Build Your Own Electric Vehicle Manual - PDF DOWNLOAD

Page 173

150

Build Your Own Elec tric Vehicle How do you overcome the problem? The bottom of Figure 6-7 shows one key. If you introduce a second winding that is physically at right angles to the main stator winding, you induce a rotor current out of phase with the main rotor current that is sufficient to start the motor. This split phase induction motor design—or some variation of it—is the one you are most likely to encounter on typical smaller motors that power fans, pumps, shop motors, etc. To maximize the electrical phase difference between the two windings, the resistance of the starting winding is much higher and its induction is much lower than the running winding. To minimize excessive power dissipation and possible temperature rise after the motor is up and running, a shaft-mounted centrifugal switch is connected in series with the starting winding that opens at about three-fourths of synchronous speed. Figure 6-7 looks like a representation of a shunt motor: the smaller split-phase induction motor speed characteristics look like those of DC shunt motors, but their starting torque is much greater. The most common split-phase induction motor is one that uses a capacitor-start, also shown in Figure 6-7. The capacitor automatically provides a greater electrical phase difference than inductive windings. This greater phase difference—nearly 90 electrical degrees—also gives capacitor-start split-phase induction motors a much higher starting torque (three to five times rated torque is common). The principle was discovered quite early by Charles Steinmetz and others, but capacitor technology had to catch up before it could be widely introduced on production motors. Capacitor-start design variations include two types: separate starting and running capacitors; and permanent capacitor with no centrifugal cutout switch. The two-capacitor approach brings you the best of both the starting and the running worlds; the permanent capacitor type gives you superior speed control during operation at the expense of lower starting torque. The other common split-phase induction motor design, called shaded pole, applies mostly to smaller motors; you are more likely to find it in your electric alarm clock than in your EV, so we’ll skip it here.

Polyphase AC Induction Motors Polyphase means more than one phase. AC is the prevailing mode of electrical distribution. Single-phase 208V to neutral from a three-phase transformer on the pole is the most prevalent form found in your home and office. The phase voltage that comes from the pole is 240V. These are widely available in nearly every city in the industrialized world. If one phase is good, then three phases are better, right? Well, usually. Stationary threephase electric induction motors are inherently self-starting and highly efficient, and electricity is conveniently available. Three-phase AC connected to the stator windings of a three-phase AC induction motor produces currents that look like those shown at the top of Figure 6-8—they are of the same amplitude, but 120 degrees out of phase with one another. As in a DC motor, power and torque are also a function of current in an induction motor. Because the current is equal to the voltage divided by the motor reactance, at any given voltage, current is a function of stator, rotor, and magnetizing reactances that change as a function of frequency. The top of Figure 6-9 shows this at a glance. The characteristic induction motor torque to slip graph, shown in Figure 6-9 for both its motor and generator operating regions, offers insight into induction motor operation. If an induction motor is started at no load, it quickly comes up to a speed that might only be a fraction of 1 percent less than its synchronous speed. When a load is applied, speed decreases, thereby increasing slip; an increased torque is generated to


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Other Related Web Sites

27min
pages 334-357

General Electric Drive Information Sites

3min
pages 332-333

State- and Community-Related Electric Vehicle Sites

1min
page 331

Chargers

1min
page 324

Batteries

1min
page 323

Conversion Kits

1min
page 320

Controllers

1min
page 322

Suppliers

1min
pages 318-319

Electric Utilities and Power Associations

1min
page 310

Conversion Specialists

1min
page 314

Emergency Kit

1min
page 299

Driving Your Electric Vehicle

5min
pages 296-297

Paint, Polish, and Sign

1min
page 291

Improved Cooling

1min
page 289

Charger System

3min
pages 278-282

Further Improved Cooling

1min
page 290

Low-Voltage System

1min
pages 274-276

Junction Box

3min
page 277

Fabricating Battery Mounts

1min
page 267

Mounting and Testing Your Electric Motor

1min
page 266

Purchase Other Components

1min
page 259

Checking

1min
page 251

Wiring It All Together

3min
pages 249-250

Conversion Overview

2min
pages 252-253

The Manzita Micro PFC-20

1min
page 237

The Real-World Battery Charger

2min
page 236

Terminal Strip

1min
page 244

The Ideal Battery Charger

4min
pages 233-235

Charger Overview

1min
page 230

Future Batteries: The Big Picture

6min
pages 224-227

Batteries and the RAV4 EV Experience

3min
pages 228-229

Five Trojan Battery Solutions

4min
pages 219-222

Tomorrow’s Best Battery Solution—Today

2min
page 223

Today’s Best Battery Solution

2min
page 218

Battery Construction

4min
pages 214-215

Battery Types

2min
page 213

The Gentle Art of Battery Recharging

2min
page 209

AC Controllers

2min
page 189

Today’s Best Controller Solution Zilla Controller (One of the Best DC Controller for Conversions)

5min
pages 190-192

An Off-the-Shelf Curtis PWM DC Motor Controller

2min
page 188

DC Motor Controller—The Lesson of the Jones Switch

4min
pages 185-187

Electrolytes

1min
page 203

Battery Overview

1min
page 200

Battery Capacity and Rating

4min
pages 207-208

Conclusion

1min
page 199

Controller Overview

2min
page 182

Tomorrow’s Best EV Motor Solution

1min
pages 179-180

The Advance FB1-4001

3min
pages 177-178

Series DC Motors

3min
pages 164-165

Universal DC Motors

1min
page 170

Compound DC Motors

2min
page 168

Polyphase AC Induction Motors

3min
pages 173-175

DC Motors in the Real World

2min
page 162

Horsepower

2min
page 157

Why an Electric Motor?

2min
page 156

Late-Model Used Vehicles (Late 1980s and Onward

2min
page 152

Buy Your EV Chassis

1min
page 150

Automatic vs. Manual Transmission

1min
page 140

Torque Required and Available Graph

4min
pages 148-149

Calculation Overview

5min
pages 143-144

Going through the Gears

2min
page 139

Difference in Motor vs. Engine Specifications

2min
pages 137-138

Drivetrains

2min
page 136

Weight Affects Speed

1min
page 124

Weight and Acceleration

2min
page 122

Weight and Climbing

1min
page 123

Your Batteries Make a Difference

1min
page 111

Choose the Best Chassis for Your EV

2min
page 118

Converting Existing Vans

4min
pages 104-108

The Procedure

2min
page 112

Converting Existing Vehicles

1min
pages 102-103

Buying Ready-to-Run

1min
page 99

Near Future Trends For Electric Drive

3min
pages 96-97

Third Wave After 1979: EVs Enter a Black Hole

2min
page 74

Mid-1960s to 1990s

19min
pages 75-82

The 1990s–2000s

14min
pages 83-89

After 1973: Phoenix Rising, Quickly

8min
pages 70-73

1940 to 1989

10min
pages 65-69

Timeline of Vehicle History

2min
page 55

Myth #3: Electric Vehicles Are Not Convenient

2min
page 39

Convert That Car

5min
pages 26-29

Why Do Electric Vehicles Save the Environment?

1min
page 44

Electric Vehicles Save Money

2min
page 35

Electric Motors

1min
page 31

Electric Utilities Love Electric Vehicles

1min
page 50

What Is an Electric Vehicle?

1min
page 30

Save the Environment and Save Some Money Too

1min
page 45
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.