Page 1

Algebra 2  Tip  Sheet     The  tip  sheet  is  to  be:   1. Completed  on  a  half  poster  board.    (You  may  write  on  the  front  and  the  back.)   2. Completed  with  the  topics  in  the  order  in  which  they  are  listed  on  this  handout.   3. Laminated  at  the  office  store  of  your  choice.     You  can  make  up  to  a  104.    Neatness  and  following  directions  count.    If  the  tip  sheet  is  not  laminated,   then  20  points  will  be  deducted  from  your  grade  before  I  start  grading  the  individual  components.    If   the  tip  sheet  is  not  neat  and  organized  according  to  the  listing  of  the  topics,  then  up  to  20  points  will   be  deducted  from  your  grade  before  I  start  examining  your  tip  sheet.    In  addition,  if  I  cannot  read   something,  then  you  will  not  receive  credit  for  including  that  portion  of  the  material.    You  MUST   provide  an  example  for  each  item,  unless  it  is  specified  that  an  example  is  not  needed.  The  tip   sheet  should  be  completed  by  you  and  in  your  handwriting,  unless  you  get  my  prior  approval   to  do  otherwise.     The  tip  sheet  is  due  on  May  17  (A  Day)  and  May  18  (B  Day).    There  will  be  a  20-­‐point  deduction   for  each  school  day  (A  or  B)  that  the  tip  sheet  is  late.    The  tip  sheet  counts  for  TWO  quiz  grades.     This  means  that  if  you  do  a  great  job  on  it,  your  quiz  average  can  be  improved  greatly.    This   also  means  that  if  you  do  a  poor  job  on  it,  your  quiz  grade  can  be  damaged  greatly.     (Remember  that  ONE  quiz  grade  is  dropped  …  so  if  this  is  your  worst  quiz  grade,  then  one  of   the  two  entries  of  this  grade  will  be  dropped  but  the  other  will  remain  in  your  average.)     Algebra  2  Tip  Sheet  Topics     You  will  need  to  demonstrate  the  following  concepts  completely  through  examples  with  explanations   and,  when  applicable,  graphs  and/or  drawings.  You  MUST  provide  an  example  for  each  item,   unless  it  is  specified  that  an  example  is  not  needed.     Chapter  6  (12  points)   Provide  a  single  example  that  shows  how  to  find/do  the  following  for  a  quadratic  function:   1. Y-­‐intercept   2. Axis  of  symmetry   3. Vertex  –  and  maximum/minimum   4. Roots  (zeros)     5.  Table  of  values  centered  around  the  vertex   6. Graph  the  parabola     Chapter  7  (26  points)   Provide  an  example  for  each:   1. Finding  a  the  value  of  a  polynomial  function  for  a  specific  x-­‐value  using  traditional   substitution.   2. Finding  a  the  value  of  a  polynomial  function  for  a  specific  x-­‐value  using  synthetic  substitution.   3. Solving  a  polynomial  equation  by  factoring  and  using  the  zero  product  property   4. Solving  a  polynomial  equation  by  putting  it  in  quadratic  form   5. Descarte’s  Rule  of  Signs   6. Writing  a  polynomial  function  of  least  degree  given  the  zeros  of  the  polynomial   7. Listing  all  of  the  POSSIBLE  rational  zeros  of  a  polynomial  function   8. Finding  ALL  zeros  of  a  polynomial  function  without  using  the  graphing  calculator  

9. Finding ALL  zeros  of  a  polynomial  function  using  the  graphing  calculator  to  find  the  real  zeros   10.  Conducting  the  composition  of  two  functions   11. Testing  two  functions  to  see  if  they  are  inverses  of  each  other   12. Determining  the  end  behavior  of  a  polynomial  function  (  an  example  must  be  shown  for  each   of  the  four  cases)   13. One  example  showing  how  to  find  the  zeros  and  maximum/minimum  value  of  a  polynomial   function  on  the  graphing  calculator  

Chapter  8  (24  points)   Provide  ONE  example  for  EACH  type  of  conic.    Make  sure  it  shows:       a. How  to  determine  that  a  given  equation  is  that  type  of  conic     b.  How  to  find  all  the  critical  parts  of  the  conic  (center,  vertex/vertices,  focus/foci  etc.,   c. How  to  graph  that  type  of  conic.   *Each  part:  a,  b,  and  c  will  be  worth  2  points   1. Parabola   2. Circle   3. Ellipse   4. Hyperbola     Chapter  9  (14  points)   Provide  an  example  for  each:   1. Adding  polynomial  expressions   2. Subtracting  polynomial  expressions   3. Multiplying  polynomial  expressions   4. Dividing  polynomial  expressions   5. Solving  a  polynomial  equation   6. Solving  a  polynomial  inequality   7. Using  (ra)2tey  to  analyze  a  polynomial  function  and  graphing  a  polynomial  function     Chapter  10  (14  points)   Provide  an  example  of  each:   1. Simplifying  exponential  expressions   2. Finding  an  exponential  function  that  goes  through  two  points   3. Solving  exponential  equations  using  the  same  base   4. Going  back  and  forth  between  logarithmic  and  exponential  form   5. Solving  exponential  equations  using  logarithms   6. Solving  logarithmic  equations   7. One  word  problem  with  exponents     Chapter  11  (14  points)   Provide  an  example  for  each:   1. Finding  the  indicated  term  for  an  arithmetic  sequence   2. Finding  the  sum  of  the  first  n  terms  of  an  arithmetic  series   3. Finding  the  indicated  term  for  an  geometric  sequence   4. Finding  the  sum  of  the  first  n  terms  of  an  geometric  series   5. Sigma  notation  (either  type  of  series)   6. Finding  arithmetic  means   7. Finding  geometric  means