Issuu on Google+

Op weg naar gecijferdheid

felgc_a_0110_dv

Openbare les, 8 januari 2010 Mieke van Groenestijn

lectoraat Gecijferdheid


ISBN/EAN 978-90-78752-13-4 Š Hogeschool Utrecht, Lectoraat Gecijferdheid Niets van deze uitgave mag gepubliceerd of vermenigvuldigd worden dan na uitdrukkelijke toestemming van Hogeschool Utrecht. Aan deze uitgave kunnen geen rechten worden ontleend.


Op weg naar gecijferdheid


1. Inleiding: Rekenen van vroeger, nu en voor de toekomst 5 2. Gecijferdheid 11 3. Onderzoek naar gecijferdheid 21 4. Praktijkgericht onderzoek 31 5. Dankwoord 37 6. Tot slot 39 7. Aanbevelingen 45 Literatuur 49 Curriculum Vitae 52


“rekenen is onmisbaar bij het ordenen en structureren van de dagelijkse leefwereld.”

pag 5

hoofdstuk 1 Inleiding: rekenen van vroeger, nu en voor de toekomst

lectoraat Gecijferdheid

openbare les Op weg naar gecijferdheid

1 / Inleiding: rekenen van vroeger, nu en voor de toekomst Taal en rekenen/wiskunde zijn van oudsher beide essentiële componenten van ons bestaan. Taal is nodig voor communicatie met de medemens, rekenen/wiskunde is nodig om structuur te brengen in het dagelijks leven.

Afbeelding 1

Het rekenen van vroeger Rekenen is ontstaan in allerlei verschillende delen van de wereld en in verschillende culturen. Daardoor zijn ook verschillende getal­ systemen ontstaan. Denk bijvoorbeeld aan het rekenen van de Inca’s, de Maya’s, de Chinezen, de Arabieren, de Egyptenaren en de Romeinen. Van de Romeinen zien we nu nog de jaartallen op vele oude gebouwen in ons land en de cijfers op de klok. Het doel van het rekenen was bij alle volken hetzelfde: overleven. Door de eigen omgeving te ordenen en te structureren kreeg men greep op de omgeving en werden de overlevingskansen groter, vooral in moeilijke tijden. Zo is het tellen ontstaan om te kunnen bepalen hoeveel bezittingen je hebt, bijvoorbeeld 6 koeien, 10 schapen, 14 kippen en 3 varkens. Het meten is ontstaan om de oppervlakte van het eigen land te kunnen meten, om afstanden en reistijden te bepalen. Ook belangrijk is de dagindeling: het ritme van licht en donker, de stand van de zon en de maan en de seizoenen. Zo ontstonden de klok en de kalender. Rekenen en meten zijn ook nodig om huizen te kun­ nen bouwen en om kleding te maken en daarvoor moet je weer gereedschap uitvinden. Kortom: rekenen/wiskunde is on­mis­baar bij het ordenen en structureren van de dagelijkse leefwereld. Rekenen leerde je op straat van andere mensen. Er waren reken­ meesters die op de hoek van de markt konden uitrekenen hoeveel je moest betalen als je bijvoorbeeld 3 drie schapen en 2 kippen had gekocht. De mensen bedachten allerlei hulpmiddelen om snel te kunnen rekenen. Denk maar aan de Chinese, de Japanse,


pag 6

hoofdstuk 1 Inleiding: rekenen van vroeger, nu en voor de toekomst

de Russische en de Romeinse abacus en aan de Chinese, Egyptische en Romeinse cijfers. De mooiste uitvinding waren echter de Arabische cijfers met het getal nul rond de 7e eeuw voor Christus. Dat was de uitvinding van het positionele stelsel. Vanaf dat moment leerde men cijferen. Omdat de Arabieren van rechts naar links lezen en schrijven, hebben wij van rechts naar links leren cijferen.

Afbeelding 2 Afbeelding 3

Om te kunnen overleven was men in het verleden genoodzaakt om bijvoorbeeld te kunnen berekenen hoelang de winter duurde en hoeveel voorraad men aan aardappels en worsten moest heb­ ben om de winter te kunnen doorstaan. Het maken van brood, kaas en boter en het wecken van groenten en vruchten waren geweldige uitvindingen om gedurende de hele winter toch vol­ doende eten in huis te hebben. Tegenwoordig hebben we een vrieskist en een koelkast in huis en de supermarkt om de hoek. Maar ook het wiel, de windmolen, de stoomtrein, de fiets en de auto zijn grote uitvindingen geweest. Zo gingen en gaan de ontwikkelingen altijd maar door. De mens is gedurende zijn hele bestaan altijd al uitvinder geweest en uitvindingen zijn altijd ge­baseerd op denkwerk en op rekenwerk. Rekenen/wiskunde is de basis van ons bestaan, in het verleden, nu en in de toekomst.

Afbeelding 4

Het rekenen van nu Het rekenen van nu leren we op school. We rekenen uit een boek en maken sommen. Buiten de school is de dagelijkse leefwereld. Zoals hierboven beschreven, hebben de kinderen rekenen nodig om hun eigen leefwereld te kunnen inrichten, maar, in tegenstel­ ling tot vroeger, moeten zij nu eerst een vertaalslag maken van het rekenen uit een boek op school naar het rekenen buiten

pag 7

hoofdstuk 1 Inleiding: rekenen van vroeger, nu en voor de toekomst

school. Deze transfer is lastig en veel minder vanzelfsprekend dan vaak wordt gedacht (Evans, 2000). Daar komt bij dat door alle technologische ontwikkelingen de functie van het rekenen in de maatschappij minder zichtbaar is. Ook dankzij alle hulpmiddelen die wij in huis hebben, zoals onder andere de verwarming en de koelkast, hoeven wij ons nauwelijks meer in te spannen om écht te overleven zoals dat in vroegere tijden het geval was (Tegen­woordig kun je daar met collega’s survivalweekenden voor organiseren). Neem bijvoorbeeld de supermarkt. De producten staan in de schappen in voorverpakte hoeveelheden en we be­talen met een pas in plaats van met echt geld. Wij ervaren ook nauwelijks meer wat het metriek stelsel werkelijk betekent. De pakken melk van één en anderhalve liter staan klaar in de koeling. We kopen een zak aardappels van 2,5 of 5 kilogram. Tomaten zijn verpakt in plastic bakjes. We wegen nog wat groente af en we pakken zes appels en vier bananen, maar we kijken nauwelijks naar het gewicht op de weegschaal. Alleen de prijs is van belang. Als consument hoeven we tegenwoordig weinig meer echt te rekenen, maar in alle beroepen is rekenen een essentieel deel van het werk. Daar is kennis van getallen en maten, het kunnen denken in verhoudingen en het kunnen rekenen met maten, uiterst belangrijk. Om dit rekenwerk te vergemak­ kelijken gebruiken we rekenmachines en computers, maar deze apparaten kunnen alleen uitrekenen wat mensen bedenken. Ook als burger, doe-het-zelver, sporter en hobbyist komen we vaak in situaties waarin een beroep wordt gedaan rekenwiskun­ dige kennis en vaardigheden. Het probleem met het rekenen op school is dat rekenen uit een boek nauwelijks iets te maken heeft met het rekenen in het dage­ lijkse leven. Daarom is het van het grootste belang om werkelijke, betekenisvolle rekenwiskundige activiteiten als meten (van lengte, gewicht, inhoud en oppervlakte) en meetkunde regelmatig in het onderwijs in te bouwen. Alleen maar rekenen uit een boek biedt kinderen onvoldoende bagage voor het rekenen in het dagelijks leven en voor hun toekomstige beroep.


pag 8

hoofdstuk 1 Inleiding: rekenen van vroeger, nu en voor de toekomst

Rekenen voor de toekomst Ons huidige onderwijs is gebaseerd op cultuuroverdracht van het verleden. Daar is niets mis mee, als wij ons maar realiseren dat mensen in het verleden dingen ontwikkelden met de blik op hun toekomst en daarbij voortdurend probeerden te bedenken hoe zij het rekenwerk beter, sneller en eenvoudiger konden maken. De ontwikkeling van rekenwiskundige kennis en vaardigheden gaat altijd door, mede beïnvloed door en afgestemd op nieuwe technologische mogelijkheden. De rekenmachine en computer­ programma’s die het lastige rekenwerk van je kunnen overnemen, zoals bijvoorbeeld Excel, maar ook allerlei geavanceerde computer­ programma’s voor specifieke beroepen, zijn daar de huidige voor­ beelden van. Onze kinderen groeien op met computers en zijn de uitvinders van de toekomst. Zij moeten in staat zijn om hun toekomstige leefwereld te kunnen inrichten en te kunnen afstemmen op de mogelijkheden die zij dan hebben. Technologische ontwikkelingen gaan altijd door en gaan steeds sneller. Ook al lijkt het alsof onze leefwereld daardoor steeds makkelijker wordt, niets is minder waar. De wereld wordt alleen maar steeds complexer en daardoor worden steeds hogere eisen gesteld aan volwassenen om goed te kunnen functioneren in de maatschappij. Goede communicatieve vaardigheden en goede rekenwiskundige kennis en vaardigheden, afgestemd op de ontwikkelingen van nu en met de blik op de toekomst, zijn daarvoor uiterst belangrijk. Het onderwijs heeft de taak onze kinderen voor te bereiden op hun toekomst. Wij zullen ons dan ook moeten afvragen welke rekenwiskundige kennis en vaardigheden zij minimaal moeten beheersen om te kunnen functioneren in de maatschappij en als basis voor verdere ontwikkeling in de toekomst. Leerlingen en studenten zijn niet klaar als zij hun mbo, hbo of wo studie hebben afgerond. Dan begint het pas. Zij worden verondersteld actief te participeren in de maatschappij en bij te dragen aan verdere ont­ wikkeling van onze maatschappij. Dit doet tevens een beroep op hun eigen vermogen om zichzelf verder te ontwikkelen.

pag 9


“De mens is gedurende zijn hele bestaan al­tijd al uitvinder geweest en uitvindingen zijn altijd gebaseerd op denkwerk en op rekenwerk.”

pag 11

hoofdstuk 2 Gecijferdheid

lectoraat Gecijferdheid

openbare les Op weg naar gecijferdheid

2 / Gecijferdheid

Ondanks dat rekenen en wiskunde al eeuwenlang een eenheid vormen en samen één van de twee pijlers zijn waar de maatschappij op rust, heeft het begrip gecijferdheid pas zijn intrede gedaan in de tweede helft van van de vorige eeuw. Een eerste definitie dateert van 1977 en komt uit Australië. De term ‘numeracy’ wordt gebruikt in een officieel stuk van het Departement van Onderwijs van West Australië uit 1977. Hierin wordt gecijferd­ heid gedefinieerd als: The term ‘numerate’ is understood to mean mathematical literacy... A person is considered to be literate and numerate when he has acquired the skills and concepts which enable him to function effectively in his group and community, and when his attainment in reading, writing and mathematics make it possible for him to continue to use these skills to further his own and his community’s development. (Willis, 1990, Reeves, 1994) Daarbij wordt aangegeven over welke kennis en vaardigheden een volwassene wordt verondersteld te beschikken om als ‘numerate’ beschouwd te kunnen worden, namelijk: • mastery of basic number facts (tables); • competence in operations (+, -, x, /) with whole numbers, fractions, decimals, percentages, money and measurements; • skills in estimation in relation to these operations, and the habit of making estimates; • skill in interpreting graphs; • sound proportion concept; • statistical literacy based on experiences with chance processes. In dit document wordt gecijferdheid (numeracy) sterk gerelateerd aan rekenwiskundige doelen. Na deze publicatie focuste men al snel op praktische en functionele toepassingen van rekenen en wiskunde


pag 12

hoofdstuk 2 Gecijferdheid

voor het functioneren in beroep en maatschappij. Men begreep dat gecijferdheid een verschillende invulling kan hebben in verschillende situaties. Een automonteur heeft andere kennis en vaardigheden nodig dan een verpleegkundige. In 1984 verscheen dan ook de volgende definitie van het Beazley Comité: Numeracy is the mathematics for effective functioning in one’s group and community, and the capacity to use these skills to further one’s own development and of one’s community. (Beazley, 1984) In deze definitie heeft het begrip gecijferdheid een meer individueel karakter gekregen. Een toelichting met inhoudelijke omschrijving is hierbij achterwege gelaten. Het accent ligt op de wiskunde die iemand nodig heeft om te kunnen functioneren in zijn eigen gemeenschap, maar ook weer gekoppeld aan verdere ontwikkeling van de eigen persoon en van zijn eigen gemeenschap. Volwassenen worden verondersteld actief bij te dragen aan de verdere ontwikke­ ling van de maatschappij. De eerste keer dat het begrip ‘gecijferdheid’ in Nederland werd gebruikt, was tijdens een rede van Van der Blij in 1986 (van der Blij, 1987). Hij vroeg zich af of er zoiets bestond als ‘wiskundige ongeletterdheid’, vergelijkbaar met ‘ongeletterdheid’, vanwege het regelmatig voorkomende verkeerd gebruik en verkeerde interpretatie van getallen in kranten en advertenties. Treffers (1989) refereerde tijdens zijn oratie aan Van der Blij en vroeg zich af of ongecijferdheid kon worden voorkomen door goed onder­ wijs in de basisschool. Enkele jaren later beschreef Goffree gecijferdheid als ‘het functioneel gebruik maken van het reken­ systeem’ (Goffree, 1991). In de jaren ‘80 en ‘90 werd ook steeds duidelijker dat, ondanks de leerplicht in westerse landen, veel volwassenen niet of onvoldoende beschikken over functionele rekenwiskundige vaardigheden.

pag 13

hoofdstuk 2 Gecijferdheid

Het Britse onderzoek ‘Make it count’ toonde aan dat: There are indeed many adults in Britain who have the greatest difficulty with even such apparently simple matters as adding up money, checking their change in shops or working out the cost of five gallons of petrol. Yet these adults are not just the un­­ intelligent or the uneducated. They come from many walks of life and some are very highly educated indeed, but they are hopeless at arith­metic and they want to do something about it. (Cockcroft, 1982, p.5) O’Donoghue merkt op in zijn artikel Adults, Mathematics, Culture and Society: Sadly in many developed countries the legacy of school mathematics is widespread innumeracy in the adult population. (Coben, O’Donoghue and FitzSimons, 2000, p.103). En natuurlijk kennen wij allemaal het boek ‘Ongecijferdheid’ van Paulos (1988), waarin hij vele voorbeelden van ongecijferdheid beschrijft, zelfs van respectabele burgers. Nationaal onderzoek onder volwassenen in de Verenigde Staten1 (NALS, 1992) toonde aan dat ongeveer de helft van de volwassenen niet in staat was dagelijkse rekenactiviteiten uit te voeren, zoals bij­ voorbeeld het lezen van een reistijdentabel van bussen of treinen (Gal, 1993, p.2). Naar aanleiding daarvan werd in de periode 19901996 een eerste internationaal vergelijkend onderzoek gehouden in zestien westerse landen, waaronder Nederland, de International Adult Literacy Study (IALS), vergelijkbaar met PISA2. Daaruit bleek dat in Nederland ongeveer 10% van de volwassenen niet verder komt dan het niveau van eind groep 6 en nog eens 20% niet verder dan het niveau van ongeveer onderbouw voortgezet onderwijs (Houtkoop, 1999). Vervolgens is een vervolgstudie uitgevoerd in 2002, met een tweede ronde in 2006, de Adult Literacy and Life Skills Study (ALL).


pag 14

Figuur 1 Numerate Behavior

hoofdstuk 2 Gecijferdheid

pag 15

Numerate behavior involves: managing a situation or solving a problem in a real context everyday life work societal further learning

hoofdstuk 2 Gecijferdheid

Hiervan zijn de eerste resultaten bekend, maar er kunnen nog geen conclusies worden getrokken. Voor deze studie werd een nieuwe definitie van gecijferdheid geformuleerd: The knowledge and skills required to effectively manage the mathematical demands of diverse situations. (Gal, Van Groenestijn, Manly, Schmitt and Tout, 1999)

by responding identifying or locating acting upon - order/sort - count - estimate - compute - measure - model interpreting communicating to information about mathematical ideas quantity & number dimension & shape pattern & relationships data & chance change that is represented in a range of ways objects & pictures numbers & symbols formulae diagrams & maps graphs tables texts and requires activation of a range of enabling knowledge, behaviors, and processes mathematical knowledge and understanding mathematical problem-solving skills literacy skills beliefs and attitudes

Maar een definitie is niet toetsbaar, alleen gecijferd gedrag is observeerbaar en toetsbaar. Voor het ontwikkelen van toetsbare items voor dit onderzoek is in 1999 een beschrijving gegeven van gecijferd gedrag, numerate behavior: Numerate behavior involves managing a situation or solving a problem in a real context (everyday life, work, societal, further learning) by responding (identifying, interpreting, acting upon, communicating about) to mathematical information (quantity & number, dimension & shape, pattern & relationships, data & chance, change) that is represented in a range of ways (objects & pictures, numbers & symbols, diagrams & maps, graphs, tables, texts, formulae) and requires the activation of a range of enabling processes and behaviors (mathematical knowledge and understanding, mathematical problem solving skills, literacy skills, beliefs and attitudes). (Gal, Van Groenestijn, Manly, Schmitt & Tout, 1999; table 2.1) Door telkens een element uit de vijf categorieĂŤn te kiezen kan men observeerbaar gedrag formuleren voor elke individuele situatie, bijvoorbeeld: Numerate behavior involves managing a situation or solving a problem in everyday life by acting upon (estimation with money) to information concerning quantity and number that is represented by pictures (in advertisements in leaflets) and requires the activation of computational and estimation skills. (Van Groenestijn, 2002, pp 32-33)


pag 16

hoofdstuk 2 Gecijferdheid

Voor mijn eigen dissertatie heb ik de volgende definitie gebruikt: Gecijferdheid is een dynamisch concept. Het betreft de kennis en vaardigheden die nodig zijn om adequaat te kunnen om­gaan met rekenwiskundige problemen in persoonlijke en maatschappe­ lijke situaties, in combinatie met het vermogen om deze kennis en vaardigheden flexibel te kunnen aanpassen aan nieuwe ont­ wikkelingen in een continu veranderende maatschappij. (Van Groenestijn, 2002) Gecijferdheid draagt wezenlijk bij aan de ontwikkeling van ieder mens tot een uniek persoon, maar daarbij ook aan de ontwikkeling van de kennismaatschappij. Gecijferdheid is zichtbaar in functionele, authentieke situaties waarin volwassenen met getallen omgaan. Iemand die gecijferd is beschikt over: 1. Functionele rekenwiskundige kennis en vaardigheden. 2. Competenties voor het managen van rekenwiskundige situaties. 3.Competenties voor het zelfstandig verwerven van nieuwe informatie. ad 1. Bij functionele rekenwiskundige kennis en vaardigheden worden de volgende domeinen onderscheiden: • getallen en bewerkingen; • verhoudingen, breuken, decimale getallen en procenten; • meten en meetkunde, waaronder het metriek stelsel, geld en tijd; • verbanden, waaronder data, kans en groei/ informatieverwerking. Hierbij wordt verondersteld dat iedere volwassene beschikt over: • Een set van elementaire rekenwiskundige kennis en vaardigheden als basis om verder te kunnen leren. • Specifieke rekenwiskundige kennis en vaardigheden, afhankelijk van de individuele persoon, beroep en maatschappelijke positie.

pag 17

hoofdstuk 2 Gecijferdheid

ad 2. Voor het kunnen managen van situaties waarin rekenwis­ kundige activiteiten worden verlangd, mag van een volwassene worden verwacht dat hij (of zij): • Een algemeen rekenwiskundige houding heeft ontwikkeld met een goed ‘gevoel voor getallen’. Dat betekent onder andere dat hij betekenis kan geven aan getallen in hun context, kan berede­ neren of getallen kloppen, maten en afstanden kan schatten. • Situaties kan identificeren waarin een rekenwiskundig probleem of activiteit ingebed is. • Deze situaties kan analyseren en kan bepalen welke reken­ wiskundige informatie aanwezig is en welke activiteiten nodig zijn om een probleem op te lossen of op een andere wijze adequaat kan handelen. • Kan communiceren over rekenwiskundige informatie en vraagstukken. • Effectieve beslissingen kan nemen op basis van berekeningen. • Een onderzoekende houding heeft ontwikkeld voor de betekenis van getallen in nieuwe situaties. • Een reflectieve houding heeft ontwikkeld om het eigen handelen te kunnen beoordelen op juistheid en effectiviteit. • Constructief kan samenwerken. ad 3. De snelle ontwikkelingen in onze huidige kennis­maatschappij doen een groot beroep op de flexibiliteit en het aanpassings­ vermogen van elk individu. Dit betekent voortdurende bij- en nascholing, zowel formeel als informeel, ofwel lifelong learning. Scholing vraagt om een positieve en open attitude ten aanzien van ontwikkelingen en inzicht in eigen leervermogen en leervaardigheden. Het betekent ook kunnen samenwerken en leren van en aan elkaar in werksituaties. (Van Groenestijn, 2002)


pag 18

hoofdstuk 2 Gecijferdheid

In het onderwijs wordt vaak alleen aandacht besteed aan de eerste component en niet of minder aan de tweede en derde component. Waarschijnlijk wordt verondersteld dat leerlingen die laatste twee als vanzelf ontwikkelen in de course of life, terwijl deze juist de essentie vormen van de transfer van schoolse kennis en vaardigheden naar toepasbare bruikbare kennis en vaardigheden. Het is een taak van het onderwijs om situaties te creëren waarin de hier genoemde componenten alle drie bewust worden ingebed. Dit is de basis voor het ontwikkelen van gecijferd gedrag en van een goede attitude voor lifelong learning. Tevens kan dit bijdragen aan verdere ontwikkeling van de samenleving. Alleen door de hierboven genoemde drie componenten gezamen­ lijk in te bedden in het onderwijs kan een houding voor lifelong learning groeien. Het leren is na het verlaten van school of beroeps­ onderwijs niet afgerond.

pag 19


“Alleen maar rekenen uit een boek biedt kinderen onvoldoende bagage voor het rekenen in het dagelijks leven en voor hun toekomstige beroep.”

pag 21

hoofdstuk 3 Onderzoek naar gecijferdheid

lectoraat Gecijferdheid

openbare les Op weg naar gecijferdheid

3 / Onderzoek naar gecijferdheid

Naast vergelijkend internationaal onderzoek naar gecijferdheid van volwassenen is er in de afgelopen twee decennia geleidelijk aan ook gestart met inhoudelijk onderzoek naar gecijferdheid. Ook hier kunnen we weer veel leren van wat volwassenen nodig hebben en hoe zij leren in buitenschoolse situaties. Hieronder beschrijf ik be­ knopt het proces van het dagelijkse probleemoplossend rekenen. Daarna ga ik globaal in op enkele Europese projecten en op de huidige Nederlandse situatie. Rekenen in het dagelijks leven is altijd ingebed in een functio­ nele situatie, waarbij onder andere een beroep wordt gedaan op rekenwiskundige kennis en vaardigheden. Zo’n situatie is meestal een complex geheel van visuele en/of auditieve infor­ matie bestaande uit tekst, getallen en/of beeld, bijvoorbeeld een reclamefolder, tv-documentaire of krantenartikel. De per­ soon moet daar eerst de getalsmatige informatie in kunnen identificeren, dit in de betekenis van de context plaatsen en bepalen wat daarmee moet gebeuren. In veel situaties zal daarna iets moeten worden uitgerekend, maar dat is niet altijd het geval. Om dit proces te kunnen analyseren maken we gebruik van het drieslagmodel. (Van Groenestijn, 2002) De stappen in dit proces zijn als volgt: 1. De persoon analyseert een functionele situatie en identificeert daarbinnen getalsmatige informatie (context). Hij bepaalt wat ermee moet gebeuren. Soms is een eenvoudige actie vol­ doende en soms moet daarbij iets worden uitgerekend. Hij of zij bedenkt vervolgens op basis van inzicht wat er uitgerekend moet worden en hoe hij dat gaat doen. (horizontaal mathematiseren)


pag 22

hoofdstuk 3 Onderzoek naar gecijferdheid

pag 23

2. De persoon voert de berekening uit en komt tot een oplossing. Dit doet hij op zijn eigen beste manier: schattend, precies reke­ nen, uit het hoofd, op papier of met een rekenmachine. (technisch rekenen/verticaal mathematiseren) 3. Daarna beslist de persoon of het antwoord goed is. Dat doet hij door de oplossing weer te koppelen aan de context en te reflecteren op het oplossingsproces. Gedurende dit proces kan hij telkens tussendoor terugblikken op wat hij al bedacht heeft en indien nodig zijn handelingen bijstellen. (reflectie)

Figuur 2 Drieslagmodel

hoofdstuk 3 Onderzoek naar gecijferdheid

Context

Oplossing

€ 220,-

Alleen deze week 20% korting Afbeelding 5

Door tijdens dit proces te reflecteren op zijn eigen handelen, wordt hij zich bewust van zijn eigen handelen. Hij slaat zijn erva­ ringen op in zijn geheugen. In een nieuwe vergelijkbare situatie kan hij gebruikmaken van wat hij in een eerdere situatie al eens heeft uitgevoerd. Bovenstaande is een iteratief proces. De per­ soon beweegt zich in alle richtingen in deze driehoek en kan voortdurend zijn handelen bijstellen. Daarbij kan hij ook nieuwe kennis en vaardigheden ontwikkelen. Schematisch kan dit worden weergegeven in het drieslagmodel.

Aanpak

Reflectie

Uitvoering

Bewerking

Het drieslagmodel helpt tevens bij het observeren en analyseren van rekenprocessen bij leerlingen. In de schoolsituatie wordt het functioneel rekenen geoefend met contexten. Contexten zijn vaak de start om nieuwe rekenkennis en rekenvaardigheden te leren in een betekenisvolle situatie en dienen tevens als toepassingssituatie om het rekenen te oefenen. Een context in een reken- of wiskunde­ boek is echter nooit een directe functionele, authentieke situatie. Het doet een groot beroep op het voorstellingsvermogen van de leerling om de transfer te maken van boek naar werkelijkheid. Eigen ervaringen spelen daarbij een belangrijke rol. (Evans, 2000).


pag 24

hoofdstuk 3 Onderzoek naar gecijferdheid

Bij het leren van iets nieuws gebruiken (laagopgeleide) volwassenen in informele, dagelijkse situaties en op het werk vaak een uiterst voor de hand liggende strategie: vragen aan een ander hoe je iets moet doen, bijvoorbeeld aan een collega, de buurman of de kinderen. Leren gebeurt daarbij meestal op de manier van voordoen, nadoen, meedoen, zelf doen in een authentieke, functionele situatie. Daarnaast verwerven volwassenen nieuwe kennis en vaardigheden door informatie via media en zelfstudie. Daarbinnen zien we de volgende stappen iteratief terugkomen: • lezen, luisteren, kijken, voelen, doen (begrijpen); • analyseren, ordenen en structureren van de te verwerven informatie; • reflecteren op wat nieuw is (wat weet ik al en wat is nieuw?); • communiceren en discussiëren (wat heb je eraan? waar is dat voor?); • reflecteren op mogelijke consequenties voor jezelf en anderen; • indien gewenst toepassen. (Van Groenestijn, 2002) Internationaal is al veel onderzoek gedaan naar rekenwiskundige kennis en vaardigheden die nodig zijn voor specifieke beroepen. Dit type onderzoek wordt bij voorkeur uitgevoerd in authentieke werksituaties. Resultaten daarvan kunnen aanknopingspunten bieden voor beroepsonderwijs. Voorbeelden worden onder andere beschreven in Education for Mathematics in the Workplace (Bessot & Ridgway, 2000). Enkele duidelijke conclusies uit de beschreven studies zijn: • De benodigde kennis en vaardigheden zijn meestal direct gekoppeld aan het specifieke beroep in een authentieke situatie (situatie-gebonden). • Rekenen/wiskunde is een middel om het beroep te kunnen uitoefenen en geen doel op zich. • Reken/wiskundig communiceren met collega’s is een essentiële factor binnen vrijwel elk beroep.

pag 25

hoofdstuk 3 Onderzoek naar gecijferdheid

• Verworven kennis en vaardigheden moeten flexibel aangepast kunnen worden aan nieuwe ontwikkelingen in de beroepssituatie. • Transfer van kennis en vaardigheden van de ene specifieke situatie naar een andere specifieke situatie is niet vanzelfsprekend (Evans, 2000). Wake en Williams (2000) beschrijven vier categorieën als onder­ deel van focus of activity voor het ontwikkelen van mathematical competence: Knowledge and skills: het direct kunnen beschikken over technische rekenwiskundige vaardigheden is een noodzakelijke vereiste om technisch ‘fluent’ te kunnen worden in een range van technieken. Comprehension: het kunnen begrijpen van rekenwiskundige situ­ aties, hieruit wiskundige berekeningen kunnen afleiden en deze kunnen omzetten naar wiskundige formules. (vergelijkbaar met horizontaal mathematiseren). Application: het kunnen toepassen en uitvoeren van berekeningen en daarbij de samenhang zien met andere gerelateerde problemen. Problem Solving: het zelfstandig rekenwiskundige problemen kun­ nen bedenken en oplossen in functionele en innovatieve situaties. Op Europees niveau is binnen enkele Grundtvig projecten3 al een basis gelegd voor het samenwerken aan onderzoek en ont­ wikkeling van gecijferdheid van volwassenen. Projecten van de afgelopen jaren zijn: ALMAB4 (Van Groenestijn, 2003), MiA5 en het EMMA6 netwerk. Als resultaat van het MiA project is er een handboek voor docenten in volwasseneneducatie gepubliceerd en vertaald in zeven talen, gebaseerd op het drieslagmodel zoals hierboven beschreven (Van Groenestijn & Lindenskov, 2007). In december 2009 zijn acht partners uit zes Europese landen het In Balance7 project gestart. Dit betreft het ontwikkelen van een digitaal framework met bijbehorende oefenstof voor het bevor­ deren van gecijferdheid van laagopgeleide volwassenen en van volwassenen zonder schoolervaring. Het framework is gebaseerd op de methode In Balans8.


pag 26

hoofdstuk 3 Onderzoek naar gecijferdheid

Het doel van dit framework is het opzetten van een gezamenlijk Europees kader voor gecijferdheid op de niveaus 1 en 2 van de ISCED levels9. Dat wil zeggen dat het framework onderdeel wordt van de Europese niveau-indeling voor rekenwiskundeonderwijs aan volwassenen en dat op basis daarvan certificaten verleend kunnen worden die internationaal gelijkwaardig zijn. Dit project is tevens een onderzoeksproject naar mogelijkheden en knelpunten in het ontwikkelen van een dergelijk framework. In Nederland is verder op het gebied van gecijferdheid nog nauwelijks onderzoek gedaan. Wel is in de afgelopen jaren het competentiegericht onderwijs ingevoerd in het beroepsonderwijs (mbo en hbo) en is de praktijkcomponent in elke opleiding veel groter geworden, dus leren in authentieke situaties. Effecten van de nieuwe opleidingen zijn nog nauwelijks bekend. Wel wordt, sinds de alarmerende berichten over slechte taal- en rekenvaar­ digheid van leerlingen in het algemeen, hard aan de bel getrok­ ken om taal en rekenen weer een expliciete plek te geven in de opleidingen, ook in het beroepsonderwijs. Wat dat dan moet zijn, hoe dat moet en hoe dat dan vervolgens het beste getoetst kan worden, daarover zijn de meningen verdeeld. Het nog eens oefe­ nen van de eigen vaardigheid door middel van het maken van sommen, heeft geen zin. Er wordt momenteel aan alle kanten hard gewerkt om een kwalitatieve inhaalslag te maken, maar tot welk effect dat moet leiden en hoe de resultaten daarvan gemeten zullen worden, is nog onduidelijk. Systematisch onderzoek naar gecijferdheid is wenselijk. Als we weten wat we met gecijferdheid bedoelen en welke doelen we willen bereiken in het onderwijs, kunnen we met andere ogen naar de inhouden van het rekenwiskundeonderwijs kijken. Dat betekent: • Eerst een duidelijke afbakening maken van gebieden binnen gecijferdheid en deze benoemen. • Vervolgens het vaststellen van doelen en inhouden. • Daarna bepalen welke vorm van rekenwiskundeonderwijs het beste past bij welk type onderwijs.

pag 27

hoofdstuk 3 Onderzoek naar gecijferdheid

Een goed aanknopingspunt vormt daarbij het nieuwe referentie­ kader voor taal en rekenen van de commissie Meijerink met fundamentele doelen en streefdoelen (Expertgroep DLL, 2008). (zie figuren 3 en 4 op pag. 28). De F-niveaus verwijzen naar fundamentele, bruikbare kennis en vaardigheden die iedereen wordt verondersteld te hebben ver­ worven na afronding van een opleiding. De commissie Meijerink heeft bepaald dat 2F het minimum algemeen maatschappelijk niveau is om te kunnen participeren in de maatschappij. Dit komt overeen met het eindniveau van vmbo basisberoeps- en kader­ beroepsonderwijs. De route van de F-niveaus leidt uiteindelijk voor iedereen tot functionele gecijferdheid. De S-niveaus zijn de streefniveaus. Deze zijn bedoeld om te kunnen doorstromen naar vervolgopleidingen op hogere niveaus. Voor deze route is meer schoolse kennis en vaardigheden nodig. We kunnen dit benoemen als schoolse gecijferdheid. We kunnen ons afvragen op welke wijze de doelen van de F-niveaus en de S-niveaus in de komende jaren vorm gaan krijgen. Het competentie-gericht beroepsonderwijs heeft op Europees niveau drie doelen te verwezenlijken: leren, loopbaan en burger­ schap. We kunnen hierbij drie vragen stellen: • Welke rekenwiskundige kennis en vaardigheden heb je nodig om verder te leren? • Welke rekenwiskundige kennis en vaardigheden heb je nodig om te kunnen functioneren in een beroep? • Welke rekenwiskundige kennis en vaardigheden heb je nodig om te kunnen participeren in de maatschappij? Met deze doelen voor ogen kunnen we ook op een andere manier kijken naar het primair en voortgezet onderwijs. De huidige leerstof van primair en voortgezet onderwijs komt aardig overeen met wat we ons bij de S-route voor schoolse gecijferdheid kunnen voorstellen. Het huidige onderwijs is vooral gericht op zo hoog mogelijke doorstroming naar vervolgonderwijs en nauwelijks op praktische kennis en vaardigheden.


pag 28

hoofdstuk 3 Onderzoek naar gecijferdheid

pag 29

Voor de F-route is het noodzakelijk dat er veel meer functionele situaties in het primair en voortgezet onderwijs worden inge足 bouwd. Dat vraagt om het formuleren van praktische, haalbare en doelen en het uitwerken daarvan in concrete doe-opdrachten waarbij de leerlingen de leerstof in werkelijkheidssituaties kunnen gebruiken, zodat de boekenkennis van rekenen en wiskunde wer足 kelijk betekenis gaat krijgen. Dit vraagt om een grote omslag in het denken van leraren en in de organisatie van het onderwijs.

Referentiekader

Vrij vertaald naar een begrijpelijk schema ziet het schema van doorlopende leerlijnen taal en rekenen er als volgt uit: Figuur 5 Doorlopende leerlijnen

wo 1S

4F/4S vwo havo

po

hbo 3F/3S mbo

vmbo

Figuur 3 Doorlopende leerlijnen

12 jaar eind basisonderwijs

1F

2F

16 jaar eind vmbo bb/kb mbo 1/2

18 jaar eind havo mbo-4

eind vmbo gl/tl

eind vwo hbo wo

Algemeen maatschappelijk niveau Drempels

Referentiekader Figuur 4 Doorlopende leerlijnen

1 1F

2 1S

2F 1S

3 3F 3S

Algemeen maatschappelijk niveau Drempels

2F/2S

4 4F 4S

arbeidsmarkt


“Gecijferdheid draagt wezenlijk bij aan de ontwikkeling van ieder mens tot een uniek persoon, maar daarbij ook aan de ontwikkeling van de kennismaatschappij.”

pag 31

hoofdstuk 4 Praktijkgericht onderzoek

lectoraat Gecijferdheid

openbare les Op weg naar gecijferdheid

4 / Praktijkgericht onderzoek

Het eerste doel van het Lectoraat Gecijferdheid is het ontwikkelen van kennis over gecijferdheid in het algemeen en van specifieke domeinen daarbinnen. Bij praktijkgericht onderzoek starten we met vragen uit het veld of met vragen vanuit de opleidingen aan het veld. Het tweede doel is professionalisering van leraren in de praktijk van het onderwijs. Welke didactische kennis en vaardig­ heden hebben zij nodig om het ontwikkelen van gecijferdheid bij hun eigen leerlingen te bevorderen. Het derde, ultieme doel is inbedding van de verworven kennis in de pabo en de leraren­ opleidingen. Om deze doelen te bereiken werkt het lectoraat zoveel mogelijk samen met scholen in het veld en met docenten en studenten van de opleidingen. Het doel hiervan is het ontwikkelen van kennis welke leidt tot kwalitatieve verbetering van zowel de praktijk van het onderwijs als de lerarenopleidingen. Het onderzoek van de KNAW11 (2009) heeft aangetoond dat met name de pabo, intensieve aandacht verdient. Daarnaast ligt ook de vraag welke professionele kennis over gecijferdheid noodzakelijk is voor alle lerarenopleidingen. Bovenstaande leidt tot gezamenlijke deskundigheid en tot ontwik­ keling van kennis over gecijferdheid. De onderzoeksactiviteiten van het lectoraat richten zich op: • Factoren die de ontwikkeling van gecijferdheid bevorderen. • Preventie van rekenproblemen en achterstanden in het primair onderwijs. • Begeleiding van leerlingen met ernstige rekenproblemen en dyscalculie. • Het ontwikkelen van elementaire gecijferdheid en beginnende functionele gecijferdheid in het basisonderwijs. • Het ontwikkelen van functionele en gevorderde gecijferdheid in het voortgezet onderwijs. • Het ontwikkelen van doorlopende leerlijnen rekenen/wiskunde. • Professionele gecijferdheid van (toekomstige) leraren.


pag 32

hoofdstuk 4 Praktijkgericht onderzoek

De kenniskring van het Lectoraat Gecijferdheid staat nog in de start­ blokken, maar de eerste onderzoeksplannen liggen er. De projecten zijn vooral gericht zijn op: 1. De ontwikkeling van goed en effectief rekenwiskundeonderwijs vanaf groep 1 tot en met de onderbouw van het voortgezet onderwijs. Met de focus op de aansluiting van groep 8 met de onderbouw van het voortgezet onderwijs en met de F- en Sdoelen verandert het uiteindelijke doel van het rekenen in de basisschool. Dit vraagt een doordachte opbouw van de didactiek en legt een grote druk op leraren in het werkveld en op pabo’s en lerarenopleidingen. De pabo’s, pabostudenten en de leraren in het veld hebben het in de afgelopen tijd zwaar te verduren gehad door de strijd tussen traditioneel en realistisch rekenen. Nu wordt het weer eens tijd om te laten zien dat pabo’s ook kwaliteit kunnen leveren. Positieve beeldvorming. Daar gaan we de komende tijd aan werken. 2. De ontwikkeling van het landelijk protocol voor de integrale aanpak van ernstige reken/wiskundeproblemen en dyscalculie (ERWD) (voor 4-18 jaar). Dit project is gestart na een expert­ meeting over dyscalculie (Dolk & Van Groenestijn, 2006). Bij dit project ligt het accent op de eerste plaats op preventie van rekenwiskundeproblemen. Er zijn veel kinderen met ernstige rekenwiskundeproblemen en maar weinig kinderen met dyscalcu­ lie. Alle leerlingen hebben recht op goed onderwijs, afgestemd op hun onderwijsbehoefte. De zwakste leerlingen hebben recht op de beste leraren. Aan dit project wordt onderzoek gekoppeld naar validering van een observatielijst, naar preventie van reken­ wiskundeproblemen en naar effectiviteit van begeleiding van leerlingen met ernstige rekenwiskundeproblemen en dyscalculie. Dit doet het lectoraat onder andere met medewerking van docenten en studenten van de Master SEN12 opleidingen.

pag 33

hoofdstuk 4 Praktijkgericht onderzoek

3. Onderzoek naar rekenvaardigheid van leerlingen in het voort­ gezet onderwijs en van professionalisering van docenten in het voortgezet onderwijs , onder andere het UMD project13 en Pius X.14 Het inspectie-onderzoek van 2007 en 2009 heeft zowel kwantitatieve als kwalitatieve informatie geleverd. De ABC-toets15 rekenen heeft daaraan een belangrijke bijdrage geleverd en doet dat nog steeds. Daarnaast wordt onderzocht over welke didac­ tische vaardigheden leraren in het voortgezet onderwijs moeten beschikken om de aansluiting primair-voortgezet onderwijs te kunnen concretiseren en om kwalitatief goed rekenonderwijs in het voortgezet onderwijs te kunnen bieden aan alle leerlingen. 4. Daarop aansluitend groeit de aandacht voor het rekenen in het mbo. Rekenen moet weer zichtbaar worden in het beroeps­ onderwijs, maar wel gebaseerd op de gedachte van functionele gecijferdheid en niet gericht op een examen waar studenten weer sommen moeten maken om hun eigen vaardigheid te bewijzen. Onderzoek zal vooral gericht zijn op het analyseren van authentieke situaties waarin studenten probleemgericht aan het werk gaan. Daarin staat ook het samenwerkend leren centraal. Kunnen werken in teamverband is een basisvoorwaarde voor het functioneren in de maatschappij. 5. Intussen gaat het lectoraat ook verder met internationaal onder­ zoek naar het leren van rekenenwiskunde door volwassenen in buitenschoolse situaties (In Balance project). Dat werkveld vraagt nog steeds zorgvuldige aandacht. Hierbij ligt de focus niet op het leren als doel, maar als tool voor het verwerven van betekenis­ volle en bruikbare rekenwiskundige kennis en vaardigheden die flexibel inzetbaar zijn. 6. In de nabije toekomst hoopt het lectoraat ook nieuwe gebieden te verkennen, onder andere het leren van rekenen/wiskunde door dove en slechthorende kinderen.


pag 34

hoofdstuk 4 Praktijkgericht onderzoek

pag 35

Figuur 6 Samenhang

Onderzoek

Ontwikkeling

Onderwijs

Het lectoraat streeft ernaar om zoveel mogelijk met andere op足leidingen samen te werken aan het ontwikkelen van kennis over gecijferdheid en daarmee ook aan kwalitatieve verbetering van het rekenwiskunde-onderwijs in het algemeen. Onderzoek, ontwikkeling en onderwijs vormen hierbij altijd een samenhan足 gend geheel. Daaraan gekoppeld werken we, ook weer zoveel mogelijk samen met andere opleidingen aan de deskundigheid van leraren in primair en voortgezet onderwijs en in volwassenen足 educatie. Hierbij ligt het accent niet alleen op het verwerven van individuele deskundigheid, maar vooral ook op teamdeskundigheid. De laatste daaruit voortvloeiende stap is inbedding van ontwikkelde kennis in de pabo-opleidingen, opleidingen voor speciaal onderwijs en de lerarenopleidingen voor vo en mbo.


“Er zijn veel kinderen met ernstige rekenwiskundeproblemen en maar weinig kinderen met dyscalculie.”

pag 37

hoofdstuk 5 Dankwoord

lectoraat Gecijferdheid

openbare les Op weg naar gecijferdheid

5 / Dankwoord

Het Lectoraat Gecijferdheid is gestart in maart 2009. Het opzetten van een lectoraat kost tijd en inzet van veel mensen. Op de eerste plaats dank ik iedereen die er hard voor heeft gewerkt om dit lectoraat van de grond te krijgen, met name Dick de Wolff, directeur van de Faculteit Educatie van Hogeschool Utrecht die vanaf het begin dit lectoraat heeft gesteund, het College van Bestuur dat dit lectoraat bestaansrecht heeft gegeven en Rick van Dijk, directeur Kenniscentrum Educatie, die altijd klaar staat om wegen te openen en hobbels weg te nemen. Dank ook voor de mogelijkheid die zij ons bieden om onze ambities waar te maken. Ook dank aan mijn collega-lectoren voor hun constructieve samenwerking. Tevens dank aan allen die het Kenniscentrum Educatie dagelijks ondersteunen, zowel op praktisch als op beleidsniveau. Een extra woord van dank is op zijn plaats voor Jolanda Stoltenkamp, mijn managementassistent, en Ellen van Neerven van Marketing & Communicatie die de organisatie van deze dag en de publicatie van mijn openbare les hebben gere­ geld. Zij hebben ervoor gezorgd dat alles op rolletjes loopt. Verder dank ik iedereen die op zijn of haar eigen wijze een steentje heeft bijgedragen aan het Lectoraat Gecijferdheid.


“De zwakste leerlingen hebben recht op begeleiding door de beste leraren.�

pag 39

hoofdstuk 6 Slot

lectoraat Gecijferdheid

openbare les Op weg naar gecijferdheid

6 / Slot

De kenniskring van het Lectoraat Gecijferdheid is nog jong en nog niet compleet, maar wel enthousiast. In de komende jaren zult u regelmatig iets van ons horen. Wij hopen op een constructieve samenwerking met de andere faculteiten van Hogeschool Utrecht, met scholen en met andere instituten. Wij gaan voor kwaliteit van het rekenwiskundeonderwijs met als ultieme doel: iedereen gecijferd.


pag 40

hoofdstuk 6 Slot

dr. Mieke van Groenestijn Lector Gecijferdheid, Faculteit Educatie, Hogeschool Utrecht

drs. Gery Gorter Opleider en coördinator deeltijdopleidingen, vakgroep wiskunde, Instituut Archimedes, Faculteit Educatie, Hogeschool Utrecht

drs. Marie-José Seveke Opleider, begeleider, ontwikkelaar en onderzoeker, Seminarium voor Orthopedagogiek, Faculteit Educatie, Hogeschool Utrecht

pag 41

hoofdstuk 6 Slot

drs. Ceciel Borghouts Adviseur rekenen en lid projectteam Ernstige Reken-Wiskundeproblemen en Dyscalculie (ERWD)

drs. Christien Janssen Adviseur rekenen en lid projectteam Ernstige Reken-Wiskundeproblemen en Dyscalculie (ERWD)

drs. Piet van den Hurk Docent scheikunde, ANW en NLT Coördinator projecten ‘Reken op Pius’, ‘Rekenbrug povo‘ en ‘Universum’, Pius X College, Bladel


pag 42

hoofdstuk 6 Slot

drs. Kees Hoogland Senior consultant wiskunde, rekenen, gecijferdheid, Algemeen Pedagogisch Studiecentrum (APS), Utrecht

drs. Marike Verschoor Fondseditor rekenen, Uitgeverij Zwijsen, Tilburg

Jolanda Stoltenkamp Management assistent, Lectoraat Gecijferdheid en Seminarium voor Orthopedagogiek, Faculteit Educatie, Hogeschool Utrecht

pag 43


“Vanaf nu hebben we het NOOIT meer over sommetjes, tafeltjes en rekenboekjes.”

pag 45

hoofdstuk 7 Aanbevelingen

lectoraat Op weg naar gecijferdheid

oratie

7 / Aanbevelingen

Verkleinwoorden Rekenen is altijd al enigszins het achtergebleven broertje geweest van taal en het kleine broertje van wiskunde. In de beleving van vele mensen is rekenen niet zo belangrijk. Je hebt een wiskundeknobbel of niet. Als je maar goed met geld kunt omgaan is er eigenlijk niets om je zorgen over te maken. Maar dat doen we nu juist wel. Rekenen is belangrijk. Een goed ontwikkeld inzicht in allerlei aspecten van rekenen en een goede technische rekenvaardigheid vormen de basis voor gecijferdheid. Vandaar dat rekenen ook een betere status in het onderwijs verdient. In en door het onderwijs maken we de situatie alleen maar erger door de vele verkleinwoorden die we gebruiken. De leerlingen maken sommetjes in schriftjes. Zij hebben rekenboekjes en werk­ boekjes en oefenboekjes. Zij maken rijtjes en leren de tafeltjes. Het ontbreekt er nog maar aan dat ze ook klokjes leren kijken. Breuken, procenten en decimale getallen zijn moeilijk. Daarvoor hebben we geen verkleinwoorden. Decimale getallen hebben we wel ogenschijnlijk vergemakkelijkt door ze kommagetallen te noemen, iets dat weer erg veel verwarring oplevert als we gaan werken met de rekenmachine en in internationale discussies. Aanbeveling 1: Vervang alle verkleinwoorden door volwassen termen als bewerkingen, rekenboeken, werkboeken en oefenboe­ ken, want die zullen altijd wel blijven, tafels en decimale getallen. Vanaf nu hebben we het NOOIT meer over sommetjes, tafeltjes en rekenboekjes. Aansluiting po - vo Een ander heikel punt is dat het in de afgelopen twintig jaar niet is gelukt om de aansluiting primair en voortgezet onderwijs te verbeteren. Dit nu, is ons in de afgelopen twee jaar opgelegd van


pag 46

hoofdstuk 7 Aanbevelingen

pag 47

hoofdstuk 7 Aanbevelingen

bovenaf. Er is nog altijd een grote kloof tussen het rekenwiskunde­ onderwijs in de basisschool en in het voortgezet onderwijs. Dat zal ook niet veranderen als we altijd vanuit twee invalshoeken naar het onderwijs blijven kijken.

De ontwikkeling van taal en rekenen/wiskunde gaan hand in hand. Het onderwijs heeft de mooie en uiterst belangrijke taak om onze kinderen te helpen in hun ontwikkeling op deze gebieden op weg naar hun toekomst.

Aanbeveling 2: Door de leerjaren in het voortgezet onderwijs anders te gaan benoemen, namelijk als groep 9, 10, 11 en 12, (en 13 en 14) zoals ook wordt gedaan in de Verenigde Staten, is een doorlopende leerlijn rekenenwiskunde meer vanzelfspre­ kend. Daarbinnen kunnen we vmbo, havo en vwo aanduiden met een eigen code.

Aanbeveling 4: Taal en rekenen vullen samen de helft van de onderwijstijd. Dit kan ook in toepassingsgebieden als techniek en wereldoriëntatie, als wij daarbij maar duidelijk aandacht besteden aan de taal- en rekenaspecten die daarbij een rol spelen.

Op de barricaden De oorlog tussen traditioneel rekenen en het realistisch rekenen heeft niet bijgedragen aan een constructieve oplossing voor het rekenwiskundeonderwijs. Het rekenwiskunde-onderwijs in Nederland verdient een her­waardering. In de afgelopen 20 jaar is er veel aandacht ge­schonken aan een zeer doordachte didactiek welke de basis voor kwalitatief goed rekenwiskunde-onderwijs in zich heeft. Natuurlijk zijn er verbeterpunten. In combinatie met effectieve methodes en met goed opgeleide leraren kan dit leiden tot beter effectief onderwijs. Aanbeveling 3: De term realistisch rekenwiskunde-onderwijs heeft een nare bijsmaak gekregen door de publieke discussies. Wij wil­ len doelgericht en efficiënt werken aan goed opgeleide leraren en leerlingen. Vanaf nu hebben we het alleen nog maar over effectief en functioneel rekenwiskunde-onderwijs. Hand in hand Taal is essentieel om te kunnen communiceren met de mede­ mensen, rekenen/wiskunde is noodzakelijk om onze leefwereld te kunnen inrichten.

Moeten Kinderen moeten zoveel. Ze moeten naar de zwemles, naar voetbal, huiswerk maken en ze moeten woordjes leren. Op school worden vaak opdrachten gegeven met daarin het woord ‘moeten’. Ze moeten sommen maken. Hoeveel moet je betalen? Is een opdracht die in rekenboeken ontelbare keren voorkomt, terwijl kinderen daarbij in werkelijkheid niets kopen en dus niet hoeven te betalen. Maar ook opdrachten als: hoe laat moet je van huis vertrekken als je om 10:00 uur de trein wilt halen? Terwijl kinderen deze sommen op school maken en helemaal niet met de trein gaan reizen. Aanbeveling 5: Het woord ‘moeten’ moet uit alle schoolboeken worden geschrapt. Als we dat doen en we formuleren opdrachten gewoon als een activiteit, krijgt het onderwijs een veel normaler karakter. Rolstoel Aanbeveling 6: Het is wenselijk dat elke student als verplichte maatschappelijke stage vier weken in een rolstoel zit (zonder letsel mag). Het verandert echt je blik op de maatschappij. Alledaagse situaties kunnen een groot probleem worden en je gaat heel creatief denken om allerlei simpele problemen uit de weg te ruimen.


BIJLAGEN pag 48

hoofdstuk # Naam hoofdstuk

Literatuur 49 Curriculum Vitae 52 Colofon 55

pag 49

bijlage Literatuur

/ Literatuur

Beazly, K. (1984). Education in Western Australia: Report of the Committee of Inquiry into Education in Western Australia. Perth, Western Australia, Education Department of Western Australia. Bessot, Annie, and Jim Ridgway, (ed) (2000). Education for Mathematics in the Workplace. Dordrecht, Kluwer Academic Publishers Blij, F. van der (1987). Hoe ver moet je komen?, in: E. Feijs and F. de Moor (eds): Innovatie realistisch reken-wiskundeonderwijs. (Panama Cursusboek 5). Utrecht: OW&OC 1987 Cockcroft, W.H. (1982). Mathematics Counts: Report of the Commission of Inquiry into the Teaching of Mathematics in Schools. London, Her Majesty’s Stationary Office. Dolk, M. & M. van Groenestijn (red) (2006). Dyscalculie in discussie. Koninklijke Van Gorcum, Assen. O’Donoghue, J. (2009). Adults, Mathematics, Culture and Society. in: Coben, Diana, O’Donoghue, John, and Fitzsimons, Gail, (ed) (2000): Perspectives on Adults Learning Mathematics, Research and Practice (pp 101-107). Dordrecht: Kluwer Academic Publishers, Netherlands. Evans, J. (2000). The transfer of Mathematics Learning from School to Work ... in: Bessot, Annie, and Jim Ridgway, (ed) (2000). Education for Mathematics in the Workplace (pp 5-16). Dordrecht: Kluwer Academic Publishers. Expertgroep Doorlopende Leerlijnen Taal en Rekenen (2008). Over de drempels met taal en rekenen. Enschede: SLO. Gal, Iddo (1993). Issues and Challenges in Adult Numeracy. Technical Report TR93-15, National Center of Adult Literacy. Pennsylvania: University of Pennsylvania. Gal, Iddo, Mieke van Groenestijn, Myrna Manly, Mary Jane Schmitt, Dave Tout, (1999). Numeracy Framework for the international Adult Literacy and Lifeskills Survey (ALL). Ottawa, Canada: Statistics Canada, http://nces.ed.gov./surveys/all. Goffree, Fred (1991). Gecijferdheid, elementaire rekenkennis bezitten en kunnen toepassen. in: Over Rekenen, 1 (1), 7-20. Enschede: Institute of Curriculum Development (SLO). Groenestijn, Mieke van & Lena Lindenskov (eds) (2007). Mathematics in Action. Commonalities across Differences. A Handbook for Teachers in Adult Education. Woerden: ALL Foundation Grundtvig-1 Project 116676-CP-1-2001-1-DK-Grundtvig-G1 (2004-2007). Groenestijn, Mieke van (ed) (2003). Adults Learning Mathematics Across Borders: A Grundtvig project of Belgium, Denmark, the Netherlands and Norway, CINOP, ‘s-Hertogenbosch, the Netherlands. ISBN: 90-5003-417-9, 88385-CP-1-2000-1-NL-Grundtvig-ADU (2000-2003)


pag 50

bijlage Literatuur

Groenestijn, Mieke van (2002). A Gateway to Numeracy. A Study of Numeracy in Adult Basic

pag 51

bijlage Literatuur

Afbeeldingen

Education (Doctoral Dissertation). Utrecht: Universiteit Utrecht, CD β Press, Centrum voor

Afb. 1: In Balans 2006, pag. 392. Stichting ALL. www.all-for-all.org

Didactiek van Wiskunde. ISBN: 90-73346-47-9.

Afb. 2: Russisch rekenraam. Foto M. van Groenestijn

Houtkoop, W. (1999). Basisvaardigheden in Nederland (Nederlands Rapport van de

Afb. 3: John McLeish, 1993. Het getal, van kleitablet tot

IALS Survey). Amsterdam: Max Goote Kenniscentrum. KNAW commissie (2009). Rekenen op de basisschool. Analyse en sleutels tot verbetering.

computer. Uitg. Amber, Amsterdam, pag. 176. Afb. 4: Minck. G.H. (1968). Fietsend door de eeuwen. Uitg. Kluwer, Deventer, pag. 12,

Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.

afb. 18. Karl Friedrich Christian Ludwig FreiherrDrais von Sauerbronn.

Paulos, John Allen (1988). “Innumeracy”, mathematical illiteracy and its consequences. London: Penguin Books, Washington: National Academy Press.

Erfinder der Schnellaufmaschine 1817. Afb. 5: M. van Groenestijn. ABC-Toets (2006)

Reeves, Howard (1994). Numeracy, a background discussion paper. Tasmania: Department of Education and the Arts. (article from Internet). Treffers, A. (1989). Het voorkomen van ongecijferdheid op de basisschool. Utrecht: OW&OC,

1

NALS 1992: National Adult Literacy Survey in de Verenigde Staten

University Utrecht (Freudenthal Institute).

2

PISA: Programme for International Student Assessment (1996)

Wake, G. & J. Williams (2000). Developing a new mathematics curriculum…. in: Bessot, Annie,

3

Grundtvig projecten zijn Europese projecten voor volwasseneneducatie, gesubsidieerd

and Jim Ridgway, (ed) (2000). Education for Mathematics in the Workplace (pp 167-180) Dordrecht: Kluwer Academic Publishers.

door de Europese Unie, Brussel 4

Willis, Sue (ed). (1990) Being numerate: What Counts. Melbourne, Australia: Australian Council for Educational Research.

ALMAB: Adults Learning Mathematics Across Borders (88385-CP-1-2000-1-NL-Grundtvig-ADU) (2001-2003)

5

MiA: Mathematics in Action (116676-CP-1-2004-1-DK-Grundtvig-G1), (2004-2007)

6

EMMA network: European (network) for Motivational Mathematics Education for Adults 223923-CP-1-2005-1-NO-GRUNDTVIG-G4PP) (2005-2007)

7

In Balance: a European Numeracy Programme for Lifelong Learning. De deelnemende landen zijn Nederland (ROCMN en HU/FE), Oostenrijk, Engeland, Finland, Spanje en Hongarije. (504006-LLP-1-2009-1-CZ-Grundtvig-GMP)

8

De methode In Balans is voor het eerst uitgegeven in de periode 1996 - 2000 en daarna nog

3 keer vernieuwd. De methode is bedoeld voor rekenen met (anderstalige) volwasenen en focust op praktische kennis en vaardigheden. (Stichting ALL) 9

ISCED levels: International Standard Classification of Education (UNESCO, 1997)

10

Commissie Meijerink: Expertgroep doorlopende leerlijnen taal en rekenen (2008)

11

KNAW (2009): Koninklijke Nederlandse Akademie voor Wetenschappen, zie www.knaw.nl

12

Master SEN: master-opleidingen voor Special Educational Needs

13

Het project Utrechtse Meester Docent, gestart in september 2009

14

Pius-X College in Bladel.

15

Te bestellen bij lectoraatgecijferdheid@hu.nl


pag 52

bijlage Curriculum Vitae

pag 53

bijlage Curriculum Vitae

/ Curriculum Vitae

Mieke van Groenestijn is orthopedagoog en onderwijskundige. In 2002 promoveerde zij op het onderwerp ‘gecijferdheid bij laagopgeleide volwassenen’. (Van Groenestijn, 2002). Zij is sinds 1981 hogeschooldocent aan Hogeschool Utrecht en haar voorlopers. Daar heeft zij gedurende meer dan twintig jaar de op­ leidingen remedial teaching verzorgd voor het begeleiden van leer­ lingen in het primair en voortgezet onderwijs. Dit houdt in het doen van diagnostisch onderzoek bij leerlingen met ernstige reken/ wiskundeproblemen en het begeleiden van deze leerlingen. Sinds 2001 is zij, naast haar taak als hogeschooldocent, hoofdauteur van de nieuwe multimediale reken/wiskunde-methode Wizwijs. Deze methode kan, mede dankzij de zorgvuldige en fraaie concretisering van de materialen door de uitgever een positieve impuls geven aan de kwaliteit van het reken/wiskunde-onderwijs en ondersteunt en versterkt de professionaliteit van leraren basisonderwijs. Daarnaast doet zij onderzoek naar de rekenvaardigheid van leerlin­ gen in het voortgezet onderwijs met de door haar ontwikkelde ABC-toets. Hiermee heeft zij onder andere voor de Inspectie van het Onderwijs in Nederland in de periode 2007-2009 onderzoek gedaan naar de rekenvaardigheid van leerlingen in het voortgezet onderwijs (12-14 jaar).

Zij begeleidt enkele projecten rekenen in het voortgezet onderwijs. Zij is tevens projectleider van het project ‘Ontwikkeling van het landelijk protocol voor de integrale aanpak van reken/wiskunde problemen en dyscalculie’ bij leerlingen van 4 tot 14 jaar (protocol ERWD). Sinds 1993 is zij internationaal betrokken bij het ontwikkelen van gecijferdheid van volwassenen in volwassenen­ educatie. Zij was bestuurslid van de organisatie ‘Adults Learning Mathematics’ van 1996 tot 2007. Daarbinnen was haar taak onder andere co-redacteur van het ALM International Journal, een wetenschappelijk blad voor de publicatie van onderzoek naar gecijferdheid van volwassenen en jongeren. In 2009 is een nieuw Europees project van start gegaan voor het ontwikkelen van een Europees framework voor gecijferdheid voor volwassenen. Sinds maart 2009 is zij lector Gecijferdheid aan het Kenniscentrum Educatie van Hogeschool Utrecht.


pag 54

pag 55

bijlage Colofon

/ colofon

Auteur Mieke van Groenestijn Eindredactie Mieke van Groenestijn Ontwerp Vormers, Utrecht Druk Grafisch Bedrijf Tuijtel, Hardinxveld-Giessendam Lectoraat Gecijferdheid Openbare les Op weg naar gecijferdheid, 8 januari 2010 Adres Lectoraat Gecijferdheid Padualaan 97, 3584 CH Utrecht Postbus 14007, 3508 SB Utrecht Telefoon 030 254 72 23 Website www.hu.nl/gecijferdheid

Š 2010 Hogeschool Utrecht



Openbare les mieke van groenestijn