. Equation has solutions, if

(1) 11 ,1,0, 23 b

(2) () 1 ,11,0, 3 b

(3) 1 1,0, 3 bR

(4) 1 , 2 b

44. For any value of b for which the equation has a solution, the number of solutions when x ∈ (0, 2 π ) is always (1) infinite (2) depends upon value of b (3) four (4) two

(Q. 45 – 46)

Whenever the terms on the two sides of the equation are different in nature, then the equations are known non standard forms of an ordinary equation. They cannot be solved by standard procedure. Non standard problems require high degree of logic; they also require the use of graphs, inverse properties of functions, and inequalities.

45. The number of  solutions of the equation 2cos33 2 xxx =+  is _____.

(1) 1 (2) 2

(3) 3 (4) 4

46. The number of real solutions of the equation sin(ex ) = 5x + 5–x is ______. (1) 0

(2) 1 (3) 2 (4) infinitely many

(Q.47 – 49)

While solving certain trigonometric equations AM ≥ GM is useful. consider the equation cos4α + 4sin4β + 2 = 4 2 cosαsinβ, 0,,0,. 22 ππαβ

Which is/are correct

47. The value of tan2α + tan2β is equal to ____.

48. The value of sin2α + sin2β is equal to ____.

Matrix Matching Questions

49. Match the items of List I with the items of List II and choose the correct option.

List - I List - II

(A) tan2q=1 (p) n π± 6 π

(B) cos2q= 1 4 (q) n π± 4 π

(C) sin2q= 1 4 (r) n π± 3 π

(D) cosec2q=1 (s) n π± 2 π (t) n π± 8 π

(A) (B) (C) (D)

(1) q s p r

(2) r p t q

(3) q r p s

(4) s p q r

50. For 0 ≤ x ≤ 2π, match the equations in List I to number of solutions in List II.

List - I List - II

(A) tan2x + cot2x = 2 (p) 2

(B) sin2x – cosx = 1 4 (q) 0

(C) 4sin2x + 6Cos2x = 10 (r) 1

CHAPTER y: Trigonometric Equations

(D) sinx = 1 (s) 4

Choose the correct answer from the options given below:

(A) (B) (C) (D)

(1) s p q r

(2) s p r q

(3) s q p r

(4) s r p q

51. Match the items of List I with the items of List II and choose the correct option.

List - I List - II

(A) If max{5sin q + 3sin ( q – α)}=7, q∈ R then the set of possible values of α is (p) x = 2n π+ 4 π , n ∈ Z

(B) 2 n x π ≠ and 2 sin3sin2 (cos)1 xx x −+ = (q) x = 2n π± 3 π , n ∈ Z

(C) 1 4 (sin)2cos0 xx+= (r) 2n π+ cos-1 1 3 , n ∈ Z

(D) log5tanx = (log54) (log4(3sinx)) (s) No solution

(A) (B) (C) (D)

(1) q s p r

(2) p s q r

(3) q p s r

(4) r s p q

52. Match the items of List I with the items of List II and choose the correct option.

List - I List - II

(A) If 2 sintan 3 sintan θθ

then the values of q and φ are (p) Infinite number of solutions

(B) The number of solutions of 24 24 sincos 1 cossin xx xx + = + is (q) q = n π± 3 π , φ= n π± 6 π

(C) Solution of cot2 q = cot2 q – tan2 q is (r) n π± 4 π

(A) (B) (C)

(1) p q r

(2) q p r

(3) r q p

(4) p r q

53. Match the items of List I with the items of List II and choose the correct option.

List - I List - II

(A) The general solution of sec2x= (1–tan2x) (p) (2n+1) 2 π

(B) If sin6x=1+cos43x then x= (q) x=n π± 3 π

(C) The general solution of sin3α = 4sinαsin(x+α) sin(x–α) is (r) n π± 8 π

(A) (B) (C)

(1) r p q

(2) p q r

(3) q r p

(4) p r q

54. Match the items of List I with the items of List II and choose the correct option.

List - I

List - II

(A) x 3 + x 2 +4 x +2sin x =0 in x ∈ [0,2 π ] (p) 4

(B) sin(ex)cos(ex) = 2x–2+2–x–2 (q) 1

(C) sin2x + cos4x = 2 (r) 2

(D) 30|sinx| = x when x ∈ [0, 2π] (s) 0

(A) (B) (C) (D)

(1) p q r s

(2) q r s p

(3) q r r p

(4) q p r s

55. Match the items of List I with the items of List II and choose the correct option.

List - I List - II

(A) The set of all real values of parameter ''p'' for which the equation p cosx–2sinx= 2 + 2 p possesses at least one real root is (p) [–3,–2]

(B) The set of all real values of parameter 'a' for which the equation cos2x+asinx=2a–7 possesses at least one real root is (q) 31 , 22

(C) The set of all real values of parameter 'a' for which the equation sin4x + cos4x + sin2x + a = 0 possesses at least one real root is (r) [2,6]

(D) The set of all real values of parameter ' a', for which the equation cos4x–(a+b) cos2x–(a+3)=0, is (s) [ 5 –1,2]

(A) (B) (C) (D)

(1) s r q p

(2) p q r s

(3) q p s r

(4) r s p q

FLASHBACK (P revious JEE Q uestions )

JEE Main

1. If 2tan2q -5se q = 1 has exactly 7 solutions in the interval [0, nπ 2 ], for the least value of n ∈ N, then K K K N 12 is equal to (27th Jan 2024 Shift 2) (1)

2. If α , ππ  −<α<   22 is the solution of 4cos q +5sin q = 1, then the value of tanα is (29th Jan 2024 Shift 1)

(1)

(3)

6 (2)

3. If 2sin 3 x + sin2 x cos x + 4sin x – 4 = 0 has exactly 3 solutions in the interval 0,, 2 n nN π

then the roots of the equation x2+nx+(n–3) = 0 belongs to : (30th Jan 2024 Shift 1)

(1) (0, ∞ ) (2) (- ∞ , 0) (3) 1717 , 22 

(4) Z

4. The number of solutions of the equation 4sin 2x – 4cos3x + 9 – 4cosx = 0 ; x ∈ [–2 π , 2 π ] is (1 st Feb 2024 Shift 2) (1) 1 (2) 3 (3) 2 (4) 0

CHAPTER y: Trigonometric Equations

5. If m and n, respectively, are the number of positive and negative values of θ in the interval [–π, π] that satisfy the equation 9 cos2coscos3cos 22 θθθθ = then mn is equal to...... (25 th Jan 2023 Shift 2)

6. Let 22 1tantan ,:9910 22 Sxxx ππ 

and 2 tan 3 xs x β ∈  =

, then 12 (14) 6 β is equal to_____. (10th Apr 2023 Shift 2)

(1) 64 (2) 32

(3) 8 (4) 16

7. The number of elements in the set S = {θ ∈ [0, 2π]: 3cos4θ – 5cos2θ – 2sin6θ + 2 = 0} (11th Apr 2023 Shift 1)

(1) 8 (2) 10 (3) 12 (4) 9

8. If the solution of the equation logcosx cotx + 4log sin x tan x = 1, x ∈ 0, 2 π    , is sin1 2 αβ  +    , where α and β are integers, then α + β is equal to (30th Jan 2023 Shift 1)

(1) 4 (2) 6

(3) 5 (4) 3

9. The set of all values of λ, for which the equation cos22x – 2sin4x – 2cos2x = λ has a real solution x, is (29 th Jan 2023 Shift 2)

(1) 3 2, 2

(2) 3 ,1 2 

(3) [–2, –1] (4) 1 1, 2   

10. The number of solutions of the equation 12 coscoscos2 334 xxx

[–3 π , 3 π ] is: (24th Jun 2022 Shift 2) (1) 8 (2) 5 (3) 6 (4) 7

11. The number of solutions of |cos x| = sinx, such that –4π ≤ x ≤ 4π is: (25th Jul 2022 Shift 1) (1) 4 (2) 6 (3) 8 (4) 12

12. If the sum of solutions of the system of equations 2sin2θ – cos2θ = 0 and 2cos2θ + 3sinθ = 0 in the interval [0, 2π] is kπ, then k is equal to____. (26th Jul 2022 Shift 2)

13. Let {} 22 2sin2cos 0,2:8816 S

then

is (26 th Jul 2022 Shift 1) (1) 0 (2) –2 (3) –4 (4) 12

14. Let

15. The number of elements in the set 2 :2cos44 6 Sxxxxx

is (29th Jul 2022 Shift 2)

(1) 1

(2) 3

(3) 0

(4) infinite

16. Let S = {θ ∈ (0, 2π): 7cos2θ – 3sin2θ – 2cos22θ = 2}. Then, the sum of roots of all the equations x 2 – 2(tan 2θ + cot 2θ) x + 6sin 2θ = 0,θ ∈ S is___. (29 th Jul 2022 Shift 1)

17. Let 3 ,,,,. 22444 S πππππ

Then the number of elements in the set A={θ ∈ S: tanθ(1 + 5 tan(2θ)) = 5 –tan(2θ)} is___ (28th Jul 2022 Shift 2)

18. The number of elements in the set S = {θ ∈ [–4π, 4π]: 3cos22θ + 6cos2θ – 10cos2θ + 5 = 0} is_____. (29 th Jun 2022 Shift 1)

19. The number of solutions of the equation 2θ – cos2θ + 2 = 0 in R is equal to____.

(29 th Jun 2022 Shift 1)

20. The number of solutions of the equation sin x = cos2 x in the interval (0, 10) is__.

(29 th Jun 2022 Shift 2)

21. The number of values of x in the interval 7 , 44 ππ

for which 14cosec2x – 2sin2x = 21 – 4cos2x holds, is_______.

(25 th Jun 2022 Shift 1)

22. Match the items of List I with the items of List II and choose the correct option (2022 P1)

List I List II

(A) 22 , 33 x ππ

:cosx+sinx=1}

(B) 18 55 , 18 x ππ

: 3 tan3x =1}

(C) 55 66 , x ππ

: 2cos(2x) = 3 }

(D) 44 77 , x ππ

: sinx – cosx=1}

(p) has two elements

(q) has three elements

(r) has four elements

(s) has five elements (t) has six elements

(A) (B) (C) (D)

(1) p s p s

(2) p p t r

(3) q p t s (4) q s p r

23. Let f : [0, 2] → R be the function defined by f(x) = (3 – sin(2πx))sin(πx –4 π ) – sin(3πx + 4 π ) If α, β ∈ [0, 2] are such that {x ∈ [0, 2] : f(x) ≥ 0} = [α, β], then the value of β – α is _______. (2020 P1)

24. The number of solutions of the pair of equations 2sin2q –cos2q = 0, 2cos2q –3sinq = 0 in the interval [0, 2 π]is ____ (2007 P1)

(1) zero (2) one (3) two (4) four

CHAPTER y: Trigonometric Equations

25. Let a,b,c be three non–zero real numbers such that the equation 3 acosx+2bsinx=c, , 22 x ππ  ∈−  has two distinct real roots α and β with α+β= 3 π .

Then, the value of b a is______.(2018 P1)

CHAPTER TEST – JEE MAIN

Section – A

1. The least difference between the roots, in the first quadrant (0 ≤ x ≤ 2 π ) of the equation 4cosx(2 – 3sin2x) + (cos2x + 1) = 0, is (1) 6 π (2) 4 π (3) 3 π (4) 2 π

2. Let α and β be any two positive values of x for which 2cosx, |cosx| and 1 – 3cos2x are in G.P. The minimum value of | α – β| is (1) 3 π (2) 6 π (3) 2 π (4) 1 22 cos 33 π

3. The general value of ‘θ’ that satisfies the equation tanθtan(120° + θ)tan(120° – θ) = 1 3 is (1) ()61, 18 nnZ π +∀∈

(2) ()31, 3 nnZ π +∀∈

(3) ()61, 6 nnZ π +∀∈

(4) ()31, 6 nnZ π +∀∈

4. If () () 33 2 sincoscos sincos1cot θθθ θθθ +

–2tanθcotθ = –1, θ ∈ [0, 2π] then

(1) 0, 24 θππ

(2) 3 , 24 ππθπ

(3) 35 , 24 θπππ

(4) ()0,, 42 θπππ ∈−

5. The general solution of the equation 1sin(1)sin1cos2 1sinsin1cos2 nn n xxx xxx −+…+−+…−

is

(1) (–1)n 3

(2) (–1)n 6 π

(3) (–1)n+1 6 π

(4) (–1)n–

+ n π

6. The solution set of the equation cos5x = 1 + sin4x is (1) {n π , n ∈ I} (2) {2n π , n ∈ I} (3) {4n π , n ∈ I} (4) { 2 nπ , n ∈ I}

7. The equation

(1) one real solution

(2) no solution

(3) more than one real solution (4) two solutions

8. Number of ordered pairs (a,x) satisfying the equation sec2(a + 2)x + a2 – 1 = 0, –π < x <π, is (1) 2 (2) 1 (3) 3 (4) infinite

9. If n is the number of solutions of the equation |cot x | = cot x + 1 sin x (0 < x < 2π), then n =

(1) 1 (2) 2 (3) 3 (4) 4

10. The equation cos8x + b cos 4x + 1 = 0 will have a solution if b belongs to (1) (–∞, 3] (2) [2, ∞) (3) (–∞, –2] (4) [1, ∞)

11. Given that tanA and tanB are the roots of the equation x 2 – bx + c = 0, the value of sin2(A + B) is (1) ()2 b bc + (2) 2 22 b bc + (3) () 2 22 1 b cb +− (4) () 2 22 1 b bc +−

12. There is exactly one real x ∈ (0, 2 π ) such that 2 tan 2 x    (cot4x + 1)(cosec2x + tan2x)

= 1. Find the positive integer k such that cos2022x = sinkx (1) 2023 (2) 4044 (3) 2696 (4) 1011

13. If 0 ≤x≤ π, 22 sincos 818130 xx+= , then x = (1) 6 π (2) 4 π (3) 15 π (4) 8 π

14. The number of solutions of the pair of equations 2sin2θ – cos2θ = 0, and 2cos2θ –3sinθ = 0 in the interval [0, 2π] is (1) 0 (2) 1 (3) 2 (4) 4

15. The general solution of the equation sin x – 3sin2 x + sin3 x = cos x – 3cos2 x + cos3x is ___. (n ∈ Z)

(1) 8 n π π+

(2) 28 nππ +

(3) (1) 28 nnππ −+

(4) 2cos12 3 nπ+

16. If cosθ ≠ 0 and secθ – 1 = (21) tanθ then θ =

(1) 2n π + 4 π (or) 2n π , n ∈ Z

(2) 2n π + 6 π (or) 2n π , n ∈ Z

(3) 2n π + 8 π , n ∈ Z

(4) 2n π –4 π (or) 2n π , n ∈ Z

17. If 4(sin2x sin4x + sin2x) = 3, then x (1) 2 , 39 nnZ ππ ±∈

(2) , 39 nnZ ππ ±∈

(3) ()1, 39 nnnZ ππ ±−∈

(4) () 2 1, 39 nnnZ ππ ±−∈

18. The solution of 4sin2x +tan2x + cosec2x + cot2x – 6 = 0 is (n ∈ Z).

(1) 4 n π π±

CHAPTER y: Trigonometric Equations

(2) 2 4 n π π±

(3) 3 n π π+

(4) 6 n π π

19. One root of the equation cosx – x + 1 2 = 0 lies in the interval

(1) 0, 2 π    (2) ,0 2 π

(3) , 2 π π

(4) 3 , 2 π π

20. The equation e|sinx| + e–|sinx| + 4k = 0 will have exactly four distinct solutions in [0, 2π] if

(1) k ∈ R+ (2) 1 ,0 4 k  ∈−

(3) k ∈ [–5, –4] (4) none of these

Section – B

21. The number of distinct real roots of the equation tan22x + 2tan2xtan3x – 1 = 0 in the interval 0, 2 π

is ______.

22. Number of ordered pairs (x,y) satisfying sinx + siny = sin(x +y) and |x| + |y| = 1 is _______.

23. Number of solutions of the equation sinsin3sin9 0 cos3cos9cos27 xxx xxx ++= in the interval 0, 4 π    is _______.

24. The number of distinct real roots of the equation 2 2 tan3 1 x xx π  =− ++  is _________.

25. Number of real values of x , satisfying the equation [x]2 – 5[x] + 6 – sinx = 0([.] denotes GIF ) is _______.

CHAPTER TEST – JEE ADVANCED

2022 P1 Model

Section – A [Integer Value Questions]

1. If the values of 'θ' satisfying sin7θ = sin4θ – sinθ in 0 < θ < 2 π are , m ππ  then |l – m|= ____

2. The number of solutions of the equation x + 2tanx = 2 π in the interval [0, 2π] is____.

3. The number of solutions of the equation 22 tansec 323281,0 4 xx x π +=≤≤ , is____.

4. The number of solutions of 5 1 cos5 r rx = ∑= in the interval [0, 2π] is______.

5. If x ∈ [0, 2π], then the number of solutions of the equation 3(sinx + cosx) – 2(sin3x + cos3x) = 8 is_________.

6. The total number of solutions of cosx = 1sin2 x in [0, 2π] is equal to_____.

7. The number of values of θ satisfying the equation sin3θ – sinθ = 4cos 2θ – 2, θ ∈ [0, 2π], is______.

8. The number of solutions of sin x + cosx = 1 in [0, π] is______.

Section – B [Multiple Option Correct MCQs]

9. If sin2x + 1 4 sin2(3x) = sinxsin2(3x), then x is equal to (1) ; 2 n nz π ∈ (2) 2; 3 nnz π π ±∈ (3) n π; n ∈ Z (4) ()1; 6 n nnz π π +−∈

10. The values of x , between 0 and 2π, satisfying the equation cos3 x + cos2 x = 3 sinsin 22 xx  + 

, are (1) 7 π (2) 5 7 π (3) 9 7 π (4) 13 7 π

11. The value of x satisfying ()() 11 33 2sec1sec11 xx−+−= can be in the interval (1) , 33 x ππ  ∈

(2) , 612 x ππ

(3) 35 , 44 x ππ

(4) , 44 x ππ

12. If sin 2 x – 2sin x – 1 = 0 has exactly four different solutions in x ∈ [0, nπ], then the values of n are (n ∈ N)

(1) 5 (2) 3 (3) 4 (4) 6

13. If the equation (cosec2θ – 4)x2 + (cotθ + 3 )

x + cos2 3 2 π = 0 holds true for all real ' x ' then the set of possible value of ' θ ' can be given by (n ∈ Z)

(1) 11 2 6 n π π+ (2) 5 2 6 n π π+ (3) 7 2 6 n π π+ (4) 11 6 n π π±

14. The possible solutions of the equation tan2θ + cos2θ = 1 is/are (n ∈ Z)

(1) n π –4 π (2) 2n π + 4 π

(3) n π + 4 π (4) 2n π –4 π

Section – C

[Single Option Correct MCQs]

15. The number of solutions of the equation (sin3x – 1)(| 3 tanx + 1| + |2cos2x – 1|) = 0 in the interval [0, 100π] is (1) 100 (2) 150 (3) 200 (4) 250

16. If the equation x 2 tan 2 θ – 2tanθ . x + 1 = 0, 2 11 1log1log bc xx acab

1 10 1log a bc

where a,b,c > 1) have a common root and the 2nd equation has equal roots, then the number of possible values of ' θ ' in [0, 3π] is (1) 2 (2) 4 (3) 8 (4) 3

ANSWER KEY

JEE Main Level

–II

–III

Theory-based Questions

CHAPTER y: Trigonometric Equations

17. Values of x and y satisfying the equation sin7y = |x3 – x2 – 9x + 9| + |x3 – x2 – 4x + 4| + sec22y + cos4y are (1) x = 1, y = n π , n ∈ I (2) x = 1, y = 2n π+ 2 π , n

I (3) x = 1, y = 2n π , n ∈ I (4) x = 2, y = 16 nπ , n ∈ I

18. The number of solutions of the equation 16(sin5x + cos5x) = 11(sinx + cosx) in the interval [0, 2π] is (1) 6 (2) 7 (3) 8 (4) 9

Chapter Test – JEE Main

Chapter Test – JEE Advanced

Chapter Outline

INVERSE TRIGONOMETRIC FUNCTIONS

6.1 Domain and Range of Inverse Trigonometric Functions

6.2 Properties of Inverse Trignometric Functions

6.3 Solving Inverse Trigonometric Equations

6.4 Telescopic Series

6.5 Standard Results

■ The inverse of a function f : A → B exists if f is one-one and onto, i.e., a bijection, and it is given by f (x) = y ⇒ f–1 (y) = x

■ f : A → B is a bijective function ⇔ f–1 : B → A exists and is a bijective function. The inverse of a bijective function is unique.

■ Trigonometric functions are not bijective functions, so their inverse does not exist. By restricting the domain and codomain, trigonometric functions can be made invertible. sin–1 x is an angle and denotes the smallest numerical angle, whose sine is x. Similarly, cos–1 and tan–1 can be defined.

6.1 DOMAIN AND RANGE OF INVERSE TRIGONOMETRIC FUNCTIONS

■ The function :,1,1 22 f

, defined by () sin fxx = , is a bijection. Then, 1:1,1, 22 f

ππ is also a bijection. This function is called inverse sine function and it is denoted by sin–1x or arc sin x. sin–1x is different from (sin x)–1. The former is the measure of an angle in radians whose sine is x, while the latter is 1/sin x

■ The function f : [0, p ] → [–1, 1], defined by f ( x ) = cos x , is a bijection. Then, f –1: [–1, 1] → [0, p] is also a bijection. This function is called inverse cosine function and it is denoted by cos–1x or Arc cosx.

■ The function ():,, 22 f ππ  −→−∞∞  , defined by () tan fxx = , is a bijection. Then, () 1 :,, 22 f  −∞∞→−  ππ is also a bijection. This function is called inverse tangent function and it is denoted by tan–1x or Arc tan x.

CHAPTER 6: Inverse Trigonometric Functions

Solved example

1.If 1113 sinsinsin, 2 αβγπ ++=  then find the valueof αβαγβγ ++

Sol. We know that, 1 111 sin 22 sin,sin,sin 222 x ππ πππαβγ −≤≤ ∴=== 1.Thus,3αβγαβαγβγ ∴===++=

Try yourself:

1. Find the value of a for which ()()21212sin22cos220axxxxx+−++−+= has a solution.

Answer: 2 π

TEST YOURSELF

1. The domain of the function cos –1(2x – 1) is (1) [0, 1] (2) [−1, 1] (3) (−1, 1) (4) [0, π]

2. The domain and range of f ( x ) = sin –1 x + cos–1x + tan–1x + cot–1x + sec–1x + cosec–1x, respectively, are (1) {} 3 1,1, 2    π (2) {}1,1, 2 

π (3) ()1,1, 2    π (4) (–1, 1), {2 p }

3. If the domain of the function f(x) = loge(4x2 + 11x + 6) + sin–1(4x + 3) + 1106 cos 3 x + 

is (α, β], then 8|α + β| is equal to (1) 20 (2) 10 (3) 30 (4) 50

5. If sin–1x + sin–1y + sin–1z = 3 2 π , then

201201402402

4. If sin–1x + sin–1y + sin–1z = 3 2 π , the value of x100 + y100 + z100 –101101101 9 xyz ++ is equal to (1) 0 (2) 1 (3) 2 (4) 3

603603804804 . xyxy xyxy  ++ ∑=  ++  (1) 0 (2) 1 (3) 2 (4) 3

6. 1127 sinsincoscos 36 ππ  ++   13tantan 4 π  

is equal to (1) 31 12 π (2) 11 12 π (3) 3 4 π (4) 17 12 π

7. The domain of () 2 sin11 2 fxx x  + =

is (1) (–1, 1) (2) {–1, 1} (3) [–1, 0] (4) {–1, 0}

8. If the range of the function f(x) = sin–1x + 2tan–1x + x2 + 4x + 1 is [p,q], then the value of p + q is (1) 4 (2) 5 (3) 6 (4) 7

Answer Key (1) 1 (2) 1 (3) 2 (4) 1 (5) 4 (6) 2 (7) 2 (8) 1

6.2 PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS

■ Inverse trigonometric functions satisfy the following properties in their respective domains. Properties related to addition, subtraction, and multiple angles of inverse trigonometric functions are discussed below.

6.2.1 Identities for (–x)

■ Inverse trigonometric functions satisfy the following properties for negative values of x.

‰ 11sin()sinxx−=− 1,1 x ∀∈−

‰ 11 cos()cosxx π −=− 1,1 x ∀∈−

‰ 11tan()tanxx−=− xR∀∈

‰ 11cot()cotxx π −=− xR∀∈

‰ 11 sec()secxx π −=−() 1,1 xR ∀∈−−

‰ 1–1 cosec()cosecxx−=− () 1,1 xR ∀∈−−

Solved example

2. What is the range is () 11 cotcot? x yx =

Try yourself:

2. Find the value of 1 cot(3)is Answer: 5 6

6.2.2 Identities for Reciprocals of (x)

■ Inverse trigonometric functions satisfy the following properties for reciprocal values of x. 11 1 sincosec x x

CHAPTER 6: Inverse Trigonometric Functions

Solved example

3. Find the value of 111tantan x x + . Sol. 1 1 1 11 11 11 1cot;0 tan cot;0 1 tantan tancot,0 2 tancot;0 2 xx

Try yourself:

3. What is the value of the sum 111111 cos2sin3cos 222

Answer: 31 12 π

6.2.3 Identities of the Form f(f–1 (x))

■ Inverse trigonometric functions satisfy the following properties of composite function of trignometric functions and their inverse.

‰ sin(sin–1 x) = x, if –1 ≤ x ≤ 1

‰ 1 cos(cos), xx = if 11 x −≤≤

‰ tan 1 (tan), xx = if x −∞<<∞

‰ 1 cot(cot), xx = if x −∞<<∞

‰ 1 sec(sec), xx = if 1 x −∞<≤− or 1 x ≤<∞

‰ cosec–1(cosec), xx = if 1 x −∞<≤− or 1 x ≤<∞

Solved example

4. Simplify ()() 2121 sectan2coseccot3. +

Sol. Given:

Try yourself:

4. What is the value of () 1 cotcot2024 ?

Answer: 2024

6.2.4 Principal Value of Inverse Trigonometric Functions of the Form f–1 (f(x))

■ Inverse trigonometric functions in the form of f –1(f(x)) can be expressed in principal values, as shown below.

()

Examples:

sin–1(sin 1) = 1, sin–1(sin 2) = π – 2,

sin–1 (sin 3) = π – 3, sin–1(sin 4) = π – 4, sin–1(sin 5) = 5 – 2π, sin–1 (sin 10) = 3π – 10. sin–1(sinx) is a periodic function with period

■ () 1 ,0 ,0 coscos 2,2 2,23 xx xx yx xx xx π

Examples:

cos–1(cos 1) = 1, cos–1(cos 2) = 2, cos–1 (cos 3) = 3, cos–1(cos 4) = 2π–4, cos–1(cos 5) = 2π–5, cos–1 (cos 10) = 4π –10

cos –1 (cos x ) is a periodic function with period 2π . ■ () 1 3 , 22 , tantan22 3 , 22 35 2, 22 xx xx yx

Examples:

=2p+x y= x

tan–1(tan 1) = 1, tan–1(tan 2) = 2 – π, tan–1 (tan 3) = 3 – π, tan–1(tan 4) = 4 – π, tan–1(tan 5) = 5 – 2π, tan–1 (tan 10) = 10–3π, tan–1(tanx) is periodic function with period p . y= x–p y = x–2p y = x+p

■ () 1 2,2 ,0 cotcot,0 ,2 2,23 xx xx yxxx xx xx πππ

() 1 cotcot x is periodic function with period π

■ () 1 coseccosec ,,00, 22 3 ,,, 22 yx

■ () 1 secsec ,0,, 22 33 2,,,2 22 yx

sec–1(secx) is periodic function with period

CHAPTER 6: Inverse Trigonometric Functions

Solved example

5. What is the value of 1 cos(cos10) ?

Sol. We know that 1 cos(cos),if0θθθπ =≤≤ Here, 10 θ = radians do not lie between 0 and π. However ,(410) π lies between 0 and π such that cos(4 p – 10) = cos10.

11 cos(cos10)cos(cos(410))410 ππ ∴=−=−

Try yourself:

5. What is the value of 1 sin(sin7) ? Answer: 7 – 2π

6.2.5 Interconvertion between Different Inverse Trigonometric Functions

■ Each inverse trigonometric function can be expressed in terms of remaining functions. ■ () 12 112 1 2 cos1if01 sincos1if10 tanif1,1 1 xx xxx x x x

) ) 12 12 2 11 2 1 sin1if0,1 sin1if1,0 1 costanif0,1 1 tanif1,0 xx xx x xx x x x x

1 2 1 1 2 sinfor0 tan1 1 cosfor0 1 x x x x x x

Solved example

6. What is the value of

Try yourself:

6. Find the value of tan{sin –1 (cos(sin –1 x ))} tan{cos–1(sin(cos–1 x))}.

Answer: 1

6.2.6 Identities of Complementary Angles

■ A pair of angles are said to be complementary angles if their sum is 90°.

Try yourself:

7. Find the minimum and maximum values of f(x)= sin–1x + cos–1x + tan–1 x.

Answer: min(()) 4 fx π = , max 3(()) 4 fx π

6.2.7 Formulae for Sum and Difference of Inverse Trigonometric Function (tan–1 x, cot–1 x)

■ Using the following formulae, sum of inverse trigonometric functions can be evaluated.

■ π π π + + >>< + +>>> = + −+<<> >>=

11tantan 1 tanif0,0,1 1 1 tanif0,0,1 1 1 tanif0,0,1 1 ,if0,0,1 2 xy xy xyxy xy xy xyxy xy xy xyxy xy xyxy



>−  + 



 =+><<−  + 

Solved example

7. If

■ 11 1 1 1 tantan tanfor1 1 tanif0,0and1 1 tanif0,0and1 1 xy xy xy xy xy xyxy xy xy xyxy xy



 −+<><− 

π π

+ 

■ If x,y,z have same sign and 1, xyyzzx++< then

tan–1 x + tan–1 y + tan–1z 1111 tantantantan 1 xyzxyzxyz xyyzzx

 ++− ++=



■ 111 12 tantan......tan n xxx +++= 1135 246 tan 1.... SSS SSS  −+−  −+−  ,

where Sk denotes the sum of the products of 12,,........, n xxx taken k at a time.

CHAPTER 6: Inverse Trigonometric Functions

■ 1111cotcotcot xy xy yx += +

■ 1111cotcotcot xy xy yx + −=

Solved example

8. What is the value of tan–11 + tan–1 2 + tan–1 3?

Sol. We know that, {} () 111 111 11 11 11 when10,0,0, tantantan. 1

tan1tan2tan3 23

tan1tan2tan3 23

() 111 111 11 11 11 when10,0,0, tantantan. 1

Try yourself:

8. Find the value of 111 The111 valueoftantantan.is 258

6.2.8 Formulae for Sum and Difference of Inverse Trigonometric Function (sin–1 x)

■ Usi ng the following formulae, sum of inverse trigonometric functions can be evaluated.

■ {} {} {} 11 122 22 22 122 22 122 22 sinsin sin11 0,,1or 1,1,0and1 sin11 if0,1and1 sin11 if1,<0and1 xy xyyx xyxy xyxyxy xyyx xyxy xyyx xyxy

■ {} {} {} 11 122 22 22 122 22 122 22 sinsin sin11 0,1and1or 1,1,0and1 sin11 if01,11and1 sin11 if0<1,-1<0and1 xy xyyx xyxy xyxyxy xyyx xyxy xyyx yxxy

Solved example

9. What is the value of 1145 sinsin 513 += ?

Sol. Given 1145 sinsin 513 += 22 1 11 4554 sin11 513135 4125363 sinsin 51313565 

Try yourself:

9. What is the value of 12sin11xxxx −−−=

?

Answer: 11sinsinxx

6.2.9 Formulae for Sum and Difference of Inverse Trigonometric Function (cos–1 x)

■ Using the following formulae, sum of inverse trigonometric functions can be evaluated.

+

■ {} {} 11 122 122 coscos cos11 if1,1and0 2cos11 if1,1and0 xy xyxy xyxy xyxy xyxy

■ {} {} 11 122 122 coscos cos11 if1,1, cos11 if10,01and xy xyxy xyxy xyxy yxxy

Solved example

10. If 11 coscos, 2 xy α −= whatisthevalueof 4x2–4xy cos a + y2?

Sol.

Try yourself:

10. If111 coscoscosxyz ++=π, what is the value of 2222 xyzxyz+++= ?

Answer: 1

6.2.10 Inverse Trigonometric Functions of Multiple Angles of sin–1 x

■ 1122sinsin21xxx π =−− , if 1 1 2 x ≤≤

■ 112 2sinsin(21) xxx π =−−− , if 1 1 2 x −≤≤

■ 113 3sinsin(34), xxx =− if 11 22 x ≤≤ .

■ 113 3sinsin(34) xxx π =−− , if 1 1 2 x <≤

■ 113 3sinsin(34), xxx π =−−− if 1 1 2 x −≤<− O 2 1 1 x=–1 x=–1/2 x=1/2 x=1 y=–p/2 y=

y=–p

x y=p

Solved example

11. ()Find1thevalueofsin2sin(0.8).

Sol. {} {()} () 1 12 1 Given:sin2sin(0.8)

sinsin20.81(0.8) sinsin0.960.96 =×− ==

Try yourself:

11. ()If1131,thensin34equals 2 xxx−≤≤− what is the value of ()If1131,thensin34equals 2 xxx−≤≤− ?

■ Inverse trigonometric functions involving multiple angles of sin–1 x can be simplified using the following formulae.

■ 112 2sinsin(21) xxx =− , if 11 22 x −≤≤

Answer: 13sin x π

6.2.11 Inverse Trigonometric Functions of Multiple Angles of cos–1 x

■ Inverse trigonometric functions involving multiple angles of cos–1 x can be simplified using the following formulae.

■ 112 2coscos(21) xx=− , if 01 x ≤≤

■ 112 2cos2cos(21) xx π =−− , if 10 x −≤≤ .

■ 113 3coscos(43) xxx =− , if 1 1 2 x ≤≤

■ 113 3cos2cos(43), xxx π =−− if 11 22 x −≤≤

■ 113 3cos2cos(43), xxx π =+− if 1 1 2 x −≤≤− . x=–1 –x=–1/2 x=1/2 x=1 y=–p/2 (0p/2) (1/2,p) y=p y=-2p+3cos–1 x y=3cos–1 x 2 ,0) 1 ( y x 2 √3 2 √3 y=2p–3cos–1x

Solved example

12. What is the value of ()The1valueofcos2cos0.8is ?

Sol. ()() ()112 2 cos2cos0.8coscos2(0.8)1 2(0.8)1 2(0.64)1 1.281 0.28 = =− =− =− =

Try yourself:

12. If –1 ≤ x ≤ 0, then what is the value of ()12 cos21 x ?

Answer: 2π-2cos–1x

CHAPTER 6: Inverse Trigonometric Functions

6.2.12 Inverse Trigonometric Functions of Multiple Angles of tan–1 x

■ Inverse trigonometric functions involving multiple angles of tan–1 x can be simplified using the following formulae.

■ 11 2 2 2tantan 1 x x x  =  , if 11 x −<< . ■ 11 2 2 2tantan 1 x x x π

, if 1 x > . ■ 11 2 2 2tantan 1 x x x π

1 x <− .

x −≤≤ .

■ 11 2 2 2tansin 1 x x x π

=− +  , if 1 x > .

■ 11 2 2 2tansin 1 x x x π

=−− +  , if 1 x <−

Solved example

Try yourself:

13. Find the value of

TEST YOURSELF

1. The solution of the inequality 11 11 22 logsinlogcos

(2) 1 ,1 2 x  ∈   (3) 1 0, 2 x  ∈  (4) 1 0, 2 x  ∈  

2. The number of real values of x satisfying the equation ()() () 3311 113 sincos 7 tancot xx xx + = + is (1) 0 (2) 1 (3) 2 (4) 3

3. For n ∈ N, if 1111 1111 tantantantan, 3454 n +++= π then n is equal to (1) 43 (2) 47 (3) 49 (4) 51

4. If 115 coscos 12 xy ab π += and 11sinsin 12 xy ab π −= , then 22 22 xy ab + is (1) 1 (2) 1 4 (3) 3 4 (4) 5 4

5. sin –1(sin 3) + sin –1(sin 4) + sin –1(sin 5) is equal to (1) –1 (2) –2 (3) 12 (4) –2 p

CHAPTER 6: Inverse Trigonometric Functions

6. If f ( x ) = 2 tan –1x + 1 2 2 sin 1 x x   +  , x > 1, then f(5) is equal to (1) 2 π (2) p (3) 4 tan–1(5) (4) tan165 156

7. If tan13 2 x A kx  =   and tan12 3 xk B k  =  , then A – B =

(1) 4 π (2) 2 π (3) 6 π (4) 3 π

8. If 111 35 sinsinsin 513 x  +=

, then the value of x is (1) 56 65 (2) 64 65 (3) 16 65 (4) 65 66

9. 1 1 41 cos 49 2 sin 7

=

(1) 1 (2) 2 (3) 3 (4) 4

10. If x,y, and z are in AP and tan–1x , tan –1y, and tan–1z are also in AP, then (1) x = y = z (2) 2x = 3y = 6z (3) 6x = 3y = 2z (4) 6x = 4y = 3z

11. 1111 tancostancos 4242 aa bb ππ  ++− 

=

(1) b/a (2) a/b (3) 2 a/b (4) 2 b/a

Answer Key

(1) 3 (2) 2 (3) 2 (4) 4

(5) 2 (6) 2 (7) 3 (8) 1

(9) 2 (10) 1 (11) 4

6.3 SOLVING INVERSE TRIGONOMETRIC EQUATIONS

■ Equations involving inverse trigonometric functions can be solved by using the identities discussed. We must ensure that the roots obtained satisfy the given equation. Principal values must be taken into consideration while solving.

■ At times, we can solve problems containing one or more variables by using graphs.

Solved example

14. Find the number of positive integral solutions of the equation

2 3 tancossin. 110 xy y += +

TEST YOURSELF

1. Number of common points for the curves y = sin –1 (2 x ) + tan11 2 x

+ 2 a nd y = cos–1(2x + 5) + 1 is (where [.] denotes greatest integer function) (1) 0 (2) 1 (3) 3 (4) 4

2. The number of real solutions of () 1121sin1 2 tan xxxx π ++++= is (1) 0 (2) 1 (3) 2 (4) infinite

3. The number of solutions of the equation sin–1x = 2tan–1x is (1) 3 (2) 1 (3) 4 (4) 2

4. If sin –1x + cos –1(1 – x ) = sin –1(– x ), then x satisfies the equation (1) 2x2 –x + 2 = 0 (2) 2x2 –x = 0 (3) 2x2 + x + 1 = 0 (4) 2

5. Total number of ordered pairs ( x,y ) satisfying |y| = cosx and y = sin–1(sinx), where x ∈ [0, 3π], is equal to (1) 1 (2) 2 (3) 3 (4) 4

6. The product of all values of  x  satisfying the equation 2 11

As x, and y are positive integers, corresponding to x = 1, 2, we get y = 2, 7, respectively. Therefore, the given equation has 2 solutions, (,)(1,2)and (2,7) xy =

Try yourself:

14. Solve the equation Solve11theequationsin6sin63/2. xx π+=−

Answer: –1/12

Answer

CHAPTER 6: Inverse Trigonometric Functions

6.4 TELESCOPIC SERIES

■ Suppose, a given expression contains the summation ()() 1 1 n k fkfk = ∑+−

■ By substituting the values of k, the summation reduces to ()() 11fnf +− , e.g., ()111 1 1 11 1 tantantan 1 nn rr rr rr rr xx xx xx ==  =− + 

tan–1x n – tan–1x0, ∀ n ∈ N

Solved example

15. Simplify 1 2 1 1 tan 2 n rr =  =∑ . Sol. ()() ()222 122121 24141 rr rrr +−− == +− (()() ) 11 1 sumtan21tan21 n r rr = =+−−

()() 11 tan21tan1 r =+− tan1 1 n n  = + 

Try yourself:

15. If 1111 tantan 121(2)(3) ++ ++ 11 1 tantan, 1(1) x nn …+= ++ then what is the value of x? Answer: 2 n n +

TEST YOURSELF

1. Let a1 = 1, a2, a3, a4,….... be consecutive natural numbers. Then, 11 1223 11 tantan 11aaaa

(3) 1 tan2022 4 π (4) () 1 cot2022 4 π

2. The sum of infinite terms of the series 111124 tantantan 3933  +++

....∞ is (1) 4 π (2) 2 π (3) p (4) 2 p

3. If 111444 tantantan 71939  +++

 11 4 tan......tan 67 k  +∞=  , then k = (1) 3 (2) 1 (3) 2 (4) 1 2

4. The sum 1 2 1 3 tan 1 nnn ∞ =   +− ∑ is equal to (1) 31cot2 4 π + (2) 1 cot3 2 π + (3) p (4) 1 tan2 2 π +

5. For any positive integer, define fn: (0, ∞) → R as ()() () 1 1 1 tan 11 n n J fxxjxj  =  +++− ∑ for all x ∈ (0, ∞). Here, the inverse trigonometric function tan–1x assumes values in , 22 ππ    . Then, which of the following

statements is true?

(1) (() ) 2 1 tan055 n j j f = ∑=

(2) (() )()() 10 12 1 10sec010 jj J ff = ∑+=

(3) For any fixed positive integer n, (() ) limtan1 n x fx n →∞ =

(4) For any fixed positive integer n, (() ) 2 limsec1 n x fx →∞ =

Answer Key

(1) 1 (2) 1 (3) 3 (4) 1

(5) 4

6.5 STANDARD RESULTS

■ In solving problems related to inverse trigonometric functions in differentiation and integration, the following substitutions are useful.

Expression Substitution Domain

1 22 ax sin xa=θ , 22

2 22 ax + tan xa=θ ,

22

■ Range of some special inverse trigonometric functions:

‰ ()() 33 33 117sincos 328 xx ππ ≤+≤

‰ ()() 22 22 115sincos 84 xx ππ ≤+≤

‰ ()() 22 22 113cossin 44 xx ππ −≤−≤

Important points to remember:

■ If 111 tantantan,f1 2 xyzixyyzzx π ++=++= then xy + yz+zx = 1

■ If 111 tantantan, xyz ++=π then x+y+z=xyz.

■ If 11tantan 2 ab xx π += then xab = .

■ If 11sinsin 2 ab xx π += then 22xab =+

■ If 11tantan 2 xy π += , then 1 xy = .

■ If 11cotcot 2 xy π += , then 1 xy = .

■ 11tantan 4 pqp qqp π += +  .

■ 11 1 tantan,if1 14 x xx x +π

.

■ 11 1 tantan,if1 14 x xx x π =−>− +  .

■ If 111 coscoscos3 xyz ++=π then, 1 xyz===−

■ If 1113sinsinsin 2 xyz π ++= then, 1 xyz===

■ If sin–1x + sin–1y = q then cos–1x + cos–1y = π – q.

■ If 11sincos axbxc −= , then () 11sincos abcab axbx ab π+− += +

■ Infinite series of inverse trigonometric functions: ‰ 3 157 1.31.3.5 sin...... 2.32.4.52.4.6.7 x xxxx =++++ ‰ 357 tan1 357 xxx xx=−+−+

# Exercises

JEE MAIN

Level – I

Domain and Range of Inverse Trigonometric Functions

Single Option Correct MCQs

1. The range of the function, f ( x ) = cot –1x + sec–1x + cosec–1x, is (1) 3 , 22

3 ,, 22

(4) 3 ,, 22

2. The value of

3. If 1 cot,, 6 n nN

CHAPTER 6: Inverse Trigonometric Functions

4. Range of f(x) = sin–1x + tan–1x + sec–1x is (1) 3 , 44

(3) 3 , 44 ππ

(2) 3 , 44

(4) , 43

5. If cos –1 α + cos –1 β + cos –1 γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals to (1) 0 (2) 1 (3) 6 (4) 12

Numerical Value Questions

6. If domain of the function ()() 3 11 2 cossinlog1 2 fxxx =++ is [a,b], then a + 2b =________.

Properties of Inverse Trigonometric Functions

Single Option Correct MCQs

7. Tan–12, Tan–13 are two angles of a triangle, then the third angle is:

(1) 30° (2) 45° (3) 60° (4) 75°

8. If 111 35 sinsinsinx 513  +=

then the value of x is (1) 56 65 (2) 64 65 (3) 16 65 (4) 65 66

9. If sin–1 x + 4 cos–1 x = p , then x = (1) 1 2 (2) 1 2 (3) 3 2 (4) 1

10. 11132 cotsinsintan 173

(1) 2 13 (2) 0 (3) 2 13 (4) 2 313

11. 1111 2tantan 37 += (1) p (2) 2 π

(3) 4 π (4) 3 4 π

12. If cos–1x – cos–1 2 y = α, then 4x2 – 4xy cosα + y2 is equal to (1) 2sin 2α (2) 4 (3) 4 sin2α (4) – 4 sin2α

13. Let () 1 2 2 sin 1 fxx x  = +  and () 2 1 2 1 cos 1 x gx x  = +  , then the value of (f(10) – g(100)) is equal to (1) π – 2(tan–1(10) + tan–1(100)) (2) 0

(3) 2(tan–1(100) – tan–1(10)) (4) 2(tan–1(10) – tan–1(100))

14. If the value of sin(cot –1 (cos(tan –1 x ))) is

2 xa xb + + , then a + b = (1) 1 (2) 3 (3) 4 (4) 5

15. If α and β are the roots of the equation x2 + mx – m + 1 = 0 then the principal value of tan–1α + tan–1β = (1) 4 π (2) 4

16. If 22 1 22 11 tan 11 xx xx α  +−− = 

then x2 =

(1) sin(2α) (2) cos(2α) (3) tan(2α) (4) cot(2α)

17. If 1131 cos,tan 53αβ

, 0 < α, 2 βπ < , then α – β =___ (1) tan19 14 

 (2) 19 cos 510

(3) sin19 510 

(4) tan19 510

18. The value of 1 15 tancos 23

is (1) 35 2 + (2) 35 + (3) () 1 35 2 (4) 23

19. If 111477 sincostan0, 17536 α +−= 0 < α < 13, then sin–1(sinα) + cos–1(cosα) is equal to (1) p (2) 0 (3) 16 (4) 16 – 5 p

20. Given 1 0 2 x ≤≤ . Then the value of 2 11 1 tansinsin 22 xx x 

+−

 is (1) –1 (2) 1 (3) 1 3 (4) 3

21. If x = sin(2tan–12), 1 14 sintan, 23 y  =  then (1) x = 1 – y (2) x2 = 1 – y (3) x2 = 1 + y (4) y2 = 1 – x

22. The value of 111 3424 coscostansintan 10353

is (1) 0 (2) 4 π (3) 3 π (4) 6 π

Numerical Value Questions

23. sec2(tan–12) + cosec2(cot–13) is equal to____.

24. If α = sin(cot–1(tan(cos–1 2 3 ))) and β = sin (cosec–1(cot(tan–1 1 3 ))) are the roots of the quadratic equation ax2 + bx + c = 0, where a,b, and c are integers and c is prime, then the value of (a + b + c) equals _____.

Solving Inverse Trigonometric Equations

Single Option Correct MCQs

25. If π +=

11tantan 2 ab xx then x is (1)

26. If

22 sinsin2tan, 11 ab x ab then x is (1) + 1 ab ab (2) + 1 b ab (3) 1 b ab (4) + 1 ab ab

27. If π +=11 cos2cos3 3 xx then x is (1) 3 27 (2)

28. The number of positive solutions satisfying the equation

CHAPTER 6: Inverse Trigonometric Functions

++

is _____. (1) 0 (2) 1 (3) 2 (4) 3

29. If 2tan–1(cosx) = tan–1(2cosecx), then x = (1) 4 π (2) 6 π

(3) 2 π (4) no solution

30. All x satisfying (cot–1x)2 – 7(cot–1x) + 10 > 0 lie in the interval (1) (cot 2, ∞) (2) ( ∞ , cot 5) ∪ (cot 2, ∞)

(3) (cot 5, cot 4) (4) (– ∞ , cot 5) ∪ (cot 4, cot 2)

31. The number of positive integral solutions of the equation tan–1x + cot–1y = tan–13 is (1) 0 (2) 1 (3) 2 (4) 3

32. If sin–1(x) + sin–1(2x) = 3 π then x = (1) 3 28 (2) 3 28 (3) 3 28 (4) 3 28

33. The number of solutions of the equation tan–1(1 + x)) + tan–1(1 – x) = 2 π is (1) 3 (2) 2 (3) 1 (4) 0

Numerical Value Questions

34. If 1111 tantan 1 xx xx +−  +=+

π tan–1 (–7) then x =___

Telescopic Series

Single Option Correct MCQs

35. If a1, a2, a3 a n are in AP, with common difference

Numerical Value Questions

40. If S is the sum of the first 10 terms of the series

36.

38.

, then 12 tan(S) is equal to _______.

Level – II

Domain and Range of Inverse Trigonometric Functions

Single Option Correct MCQs

1. Let 1 51 tansin2cos 165

and 1145 cossinsec 53

, where the inverse trigonometric functions take principal values. Then, the equation whose roots are α and b is (1) 15x2 – 8x –7 = 0

(2) 5x2 – 12x +7 = 0

(3) 25x2 – 18x –7 = 0 (4) 25x2 – 32x +7 = 0

2. The range of the function f(x) = sin–1[x2 + 1 2 ] + cos–1[x2 –1 2 ] (where [.] is GIF) is (1) 2 π

(2) { p }

(3) 1 ,0 2

(4) 0, 2 π

3. The maximum value of

2 1 42 122 tan 23 x fx xx  =  ++  is (1) 18° (2) 36° (3) 22.5° (4) 15°

4. If [sin–1(cos–1(sin–1(tan–1x)))] = 1, where [.] denotes the greatest integer function, then x is given by the interval (1) [tan(sin(cos 1)), tan(sin(cos(sin 1)))] (2) (tan(sin(cos 1)), tan(sin(cos(sin 1)))) (3) [–1, 1]

(4) [sin(cos(tan 1)), sin(cos(sin(tan 1)))]

Numerical Value Questions

5. Let f(x) = [tan–1sin–1x + sin–1tan–1x], where [ x ] denotes the greatest integer function. Then the number of integers in the range of f is ______.

Properties of Inverse Trigonometric Functions

Single Option Correct MCQs

6. If 46 sin12...... 39 xx x  −++  812 14 cos....., 392 xx x π −+=

where

03, x ≤< then the number of values of ‘ x’ is equal to (1) 1 (2) 2 (3) 3 (4) 4

7. If p < q < r < 0, then cot11 pq pq  + =  Σ (1) 0 (2) p (3) 2 p (4) 2 π

CHAPTER 6: Inverse Trigonometric Functions

8. If x 1 , x 2 , x 3 , and x 4 are the roots of the equation x4 – x3 sin 2β + x2 cos 2β – xcos β – sinβ = 0, then the value of tan–1x1 + tan–1x2 + tan–1x3 + tan–1x4 is (1) 2 π (2) 2 πβ

(3) β (4) 6 π

9. If sin–1x + sin–1y + sin–1z = π, then x4 + y4 + z4 + 4x2y2z2 = (1) x2y2 + y2z2 + z2x2

(2) 2(x2y2z2)

(3) 2xyz

(4) 2(x2y2 + y2z2 + z2x2)

10. x,y ∈ R,x ≠ y, and x ≠ 1. If ax + bsec(tan–1x)

= c and ay + bsec(tan–1y) = c, then 1 xy xy + =

(1) 22 2ab ab (2) 22 2ac ac +

(3) 22 2ab ab + (4) 22 2ac ac

11. The value of tan–1( 1 2 (tan2A) + tan–1(cotA) + tan–1(cot3A)) is

(1) 0,if 42 A ππ << (2) ,if0 4 A π π<<

(3) both (1) and (2) (4) None of these

12. If a,b,c are positive, then () tan1 aabc bc ++ ∑=

(1) π (2) 3 2 π

(3) 3 4 π (4) 3

13. If m and M are the least and greatest values of (cos–1x)2 + (sin–1x)2, then M m =

(1) 10 (2) 5 (3) 4 (4) 2

14. If x1, x2, and x3 are the roots of x3 – 6x2 + 11x – 6 = 0, then cot–1(x1) + cot–1(x2) + cot–1(x3) is equal to (1) 0 (2) 2 π (3) π (4) 3 2 π

Numerical Value Questions

15. If for x < –1, 1 2 2 sin 1 x x + = k π – 2tan –1 x , then 3 – k =______.

16. If tan–1x + 2 tan11 3 y y π = and sin–1y –1 2 cos 16 x x π =  +  , then 1 1 5sin sin x y is ____.

17. Let y = sin–1(sin6) – tan–1(tan8) + cos–1(cos6) simplifies to aπ + b, then (a – b) is equal to (a,b ∈ I)_____.

Solving Inverse Trigonometric Equations

Single Option Correct MCQs

18. The number of solutions of the equation 12122 12 sincos, 33 xxx  ++−=

for x ∈ [–1, 1] where [x] denotes the greatest integer less than or equal to x, is

(1) Infinite (2) 2 (3) 4 (4) 0

19. The number of positive integral solutions of the equation

111 2 3 tancossin 110 xy y += + is

(1) one (2) two (3) zero (4) none of these

20. The value of x for which 2 1 2 24 sinsin3 1 x x π   + 

is

(1) (0, 1)

(2) (–1, 0)

(3) (–1, 1)

(4) (0, 2)

21. The sum of roots of the equation cos–1(cosx) = [x] (where [.] is GIF) is (1) 2π + 3 (2) π + 3 (3) π – 3 (4) 2π – 3

22. The complete solution set of [tan –1 x ] 2 – 8[tan –1 x ] + 16 ≤ 0, where [ ] denotes the greatest integer function, is (1) (– ∞ , tan 4]

(2) [tan 4, tan 3]

(3) (tan 5, ∞ )

(4) No Solution

Numerical Value Questions

23. Number of integral values of k, such that the equation cos–1x + cot–1x = k possesses solution, is _____.

24. The number of solutions of the equation |cosx| = sin–1|sinx| in [0, 2π] is ____.

25. The number of solutions of the equation, tan–1(4{x}) + cot–1(x + [x]) = 2 π is ___.

(Note: [ ] an d {} denote greatest integer function and fractional part function, respectively.]

26. Number of integral values satisfying the inequality 2 1 2 24 sinsin3 1 x x π

+

+

is

Telescopic Series

Single Option Correct MCQs 27. 121212333 cot1cot2cot3

is equal to (1) () tan1 4 n π (2) () 1 tan1 4 n π +− (3) () tan1 n (4) () 1 tan1 n +

30. Value of 42 1 1 limcot1 2 n n r rr r →∞ =

CHAPTER 6: Inverse Trigonometric Functions

Numerical Value Questions

31. If the value of the series () 11 42 1 8 taniscot 25 n nk nn ∞ =   −+ ∑ then |k| is equal to ___.

32. If 1 2 1 18 tan, n k n π λ ∞ =  =∑ where k and λ are natural numbers that are coprime, then |k – λ| is ___.

Level – III

Single Option Correct MCQs

1. 33 2121 11 cosectansectan 2222  + 

is equal to

(1) (α – β)(α2 + β2) (2) (α + β)(α2 – β2)

(3) (α + β)(α2 + β2) (4) none of these

2. The number of values of a ∈ R, for which the equation 5tan–1(x2 + x + a) + 3cot–1(x2 + x + a) = 2π has a unique solution, is (1) 0 (2) 1 (3) 2 (4) infinity

3. The number of solutions of (()() ) 11 75 loglogtantan5tantan0 xx++= in [0, 3π] is (1) 0 (2) 4 (3) 6 (4) 3

4. The number of real solutions of the equation 1212 tan32cos43 xxxx−++−−=π

(1) one (2) two (3) zero (4) infinite

5. If y ∈ (–3, 0), 2 11 2 692 tancot 963 yy yy π +=  then 33 y =_____ (1) 3 (2) 5 (3) 6 (4) 9

6. 111 12132 sinsinsin 2612 +++ 11 2352 sinsin.... 2030 ++∞=

(1) 4 π (2) 2 π (3) 8 π (4) 12 π

7. 1 42 1 2 tan 2 n m m mm =   ++ ∑ is equal to

(1)

2 1 2 tan 2 nn nn  +  ++ 

(2) 2 1 2 tan 2 nn nn   −+ 

(3) 2 1 2 2 tan nn nn  ++  +  (4) 2 1 2 2 tan nn nn  ++  

Numerical Value Questions

8. If the equation sin–1(x2 + x + 1) + cos–1(λx + 1) = 2 π has exactly two solutions for λ ∈ [a,b), then the value of a + b is_________

10. If () () 1 223 1 21 tantan 112 n r r rrrrr =     

++−+−

= 961, then the value of n is equal to ____.

11. If f(x) = (cos–1x)2 – (sin–1x)2, the sum of all the possible integral values of () 2 4 fx π is _____.

12. The value of 1 π {216 sin –1 (sin 7 6 π ) + 27 cos –1 (cos 2 3 π ) + 28 ta n –1 (tan 5 4 π ) +

200 cot–1(cot 4 π    )} must be ___.

13. The least positive integral value of k, for which (k – 2)x2 + 8x + k + 4 > sin–1(sin12) + cos–1(cos12) for all x ∈ R, is _____.

14. If x2 + y2 + z2 = r2, then 111 tantantan. xyyzxzK zrxryr

Then, [k] = ____, where [. ] is GIF.

15. Find the maximum value of x for which 2 11 2 1 2tancos 1 x x x  + +  is independent of x

THEORY-BASED QUESTIONS

Statement Type Questions

Each question has two statements. Statement I (S-I) and statement II (S-II). Mark the correct answer as (1) if both statement I and statement II are correct,

9. Considering only the principal values of the inverse trigonometric functions, the value of 111 22 321222 cossintan 2422 π πππ ++ ++ is k. Then [k] = _________. (where [.]denotes GIF).

(2) if both statement I and statement II are incorrect,

(3) if statement I is correct but statement II is incorrect,

(4) if statement I is incorrect but statement II is correct,

1. S-I : If 222,0,0 abccab+=≠≠ , then the non zero solution of the equation 111 sinsinsinis1 axbx x cc +=± .

S-II : () 111 sinsinsinxyxy +=+ .

2. S-I : () 11 tansin1,1 xyy=⇒∈− .

S-II : Minimum value of ()()22211 sincosis 8 xx π +

3. S-I : If sin1,1 x ∈   , then 11sincosxx  >  .

S-II : () 1 coscos1,1 xxx=∀∈−  .

4. S-I : () 1 tansectan. 42 π +=+ x xx

S-II : 1 tan1tan1 > .

5. S-I : If 11sin2sinxa = , then the range of A is 11 , 22   

S- II : If 1111 secsecsecsec then. +=− = xx ba ab xab

6. S-I : 11 sincos1 5 x  =  has no solution.

S-II : The equation 1 11 cossin 52 x  =  has no solution.

CHAPTER 6: Inverse Trigonometric Functions

8. S-I : 1111 tantan 1 xx xx +−  + 

= π + tan–1(–7) ⇒ x = 2.

S-II : 1111 tantan 1 xx xx +−  + 

= tan–1(–7) ⇒ x = 2.

Assertion and Reason Questions

In each of the following questions,a statement of Assertion (A) is given, followed by a corresponding statement of Reason (R). Mark the correct answer as

(1) if both (A) and (R) are true and (R) is the correct explanation of (A), (2) if both (A) and (R) are true but (R) is not the correct explanation of (A),

(3) if (A) is true but (R) is false,

(4) if both (A) and (R) are false.

9. (A) : The value of 111tantan 2 π += x x for all {} 0 xR∈−

(R): 1 1 1 1cotfor0 tan cotfor0 >

10. (A) : The solution set for () 12 coscos434xx>− is φ

(R) : The value of cos–1(cos x) = 2π – x for x ∈ (π, 2π).

11. (A) : The value of 2 11331 coscoswhen1 2232 xx

11331 coscoswhen1 2232

7. S-I : tan–1(cotx) + cot–1(tanx) = π – 2x.

S-II : If 2 11 22 21 3sin3cos 11   ++  xx xx , then 1 3 x =

(R) : 1 cos x is increasing function for 01 x ≤≤

12. (A) : 111 tan1tan2tan3++=π

(R) : tan–1 x + tan–1 y = 1 11 1 tan,if<1 1 tantan tan,if1 1 π

xy xy xy xy xy xy xy

18. (A) : sin–1(2cos2x – 1) + cos–1(1 – 2sin2 x)

()() 1212 sin2cos1cos12sin 2 xx π −+−=

(R) : [] 11 sincos1,1 2 xxx π +=∀∈−

13. (A) : ()() 11 sin2sinsincos2 2 xx π += ()() 11 sin2sinsincos2 2 xx π +=

19. (A) : () 5 1 1 sinsin3 r r π = ∑=−

(R) : ()[] sinsin11,1 xxx=∀∈−

20. (A) : 2 sin11 22 x x π + =± 

(R) : () 1112222 sinsinsin11if,>0,1 +=−+−+< xyxyyxxyxy () 1112222 sinsinsin11if,>0,1 +=−+−+< xyxyyxxyxy

14. (A) : If x,y satisfy 11 sincos, 2 xy π += then locus of (x,y) is a parabola

(R) : If 11sinsin+=πxy then 221xy+=

15. (A) : The number of triplets (x,y,z) satisfying 111 sincossin2 xyz ++=π is 4.

(R) : Range of sin1 x is , 22 ππ

JEE ADVANCED LEVEL

Multiple Option Correct MCQs

1. If the sum of infinite terms of the given series 1112612 cot9cot9cot9 999  ++++++

...tan1 a b  =

π x

(R) : Range of 1 sinis0, 2

16. (A) : If 2222 xyzr ++= , then

yzzxxy xryrzr

yzzxxy xryrzr

(R): If tanA tanB + tanB tan C + tan C tanA = 1 ⇒++=π ABC

17. (A) : If ()sectan1 axbxc += and ()sectan1 aybyc += ,then 22 2 1 xyac xyac + =

(R) : 2 2tan tan2 1tan A A A = +

, where a and b are relatively prime, then whic h of the fo llowing is/are true?

(1) a > b

(2) a3 + b3 = 9

(3) () 11 seccosec 2 ab ≤

(4) a+b =9

2. Let f(x) = 2 tan–1x + 1 2 2 sin. 1 x x + Then which of the following is/are correct?

(1) f ‘(2) = f ‘(3) (2) f ‘’(2) = 0

(3) 116 25 f 

′ (4) 1 0 2 f

3. () 1211 tan2tantantan,if 3 θθθ =

(1) tan q = –2 (2) tan q = 0

(3) tan q = 1 (4) tan q = 2

4. Which of the following is/are true?

(1) If the equation sin–1(|cos x|) – cos–1(|sinx|) = k, has at least one solution, then the number of integers in range of k is 1.

(2) The equation sin –1 (|cos x |) – cos –1 (|sinx|) = k, has at least one solution, if k ∈ (0, π).

(3) If sin–1(x – 1) + cos–1(x – 3) + 1 2 tan 2 x x    = cos–1k + π, then the value of 1 2 k = .

(4) If α1 and α2 satisfy 11 22 22 sintan 11 xx xx  =  +−

and |α1 – α2| < k, for all α1 and α2 (k ∈ I), then minimum value of k is equal to 2.

5. If tan3θ – 15tan2θ – 33tanθ + 847= 0, where 3 0,, 22 ππθπ ∈∪

, then 31122 cottansin 11 θ   

is (1) 1 (2) –1 (3) 3 (4) 3

6. The value(s) of x satisfying the equation 11 sinsinsinsin xx = is/ are given by (n is any integer)

(1) nπ – 1 (2) nπ

(3) nπ + 1 (4) ()211 2 n π ++

7. If

()()() 11 coscossinsin, 22 fxxx ππ  =

then

CHAPTER 6: Inverse Trigonometric Functions

(1) range of f(x) is 22 , 44 ππ 

(2) range of f(x) is 22 , 22 ππ

(3) Number of solutions of the equation f(x) = 0 in the interval (0, 4π) is 3.

(4) Number of solutions of the equation f(x) = 0 in the interval is 4.

8. Which of the following is/are a rational number?

(1) 111sintan3tan 3  +

(2) cossin13 24 π

(3) 1 2 163logsinsin48 

(4) 1 15 tancos 23 

9. If 23 sin1 39 aa a  −+−+  cos–1(1 + b + b2 + ....)= , 2 π then (|a| < 3, |b | < 1)

(1) 23 3 ba a = (2) 32 2 ba a =

(3) 3 23 a b = (4) 2 32 a b =

10. Which of the following is/are true?

(1) 11113 tansin 325 = (2) 11 1 tancot2 34 π =−

(3) 11 114 tansin 3425 π =−

(4) 11 1 tancot3 32 π =−

11. Let f(x) = sin–1x + cos–1x. Then 2 π is equal to

(1) 1 2 f  

(2) f(k2 – 2k + 3), k ∈ R.

(3) 2 1 , 1 fkR k  ∈ + 

(4) f(–2).

12. sin–1(x2 + 2x + 2) + tan–1(x2 – 3x – k2) > 2 π for k ∈ (1) (–1, 0) (2) (0, 1) (3) (1, 2) (4) (0, 2)

13. If S n = cot–1(3) + cot–1(7) + cot–1(13) + cot–1 (21) +……...n terms, then (1) 1 10 5 tan 6 S = (2) 4 S π ∞ = (3) 1 6 4 sin 5 S = (4) S20 = cot–11.1

14. If a ≤ sin–1x + cos–1x + tan–1x ≤ b, then (1) 4 a π = (2) a = 0 (3) b = π (4) 3 4 b π =

15. If (sin–1x)2 + (sin–1y)2 + (sin–1z)2 = 32 4 π , then the value of (x – y + z) can be (1) 1 (2) –1 (3) 3 (4) –3

Numerical/Integer Value Questions

16. The total number of ordered pairs (x,y) which satisfies y = |sin x |, y = cos –1(cos x ), where –2π ≤ x ≤ 2π, is ___.

17. The number of real solutions of the equation 11 11 sin 22 i i ii x xx π ∞∞ −+ ==

() 1 11 cos 2 i i ii x x ∞∞ ==

lying in the interval (0, 2) is (Here, the inverse trigonometric function sin –1x and cos –1 x assume values in , 22 ππ

and [0, π], respectively).

18. Number of solution(s) of the equation () 7113 tancot 2 xxx π π ++= for x ∈(1,2) is ___.

19. Let () tan1, 22 x ππ  ∈−

, for x ∈  . Then the number of real solutions of the equation ()() 1 1cos22tantan xx+= in the set 33 ,,, 222222 ππππππ  −−∪−∪   is equal to ____.

20. If 1 cot, 6 n nN π π >∈ , then the maximum value of n is ____.

21. If sin–1x + sin–1y + sin–1z = π, then the value of 444222 222222 4 xyzxyz xyyzzx +++ ++ is ___.

22. sec2(tan–12) + cosec2(cot–12) = ____.

23. 1 cot2cot3......... 4 π  −=  ____.

24. If the equation sin–1(x2 + x + 1) + cos–1 (λx + 1) = 2 π has exactly two solution for λ ∈ [a,b], then the value of a + b is _____.

25. If 115sincosec 542 x  +=  π , then the value of x = ___.

26. If f ( x ) = x 3 – 3 x + sin –1( a 2 – 3 a + 2), then the smallest positive integer a for which f(x) = 0 has three distinct real solutions is ___.

27. Let α, β, and γ be the roots of the equation x3 + 6x + 3 = 0 and A = cos–1(sin((α + β)–1 + (β + γ)–1 + (γ + α)–1 )), 1 costansin, 2 B αβγ 

C = sec–1(cosec((1 – α)(1 – β)(1 – γ))). Then the value of (5A + 2B – C) is equal to ____.

28. If 111 3648 sin,cos,tan 85515αβγ

and cossinsincossinsincossinsin , coscoscos A αβγβαγγβα αβγ ++ =

B = tanα∙ tanβ + tanβ ∙ tanγ + tanγ tanα, then the value of A + B is ___.

29. If the domain of the function ()() 1 3cos4 fxx=π is [a,b], then the value of (4a + 64b) is ____.

30. If maximum value of 2tan –1 x + sin –1 x + 3sec–1x is pπ, then p = ____.

Passage-based Questions

(Q.31 – 32)

Consider the equation 1111 tancostancos1 4242 xx ππ  ++−=

31. Number of solutions of the above equation in (0, 1) is _______.

CHAPTER 6: Inverse Trigonometric Functions

32. Number of solutions of the above equation in (–1, 0) is _____.

(Q.33 – 34)

Let 1111 tantan 23 α=+ , and b = tan–1 1 + tan–1 2 + tan–1 3

33. The value of 8 α π is ___.

34. The value of 4[b] is ___. (where [.] represents GIF).

(Q.35 – 36)

+−

Let ()() 42 1 23 361 sin 1 fxxx x

+

and ()()()()() 12 12 3sec1;1 3cosec1;1 fxxx gx fxxx

.

35. The value of ()() 33 1 tan22cot15sin18 2 ggg

is (1) 2π (2) 4π (3) 7 2 π (4) 9 2 π

36. If ()() 1 3sin4cos, 5 hxxx =+ then domain and range of g(h(x)) respectively, are (1) [–1, 1]; [π, 3π] (2) R; {π} (3) 3 ; 2 R π

(4) 3 1,1;, 22 ππ

(Q.37 – 38)

Let a + bcos–1x = cos–1(4x3 – 3x).

37. If 1 1, 2 x  ∈−

, then the value of a + bπ is of the form Kπ. Then, K = ___.

38. If 1 ,1 2 x  ∈   , then the value of 0 cos y Ltby → = _____.

(Q.39 – 40)

Let S n = cot –1 (3) + cot –1 (7) + cot –1 (13) + cot–1(21) + ...n terms

39. If S k π ∞ = , then k =______.

40. If 1 10 5 tan S p = , then p =_____.

(Q.41 – 42)

Let ax + b (sec(tan –1 x ) = c and ay + b (sec (tan–1 y) = c. Then

41. The value of xy is (1) 22 2ab ab (2) 22 22 cb ab (3) 22 22 cb ab + (4) none of these

42. The value of x + y is (1) 22 2ac ab (2) 22 22 cb ab (3) 22 22 cb ab + (4) none of these

(Q.43 – 44)

For x,y,z,t ∈ R , sin –1x + cos –1y + sec –1z ≥ t2 – 2 tπ + 3π.

43. The value of x + y + z is equal to (1) 1 (2) 0 (3) 2 (4) –1

44. The principal value of cos –1(cos5t2) is (1) 3 2 π

(Q.45 – 47)

Consider the system of equations cos –1 x + (sin–1y)2= 2 4 pπ and (cos–1x)(sin–1y)2= 4 , 16 π p ∈ Z.

45. The value of p for which the system has a solution, is (1) 1 (2) 2 (3) 0 (4) –1

46. The value of x which satisfies the system of equation is (1) 2 cos

47. Which of the following is not the value of y that satisfies the system of equations? (1) 1 (2) –1 (3) 1 2 (4) 1, –1

(Q.48 – 50) If 1111 tantan 23 α=+

, then

48. cos ( a+b+γ)= (1) 5 cos

49. tantan3tan 24 αβγ

(1) 4 (2) 3 (3) 2 (4) 1

50. sin(cot–1(tan(cos–1(sinγ)))) = (1) sinγ

(2) sin 2

(3) 1 sin 2 γ

(4) cosγ

(Q.51 - 53)

51. The sum of infinite terms of the series

4

52. The value of

53. The sum of infinite terms of the series

CHAPTER 6: Inverse Trigonometric Functions

(1) 4 π (2) 2 π (3) cot–12 (4) –cot–12

(Q.54 – 56)

While defining inverse trigonometric functions, a new system is followed where domains and ranges have been redefined as follows:

sin–1x [–1, 1] 3 , 22

tan1xR 3 , 22

cos–1(x) [–1, 1] [π, 2π] cot–1xR [π, 2π]

54. sin–1(–x) is equal to (1) – sin–1x (2) π + sin–1x (3) 2π – sin–1x (4) 12 3cos1,0 xx π−−>

55. If f(x) = 3sin–1x – 2cos–1x, then f(x) is (1) even function (2) odd function (3) neither even nor odd function (4) even as well as odd function

56. The minimum of (sin–1x)3 – (cos–1x)3 is equal to (1) 633 8 π (2) 633 8 π (3) 1253 32 π (4) 1253 32 π

(Q.57 – 58)

If tan(tan–1x) = x ∀ x ∈  , cot(cot–1x) = x ∀ x ∈ 

57. 2cot(cot–1(3) + cot–1(7) + cot–1(13) + cot –1 (21)) has the value equal to ________.

58. If

, m n = where m,n ∈ N, then the least value of ( m + n) is ____.

Matrix Matching Questions

59. Match the following and choose the correct option

List–I List–II (A) If sin–1x+Sin–12x = 3 π , then x= (p) 3 2 (B) If tan –1 2 x +tan –1 3 x = 4 π , then x= (q) 13 (C) If sin–1x–cos–1x= 6 π , then x= (r) 1 6 (D) If 11512 sinsin 2 xx π += , then x = (s) 3 28 (A) (B) (C) (D) (1) s r q p

q r s p

s r p q (4) q r p s

60. Match the following and choose the correct option.

List I List II (A) sinsin11 32 π 

(p) 35 2 (B) 13 coscos 26 π

−+

(C) 1 15 tancos 23

(D) tan2sin14 5 

(A) (B) (C) (D)

(1) r s p q

(2) s q p r

(3) p r q s

(4) r s q p

(q) 24 7

(r) 1

(s) –1

61. Match the following and choose the correct option.

List I List II

(A) x ∈ [π,2π] ⇒ |tan–1(tanx)|can be (p) |x – 2π|

(B) x ∈ [π, 2π] ⇒ |cot–1(cotx)| can be (q) |x – π|

(C) x ∈ [–π,π] ⇒ |sin–1(sinx)|can be (r) |x |

(D) x ∈ [–π,π] ⇒ |cos–1(cosx)|can be (s) |x + π|

(A) (B) (C) (D)

(1) r s p q

(2) p,q p q,r,s r

(3) q p,r s r

(4) p,q p,s r,s r

62. Match the following and choose the correct option.

List I

List II

(A) 1141 sin2tan 53 += (p) 6 π

(B) 111 12463 sincostan 13516 ++ (q) 2 π

(C) If tan13 2 x A x λ = and tan12 3 x B λ λ  =  , then the value of A–B is, (r) 4 π

(D) 1111 tan2tan 73 + (s) π

(A) (B) (C) (D)

(1) s q p r

(2) q s p r

(3) r s q p

(4) p s r q

FLASHBACK (P revious JEE Q uestions )

JEE Main

1. Considering only the principal values of inverse trigonometric functions, the number of positive real values of x satisfying ()() 11 tantan2 4 xx π += is

(27th Jan 2024 Shift 2)

(1) More than 2 (2) 1 (3) 2 (4) 0

2. For α, β, γ ≠ 0, if sin–1α + sin–1β + sin–1γ = π and (α + β + γ)(α – γ + β) = 3αβ, then γ is equal to (31st Jan 2024 Shift 1)

(1) 3 2 (2) 1 2

CHAPTER 6: Inverse Trigonometric Functions

(3) 31 22 (4) 3

3. If a = sin–1(sin(5)) and b = cos–1(cos(5)), then a2 + b2 is equal to (31st Jan 2024 Shift 2)

(1) 4π2 + 25

(2) 8π2 – 40π + 50

(3) 4π2 – 20π + 50

(4) 25

4. Let x * y = x2 + y3 and (x*1)* 1 = x* (1* 1). Then the value of 42 1 42 2 2sin 2 xx xx  +−  ++  is (24 th Jun 2022 Shift 2) (1) 4 π (2) 3 π (3) 2 π (4) 6 π

5. The set of all values of k for which (tan–1x)3 + (cot–1x)3 = kπ3, x ∈ R, is the interval (24th Jun 2022 Shift 1)

(1) 17 , 328

(3) 113 , 4816

(2) 113 , 2416

(4) 19 , 328

6. The value of 1 i ta 15 cos1 4 n sn 4 π π

is equal to (25th Jun 2022 Shift 2) (1) 4 π (2) 8 π (3) 5 12 π (4) 4 9 π

7. If the inverse trigonometric functions take principal values, then

8. Let f(x) = 2cos–1x + 4cot–1x – 3x2 – 2x + 10, x ∈ [–1, 1]. If [ a,b ] is the range of the function, then 4a – b is equal to (26 th June 2022 Shift 1) (1) 11 (2) 11

9. The value of

The value

is e qua l to _________. (29th June 2022 Shift 1)

13. Let x = sin(2tan–1α) and 1 14 sintan. 23 y  =

If S = { α ∈ R : y 2 = 1 – x }, the n 163 S

α ∈ ∑ is equal to _____. (25th July 2022 Shift 2)

14. If 1 0 2 x << and 11sincosxx αβ = , then the value of 2 sin πα αβ   +  is (26 th July 2022 Shift 2)

(1) ()() 224112xx

(2) ()() 224112 xxx

(3) ()() 222114 xxx

(4) ()() 224114xx

15. 111 151 tan2tansec2tan 528  ++    is equal to (26th July 2022 Shift 1) (1) 1 (2) 2 (3) 1 4 (4) 5 4

16. For k ∈  , let the solutions of the equation cos(sin–1(xcot(tan–1(cos(sin–1x))))) = k, 0 < | x | < 1 2 be α and β, where the inverse

138 trigonometric functions take only principal values. If the solutions of the equation x2 – bx – 5 = 0 are 222 11and,then b k α αββ + is ______. (27th July 2022 Shift 1)

17. Considering only the principal values of the inverse trigonometric functions, the domain of the function () 2 1 2 42 cos 3fxxx x  −+ = +  is (28th July 2022 Shift 1)

(1) 1 , 4 

(3) 1 , 3  −∞

(2) 1 , 4

(4) 1 , 3  −∞

18. Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equaion cos–1(x) – 2sin–1(x) = cos–1(2x) is equal to (28th July 2022 Shift 1)

(1)

19. The domain of the function

(29th July 2022 Shift 2) (1) [1, ∞ ) (2) (–1, 2] (3) [–1, ∞ ) (4) (– ∞ , 2]

20. If 1 2 1 2 1 :sin 22 1 sin 14 x x Sxx x x π

CHAPTER 6: Inverse Trigonometric Functions

 , then () () () 2 2 sin5 2 cos5 xs xx xx π π ∈

+

−++

∑ is equal to ____. (13th Apr 2023 Shift 1)

21. The range of () 2 1 2 4sin 1 fxx x  = +  , is (13th Apr 2023 Shift 2)

(1) [0, 2π] (2) [0, π] (3) [0, π) (4) [0, 2π)

22. For x ∈(–1, 1], the number of solutions of the equation sin–1x = 2 tan–1x is equal to______. (13 th Apr 2023 Shift 2)

23. 1113843 tansec 33633

is equal to (24th Jan 2023 Shift 1) (1) 2 π (2) 4 π (3) 6 π (4) 3 π

24. If the sum of all solutions of 2 11 2 21 tancot, 123 xx xx

–1 < x < 1, x ≠ 0, is 4 , 3 α then a is _____. (25th Jan 2023 Shift 1)

25. Let a 1 = 1, a 2, a 3, a 4, ........ be consecutive natural numbers. Then 11 1223 11 tantan 11aaaa

+ ++  1 20212022 1 ..tan 1 aa  +…+ +  is (30th Jan 2023 Shift 2) (1) () 1 cot2022 4 π

(2) () 1 tan2022 4 π

(3) () 1 tan2022 4 π + (4) () 1 cot2022 4 π

26. Let y = f(x) represent a parabola with focus 1 ,0 2

and directrix

Then,

(1) is an infinite set

(31st Jan 2023 Shift 2)

(2) is an empty set (3) contains exactly two elements (4) contains exactly one element

27. Let (a,b) ⊂ (0, 2π) be the largest interval for which sin–1(sin θ) – cos–1(sin θ) > 0, θ ∈ (0, 2π), holds if αx2 + βx + sin–1(x2 – 6x + 10) + cos–1(x2 – 6x + 10) = 0 and α – β = b – a. Then, α is (31st Jan 2023 Shift 2) (1) 8 π (2) 48 π (3) 16 π (4) 12 π

28. Let S be the set of all solutions of the equation

(2) 2 3 π

(3) 2sin13 4 π

(4) sin13 4 π

29. Let 2 11 2 :01 and 11 2tancos 11 xRx Sxx xx ∈<<

If n(S) denotes the number of elements in S, then (1st Feb 2023 Shift 2)

(1) n(S) = 0

(2) n(S) = 1 and the element in S is less than 1 2

(3) n(S) = 1 and the element in S is more than 1 2

(4) n(S) = 2 and only one element in S is less than 1 2

JEE Advanced

30. For any y ∈  , let cot –1 ( y ) ∈ (0, π) and () tan1, 22 y ππ  ∈−  . Then, the sum of all the solutions of the equatio n 2 11 2 692 tancot 963 yy yy

.

Then, ()12 2sin1 xS x ∈ ∑ is equal to (1st Feb 2023 Shift 1)

(1) 0

, for 0 < |y| < 3, is equal to (JEE Adv 2023 P2)

(1) 233 (2) 323

(3) 436 (4) 643

CHAPTER TEST – JEE MAIN

Section – A

1. If f(x) = cot–1(4x2 +10x + 7) + cot–1(4x2 + 14x + 13) + cot–1(4x2 + 18x + 21) + cot–1(4x2 + 22x + 31), then () 1185 0 16 f  =

(1) 3 (2) 4 (3) 1 (4) 5

2. If x1, x2, and x3 are positive roots of x3 – 6x2 + 3px – 2p = 0(p ∈ R), then the value of 1 12 11 sin xx  ++

11 2331 1111 costan xxxx

+−+

is (1) 8 π (2) 6 π (3) 4 π (4) π

3. If the sum of all the solutions of 2 11 2 21 tancot, 123 xx xx π +=

–1 < x < 1, x ≠ 0 is 4 3 α , then α = (1) 1 (2) 2 (3) 3 (4) 4

4. If cos –1x – cos –1 2 y = α , where –1 ≤ x ≤ 1, –2 ≤ y ≤ 2, x ≤ 2 y for all x,y, then 4x2 – 4xy cosα + y2 is equal to (1) 2sin2α (2) 2cos2α+ 2x2y2 (3) 4sin2α (4) 4sin2α– 2x2y2

CHAPTER 6: Inverse Trigonometric Functions

5. The value of 111 444 tantantan 71939 ++ 14 tan..... 67 ++∞=

(1) 11111 tan1tantan 23 ++

(2) tan–11 + cot–13

(3) 11111 cot1cotcot 23 ++

(4) cot–11 + tan–13

6. 1 42 1 2 tan 2 n n r r Lt rr →∞ =  = ++

(1) 4 π (2) 2 π (3) 4 π (4) 2 π

7. Let 1 2121 1 6 tan. 23 kr krr r S ++ =  = + ∑ Then lim kk S →∞ is equal to : (1) 2 π (2) tan13 2    (3) cot13 2 

(4) tan–1(3)

8. If the inverse trigonometric function takes the principal value only, then the number of real values of x, which satisfy 111 34 sinsinsin 55 xx x  +=

, is equal to (1) 2 (2) 3 (3) 0 (4) 1

9. Let f ( x ) = sin x + cos x + tan x + sin –1 x + cos–1 x + tan–1x . If M and m are maximum and minimum values of f ( x ), then their arithmetic mean is equal to (1) cos1 2 π + (2) sin1 2 π + (3) tan1cos1 2 π ++ (4) tan1sin1 4 π ++

10. If 357 tan1 3!5!7!

, then the maximum value of α equals to

(1) 1 2 (2) 1 (3) (4) 1 2

11. The set of values of k, for which x 2 – kx + sin–1(sin4) > 0, for all real x, is (1) φ or null set (2) {1} (3) {1, 2} (4) {1, 2, 3}

12. The value of sin –1 (cos2) – cos –1 (sin2) + tan –1(cot4) – cot–1(tan4) + sec–1(cosec6) –cosec–1 (sec6) is (1) 0 (2) 3π (3) 8 – 3π (4) 5π – 16

13. If α is the negative real root of the equation x3 + bx2 + cx + 1 = 0 (b < c), then the value of tan–1α + tan–1 1 α    = (1) 2 π (2) 2 π (3) 0 (4) π

14. IF M and m respectively, are the maximum and minimum values of the function f(x) = tan–1(sinx + cosx) in 0, 2 π    , then the value of M + m =

(1) tan121 21  + 

(2) () 1 tan322π++ (3) () 1 tan322π−+ (4) tan121 21

+

15. If () 1111 tantantan 1216 fn  =+++  () 1111 tan.....tan 11211 nn  ++ +++  , then f(2021) = (1) 2020 2022 (2) 2022 2024 (3) 2021 2023 (4) 2019 2021

16. The value of 19 1 11 cotcot12 n pp p ==

, is (1) 23 22 (2) 22 23 (3) 19 21 (4) 21 19

17. If ()() 11 cotcostancos0, x αα−=≥ then sinx = (1) 2 tan 2 α (2) 2 cot 2 α

18. The value of

is equal to (1) tan–11 (2) tan–12 (3) tan–13 (4) tan–14

19. If the mapping f(x) = mx + c, m > 0 maps [–1, 1] onto [0, 2], then tan(tan–1 1 7 + cot–18 + cot–118) is equal to (1) 2

20. The value of x satisfying the equation 111 111 3tantantan 233 x −= + is

(1) x = 2 (2) 1 2 x = (3) 1 23 x = (4) none of these

Section – B

CHAPTER 6: Inverse Trigonometric Functions

(1) a1 = 5 (2) b1 = 3

(3) a2 = 10 (4) b2 = 7

2. Let ()()()() 1111 sincos,tancot fxxxgxxx =−=−

()()()() 1111 sincos,tancot fxxxgxxx =−=− and ()() 11 seccos hxxecx =− . Then choose the correct statement(s).

21. If 46 sin12 39 xx x  −+−+

where 0 ≤ |x| < 3, the number of values of x is equal to _______.

22. sin–1(sin3) + sin–1(sin4) +sin–1(sin5) = λ ⇒ |λ| = _______.

23. If 23 11 32 3 tantan 3 axxx k aaxa

, then k = ____.

24. If ()()222115 tancot, 8 xx π += then the absolute value of x is _______.

25. If f(x) = x11 + x9 – x7 + x3 + 1, suppose that f (sin –1 (sin1)) = a and f (tan –1 (tan(–1))) = k – a, then the value of k = ___.

CHAPTER TEST – JEE ADVANCED

2023 P1 Model Section – A [Multiple Option Correct MCQs]

1. If the ordered pairs of natural numbers (a1, b1) and (a2, b2) satisfy the equation arc cot8 = arc tan a – arc tan b (a1 < a2), then

(1) Domain of f(x) + g(x) is {1}.

(2) Domain of g(x) + h(x)is ) 2, ∞  .

(3) Domain of h(x) + f(x) is 1 ,1 2

.

(4) Domain of f(x) + g(x) + h(x) is φ.

3. If α,β, and γ are the roots of tan–1(x – 1) + tan–1x + tan–1(x + 1) = tan–13x, then

(1) α + β + γ = 0

(2) αβ + βγ + γα = 1 4

(3) αβγ = 1

(4) |α – β|max = 1

Section – B

[Single Option Correct MCQs]

4. If cot–1(y) ∈ (0, π) and 2tan–1y ∈ (–π, π) ∀ y ∈ R, then the integer nearest to the sum of solutions of the equation 2 11 2 6 93 tancot 694 yy yy π += for y > 0 is equal to

(1) 15 (2) 6 (3) 9 (4) 14

5. Let f ( x ) = sin –1 ( x ) + cos –1 ( x 2 ) + sin –1 ( x 3 ) + .....+ sin –1( x 2 n –1) + cos –1( x 2 n ) and g ( x ) = cos –1 ( x ) + sin –1 ( x 2 ) + cos –1 ( x 3 ) + ......+

cos–1(x2n–1) + sin–1(x2n). If minimum of f(x) + maximum of g(x) = 8π then n = (1) 7 (2) 8 (3) 4 (4) 16

6. If the minimum value of the function () 11sincos88 fxxx =+ is m, then the value of log2m is equal to (1) 1 4 π + (2) 3 1 4

1

7. If 111 sincostan ; xxy abc == 0 < x < 1, then the value of cos c ab π

is (1) 12 y yy (2) 1 – y2 (3) 12 2 y y (4) 2 2

Section – C [Integer Type Questions]

8. If f(x) = 2023 sin(sin–1x) + 2022 tan(tan–1x) – 2023 sin(sin–1x) – 2022 tan(tan–1x) + 2x + (2024)2 and g(x) = (2023)2 x2 – 2(2022)x + 1, then the number of value(s) of x, x ∈ R, that will satisfy the equation f(x) = g(x) is/ are _____.

9. If the sum of the series given by ()()() 111 cot22cot42cot72+++ () 1 cot112...... + infinite terms is equal to tan–1(k) then the value of [k4 + k2 + k] equals ([.] GIF) ____.

10. If the value of 888 1 111 tan pqr q pk r π === 

then greatest digit in the number k, equals

11. If f:[0, 4π] → [0, π] is defined by f(x) = cos–1 (Cos x ) then the number of points x ∈ [0, 4π] satisfying th e e quation ()10 10 fxx = is ___.

12. If y = sin(cot–1x) and x = 99, then 9802y2 = _____.

13. If 10 11 2 1 3 tancot 931 r m rrn =

(where m,n are coprime numbers), then the valu e of () 2 8 mn + is ____.

Section – D [Matrix Matching Questions]

14. Let (x,y) be such that sin–1(ax) + cos–1(y) + cos –1( bxy ) = 2 π . Match the statements in List I with List II.

List I List II

A. If a = 1 and b = 0, then (x, y) I) lies on the circle x2+y2 =1

B. If a = 1 and b = 1, then (x, y) II ) lies on (x2 – 1) (y2 – 1) = 0

C. If a = 1 and b = 2, then (x, y) III) lies on y = x

D. If a = 2 and b = 2, then (x, y) IV) lies on (4x2 – 1) (y2 – 1) = 0

Choose the correct answer from the options given below.

(A) (B) (C) (D)

(1) IV III I II

(2) II IV III I

(3) I II I IV

(4) III IV II I

15. Match List I with List II.

List I List II

CHAPTER 6: Inverse Trigonometric Functions

+

II ) 4

+ 

A. ()() ()() 1 1122 211 4 1costansintan cotsintansin xxx xxx x 

+

takes the value(s) I) 15 23

B. If cot(sin–1 12 x ) = sin(tan–1 (6) x ), x ≠ 0, then possible values of x is/are II ) 1 2

C. If cosα + cosβ + cosγ = 0 = sinα+sinβ+sinγ, then the possible value of cos 2 αβ

is III) 2

D. If cos( 4 π – θ) cos2θ + sinθ sin2θ s ecθ = cosθ sin2θ secθ + cos( 4 π +θ) cos2θ), (θ≠ 2 nπ ,n ∈ I), then the value of secθ is IV) 1

Choose the correct answer from the options given below.

(A) (B) (C) (D)

(1) IV I III II

(2) I IV II III

(3) IV I II III

(4) I IV III II

16. Match the following List I with List II. List I List II

A. 2cot(cot–1(3)+cot–1(7)+cot –1 (13)+cot–1(21)) has the value equal to I) 3

B. If 11 1 1 11 tantan 37 1 tantan..... 13 1 tan 381

m n = , where m,n ∈ N, then sum of the digits in the least value of (m+n) is

C. Number of integral ordered pairs (x,y) satisfying the equation 11 tantanarcarc xy + 1 tan 10 arc = is

III) 5

D. The smallest positive integral value of n for which (n–2)x2 + 8x + n + 4 > sin–1(sin12)+cos–1(cos12), ∀ x ∈ R, is IV) 8

V) 10

Choose the correct answer from the options given below.

(A) (B) (C) (D)

(1) IV II I III

(2) I II II III

(3) V I IV II

(4) I IV II IV

17. If 1 ! n n r Sr = =∑ for n>6, where [.] denotes GIF and 6 1 !873 r r =

=

, then match List I with List II.

Choose the correct answer from the options given below.

ANSWER KEY

JEE Main Level

– II

Level – III

3 (2) 2 (3) 1 (4) 3 (5) 3 (6) 2 (7) 1 (8) 1 (9) 2 (10) 31 (11) 5 (12) 139 (13) 5 (14) 1 (15) 0

Theory-based Questions

JEE Advanced Level (1) 1,3 (2) 1,2,3 (3) 1,2,3 (4) 1,3,4 (5) 1,2 (6) 1,2,3 (7) 1,4 (8) 1,2,3 (9) 1,3 (10) 1,2,3

CHAPTER 6: Inverse Trigonometric Functions

(11) 1,3 (12) 1,2,3,4 (13) 1,2,4 (14) 1,4 (15) 1,2,3,4 (16) 3 (17) 1 (18) 1 (19) 3 (20) 5 (21) 2 (22) 10 (23) 7 (24) 1 (25) 3 (26) 1 (27) 2 (28) 2 (29) 7 (30) 2 (31) 0 (32) 0 (33) 0.25 (34) 3.14 (35) 3 (36) 2 (37) 1 (38) 3 (39) 4 (40) 6 (41) 2 (42) 1 (43) 4 (44) 2 (45) 2 (46) 4 (47) 3 (48) 2 (49) 4 (50) 2 (51) 1 (52) 4 (53) 3 (54) 3 (55) 2 (56) 1 (57) 3 (58) 40 (59) 3 (60) 1 (61) 2 (62) 2

Flashback (1) 2 (2) 1 (3) 2 (4) 2 (5) 1 (6) 2 (7) 3 (8) 2 (9) 1 (10) 1 (11) 3 (12) 29 (13) 130 (14) 2 (15) 2 (16) 12 (17) 2 (18) 1 (19) 3 (20) 4 (21) 4 (22) 2 (23) 4 (24) 2 (25) 1 (26) 3 (27) 4 (28) 2 (29) 2 (30) 3

Chapter Test – JEE Main (1) 2 (2) 3 (3) 2 (4) 3 (5) 2 (6) 1 (7) 3 (8) 2 (9) 1 (10) 4 (11) 1 (12) 4 (13) 2 (14) 3 (15) 3 (16) 4 (17) 1 (18) 4 (19) 4 (20) 1 (21) 3 (22) 2 (23) 3 (24) 1 (25) 2

Chapter Test – JEE Advanced (1) 1,2,4 (2) 1,2,4 (3) 1,2,4 (4) 1 (5) 2 (6) 3 (7) 4 (8) 1 (9) 7 (10) 7 (11) 3 (12) 1 (13) 4 (14) 3 (15) 3 (16) 2 (17) 1

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.