Build Your Own Electric Vehicle Manual - PDF DOWNLOAD

Page 136

7 3/8 x 9 1/4 T echnical / Build Your Own Electric Vehicle / Leitman / 373-2 / Chapter 5

Chapter 5:

Chassis and Design

engines. This section will discuss the basic components; cover differences in motor versus engine performance specifications; discuss transmission gear selection; and look at the trade-offs of automatic versus manual transmission, new versus used, and heavy versus light fluids on drivetrain efficiencies.

Drivetrains Let’s start with what the drivetrain in a conventional internal combustion engine vehicle must accomplish. In practical terms, the power available from the engine must be equal to the job of overcoming the tractive resistances discussed earlier for any given speed. The obvious mission of the drivetrain is to apply the engine’s power to driving the wheels and tires with the least loss (highest efficiency). But overall, the drivetrain must perform a number of tasks: • Convert torque and speed of the engine to vehicle motion-traction • Change directions, enabling forward and backward vehicle motion • Permit different rotational speeds of the drive wheels when cornering • Overcome hills and grades • Maximize fuel economy The drivetrain layout shown in simplified form in Figure 5-6 is most widely used to accomplish these objectives today. The function of each component is as follows: • Engine (or Electric Motor)—Provides the raw power to propel the vehicle. • Clutch—For internal combustion engines, separates or interrupts the power flow from the engine so that transmission gears can be shifted and, once engaged, the vehicle can be driven from standstill to top speed. • Manual Transmission—Provides a number of alternative gear ratios to the engine so that vehicle needs—maximum torque for hill-climbing or minimum speed to economical cruising at maximum speed—can be accommodated. • Driveshaft—Connects the drive wheels to the transmission in rear-wheel-drive vehicles; not needed in front-wheel-drive vehicles. • Differential—Accommodates the fact that outer wheels must cover a greater distance than inner wheels when a vehicle is cornering, and translates drive force 90 degrees in rear-wheel-drive vehicles (might or might not in frontwheel-drive vehicles, depending on how engine is mounted). Most differentials also provide a speed reduction with a corresponding increase in torque. • Drive Axles—Transfer power from the differential to the drive wheels. Table 5-8 shows that you can typically expect 90 percent or greater efficiencies (slightly better for front-wheel-drive vehicles) from today’s drivetrains. Internal combustion engine vehicle drivetrains provide everything necessary to allow an electric motor to be used in place of the removed engine and its related components to propel the vehicle. But the drivetrain components are usually complete overkill for the EV owner. The reason has to do with the different characteristics of internal combustion engines versus electric motors, and the way they are specified.

113


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Other Related Web Sites

27min
pages 334-357

General Electric Drive Information Sites

3min
pages 332-333

State- and Community-Related Electric Vehicle Sites

1min
page 331

Chargers

1min
page 324

Batteries

1min
page 323

Conversion Kits

1min
page 320

Controllers

1min
page 322

Suppliers

1min
pages 318-319

Electric Utilities and Power Associations

1min
page 310

Conversion Specialists

1min
page 314

Emergency Kit

1min
page 299

Driving Your Electric Vehicle

5min
pages 296-297

Paint, Polish, and Sign

1min
page 291

Improved Cooling

1min
page 289

Charger System

3min
pages 278-282

Further Improved Cooling

1min
page 290

Low-Voltage System

1min
pages 274-276

Junction Box

3min
page 277

Fabricating Battery Mounts

1min
page 267

Mounting and Testing Your Electric Motor

1min
page 266

Purchase Other Components

1min
page 259

Checking

1min
page 251

Wiring It All Together

3min
pages 249-250

Conversion Overview

2min
pages 252-253

The Manzita Micro PFC-20

1min
page 237

The Real-World Battery Charger

2min
page 236

Terminal Strip

1min
page 244

The Ideal Battery Charger

4min
pages 233-235

Charger Overview

1min
page 230

Future Batteries: The Big Picture

6min
pages 224-227

Batteries and the RAV4 EV Experience

3min
pages 228-229

Five Trojan Battery Solutions

4min
pages 219-222

Tomorrow’s Best Battery Solution—Today

2min
page 223

Today’s Best Battery Solution

2min
page 218

Battery Construction

4min
pages 214-215

Battery Types

2min
page 213

The Gentle Art of Battery Recharging

2min
page 209

AC Controllers

2min
page 189

Today’s Best Controller Solution Zilla Controller (One of the Best DC Controller for Conversions)

5min
pages 190-192

An Off-the-Shelf Curtis PWM DC Motor Controller

2min
page 188

DC Motor Controller—The Lesson of the Jones Switch

4min
pages 185-187

Electrolytes

1min
page 203

Battery Overview

1min
page 200

Battery Capacity and Rating

4min
pages 207-208

Conclusion

1min
page 199

Controller Overview

2min
page 182

Tomorrow’s Best EV Motor Solution

1min
pages 179-180

The Advance FB1-4001

3min
pages 177-178

Series DC Motors

3min
pages 164-165

Universal DC Motors

1min
page 170

Compound DC Motors

2min
page 168

Polyphase AC Induction Motors

3min
pages 173-175

DC Motors in the Real World

2min
page 162

Horsepower

2min
page 157

Why an Electric Motor?

2min
page 156

Late-Model Used Vehicles (Late 1980s and Onward

2min
page 152

Buy Your EV Chassis

1min
page 150

Automatic vs. Manual Transmission

1min
page 140

Torque Required and Available Graph

4min
pages 148-149

Calculation Overview

5min
pages 143-144

Going through the Gears

2min
page 139

Difference in Motor vs. Engine Specifications

2min
pages 137-138

Drivetrains

2min
page 136

Weight Affects Speed

1min
page 124

Weight and Acceleration

2min
page 122

Weight and Climbing

1min
page 123

Your Batteries Make a Difference

1min
page 111

Choose the Best Chassis for Your EV

2min
page 118

Converting Existing Vans

4min
pages 104-108

The Procedure

2min
page 112

Converting Existing Vehicles

1min
pages 102-103

Buying Ready-to-Run

1min
page 99

Near Future Trends For Electric Drive

3min
pages 96-97

Third Wave After 1979: EVs Enter a Black Hole

2min
page 74

Mid-1960s to 1990s

19min
pages 75-82

The 1990s–2000s

14min
pages 83-89

After 1973: Phoenix Rising, Quickly

8min
pages 70-73

1940 to 1989

10min
pages 65-69

Timeline of Vehicle History

2min
page 55

Myth #3: Electric Vehicles Are Not Convenient

2min
page 39

Convert That Car

5min
pages 26-29

Why Do Electric Vehicles Save the Environment?

1min
page 44

Electric Vehicles Save Money

2min
page 35

Electric Motors

1min
page 31

Electric Utilities Love Electric Vehicles

1min
page 50

What Is an Electric Vehicle?

1min
page 30

Save the Environment and Save Some Money Too

1min
page 45
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Build Your Own Electric Vehicle Manual - PDF DOWNLOAD by www.heydownloads.com - Issuu