ELECTRIC VEHICLE BATTERY SYSTEMS MANUAL

Page 127

DEFINITION OF VRLA BATTERY CAPACITY

Figure 6–1

117

Dynamic driving battery discharge test profile.

Battery Voltage (V)

13.5 13 12.5 12 11.5 0

1000

2000

3000

Discharge Time (secs)

tunately, it is difficult to keep the battery pack temperature, housing hundreds of cells at a constant temperature. This is owing to the fact that the batteries that are on the outermost edges have a greater surface for heat exchange while the batteries in the middle of the pack have the least available surface for exchange of heat. The stacking arrangement of the batteries in the pack leads to nonuniform temperatures, which in turn lead to nonuniform discharge and charge characteristics of the battery pack.

DEFINITION OF VRLA BATTERY CAPACITY As part of a battery pack configuration, a major problem experienced with the EVs is the premature decline of battery capacity, which ultimately leads to battery failure. The primary cause of the battery pack failure is owing to repeated nonuniform discharging and charging of the cells. Both the battery charging and discharging are highly dependent upon temperature. Owing to the large temperature difference between the coolest battery or batteries on the outer edge of the battery pack, and the hottest battery or batteries on the inner side of the battery pack, there is a corresponding variation in the available battery discharge capacity.


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Testing Electric Vehicle Batteries

5min
pages 173-176

Accelerated Reliability Testing of Electric Vehicles

4min
pages 177-180

Charging Technology

3min
pages 165-166

High-Voltage Cabling and Disconnects

3min
pages 158-159

Battery Pack Safety—Electrolyte Spillage and Electric Shock

3min
pages 163-164

Safety in Battery Design

5min
pages 160-162

The BPMS Charging Control

11min
pages 151-157

The Battery Performance Management System

7min
pages 143-146

BPMS Thermal Management System

7min
pages 147-150

Cold-Weather Impact on Electric Vehicle Battery Discharge

5min
pages 140-142

Range Testing of Electric Vehicles Using Fast Charging

1min
page 123

Discharge Characteristics of Li-ion Battery

2min
page 137

Electric Vehicle Speedometer Calibration

4min
pages 124-126

Definition of VRLA Battery Capacity

2min
pages 127-128

Inductive Charging—Making Recharging Easier

3min
pages 121-122

The Fast Charger Configuration

6min
pages 111-114

Using Equalizing/Leveling Chargers

11min
pages 115-120

Fast Charging Strategies

5min
pages 108-110

The Fast Charging Process

5min
pages 105-107

Battery Pack Corrective Actions

6min
pages 101-104

Energy Balances for the Electric Vehicle

5min
pages 74-78

Temperature Compensation During Battery Charging

3min
pages 82-83

Charging Technology

7min
pages 97-100

Definition of NiMH Battery Capacity

4min
pages 64-67

Battery Capacity Recovery

1min
page 63

Battery Capacity Tests

7min
pages 70-73

Capacity Discharge Testing of VRLA Batteries

4min
pages 61-62

Fuel Cell Technology

7min
pages 24-27

Choice of a Battery Type for Electric Vehicles

5min
pages 28-32

Traction Battery Pack Design

2min
pages 51-52

Battery Capacity

1min
page 53

The Temperature Dependence of Battery Capacity

2min
pages 54-55

State of Charge of a VRLA Battery

6min
pages 56-60

Electric Vehicle Operation

3min
pages 12-13

Effects of VRLA Battery Formation on Electric Vehicle Performance

1min
page 33
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
ELECTRIC VEHICLE BATTERY SYSTEMS MANUAL by www.heydownloads.com - Issuu