Issuu on Google+


DISEÑO DE ESTRUCTURAS DE ACERO QUINTA EDICIÓN

JACK C. McCORMAC STEPHEN F. CSERNAK


Al cuidado de la edición: Luz Ángeles Lomelí Díaz lalomeli@alfaomega.com.mx Gerente Editorial: Marcelo Grillo Giannetto mgrillo@alfaomega.com.mx

Datos catalográficos McCormac, Jack C. y Csernak, Stephen F. Diseño de Estructuras de Acero. Quinta Edición Alfaomega Grupo Editor, S.A. de C. V., México ISBN: 978 607 707 559 2 Formato: 17 ⫻ 23 cm

Páginas: 736

Diseño de Estructuras de Acero. Jack C. McCormac, Stephen F. Csernak. ISBN: 978- 0-13- 607948-4 edición original en inglés “Structural Steel Design”, Fifth Edition, publicada por Pearson Education, Inc. Upper Saddle River, New Jersey, USA. Derechos reservados © Pearson Education, Inc. Quinta edición: Alfaomega Grupo Editor, México, Diciembre 2012 © 2013 Alfaomega Grupo Editor, S.A. de C.V. Pitágoras No. 1139, Col. Del Valle, 03100, México, D.F. Miembro de la Cámara Nacional de la Industria Editorial Mexicana Registro No. 2317 Página Web: http://www.alfaomega.com.mx E-mail: atencionalcliente@alfaomega.com.mx ISBN: 978 607 707 559 2 Derechos reservados: Esta obra es propiedad intelectual de su autor y los derechos de publicación en lengua española han sido legalmente transferidos al editor. Prohibida su reproducción parcial o total por cualquier medio sin permiso por escrito del propietario de los derechos del copyright. NOTA IMPORTANTE: La información contenida en esta obra tiene un fin exclusivamente didáctico y, por lo tanto, no está previsto su aprovechamiento a nivel profesional o industrial. Las indicaciones técnicas y programas incluidos han sido elaborados con gran cuidado por el autor y reproducidos bajo estrictas normas de control. ALFAOMEGA GRUPO EDITOR S.A de C.V. no será jurídicamente responsable por: errores u omisiones; daños y perjuicios que se pudieran atribuir al uso de la información comprendida en este libro, ni por la utilización indebida que pudiera dársele. Impreso en México. Printed in Mexico. Empresas del grupo: México: Alfaomega Grupo Editor, S.A. de C.V. – Pitágoras 1139, Col. Del Valle, México, D.F. C.P. 03100, Tel.: (52-55) 55 75 50 22 – Fax: (52-55) 5575-2420 / 2490. Sin costo: 01-800-020-4396 E-mail: atencionalcliente@alfaomega.com.mx Colombia: Alfaomega Colombiana S.A. – Carrera 15 No. 64 A 29, Bogotá, Colombia, Tel.: (57-1) 2100122 – Fax: (57-1) 6068648, E-mail: scliente@alfaomega.com.co Chile: Alfaomega Grupo Editor, S.A. – General del Canto 370, Providencia, Santiago, Chile Tel.: (56-2) 947-9351 – Fax: (56-2) 235-5786, E-mail: agechile@alfaomega.cl Argentina: Alfaomega Grupo Editor Argentino, S.A. – Paraguay 1307 P.B. Of.11, C.P. 1057, Buenos Aires, Argentina, Tel/Fax.: (54-11) 4811-0887/ 7183, E-mail: ventas@alfaomegaeditor.com.ar


Prefacio Este libro de texto se ha preparado con la esperanza de que los lectores, al igual que muchos ingenieros en el pasado, se interesen en el diseño de las estructuras de acero y tengan la intención de mantener e incrementar su conocimiento de la materia a lo largo de sus carreras en la ingeniería y en las industrias de la construcción. El material se preparó primordialmente para un curso introductorio en el primero y segundo años de la carrera, pero los últimos capítulos se pueden usar para un curso de posgrado. Los autores esperan que el estudiante haya tomado cursos introductorios previos de mecánica de materiales y de análisis estructural. El principal objetivo de los autores en la preparación de esta nueva edición fue actualizar el texto conforme a la Specification for Structural Steel Buildings de 2010 (Especificación para edificios de acero estructural de 2010) del American Institute of Steel Construction (AISC) y conforme a la 14a. edición del AISC Steel Construction Manual (Manual de construcción en acero del AISC) que se publicó en 2011.

LO QUE ES NUEVO EN ESTA EDICIÓN En esta edición se hicieron varios cambios en el texto del libro: 1. Al final del Capítulo 1 se ha agregado una sección de Problemas para resolver. 2. Los factores de carga y las combinaciones de carga que se definen en el Capítulo 2 del libro de texto y que se usan a lo largo del mismo en los problemas de ejemplo y en los problemas para resolver al final de los capítulos, se han revisado para que concuerden con aquellos dados en el Apartado 7-10 de ASCE y en la Parte 2 del Manual de construcción de acero del AISC. 3. La clasificación de las secciones en compresión para el pandeo local que se definen en el Capítulo 5 del libro de texto se ha revisado conforme a la nueva definición dada en la Sección B4.1 de la Especificación del AISC. Para la compresión, ahora las secciones se clasifican como secciones de elemento no esbelto y elemento esbelto. 4. La Especificación del AISC proporciona varios métodos para tratar el análisis de estabilidad y el diseño de las vigas-columnas. En el Capítulo 7 del libro de texto, todavía se usa el Método de la longitud efectiva (MLE), aun cuando se ha añadido una breve introducción al Método del análisis directo (MD). Se presenta un estudio más detallado del MD en el Capítulo 11 del libro. 5. En el Capítulo 11 del libro de texto, se presentan tanto el Método del análisis directo como el Método de la longitud efectiva para el análisis y el diseño de las vigas-columnas. Esto es para solventar el hecho de que la presentación del Método del análisis directo se pasó de un apéndice al Capítulo C de la nueva Especificación el AISC, mientras que el Método de la longitud efectiva se pasó del Capítulo C al Apéndice 7. 6. Se ha revisado la mayoría de los Problemas para resolver al final de los capítulos en los Capítulos 2 al 11. Para los Capítulos 12 al 18 se ha revisado aproximadamente la mitad de los problemas. 7. Se han actualizado diversas fotografías a lo largo del libro de texto. Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


iv

Prefacio

RECURSOS DEL PROFESOR El libro contiene los siguientes recursos en la web: •

Manual de soluciones. Aquí se encuentran las soluciones de problemas propuestos en 18 capítulos de la obra.

Figuras en formato PowerPoint. Se encuentran las figuras de todos los capítulos y apéndices del texto, para la creación de diapositivas para clases y conferencias.

Este material sólo podrá ser descargado por los profesores que hayan adoptado el libro como texto para sus cursos y para lo cual deberán ponerse en contacto con un representante de Alfaomega Grupo Editor.

AGRADECIMIENTOS Los autores desean expresar su agradecimiento al Dr. Bryant G. Nielson de la Universidad Clemson por su ayuda para plantear los cambios de este manuscrito y a Sara Elise Roberts, quien fue estudiante de posgrado de la Universidad Clemson por su ayuda en la revisión de los problemas al final de los capítulos y sus soluciones. Además, el American Institute of Steel Construction prestó una ayuda muy valiosa al proveer ejemplares inéditos de las revisiones de la Especificación del AISC y del Manual de construcción en acero del AISC. Finalmente, nos gustaría agradecer a nuestras familias por su aliento y apoyo en la revisión del manuscrito de este libro de texto. También agradecemos a los revisores y a los lectores de las ediciones anteriores de este libro por sus sugerencias, correcciones y observaciones. Damos la bienvenida a cualquier comentario acerca de esta edición. Jack C. McCormac, P. E. Stephen F. Csernak, P. E.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


Contenido

Prefacio

iii

CAPÍTULO 1 Introducción al diseño estructural en acero 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21

Ventajas del acero como material estructural Desventajas del acero como material estructural Primeros usos del hierro y el acero Perfiles de acero Unidades métricas Perfiles de lámina delgada de acero doblados en frío Relaciones esfuerzo-deformación del acero estructural Aceros estructurales modernos Uso de los aceros de alta resistencia Medición de la tenacidad Secciones jumbo Desgarramiento laminar Suministro de estructuras de acero El trabajo del diseñador estructural Responsabilidades del ingeniero estructurista Diseño económico de miembros de acero Fallas en estructuras Manejo y embarque del acero estructural Exactitud de los cálculos Las computadoras y el diseño del acero estructural Problemas para resolver

CAPÍTULO 2 Especificaciones, cargas y métodos de diseño 2.1 2.2 2.3 2.4 Alfaomega

Especificaciones y códigos de construcción Cargas Cargas muertas Cargas vivas

1 1 3 4 7 12 12 13 19 22 24 26 26 27 30 31 31 34 37 37 37 39 39 39 41 41 42

Diseño de Estructuras de Acero – McCormac /Csernak


vi

Contenido

2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15

Cargas ambientales Diseño con factores de carga y resistencia (LRFD) y diseño por esfuerzos permisibles (ASD) Resistencia nominal Sombreado Cálculo de las cargas para los métodos LRFD y ASD Cálculo de las cargas combinadas con las expresiones de LRFD Cálculo de cargas combinadas con expresiones ASD Dos métodos para obtener un nivel aceptable de seguridad Estudio de la magnitud de los factores de carga y de seguridad Un comentario del autor Problemas para resolver

CAPÍTULO 3 Análisis de miembros a tensión 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

Introducción Resistencia nominal de los miembros a tensión Áreas netas Efecto de agujeros alternados Áreas netas efectivas Elementos de conexión para miembros a tensión Bloque de cortante Problemas para resolver

CAPÍTULO 4 Diseño de miembros a tensión 4.1 4.2 4.3 4.4 4.5 4.6

Selección de perfiles Miembros compuestos sometidos a tensión Varillas y barras Miembros conectados por pasadores Diseño por cargas de fatiga Problemas para resolver

CAPÍTULO 5 Introducción a los miembros cargados axialmente a compresión 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9

Consideraciones generales Esfuerzos residuales Perfiles usados para columnas Desarrollo de las fórmulas para columnas La fórmula de Euler Restricciones en los extremos y longitud efectiva de una columna Elementos rigidizados y no rigidizados Columnas largas, cortas e intermedias Fórmulas para columnas

Diseño de Estructuras de Acero – McCormac /Csernak

45 51 52 52 52 53 57 59 59 60 60 62 62 65 67 69 74 84 85 94 103 103 111 115 120 122 125 129 129 132 133 137 139 141 144 145 148

Alfaomega


Contenido

5.10 5.11 5.12

Relaciones de esbeltez máximas Problemas de ejemplo Problemas para resolver

CAPÍTULO 6 Diseño de miembros cargados axialmente a compresión 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11

Introducción Tablas de diseño según el AISC Empalmes de columnas Columnas compuestas Columnas compuestas con componentes en contacto entre sí Requisitos de conexión en columnas armadas cuyas componentes están en contacto Columnas compuestas con componentes sin contacto entre sí Miembros en compresión de un solo ángulo Secciones que contienen elementos esbeltos Pandeo flexotorsional de miembros a compresión Problemas para resolver

vii

150 150 158 163 163 166 171 174 175 176 182 187 189 191 196

CAPÍTULO 7 Diseño de miembros cargados axialmente a compresión (continuación) y placas de base para columnas 200 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8

Introducción Una exposición más amplia de las longitudes efectivas Marcos que cumplen con las hipótesis de los nomogramas Marcos que no cumplen con las hipótesis de los nomogramas con respecto a los giros de los nudos Factores de reducción de la rigidez Diseño en un plano de columnas apoyadas entre sí Placas base para columnas cargadas concéntricamente Problemas para resolver

CAPÍTULO 8 Introducción al estudio de vigas 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 Alfaomega

Tipos de vigas Perfiles usados como vigas Esfuerzos de flexión Articulaciones plásticas Diseño elástico El módulo plástico Teoría del análisis plástico El mecanismo de falla El método del trabajo virtual

200 201 205 208 211 215 218 232 237 237 237 238 239 240 240 243 244 245

Diseño de Estructuras de Acero – McCormac /Csernak


viii

Contenido

8.10 8.11 8.12 8.13

Localización de la articulación plástica para cargas uniformes Vigas continuas Marcos de edificios Problemas para resolver

CAPÍTULO 9 Diseño de vigas por momentos 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10

Diseño de vigas continuas Fuerza y esfuerzo cortante Deflexiones Almas y patines con cargas concentradas Flexión asimétrica Diseño de largueros El centro de cortante Placas de asiento para vigas Arriostramiento lateral de los extremos de miembros soportados sobre placas de asiento Problemas para resolver

CAPÍTULO 11 Flexión y fuerza axial 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10

263

Introducción Comportamiento plástico – momento plástico total, zona 1 Diseño de vigas, zona 1 Soporte lateral de vigas Introducción al pandeo inelástico, zona 2 Capacidad por momento, zona 2 Pandeo elástico, zona 3 Gráficas de diseño Secciones no compactas Problemas para resolver

CAPÍTULO 10 Diseño de vigas: temas diversos (cortante, deflexión, etcétera)

Sitio de incidencia Miembros sujetos a flexión y tensión axial Momentos de primer y segundo orden para miembros sometidos a compresión axial y flexión Método del análisis directo (DM) Método de la longitud efectiva (ELM) Análisis aproximado de segundo orden Vigas–columnas en marcos arriostrados Vigas–columnas en marcos no arriostrados Diseño de vigas–columnas; arriostradas y sin arriostrar Problemas para resolver

Diseño de Estructuras de Acero – McCormac /Csernak

249 250 252 254

263 266 267 275 277 281 283 285 290 295 302 302 304 310 316 324 327 330 335 339 340 346 346 347 350 352 353 354 359 371 378 386

Alfaomega


Contenido

CAPÍTULO 12 Conexiones atornilladas 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15

390

Introducción Tipos de tornillos Historia de los tornillos de alta resistencia Ventajas de los tornillos de alta resistencia Tornillos apretados sin holgura, pretensionados y de fricción Métodos para tensar completamente los tornillos de alta resistencia Conexiones tipo fricción y tipo aplastamiento Juntas mixtas Tamaños de los agujeros para tornillos Transmisión de carga y tipos de juntas Fallas en juntas atornilladas Separación y distancias a bordes de tornillos Conexiones tipo aplastamiento: cargas que pasan por el centro de gravedad de las conexiones Conexiones tipo fricción: cargas que pasan por el centro de gravedad de las conexiones Problemas para resolver

CAPÍTULO 13 Conexiones atornilladas cargadas excéntricamente y notas históricas sobre los remaches 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9

Tornillos sujetos a corte excéntrico Tornillos sujetos a corte y tensión (conexiones tipo aplastamiento) Tornillos sujetos a corte y tensión (conexiones de fricción) Cargas de tensión en juntas atornilladas Acción separadora Notas históricas sobre los remaches Tipos de remaches Resistencia de conexiones remachadas: remaches en cortante y aplastamiento Problemas para resolver

CAPÍTULO 14 Conexiones soldadas 14.1 14.2 14.3 14.4 14.5 14.6 Alfaomega

ix

390 390 391 392 392 396 398 399 400 401 404 405 408 419 423 430 430 444 447 448 451 454 455 457 461 469

Generalidades Ventajas de la soldadura Sociedad Americana de Soldadura Tipos de soldadura Soldadura precalificada Inspección de la soldadura

469 470 471 471 475 475

Diseño de Estructuras de Acero – McCormac /Csernak


x

Contenido

14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14 14.15 14.16 14.17 14.18 14.19 14.20 14.21

Clasificación de las soldaduras Símbolos para soldadura Soldaduras de ranura Soldaduras de filete Resistencia de las soldaduras Requisitos del AISC Diseño de soldaduras de filete simples Diseño de conexiones para miembros con soldaduras de filete longitudinal y transversal Algunos comentarios diversos Diseño de soldaduras de filete para miembros de armaduras Soldaduras de tapón y de muesca Cortante y torsión Cortante y flexión Soldaduras de ranura de penetración completa y de penetración parcial Problemas para resolver

CAPÍTULO 15 Conexiones en edificios 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11 15.12 15.13

478 480 482 484 485 486 491 497 498 499 503 506 513 515 519 528

Selección del tipo de sujetador Tipos de conexiones para vigas Conexiones estándar de vigas atornilladas Tablas de conexiones estándar del manual AISC Diseño de conexiones estándar atornilladas a base de ángulos Diseño de conexiones estándar soldadas Conexiones a base de una sola placa o de placa de cortante Conexiones con placa de extremo de cortante Diseño de conexiones soldadas de asiento para vigas Diseño de conexiones para viga de asiento atiesado Diseño de conexiones resistentes a momento totalmente restringido Atiesadores de almas de columnas Problemas para resolver

528 529 536 539 539 542 544 547 548 550 551 555 558

CAPÍTULO 16 Vigas compuestas

562

16.1 16.2 16.3 16.4 16.5 16.6 16.7

562 563 565 566 567 570 570

Construcción compuesta Ventajas de la construcción compuesta Estudio del apuntalamiento Anchos efectivos de patines Transmisión de la fuerza cortante Vigas parcialmente compuestas Resistencia de los conectores de cortante

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


Contenido

16.8 16.9 16.10 16.11 16.12 16.13 16.14

Número, espaciamiento y requerimientos de recubrimiento de los conectores de cortante Capacidad por momento de las secciones compuestas Deflexiones Diseño de secciones compuestas Secciones compuestas continuas Diseño de secciones ahogadas en concreto Problemas para resolver

CAPÍTULO 17 Columnas compuestas 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 17.10 17.11 17.12

Introducción Ventajas de las columnas compuestas Desventajas de las columnas compuestas Soporte lateral Especificaciones para columnas compuestas Resistencias de diseño de columnas compuestas cargadas axialmente Resistencia al cortante de las columnas compuestas Tablas de los métodos LRFD y ASD Transmisión de la carga a la cimentación y otras conexiones Resistencia a la tensión de las columnas compuestas Carga axial y flexión Problemas para resolver

Vigas con cubreplacas Trabes armadas Proporciones de las trabes armadas Resistencia a la flexión Acción de tensión diagonal Diseño de atiesadores Problemas para resolver

CAPÍTULO 19 Diseño de edificios de acero 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 Alfaomega

571 573 578 579 588 589 592 596

CAPÍTULO 18 Vigas con cubreplacas y trabes armadas 18.1 18.2 18.3 18.4 18.5 18.6 18.7

xi

Introducción a edificios de poca altura Tipos de estructuras de acero utilizadas para edificios Diferentes sistemas de piso Losas de concreto sobre viguetas de acero de alma abierta Losas de concreto reforzadas en una y en dos direcciones Pisos compuestos Pisos de losa reticular Pisos con tableros de acero Losas planas

596 597 599 599 600 602 607 608 609 610 610 610 613 613 616 618 624 629 634 640 642 642 642 646 647 650 651 652 653 655

Diseño de Estructuras de Acero – McCormac /Csernak


xii

Contenido

19.10 19.11 19.12 19.13 19.14 19.15 19.16 19.17 19.18 19.19 19.20

Pisos de losas precoladas Tipos de cubiertas para techos Muros exteriores y muros interiores divisorios Protección del acero estructural contra el fuego Introducción a edificios de gran altura Estudio de fuerzas laterales Tipos de contraventeo lateral Análisis de edificios con contraventeo diagonal para fuerzas laterales Juntas resistentes a momento Diseño de edificios por cargas gravitacionales Diseño de miembros

656 658 659 659 660 662 663 669 671 672 676

APÉNDICE A Deducción de la fórmula de Euler

677

APÉNDICE B Elementos esbeltos a compresión

679

APÉNDICE C Pandeo flexotorsional de miembros a compresión

682

APÉNDICE D Placas de base resistentes a momento de columnas

688

APÉNDICE E Encharcamiento

697

GLOSARIO

702

ÍNDICE

708

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


C A P Í T U L O

1

Introducción al diseño estructural en acero

1.1

VENTAJAS DEL ACERO COMO MATERIAL ESTRUCTURAL Una persona que viaje por Estados Unidos podría concluir que el acero es el material estructural perfecto; vería un sinfín de puentes, edificios, torres y otras estructuras de este material. Después de ver estas numerosas estructuras metálicas, se sorprendería al saber que el acero no se fabricó económicamente en Estados Unidos sino hasta finales del siglo xix, y que las primeras vigas de patín ancho no se laminaron sino hasta 1908. La supuesta perfección de este metal, tal vez el más versátil de todos los materiales estructurales, parece más razonable cuando se considera su gran resistencia, poco peso, facilidad de fabricación y otras propiedades convenientes. Éstas y otras ventajas del acero estructural se analizarán con más detalle en los párrafos siguientes.

1.1.1

Alta resistencia La alta resistencia del acero por unidad de peso implica que será relativamente bajo el peso de las estructuras; esto es de gran importancia en puentes de grandes claros, en edificios altos y en estructuras con condiciones deficientes en la cimentación.

1.1.2

Uniformidad Las propiedades del acero no cambian apreciablemente con el tiempo, como es el caso de las estructuras de concreto reforzado.

1.1.3

Elasticidad El acero se acerca más en su comportamiento a las hipótesis de diseño que la mayoría de los materiales, debido a que sigue la ley de Hooke hasta esfuerzos bastante altos. Los momentos de inercia de una estructura de acero se pueden calcular exactamente, en tanto que los valores obtenidos para una estructura de concreto reforzado son relativamente imprecisos.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak

1


2

Capítulo 1

Introducción al diseño estructural en acero

Montaje de viguetas de acero. (Cortesía de Vulcraft.)

1.1.4

Durabilidad Si el mantenimiento de las estructuras de acero es adecuado durarán indefinidamente. Investigaciones realizadas en los aceros modernos, indican que bajo ciertas condiciones no se requiere ningún mantenimiento a base de pintura.

1.1.5

Ductilidad La ductilidad es la propiedad que tiene un material para soportar grandes deformaciones sin fallar bajo esfuerzos de tensión altos. Cuando se prueba a tensión un acero dulce o con bajo contenido de carbono, ocurre una reducción considerable de la sección transversal y un gran alargamiento en el punto de falla, antes de que se presente la fractura. Un material que no tenga esta propiedad por lo general es inaceptable y probablemente será duro y frágil y se romperá al someterlo a un golpe repentino. En miembros estructurales sometidos a cargas normales se desarrollan altas concentraciones de esfuerzos en varios puntos. La naturaleza dúctil de los aceros estructurales comunes les permite fluir localmente en esos puntos, evitándose así fallas prematuras. Una ventaja adicional de las estructuras dúctiles es que, al sobrecargarlas, sus grandes deflexiones ofrecen evidencia visible de la inminencia de la falla (algunas veces denominada en son de broma como “cuenta regresiva”).

1.1.6

Tenacidad Los aceros estructurales son tenaces, es decir, poseen resistencia y ductilidad. Un miembro de acero cargado hasta que se presentan grandes deformaciones será aun capaz de resistir grandes fuerzas. Ésta es una característica muy importante porque implica que los miembros

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.2

Desventajas del acero como material estructural 3

de acero pueden someterse a grandes deformaciones durante su fabricación y montaje, sin fracturarse, siendo posible doblarlos, martillarlos, cortarlos y taladrarlos sin daño aparente. La propiedad de un material para absorber energía en grandes cantidades se denomina tenacidad.

1.1.7

Ampliaciones de estructuras existentes Las estructuras de acero se adaptan muy bien a posibles ampliaciones. Se pueden añadir nuevas crujías e incluso alas enteras a estructuras de acero ya existentes, y con frecuencia se pueden ampliar los puentes de acero.

1.1.8

Propiedades diversas Algunas otras ventajas importantes del acero estructural son: a) gran facilidad para unir diversos miembros por medio de varios tipos de conexión simple, como son la soldadura y los pernos; b) posibilidad de prefabricar los miembros; c) rapidez de montaje; d) capacidad para laminarse en una gran cantidad de tamaños y formas, como se describe en la Sección 1.4 de este capítulo; e) es posible utilizarlo nuevamente después de desmontar una estructura; y f) posibilidad de venderlo como chatarra, aunque no pueda utilizarse en su forma existente. El acero es el material reciclable por excelencia.

1.2

DESVENTAJAS DEL ACERO COMO MATERIAL ESTRUCTURAL En general, el acero tiene las siguientes desventajas:

1.2.1

Corrosión La mayor parte de los aceros son susceptibles a la corrosión al estar expuestos al aire y al agua y, por consiguiente, deben pintarse periódicamente. Sin embargo, el uso de aceros intemperizados para ciertas aplicaciones, tiende a eliminar este costo. Aunque los aceros intemperizados pueden ser bastante efectivos en ciertas situaciones para limitar la corrosión, hay muchos casos donde su uso no es factible. En algunas de estas situaciones, la corrosión puede ser un problema real. Por ejemplo, las fallas por corrosiónfatiga pueden ocurrir si los miembros de acero se someten a esfuerzos cíclicos y a ambientes corrosivos. La resistencia a la fatiga de los miembros de acero puede reducirse apreciablemente cuando los miembros se usan en ambientes químicos agresivos y sometidos a cargas cíclicas. El lector debe observar que se dispone de aceros en los cuales se usa el cobre como un componente anticorrosivo. Generalmente, el cobre se absorbe durante el proceso de fabricación del acero.

1.2.2

Costo de la protección contra el fuego Aunque los miembros estructurales son incombustibles, sus resistencias se reducen considerablemente en temperaturas que comúnmente se alcanzan en incendios, cuando los otros materiales de un edificio se queman. Han ocurrido muchos incendios devastadores en inmuebles vacíos en los que el único material combustible es el mismo inmueble. Además, el acero es un excelente conductor del calor, de manera que los miembros de acero sin protección pueden transmitir suficiente calor de una sección o compartimiento incendiado de un edificio a secciones adyacentes del mismo edificio e incendiar el material presente. En consecuencia, la estructura de acero de un edificio debe protegerse mediante materiales

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


4

Capítulo 1

Introducción al diseño estructural en acero

con ciertas características aislantes, y el edificio deberá acondicionarse con un sistema de rociadores para que cumpla con los requisitos de seguridad del código de construcciones de la localidad en que se halle.

1.2.3

Susceptibilidad al pandeo Cuanto más largos y esbeltos sean los miembros a compresión, tanto mayor es el peligro de pandeo. En la mayoría de las estructuras, el uso de columnas de acero es muy económico debido a sus relaciones elevadas de resistencia a peso. Sin embargo, en forma ocasional, se necesita algún acero adicional para rigidizarlas y que no se pandeen. Esto tiende a reducir su economía.

1.2.4

Fatiga Otra característica inconveniente del acero es que su resistencia se puede reducir si se somete a un gran número de inversiones del sentido del esfuerzo, o bien, a un gran número de cambios en la magnitud del esfuerzo de tensión. (Se tienen problemas de fatiga sólo cuando se presentan tensiones.) En la práctica actual se reducen las resistencias estimadas de tales miembros, si se sabe de antemano que estarán sometidos a un número mayor de ciclos de esfuerzo variable, que cierto número límite.

1.2.5

Fractura frágil Bajo ciertas condiciones, el acero puede perder su ductilidad y la fractura frágil puede ocurrir en lugares de concentración de esfuerzos. Las cargas que producen fatiga y muy bajas temperaturas agravan la situación. Las condiciones de esfuerzo triaxial también pueden conducir a la fractura frágil.

1.3

PRIMEROS USOS DEL HIERRO Y EL ACERO Aunque el primer metal que usaron los seres humanos probablemente fue algún tipo de aleación de cobre, tal como el bronce (hecho a base de cobre, estaño y algunos otros aditivos), los avances más importantes en el desarrollo de los metales han ocurrido en la fabricación y uso del hierro y de su famosa aleación llamada acero. Actualmente el hierro y el acero comprenden casi el 95% en tonelaje de todos los metales producidos en el mundo.1 A pesar de los esfuerzos de los arqueólogos durante muchas décadas, no ha sido posible descubrir cuándo se usó el hierro por primera vez. Los arqueólogos encontraron una daga y un brazalete de hierro en la Gran Pirámide de Egipto y afirman que la edad de éstos era por lo menos de 5 000 años. El uso del hierro ha tenido una gran influencia en el avance de la civilización desde los tiempos más remotos y probablemente la seguirá teniendo en los siglos venideros. Desde el principio de la Edad de Hierro, alrededor del año 1 000 a.C., el progreso de la civilización en la paz y en la guerra ha dependido mucho de lo que el hombre ha sido capaz de hacer con el hierro. En muchas ocasiones su uso ha decidido el resultado de enfrentamientos militares. Por ejemplo, durante la Batalla de Maratón en Grecia, en el año 490 a.C., los atenienses, con una inferioridad numérica, mataron a 6 400 persas y perdieron sólo a 192 de sus hombres. Cada uno de los soldados victoriosos llevaba 57 libras de armadura de hierro durante la batalla. (Fue en ésta en la que Feidípides corrió aproximadamente 40 km hasta Atenas, muriendo al llegar después de anunciar la victoria.) Esta batalla supuestamente salvó a la civilización griega durante muchos años. 1

American Iron and Steel Institute, The Making of Steel (Washington, DC, sin fecha), p. 6.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.3 Primeros usos del hierro y el acero 5

El mástil de amarre del edificio Empire State, ciudad de Nueva York. (Cortesía de Getty Images/Hulton Archive Photos.)

Según la teoría clásica sobre la primera producción de hierro en el mundo, hubo una vez un gran incendio forestal en el Monte Ida en la antigua Troya (la actual Turquía) cerca del Mar Egeo. Supuestamente, el terreno era muy rico en depósitos ferrosos y el calor del fuego produjo una forma primitiva de hierro a la que se le pudo dar diversas formas, al martillarla. Sin embargo, muchos historiadores creen que el hombre aprendió a usar primero el hierro que cayó a la Tierra en forma de meteoritos. Con frecuencia, el hierro de los meteoritos está combinado con níquel, resultando entonces un metal más duro. Posiblemente los primeros pobladores del planeta forjaron este material para convertirlo en armas y herramientas primitivas. El acero se define como una combinación de hierro y pequeñas cantidades de carbono, generalmente menos del 1%. También contiene pequeños porcentajes de algunos otros elementos. Aunque se ha fabricado acero desde hace 2 000 o 3 000 años, no existió realmente un método de producción económico sino hasta la mitad del siglo xix. Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


6

Capítulo 1

Introducción al diseño estructural en acero

El primer acero seguramente se obtuvo cuando los otros elementos necesarios para producirlo se encontraron presentes por accidente cuando se calentaba el hierro. Con el paso de los años, el acero se fabricó muy probablemente calentando hierro en contacto con carbón vegetal. La superficie del hierro absorbió algo de carbono del carbón vegetal que luego se martilló en el hierro caliente. Al repetir este proceso varias veces, se obtuvo una capa exterior endurecida de acero. De esta manera se produjeron las famosas espadas de Toledo y Damasco. El primer proceso para producir acero en grandes cantidades fue bautizado en honor de Sir Henry Bessemer de Inglaterra. Recibió una patente inglesa para su proceso en 1855, pero sus esfuerzos para conseguir una patente en Estados Unidos en 1856 no tuvieron éxito, ya que se demostró que William Kelly de Eddyville, Kentucky, había producido acero mediante el mismo proceso siete años antes de que Bessemer solicitara su patente inglesa. Kelly recibió la patente, pero se usó el nombre de Bessemer para el proceso.2 Kelly y Bessemer se percataron de que un chorro de aire a través del hierro fundido quemaba la mayor parte de las impurezas en el metal. Desafortunadamente, también el chorro de aire eliminaba algunos elementos provechosos como el carbono y el manganeso. Después se aprendió que esos elementos podían restituirse añadiendo hierro especular, que es una aleación de hierro, carbono y manganeso. Se aprendió además que al agregar piedra caliza en el convertidor, podía removerse el fósforo y la mayor parte del azufre. Antes de que fuese desarrollado el proceso Bessemer, el acero era una aleación costosa usada principalmente para fabricar cuchillos, tenedores, cucharas y ciertos tipos de herramientas de corte. El proceso Bessemer redujo los costos de producción por lo menos en un 80% y permitió por primera vez la producción de grandes cantidades de acero. El convertidor Bessemer se uso en Estados Unidos hasta principios de este siglo, pero desde entonces se ha reemplazado con mejores métodos como el proceso de solera abierta y el de oxígeno básico. Gracias al proceso Bessemer, en 1870 ya se podía producir en grandes cantidades acero estructural al carbono, y por 1890 el acero era el principal metal estructural usado en Estados Unidos. Actualmente, la mayor parte de los perfiles y las placas de acero estructural que se producen en Estados Unidos se hacen fundiendo la chatarra de acero. Ésta se obtiene de automóviles viejos y de la chatarra de los perfiles estructurales, así como de refrigeradores, motores, máquinas de escribir, resortes de camas y otros artículos similares de desecho. El acero fundido se vierte en moldes que tienen aproximadamente las formas finales de los miembros. Las secciones resultantes, que se hacen pasar por una serie de rodillos para comprimirlos hasta su forma final, tienen mejor superficie y menores esfuerzos residuales que el acero recién hecho. Los perfiles se pueden procesar más mediante el rolado en frío, la aplicación de diversos recubrimientos, y tal vez mediante el proceso de recocido. Mediante este proceso, el acero se calienta a un rango intermedio de temperatura (por ejemplo, 1 300-1 400 °F), se le mantiene a esta temperatura por varias horas, y luego se le deja enfriar lentamente a la temperatura ambiente. El recocido conduce a un acero que tiene menor dureza y fragilidad, pero mayor ductilidad. El término hierro dulce se refiere al hierro con un contenido muy bajo de carbono (ⱕ 0.15%), mientras que al hierro con un contenido muy alto de carbono (ⱖ 2%) se le llama hierro colado. Los aceros se encuentran entre el hierro colado y el hierro dulce y tienen un contenido de carbón en el rango de 0.15% al 1.7% (como se verá en la Sección 1.8 de este capítulo). 2

American Iron and Steel Institute, Steel 76 (Washington, DC, 1976), pp. 5-11.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.4

Perfiles de acero

7

El primer uso del metal para una estructura grande tuvo lugar en Shropshire, Inglaterra (aproximadamente a 140 millas al noroeste de Londres) en 1779, ahí se construyó con hierro colado el puente Coalbrookdale en forma de arco de 100 pies de claro sobre el Río Severn. Se dice que este puente (que aún está en pie) fue un hito en la historia de la ingeniería porque cambió el curso de la Revolución Industrial al introducir al hierro como material estructural. Supuestamente este hierro era cuatro veces más fuerte que la piedra y treinta veces más que la madera.3 Muchos otros puentes de hierro colado se construyeron en las décadas siguientes, pero después de 1840 el hierro dulce (más maleable) comenzó a reemplazar al hierro colado. El desarrollo del proceso Bessemer y los avances subsecuentes, como el proceso de solera abierta, permitió la fabricación de acero a precios competitivos, lo que estimuló el casi increíble desarrollo del acero estructural que ha tenido lugar en los últimos 120 años.

1.4

PERFILES DE ACERO Los primeros perfiles estructurales hechos en Estados Unidos, en 1819, fueron ángulos de hierro laminados. Las vigas I de acero se laminaron por primera vez en ese país en 1884 y la primera estructura reticular (el edificio de la Home Insurance Company de Chicago) fue montada ese mismo año. El crédito por inventar el “rascacielos” se le otorga generalmente al ingeniero William LeBaron Jenny, que ideó esta estructura, aparentemente durante una huelga de albañiles. Hasta ese momento los edificios altos en Estados Unidos se construían con muros de carga de ladrillos de varios pies de espesor. Para los muros exteriores de este edificio de 10 niveles, Jenny usó columnas de hierro colado recubiertas por ladrillos. Las vigas de los seis pisos inferiores se fabricaron con hierro dulce, en tanto que se usaron vigas de acero estructural para los pisos superiores. El primer edificio totalmente armado con acero estructural fue el segundo edificio de la RandMcNally, terminado en 1890 en Chicago. Un aspecto importante de la torre Eiffel, de 985 pies de altura y construida con hierro dulce en 1889, fue el uso de elevadores para pasajeros accionados mecánicamente. La disponibilidad de estas máquinas, junto con la idea de Jenny relativa a la estructuración reticulada, condujeron a la construcción de miles de edificios altos en todo el mundo en el siglo pasado. Durante esos primeros años, diversas laminadoras fabricaron sus propios perfiles y publicaron catálogos con las dimensiones, pesos y otras propiedades de esas secciones. En 1896, La Association of American Steel Manufacturers (Asociación Estadounidense de Fabricantes de Acero) (ahora el American Iron and Steel Institute, o AISI) (Instituto Estadounidense del Hierro y el Acero) hizo los primeros esfuerzos para estandarizar los perfiles. En la actualidad casi todos lo perfiles estructurales se encuentran estandarizados, aunque sus dimensiones exactas pueden variar un poco de laminadora a laminadora.4 El acero estructural puede laminarse en forma económica en una gran variedad de formas y tamaños sin cambios apreciables en sus propiedades físicas. Generalmente los miembros estructurales más convenientes son aquellos con grandes momentos de inercia en relación con sus áreas. Los perfiles I, T, y C, que son de uso tan común, se sitúan en esta clase.

3

M. H. Sawyer, “World’s First Iron Bridge”, Civil Engineering (Nueva York: ASCE, diciembre, 1979), pp. 46-49. 4 W. McGuire, Steel Structures (Englewood Cliffs, NJ: Prentice-Hall, 1968), pp. 19-21.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


8

Capítulo 1

Introducción al diseño estructural en acero

Puente peatonal para el Hospital del Cáncer en Carolina del Norte, Chapel Hill, NC. (Cortesía de CMC South Carolina Steel.)

Por lo general los perfiles de acero se designan por la forma de sus secciones transversales. Por ejemplo, se tienen perfiles en ángulo, tes, zetas y placas. Sn embargo, es necesario hacer una distinción clara entre las vigas estándar americanas (llamadas vigas S) y las vigas de patín ancho (llamadas vigas W), ya que ambas tienen la forma de I. La superficie interna del patín de una sección W es paralela a la superficie externa o bien, casi paralela con una pendiente máxima de 1 a 20 en el interior, dependiendo del fabricante. Las vigas S, que fueron los primeros perfiles de vigas laminadas en Estados Unidos, tienen una pendiente de 1 a 6 en la superficie interior de sus patines. Debe notarse que los espesores constantes (o casi constantes) de los patines de las vigas W, a diferencia de los patines ahusados de las vigas S, facilitan las conexiones. Las vigas de patín ancho representan hoy en día casi el 50% de todos los perfiles estructurales laminados. Los perfiles W y S se muestran en la Figura 1.1 junto con otros perfiles comunes de acero. Los usos de los diversos perfiles se expondrán en los siguientes capítulos. En este libro se hace referencia constante a la 14ª edición del Steel Construction Manual (Manual de Construcción en Acero), publicado por el AISC (American Institute of Steel Construction: Instituto Estadounidense de la Construcción en Acero). A este manual, que proporciona información detallada sobre los perfiles estructurales de acero, se le llamará aquí “el Manual del AISC”, el “Manual del acero”, o simplemente, el “Manual”. Se basa en la Specification for Structural Steel Buildings de 2010 (Especificación para los Edificios en Acero Estructural) (ANSI/AISC 360-10) (en lo sucesivo, “la Especificación AISC”), publicada por el AISC el 22 de junio de 2010. Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.7

Relaciones esfuerzo-deformación del acero estructural 9

Patín Filete

Pendiente: 0 a 5% Filete

Pendiente: 16 23 %

Filete

Filete

Viga S (Viga estándar americana)

Ángulo de lados desiguales

Ángulo de lados iguales

Alma Sección W

Pendiente: 16 23 %

Filete

Filete

Figura 1.1 Perfiles laminados de acero.

Sección C (Canal estándar americano)

Sección WT

Los perfiles estructurales se identifican mediante un cierto sistema descrito en el Manual para usarse en planos, especificaciones y diseños. Este sistema está estandarizado de modo que todos los molinos de acero puedan usar la misma nomenclatura para propósitos de órdenes, facturación, etc. Además, actualmente se procesa tanto trabajo en computadoras y otros equipos automatizados que es necesario tener un sistema a base de números y letras que pueda imprimirse por medio de un teclado estándar (a diferencia del viejo sistema en donde ciertos símbolos se usaban para ángulos, canales, etc.). Ejemplos de este sistema de identificación son los siguientes: 1. Una W27 * 114 es una sección W con 27 plg aproximadamente de peralte y peso de 114 lb/pie. 2. Una S12 * 35 es una sección S con 12 plg de peralte y peso de 35 lb/pie. 3. Una HP12 * 74 es una sección usada como pilote de carga con 12 plg aproximadamente de peralte y peso de 74 lb/pie. Los pilotes de carga se hacen con laminados regulares W, pero con almas más gruesas para resistir mejor el impacto del hincado del pilote. El ancho y el peralte de estas secciones son aproximadamente iguales, y sus patines y almas tienen espesores iguales o casi iguales. 4. Una M8 * 6.5 es una sección diversa con 8 plg de peralte y peso de 6.5 lb/pie. Forma parte de un grupo de miembros estructurales tipo H con doble simetría que no puede clasificarse por sus dimensiones como sección W, S o bien HP, ya que la pendiente de sus patines interiores es diferente de 16 2/3 por ciento. 5. Una C10 * 30 es una canal con 10 plg de peralte y peso de 30 lb/pie. 6. Una MC18 * 58 es una canal diversa con 18 plg de peralte y peso de 58 lb/pie que no se puede clasificar por sus dimensiones como C. 7. Una HSS14 * 10 * 5/8 es una sección estructural rectangular hueca de 14 plg de peralte, 10 plg de ancho, con un espesor de pared de 5/8 plg. Pesa 93.10 lb/pie. También se dispone de secciones HSS cuadradas y redondas. 8. Un L6 * 6 * 1/2 es un ángulo de lados iguales, cada uno de 6 plg de longitud y 1/2 plg de espesor. Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


10

Capítulo 1

Introducción al diseño estructural en acero

Marcos del techo de la escuela Glen Oaks, Bellerose, NY. (Cortesía de CMC South Carolina Steel.)

9. Una WT18 * 151 es una te que se obtiene al cortar en dos una W36 * 302. Este tipo de sección se conoce como te estructural. 10. Las secciones rectangulares de acero se clasifican como placas anchas o barras estrechas. Las únicas diferencias entre las barras y las placas son el tamaño y el procedimiento de producción. Históricamente, a las piezas planas se les ha denominado barras si tienen 8 plg o menos de ancho. Son placas si tienen un ancho mayor a 8 plg. Las tablas 1-29, 2-3 y 2-5 en el Manual AISC suministran información sobre las barras y las placas. Generalmente, el espesor de una barra o de una placa se especifica aproximando al 1/16 más cercano para espesores menores a 3/8 plg, aproximando al 1/8 más cercano para espesores entre 3/8 y 1 plg, y al 1/4 más cercano para espesores mayores a 1 plg. Una placa generalmente se designa por su espesor, su ancho y su longitud, en ese orden; por ejemplo, una PL1/2 * 10 * 1 pie 4 plg tiene un espesor de 1/2 plg, 10 plg de ancho y 16 plg de longitud. En realidad, en la actualidad el término placa se usa casi universalmente, ya sea que el miembro se fabrique a partir de una placa o de una barra. La hoja y la tira generalmente son más delgadas que las barras y las placas. El estudiante debe consultar el Manual del Acero para obtener información sobre otros perfiles. Aquí se presentará información detallada sobre éstas y otras secciones cuando sea necesario. En la Parte 1 del Manual, se tabulan las dimensiones y las propiedades de los perfiles W, S, C y otros. Las dimensiones de los miembros se dan en forma decimal (para uso de los diseñadores) y en fracciones al dieciseisavo de pulgada más próximo (para uso de los Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.5

Unidades métricas 11

técnicos, dibujantes y detallistas del acero). Se proporcionan también, para el uso de los diseñadores, elementos tales como los momentos de inercia, los módulos de sección, los radios de giro y otras propiedades de la sección transversal que se analizarán más adelante en este texto. Se presentan variaciones en cualquier proceso de manufactura, y la industria del acero no es una excepción. En consecuencia, las dimisiones de las secciones transversales de los miembros de acero pueden variar un poco, respecto a los indicados en el Manual. Las tolerancias máximas para el rolado de los perfiles de acero las establece la Especificación A6 de la American Society for Testing and Materials (ASTM) y se presentan en las Tablas 1-22 a 1-28 en el Manual. Entonces los cálculos se pueden hacer con base en las propiedades dadas en el Manual, independientemente del fabricante. Algunas de las secciones de acero listadas en el Manual se consiguen en Estados Unidos de solamente uno o dos productores de acero y entonces, ocasionalmente, puede ser difícil obtenerlas inmediatamente. Por tanto, al especificar las secciones, el diseñador deberá tener la precaución de ponerse en contacto con un fabricante de acero para obtener una lista de las secciones en existencia. A través de los años han existido cambios en las dimensiones de los perfiles de acero. Por ejemplo, puede haber poca demanda que justifique seguir laminando un cierto perfil; un perfil puede descontinuarse porque se desarrolla un perfil de tamaño similar, pero más eficiente en su forma, etc. Ocasionalmente el proyectista puede necesitar conocer las propiedades de un perfil descontinuado que no aparece ya en las listas de la última edición del Manual o en otras tablas que normalmente tiene a su disposición. Por ejemplo, puede requerirse añadir un piso extra a un edifico existente que fue construido con perfiles que ya no se fabrican. En 1953, el AISC publicó un libro titulado Iron and Steel Beams 1873 to 1952 (Vigas de hierro y acero, de 1873 a 1952) que presenta una lista completa de las vigas de hierro y acero y sus propiedades, laminadas en Estados Unidos durante ese periodo. Actualmente está disponible una edición actualizada de este libro. Es el AISC Design Guide 15 y cubre las propiedades de los perfiles de acero producidos de 1887 a 2000.5 Indudablemente que habrá muchos cambios más en los perfiles en el futuro. Por esta razón, el diseñador estructural prudente deberá conservar cuidadosamente las ediciones anteriores del Manual para tenerlas a su disposición cuando se necesite información anterior.

1.5

UNIDADES MÉTRICAS Casi todos los ejemplos y problemas de tarea presentados en este libro emplean las unidades usadas en Estados Unidos. Sin embargo, el autor piensa que el diseñador contemporáneo debe tener la capacidad de realizar su trabajo ya sea en unidades inglesas o métricas. El AISC en Estados Unidos ha eliminado casi por completo el problema de trabajar con unidades métricas al realizar el diseño de acero estructural. Casi todas sus ecuaciones están escritas en una forma aplicable a ambos sistemas. Además, los equivalentes métricos de los perfiles americanos estándar se suministran en la Sección 17 del Manual. Por ejemplo, una sección W36 * 302 se muestra como W920 × 449, donde el 920 está en mm y el 449 está en kg/m.

5

R. L. Brockenbrough, AISC Rehabilitation and Retrofit Guide: A Reference for Historic Shapes and Specifications (Chicago, AISC, 2002).

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


12

Capítulo 1

Introducción al diseño estructural en acero

Mariners, Ballpark, Seattle, WA. (Cortesía de Trade ARBED.)

1.6

PERFILES DE LÁMINA DELGADA DE ACERO DOBLADOS EN FRÍO Además de los perfiles de acero laminados en caliente analizados en la sección previa, existen algunos perfiles de acero rolados en frío. Éstos se fabrican doblando láminas delgadas de acero de bajo carbono o baja aleación en prácticamente cualquier sección transversal deseada, como las mostradas en la Figura 1.2.6 Estos perfiles, que pueden utilizarse para los miembros más ligeros suelen usarse en algunos tipos de techos, pisos y muros y varían en espesores entre 0.01 hasta aproximadamente 0.25 plg. Los perfiles más delgados se usan con mucha frecuencia para algunos paneles estructurales. Si bien el trabajado en frío reduce algo la ductilidad, también incrementa en alguna medida la resistencia. Bajo ciertas condiciones, las especificaciones de diseño permitirán el uso de tales resistencias superiores. Las losas de concreto para piso frecuentemente se cuelan sobre cubiertas de acero doblado que sirven como cimbras económicas para el concreto húmedo y que se dejan en el sitio después de que el concreto fragua. Se dispone de varios tipos de estas cubiertas, algunas de las cuales se muestran en la Figura 1.3. Las secciones con las celdas más profundas tienen

Canal

Canal atiesada

Zeta

Zeta atiesada

Figura 1.2 Perfiles doblados en frío. 6

Sombrero

Sigma

Ángulo

Cold-Formed Steel Design Manual (Washington, DC: American Iron and Steel Institute, 2002).

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.7

Relaciones esfuerzo-deformación del acero estructural 13 Sistema de piso de cubierta compuesta Concreto

Concreto

3 plg

3 plg

2 plg

2 plg 12 plg

6 plg

Cubierta de acero

Cubierta de acero

Sistema de piso de cubierta doblada Concreto 2

1 2

Concreto 3 12 plg

plg 9 16

plg Varía con el fabricante

Cubierta de acero

5 1 16 plg

Varía con el fabricante

Cubierta de acero

Sistema de cubierta de techo 1 34 plg Figura 1.3 Algunos tipos de cubiertas de acero.

Aislante rígido

1 12 plg 6 plg

Cubierta de acero (costilla intermedia)

la útil característica de que los conductos eléctricos y mecánicos pueden alojarse en ellas. El uso de las cubiertas de acero para losas de pisos se analiza en el Capítulo 16 de este texto. Ahí se presenta la construcción compuesta. En este tipo de construcción, las vigas de acero se convierten en compuestas con las losas de concreto suministrando transferencia al cortante entre las dos para que actúen conjuntamente como una unidad.

1.7

RELACIONES ESFUERZO-DEFORMACIÓN DEL ACERO ESTRUCTURAL Para entender el comportamiento de las estructuras de acero, el ingeniero debe estar familiarizado con las propiedades de éste. Los diagramas esfuerzo-deformación presentan información valiosa necesaria para entender cómo se comporta el acero en una situación dada. No pueden desarrollarse métodos satisfactorios de diseño, a menos que se disponga de información completa relativa a las relaciones esfuerzo-deformación del material que se usa. Si una pieza de acero estructural dúctil se somete a una fuerza de tensión, ésta comenzará a alargarse. Si se incrementa la fuerza de tensión a razón constante, la magnitud del alargamiento aumentará en forma lineal dentro de ciertos límites. En otras palabras, el alargamiento se duplicará cuando el esfuerzo pase de 6 000 a 12 000 psi (pounds per square inch; se usará lb/plg2). Cuando el esfuerzo de tensión alcance un valor aproximadamente igual a tres cuartos de la resistencia última del acero, el alargamiento comenzará a aumentar más y más rápidamente sin un incremento correspondiente del esfuerzo. El mayor esfuerzo para el que todavía es válida la ley de Hooke o el punto más alto de la porción recta del diagrama esfuerzo-deformación se denomina límite proporcional. El mayor esfuerzo que un material puede resistir sin deformarse permanentemente se llama

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


14

Capítulo 1

Introducción al diseño estructural en acero

límite elástico. Este valor rara vez se mide realmente y para la mayoría de los materiales de ingeniería, incluido el acero estructural, es sinónimo del límite proporcional. Por esta razón, se usa a veces el término límite proporcional elástico. El esfuerzo en el que se presenta un incremento brusco en el alargamiento o deformación sin un incremento en el esfuerzo, se denomina esfuerzo de fluencia. Es el primer punto del diagrama esfuerzo-deformación para el cual la tangente a la curva es horizontal. El esfuerzo de fluencia es para el proyectista la propiedad más importante del acero, ya que muchos procedimientos de diseño se basan en este valor. Más allá del esfuerzo de fluencia hay un intervalo en el que ocurre un incremento considerable de la deformación sin incremento del esfuerzo. La deformación que se presenta antes del esfuerzo de fluencia se denomina deformación elástica; la deformación que ocurre después del esfuerzo de fluencia, sin incremento de esfuerzo, se denomina deformación plástica. Esta última deformación es generalmente igual en magnitud a 10 o 15 veces la deformación elástica. La fluencia del acero sin esfuerzo puede parecer una seria desventaja, pero en realidad es una característica muy útil. Con frecuencia ha prestado el maravilloso servicio de prevenir la falla de una estructura debida a omisiones o errores del proyectista. Si el esfuerzo en un punto de una estructura de acero dúctil alcanza el punto de fluencia, esa parte de la estructura cederá localmente sin incremento en el esfuerzo, impidiendo así una falla prematura. Esta ductilidad permite que se redistribuyan los esfuerzos en una estructura de acero. Otra manera de describir este fenómeno es afirmar que los altos esfuerzos causados por la fabricación, el montaje o la carga tienden a igualarse entre sí. También puede decirse que una estructura de acero tiene una reserva de deformación plástica que le permite resistir sobrecargas e im-

Montaje de una armadura de techo, North Charleston, SC. (Cortesía de CMC South Carolina Steel.)

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.7

Relaciones esfuerzo-deformación del acero estructural 15

pactos repentinos. Si no tuviera esta capacidad, se podría fracturar repentinamente como el vidrio u otros materiales análogos. Después de la deformación plástica, existe un rango en el cual es necesario un esfuerzo adicional para producir deformación adicional, a esto se le denomina endurecimiento por deformación. Esta porción del diagrama esfuerzo-deformación no resulta muy importante para los proyectistas actuales porque las deformaciones son muy grandes. En la Figura 1.4 se muestra un diagrama típico de esfuerzo-deformación de un acero estructural dulce o de bajo contenido de carbono. Sólo se presenta aquí la parte inicial de la curva, debido a la gran deformación que ocurre antes de la falla. En el punto de falla los aceros dulces tienen deformaciones unitarias que equivalen a valores que oscilan entre 150 y 200 veces los correspondientes a la deformación elástica. En realidad, la curva alcanza su esfuerzo máximo y luego disminuye poco a poco antes de la falla. Se presenta una marcada reducción de la sección transversal del miembro (que se denomina estricción del elemento) justo antes de que el miembro se fracture. La curva esfuerzo-deformación en la Figura 1.4 es típica de los aceros estructurales dúctiles y se supone que es la misma para miembros a tensión o a compresión. (Los miembros estructurales a compresión deben ser robustos, ya que los miembros a compresión esbeltos sujetos a cargas de compresión tienden a pandearse lateralmente y sus propiedades se ven muy afectadas por los momentos que se generan.) La forma del diagrama varía con la velocidad de carga, el tipo de acero y la temperatura. En la figura se muestra dicha variación mediante la línea punteada marcada como fluencia superior. Esta forma de la curva esfuerzo-deformación resulta cuando un acero dulce se carga rápidamente, en tanto que la curva con la fluencia inferior se obtiene con una carga lenta. La Figura 1.5 muestra curvas de esfuerzo-deformación características para algunos aceros con diferente esfuerzo de fluencia. Debe percatarse de que los diagramas de esfuerzo-deformación de las Figuras 1.4 y 1.5 se prepararon para un acero dulce a temperatura ambiente. Durante las operaciones de soldadura y durante los incendios, los miembros de acero estructural pueden someterse a temperaturas muy altas. Los diagramas de esfuerzo-deformación preparados para aceros con temperaturas superiores a 200 °F serán más redondeados y no lineales y no presentan

Deformación elástica Deformación plástica

Endurecimiento por deformación

Figura 1.4 Diagrama de esfuerzo-deformación característico de un acero estructural dulce o con bajo contenido de carbono a temperatura ambiente.

Alfaomega

Punto inferior de fluencia

Esfuerzo f

P ⫽A

Punto superior de fluencia

Deformación ⑀ ⫽

⌬l l

Diseño de Estructuras de Acero – McCormac /Csernak


16

Capítulo 1

Introducción al diseño estructural en acero

Puerta Europa, Madrid, España. (Cortesía de Trade ARBED.)

puntos de fluencia bien definidos. Los aceros (particularmente aquellos con contenido de carbono más bien alto) en realidad pueden incrementar un poco su resistencia a la tensión al ser calentados a una temperatura de aproximadamente 700 °F. A medida que las temperaturas se elevan al rango de 800 °F a 1 000 °F, las resistencias se reducen drásticamente, y a 1 200 °F tienen ya muy poca resistencia. La Figura 1.6 muestra la variación de las resistencias de fluencia para varios grados de acero cuando sus temperaturas se elevan desde la temperatura ambiente hasta 1 800 °F y 1 900 °F. Las temperaturas con las magnitudes mostradas pueden alcanzarse fácilmente en miembros de acero durante incendios, en zonas localizadas de miembros durante el proceso de soldado, en miembros en fundiciones sobre flamas abiertas, etcétera. Cuando las secciones de acero se enfrían a menos de 32 °F, sus resistencias se incrementan un poco, pero tendrán reducciones considerables en ductilidad y tenacidad. Una propiedad muy importante de una estructura que ha sido sometida a esfuerzos, pero no más allá de su punto de fluencia, es que ésta recuperará su longitud original cuando se supriman las cargas. Si se esfuerza más allá de ese punto, recuperará sólo parte de su longitud inicial. Este hecho ofrece la posibilidad de probar una estructura existente cargándola y descargándola. Si después de que las cargas se retiran, la estructura no recupera sus dimensiones originales, significa que se ha esforzado más allá de su punto de fluencia. Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.7

Relaciones esfuerzo-deformación del acero estructural 17

Corrimiento de 0.2% de deformación

Resistencia a la tensión, Fu Aceros aleados de construcción con tratamiento térmico; acero aleado templado y revenido A514

Cociente característico de las resistencias a la fluencia para temperaturas elevadas y temperatura ambiente

Curvas características de esfuerzo-deformación. (Basado en una figura tomada de Salmon C. G. y J. E. Johnson, Steel Structures: Design and Behavior, cuarta edición. Upper Saddle River, NJ: Prentice Hall, 1996.)

Esfuerzo, kilolibras por pulgada cuadrada

Figura 1.5

Resistencia mínima a la fluencia Fy = 100 klb/plg2

Aceros al carbono, de alta resistencia, de baja aleación; A572

Fy = 50 klb/plg2 Aceros al carbono; A36 Fy = 36

klb/plg2

Deformación unitaria, pulgadas por pulgada

1.2 A514 A588

1.0

A992, A572 A36

0.8 0.6 0.4 0.2 0

0

200

400

600

800 1000 1200 Temperatura, F

1400

1600

1800

2000

Figura 1.6 El efecto de la temperatura sobre el esfuerzo de fluencia.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


18

Capítulo 1

Introducción al diseño estructural en acero

El acero es una aleación que está compuesta casi por completo de hierro (generalmente más del 98%). Contiene también pequeñas cantidades de carbono, silicio, manganeso, azufre, fósforo y otros elementos. El carbono es el elemento que tiene la mayor influencia en las propiedades del acero. La dureza y la resistencia del acero aumentan con el porcentaje de carbono. Un incremento del 0.01 por ciento del contenido de carbono causará que la resistencia de fluencia del acero se eleve aproximadamente 0.5 klb/plg2 (ksi). Desafortunadamente, sin embargo, una mayor cantidad de carbono hará que el acero sea más frágil y afectará adversamente su soldabilidad. Si se reduce el contenido de carbono, el acero se hará más suave y más dúctil, pero también más débil. La adición de elementos tales como cromo, silicio y níquel produce aceros con resistencias considerablemente más altas. Aunque con frecuencia son muy útiles, estos aceros son considerablemente más caros y con frecuencia no son tan fáciles de fabricar. En la Figura 1.7 se muestra un diagrama común de esfuerzo-deformación para un acero frágil. Desafortunadamente, la baja ductilidad o fragilidad es una propiedad que por lo general se asocia con la alta resistencia del acero (aunque no necesariamente asociada con los aceros de alta resistencia). Como es conveniente tener a la vez alta resistencia y gran ductilidad, el proyectista tendrá que decidir entre los dos extremos o buscar un término medio entre ellos. Un acero frágil puede fallar repentinamente, sin previo aviso, cuando se sobrecargue y durante el montaje puede fallar debido a los impactos propios de los procedimientos de construcción. Los aceros con comportamiento frágil tienen un intervalo considerable donde el esfuerzo es proporcional a la deformación unitaria, pero no tienen esfuerzos de fluencia claramente definidos. Sin embargo, para aplicar muchas de las fórmulas dadas en las especificaciones de diseño para el acero estructural, es necesario contar con valores definidos del esfuerzo de fluencia, independientes de si los aceros son dúctiles o frágiles. Si un miembro de acero se deforma más allá de su límite elástico y luego se descarga, éste no retornará a una condición de deformación cero. Al descargarlo, su diagrama de esfuerzo-deformación unitaria seguirá una nueva trayectoria (mostrada por la línea punteada en la Figura 1.7 paralela a la línea recta inicial). El resultado es una deformación permanente o residual. La línea que representa la relación de esfuerzo-deformación para aceros templados y revenidos gradualmente se aparta de una línea recta, de modo que no existe un punto de fluencia bien definido. Para estos aceros el esfuerzo de fluencia se define por lo general como el esfuerzo en el punto de descarga que corresponda a alguna deformación unitaria residual arbitrariamente definida (0.002 es el valor común). En otras palabras, incrementamos la deformación unitaria mediante una cantidad designada y dibujamos una línea desde ese punto,

Figura 1.7 Diagrama esfuerzodeformación característico de un acero frágil.

Esfuerzo

f⫽ P A

Fu

Fractura Fy ⫽ esfuerzo mínimo de fluencia Fu ⫽ esfuerzo de tensión mínimo último

Fy

Deformación residual si se descarga cuando el esfuerzo es mayor que el límite elástico Deformación ⑀ ⫽ ⌬L L

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.8 Aceros estructurales modernos 19 paralela a la porción de línea recta del diagrama de esfuerzo-deformación unitaria, hasta que la nueva línea corte a la anterior. Esta intersección es el esfuerzo de fluencia en esa deformación unitaria particular. Si se usa 0.002, a la intersección se le llama usualmente el esfuerzo de fluencia para 0.2 por ciento de deformación unitaria paralela.

1.8

ACEROS ESTRUCTURALES MODERNOS Las propiedades del acero pueden cambiarse en gran medida variando las cantidades presentes de carbono y añadiendo otros elementos como silicio, níquel, manganeso y cobre. Un acero que tenga cantidades considerables de estos últimos elementos se denominará acero aleado. Aunque estos elementos tienen un gran efecto en las propiedades del acero, las cantidades de carbono y otros elementos de aleación son muy pequeños. Por ejemplo, el contenido de carbono en el acero es casi siempre menor que el 0.5% en peso y es muy frecuente que sea de 0.2 a 0.3 por ciento.

Mitad de una armadura de techo con 170 pies de claro libre para el Centro de Atletismo y Convenciones de la Universidad Lehigh en Bethlehem, Pa. (Cortesía de la Bethlehem Steel Corporation.)

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


20

Capítulo 1

Introducción al diseño estructural en acero

La composición química del acero es de suma importancia en sus efectos sobre sus propiedades tales como la soldabilidad, la resistencia a la corrosión, la resistencia a la fractura frágil, etc. La ASTM especifica los porcentajes exactos máximos de carbono, manganeso, silicio, etc., que se permiten en los aceros estructurales. Aunque las propiedades físicas y mecánicas de los perfiles de acero las determina principalmente su composición química, también influye en ellas, hasta cierto punto, el proceso de laminado, la historia de sus esfuerzos y el tratamiento térmico aplicado. En las décadas pasadas, un acero estructural al carbono designado como A36 y con un esfuerzo mínimo de fluencia Fy = 36 klb/plg2, era el acero estructural comúnmente usado. Sin embargo, más recientemente, la mayoría del acero estructural usado en Estados Unidos se fabrica fundiendo acero chatarra en hornos eléctricos. Con este proceso puede producirse un acero de 50 klb/plg2, A992, y venderse a casi el mismo precio que el acero A36. Los aceros de 50 klb/plg2 son los que predominan en uso actualmente. De hecho, algunas de las laminadoras de acero hacen un cargo extra por las secciones W si van a consistir de acero A36. Por otro lado, ocasionalmente ha sido difícil obtener los ángulos de 50 klb/plg2 sin pedidos especiales a las laminadoras de acero. Como resultado, todavía se usan con frecuencia los ángulos A36. Además, las placas de 50 klb/plg2 pueden costar más que el acero A36. En décadas recientes los ingenieros y arquitectos continuamente requieren aceros más fuertes, aceros con mayor resistencia a la corrosión, con mejores propiedades de soldabilidad y diversas características. Las investigaciones realizadas por la industria acerera durante este periodo han proporcionado varios grupos de nuevos aceros que satisfacen muchas de las demandas. Actualmente existe una gran cantidad de aceros clasificados por la ASTM e incluidos en la especificación AISC.

Domo de acero. (Cortesía de Trade ARBED.)

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.8 Aceros estructurales modernos 21 Los aceros estructurales generalmente se agrupan en varias clasificaciones principales de la ASTM: los aceros al carbono A36, A53, A500, A501 y A529; los aceros de baja aleación y de alta resistencia A572, A618, A913 y A992, y los aceros de baja aleación y alta resistencia y resistentes a la corrosión A242, A588 y A847. En la Parte 2 del Manual se presenta bastante información para cada uno de estos aceros. Las siguientes secciones incluyen algunas observaciones generales acerca de estas clasificaciones del acero.

1.8.1

Aceros al carbono Estos aceros tienen como principales elementos de resistencias al carbono y al manganeso en cantidades cuidadosamente dosificadas. Los aceros al carbono tienen sus contenidos limitados a los siguientes porcentajes máximos: 1.7% de carbono, 1.65% de manganeso, 0.60% de silicio y 0.60% de cobre. Estos aceros se dividen en cuatro categorías, dependiendo del porcentaje de carbono: 1. Acero de bajo contenido de carbono: 6 0.15%. 2. Acero dulce: 0.15 a 0.29%. (Los aceros estructurales al carbono quedan dentro de esta categoría.) 3. Acero medio al carbono: 0.30 a 0.59%. 4. Acero con alto contenido de carbono: 0.60 a 1.70%.

1.8.2

Aceros de alta resistencia y baja aleación Existe un gran número de aceros de este tipo clasificados por la ASTM. Estos aceros obtienen sus altas resistencias y otras propiedades por la adición, aparte del carbono y manganeso, de uno a más agentes de aleación como el columbio, vanadio, cromo, silicio, cobre y níquel. Se incluyen aceros con esfuerzos de fluencia comprendidos entre 40 klb/plg2 y 70 klb/plg2. Estos aceros generalmente tienen mucha mayor resistencia a la corrosión atmosférica que los aceros al carbono. El término baja aleación se usa arbitrariamente para describir aceros en los que el total de elementos de aleación no excede el 5% de la composición total del acero.

1.8.3

Aceros estructurales de alta resistencia, baja aleación y resistentes a la corrosión atmosférica Cuando los aceros se alean con pequeños porcentaje de cobre, se vuelven más resistentes a la corrosión. Cuando se exponen a la atmósfera, las superficies de estos aceros se oxidan y se les forma una película adhesiva muy comprimida (conocida también como “pátina bien adherida” o “capa de óxido”), que impide una mayor oxidación y se elimina así la necesidad de pintarlos. Después de que ocurre este fenómeno (en un periodo de 18 meses a 3 años, depende del tipo de exposición, por ejemplo rural, industrial, luz solar directa o indirecta, etc.), el acero adquiere un color que va del rojo oscuro al café y al negro. Supuestamente, el primer acero de este tipo lo desarrolló en 1933 la U. S. Steel Corporation para darle resistencia a los carros de ferrocarril, que transportaban carbón y en los que la corrosión era muy intensa. Estos aceros tienen gran aplicación, particularmente en estructuras con miembros expuestos y difíciles de pintar como puentes, torres de transmisión eléctrica, etc., sin embargo, no son apropiados para usarse en lugares donde queden expuestos a brisas marinas, nieblas o que estén continuamente sumergidos en agua (dulce o salada) o el suelo, o donde existan

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


22

Capítulo 1

Introducción al diseño estructural en acero

humos industriales muy corrosivos. Tampoco son adecuados en áreas muy secas, como en algunas partes del oeste de Estados Unidos. Para que a estos aceros se les forme la pátina, deben estar sujetos a ciclos de humedad y resequedad, de otra manera seguirán teniendo la apariencia de acero sin pintar. La Tabla 1.1 que se presenta aquí, que corresponde a la Tabla 2-4 en el Manual del Acero, enlista los 12 aceros de ASTM mencionados anteriormente en esta sección, junto con sus resistencias a la fluencia mínimas especificadas (Fy) y sus resistencias a la tensión mínimas especificadas (Fu). Además, las columnas a la derecha de la tabla suministran información con respecto a la disponibilidad de los perfiles en los diversos grados de aceros, así como el grado recomendado para usarse para cada uno. En cada caso, se muestra el acero recomendado con un cuadro negro. Mediante los cuadros negros, observará en la tabla que se recomienda el acero A36 que se debe usar para las secciones M, S, HP, C, MC y L, mientras que el A992 es el material recomendado para los perfiles más comunes, los W. Los cuadros grises en la tabla se refieren a los perfiles disponibles en grados de acero que no sean los recomendados. Antes de seleccionar perfiles de esos grados, el proyectista deberá verificar si están disponibles con los proveedores de acero. Finalmente, los cuadros vacíos, o de color blanco, indican los grados de acero que no están disponibles para ciertos perfiles. En la Tabla 2-5 del Manual del Acero se proporciona información similar para placas y barras. Como se mencionó anteriormente, los aceros pueden fortalecerse mediante la adición de aleaciones especiales. Otro factor que afecta la resistencia del acero es el espesor. Entre más se rola el acero para hacerlo más delgado, adquiere mayor resistencia. Los miembros más gruesos tienden a ser más frágiles, y sus tasas de enfriamiento más lentas hacen que el acero tenga una microestructura más áspera. Haciendo referencia nuevamente a la Tabla 1.1, usted puede ver que varios de los aceros listados están disponibles con esfuerzos de fluencia y de tensión diferentes con el mismo número ASTM. Por ejemplo, los perfiles A572 están disponibles con resistencias a la fluencia de 42, 50, 55, 60 y 65 klb/plg2. En seguida, leyendo los pies de página de la Tabla 1.1, observamos que los aceros de grados 60 y 65 tienen asignada la letra “e” como pie de página. Este pie de página indica que los únicos perfiles A572 disponibles con estas resistencias son los más delgados que tienen un espesor de patín ⱕ 2 pulgadas. En la tabla se muestran situaciones similares para algunos otros aceros, incluyendo el A992 y el A242.

1.9

USO DE LOS ACEROS DE ALTA RESISTENCIA Existen otros grupos de aceros de alta resistencia como los de ultra-alta-resistencia que tienen fluencias de entre 160 klb/plg2 y 300 klb/plg2. Estos aceros no se han incluido en el Manual del Acero porque la ASTM no les ha asignado un número de clasificación. Actualmente existen en el mercado más de 200 aceros con esfuerzos de fluencia mayores de 36 klb/plg2. La industria del acero está experimentando ahora con aceros cuyos esfuerzos de fluencia varían entre 200 klb/plg2 y 300 klb/plg2, y esto es sólo el principio. Mucha gente de esta industria cree que en unos cuantos años se dispondrá de aceros con fluencias de 500 klb/plg2. La fuerza teórica de unión entre los átomos de hierro se ha estimado en más de 4 000 klb/plg2.7

7

L. S. Beedle et al., Structural Steel Design (Nueva York: Ronald Press, 1964), p. 44.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.9 Uso de los aceros de alta resistencia

Tipo de acero

Especificaciones aplicables de la ASTM a diversos perfiles estructurales. Esfuerzo Esfuerzoa mínimo de de tensión Fu Designación fluencia Fy de la ASTM (klb/plg2) (klb/plg2) A36 A53 Gr. B Gr. B A500

Al carbono

Gr. C Gr. A Gr. B c Gr. 50 A529 Gr. 55 Gr. 42 Gr. 50 A572 Gr. 55 Gr. 60e Gr. 65e Gr. I & II A618f Gr. III 50 60 A913 65 70 A992 A501

Baja aleación alta resistencia

Baja aleación alta resistencia resistente a la corrosión

A242 A588 A847

36 35 42 46 46 50 36 50 50 55 42 50 55 60 65 50g 50 50h 60 65 70 50 42j 46k 50l 50 50

Serie de perfiles aplicables HSS W

M

S

HP

C

MC

L

Rect.

Redondo

TABLA 1.1

23

Tubo

b

58−80 60 58 58 62 62 58 70 65−100 70−100 60 65d 55 60 65 70g 50 60h 75 80 90 65i 63j 67k 70l 70 70

= Especificación recomendada para el material = Otra especificación de material aplicable, cuya disponibilidad deberá confirmarse antes de la especificación = La especificación de material no aplica a b c

d

e f g

h

i

j k l

Mínimo a menos que se muestre un rango. Para perfiles arriba de 426 lb/pie, sólo aplica el mínimo de 58 klb/plg2. Para perfiles con un espesor de patín menor que o igual a 11⁄2 plg solamente. Para mejorar la soldabilidad, puede especificarse un máximo de carbono (de acuerdo con el Requisito suplementario S78 de la ASTM). Si se desea, puede especificarse el esfuerzo máximo de tensión de 90 klb/plg2 (de acuerdo con el Requisito suplementario S79 de la ASTM). Si se desea, puede especificarse el esfuerzo máximo de tensión de 70 klb/plg2 (de acuerdo con el Requisito suplementario S91 de la ASTM). Para perfiles con un espesor de patín menor que o igual a 2 plg solamente. A618 de la ASTM también puede especificarse como resistente a la corrosión; véase A618 de la ASTM. El mínimo aplica a muros de un espesor nominal de 3⁄4 plg y menor. Para espesores de muro mayores que 3⁄4 plg, Fy = 46 klb/plg2 y Fu = 67 klb/plg2. Si se desea, puede especificarse un esfuerzo máximo de fluencia de 65 klb/plg2 y una relación de resistencia máxima a la fluencia entre la de tensión de 0.85 (de acuerdo con el Requisito suplementario S75 de la ASTM). Se incluyen como obligatorias en A992 de la ASTM una relación de resistencia máxima a la fluencia entre la de tensión de 0.85 y una fórmula equivalente para el carbono. Para perfiles con un espesor de patín mayor que 2 plg solamente. Para perfiles con un espesor de patín mayor que 11⁄2 plg y menor que o igual a 2 plg solamente. Para perfiles con un espesor de patín menor que o igual a 11⁄2 plg solamente.

Fuente: Manual de la AISC, Tabla 2-4, p. 2-48, 14ava. Ed., 2011. Derechos reservados © American Institute of Steel Construction. Reproducido con autorización. Todos los derechos reservados.


24

Capítulo 1

Introducción al diseño estructural en acero

Aunque los precios de los aceros aumentan con el incremento de los esfuerzos de fluencia, el porcentaje de incremento en los precios no es mayor que el porcentaje de incremento de los esfuerzos de fluencia. En consecuencia, el uso de aceros más resistentes resultará económico en miembros a tensión, vigas y columnas. Tal vez la mayor economía se obtendrá con los miembros a tensión (sobre todo en aquellos sin agujeros para tornillos y remaches). Pueden producir ahorros considerables en vigas si las deflexiones no son de importancia o si éstas pueden controlarse (con los métodos descritos en capítulos posteriores). Además, pueden lograrse ahorros sustanciales con los aceros de alta resistencia en columnas robustas de longitudes corta y mediana. Otra fuente de ahorro lo proporciona la construcción híbrida. En este tipo de construcción se usan dos o más aceros de diferentes resistencias, empleando los aceros más débiles en donde los esfuerzos son menores, y los aceros más resistentes en donde los esfuerzos son mayores. Entre los factores adicionales que pueden conducir al uso de los aceros de alta resistencia se cuentan los siguientes: 1. Alta resistencia a la corrosión. 2. Posibles ahorros en los costos de transporte, montaje y cimentaciones debido al menor peso. 3. Uso de vigas de menor peralte, que permite reducir el espesor de los pisos. 4. Posibles ahorros en la protección contra el fuego porque pueden usarse elementos más pequeños. La primera consideración que toman en cuenta muchos ingenieros al escoger un tipo de acero, es el costo directo de los miembros. Dicha comparación puede hacerse fácilmente, pero la consideración económica respecto a qué acero se debe usar, no puede hacerse, a menos que se tomen en cuenta otros factores como pesos, dimensiones, deflexiones, mantenimiento y fabricación. Hacer una comparación general exacta de los aceros probablemente resulte imposible, por lo que debe limitarse a considerar el caso particular en estudio.

1.10

MEDICIÓN DE LA TENACIDAD La tenacidad a la fractura del acero se usa como una medida general de su resistencia al impacto o de su capacidad para absorber incrementos repentinos en los esfuerzos de muesca. Entre más dúctil es el acero, mayor es su tenacidad. Por otra parte, entre más baja es la temperatura, mayor es su fragilidad. Se dispone de varios procedimientos para estimar la tenacidad de muesca, pero la prueba Charpy de muesca V es la más ampliamente usada. Si bien esta prueba (descrita en la especificación A6 del ASTM) es algo inexacta, ayuda a identificar los aceros frágiles. Con esta prueba se mide la energía requerida para fracturar una pequeña barra de sección transversal rectangular con una muesca específica (véase la Figura 1.8). La barra se fractura con un péndulo liberado desde cierta altura. La cantidad de energía requerida para fracturar la barra se determina a partir de la altura a la que el péndulo se eleva después del golpe. La prueba puede repetirse para diferentes temperaturas y graficarse como se muestra en la Figura 1.9. Tal gráfica muestra claramente la relación entre temperatura, ductilidad y fragilidad. La temperatura en el punto de mayor pendiente es la temperatura de transición.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.10 Medición de la tenacidad

25

Golpe de impacto

Muesca

10 mm

2 mm

Figura 1.8

10 mm

45

Probeta para la prueba Charpy de muesca en V.

20 mm

Frágil (ductilidad despreciable)

20 mm

Transición de frágil a dúctil

Dúctil

Energía absorbida, pie-lb

50

40 Temperatura de transición (en la pendiente máxima)

30

20

10 Figura 1.9 Resultados de la prueba de Charpy de muesca en V.

⫺10

0

10 20 Temperatura, F

30

40

Aunque la prueba Charpy es bien conocida, en realidad proporciona una medición muy mala. En los artículos de Barsom y Rolfe 8,9 se consideran otros métodos para medir la tenacidad del acero. Varios aceros estructurales tiene especificaciones diferentes para los niveles de energía absorbida requerida (por ejemplo, 20 pie-lb a 20°F), dependiendo de la temperatura, esfuerzo y condiciones de carga bajo los cuales se usarán. El tema de la fragilidad se continuará viendo en la siguiente sección.

8

J. M. Barsom, “Material Considerations in Structural Steel Design”, Engineering Journal, AISC, 24, 3 (3er. trimestre 1987), pp. 127-139. 9 S. T. Rolfe, “Fracture and Fatigue Control in Steel Structures”, Engineering Journal, AISC, 14, 1 (1er. trimestre 1977), pp. 2-15.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


26

Capítulo 1

Introducción al diseño estructural en acero Los núcleos de áreas se muestran rayados

Figura 1.10 Núcleos de las áreas donde una falla frágil puede presentar problemas en miembros gruesos pesados.

1.11

Placa

Perfil W

SECCIONES JUMBO Ciertos perfiles W pesados con espesores de patín mayores de 2 pulgadas suelen denominarse secciones jumbo. Se les identifica con notas de pie de página para el perfil W, Tabla 1.1 del Manual del Acero. Las secciones jumbo se desarrollaron originalmente para usarse como miembros a compresión, y como tales tienen un comportamiento satisfactorio. Sin embargo, los ingenieros los han usado con frecuencia como miembros a tensión o flexión. En tales casos, sus patines y almas han presentado serios problemas de agrietamiento cuando se ha utilizado soldadura o corte térmico. Estos agrietamientos tienen como resultado menores capacidades de carga y problemas relacionados con la fatiga.10 Las piezas gruesas de acero tienden a ser más frágiles que las delgadas. Algunas de las razones de esto son que los núcleos de perfiles gruesos (mostrados en la Figura 1.10) están sometidos a un menor laminado, poseen mayor contenido de carbono (necesario para producir los esfuerzos de fluencia requeridos) y tienen mayores esfuerzos de tensión por el enfriamiento (esfuerzos residuales). Estos temas se analizarán en capítulos posteriores. Las secciones jumbo empalmadas con soldadura pueden usarse satisfactoriamente en casos de tensión axial o de flexión si los procedimientos dados en la Especificación A3.1c de la Especificación AISC se siguen cuidadosamente. Algunos de los requisitos son los siguientes: 1. El acero usado debe tener ciertos niveles de absorción de energía, determinados por la prueba Charpy de la muesca en V (20 pies-lb a una temperatura máxima de 70 °F). Es absolutamente necesario que las pruebas se hagan sobre especímenes tomados de áreas del núcleo (mostrado en la Figura 1.10), donde la fractura frágil se ha evidenciado como problemática. 2. La temperatura debe controlarse durante el soldado y el trabajo debe seguir una cierta secuencia. 3. Se requieren detalles especiales para los empalmes.

1.12

DESGARRAMIENTO LAMINAR Los especímenes de acero usados para pruebas y desarrollo de curvas esfuerzo-deformación unitaria usualmente tienen sus ejes longitudinales en la dirección en la que el acero fue laminado. Si los especímenes se toman con sus ejes longitudinales transversalmente a la dirección del laminado “a través del espesor” del acero, el resultado será una menor ductilidad y tena-

10

R. Bjorhovde, “Solutions for the Use of Jumbo Shapes”, Proceedings 1988 National Steel Construction Conference, AISC, Chicago, junio 8-11, pp. 2-1 a 2-20.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.13 Suministro de estructuras de acero 27 cidad. Afortunadamente, esto es de poca importancia para casi todos los casos. Sin embargo, puede ser de gran importancia cuando se usan placas gruesas y perfiles estructurales pesados en juntas soldadas fuertemente restringidas. (Puede ser también problemático en miembros delgados, pero es mucho más importante en los elementos gruesos.) Si una junta está fuertemente restringida, la contracción de las soldaduras en la dirección del espesor no puede redistribuirse adecuadamente y el resultado puede ser un desgarramiento del acero llamado desgarramiento laminar. (Laminar significa que consiste en capas delgadas.) La situación se agrava por la aplicación de una tensión externa. El desgarramiento laminar puede presentarse como un agrietamiento por fatiga después de la aplicación de un número de ciclos de carga. El problema del desgarramiento laminar se puede eliminar o minimizar considerablemente con detalles y procedimientos de soldadura apropiados. Por ejemplo, las soldaduras deben detallarse de manera que la contracción ocurra tanto como sea posible en la dirección en que el acero fue rolado. Algunas compañías fabricantes de acero producen aceros con propiedades mejoradas en la dirección del espesor, lo que proporciona una resistencia mayor al desgarramiento laminar. Aun si en tales aceros se usan juntas fuertemente restringidas, serán necesarios los detalles especiales mencionados anteriormente.11 Las Figuras 8-16 y 8-17 en el Manual del Acero muestran los arreglos preferidos de juntas soldadas que reducen la posibilidad del desgarramiento laminar. Se proporciona información adicional sobre el tema en la especificación ASTM A770.

1.13

SUMINISTRO DE ESTRUCTURAS DE ACERO El suministro de estructuras de acero consiste en el laminado de los perfiles, la fabricación de los elementos para un trabajo específico (incluido el corte a las dimensiones requeridas y el punzonado de los agujeros necesarios para las conexiones de campo) y su montaje. Muy rara vez una compañía ejecuta estas tres funciones y la compañía promedio realiza sólo una o dos de ellas. Por ejemplo, muchas compañías fabrican estructuras de acero y las montan, en tanto que otras sólo las montan o sólo las fabrican. Existen aproximadamente entre 400 y 500 compañías en Estados Unidos que fabrican estructuras de acero. La mayoría se dedica tanto a la fabricación como al montaje. Los fabricantes de acero normalmente tienen pocos perfiles en bodega debido a los altos intereses y costos de almacenaje. Cuando deben fabricar una estructura, ordenan los perfiles cortados a determinadas longitudes directamente a las laminadoras o a sus proveedores. Los distribuidores, que son un factor cada vez más importante en el suministro del acero estructural, compran y almacenan grandes cantidades de perfiles que adquieren a los mejores precios posibles en cualquier parte del mundo. El diseño de las estructuras generalmente lo hace un ingeniero en colaboración con una empresa de arquitectos. El proyectista hace los dibujos del diseño que muestran las cotas de los miembros estructurales, las dimensiones generales y las conexiones fuera de lo común. La compañía encargada de fabricar la estructura elabora los planos detallados y los somete a la aprobación del ingeniero. Esos planos contienen toda la información necesaria para fabricar la estructura correctamente. En ellos se muestran las dimensiones de cada miembro, la posición de los orificios, la posición y el tamaño de las conexiones, etc. En la Figura 1.11 se muestra una parte de un dibujo para un detalle típico de una viga de acero atornillada.

11 “Commentary on Highly Restrained Welded Connections”, Engineering Journal, AISC, vol. 10, no. 3 (3er . trimestre, 1973), pp. 61-73.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


28

Capítulo 1

Introducción al diseño estructural en acero 1 2

1 2

1

3

3

3

3

14

1

5

12

Corte

1

1

24

24 7

1

15'–9 8

7

52

15'–9 8 1

32'–1 4 Viga B4 F6 1 W16 ⫻ 40 ⫻ 32'⫺0 4 Figura 1.11 Parte de un dibujo de detalles.

Podría haber algunos detalles incluidos en este dibujo que no entienda, ya que ha leído sólo unas cuantas páginas de este libro. Sin embargo, tales detalles se aclararán conforme avance en el estudio de los capítulos siguientes. En dibujos reales los detalles se mostrarán probablemente para varios miembros. Aquí, el autor ha mostrado sólo un miembro para indicar la información necesaria para fabricar correctamente el miembro en el taller. Los círculos y rectángulos sombreados indican que los tornillos deben instalarse en el campo, mientras que los no sombreados muestran las conexiones que deben hacerse en el taller. El montaje de los edificios de acero es más que en cualquier otro aspecto del trabajo de construcción, un asunto de ensamblaje. Cada elemento se marca en el taller con letras y números para distinguirlo de los demás. El montaje se ejecuta de acuerdo con una serie de planos de montaje. Estos planos no son dibujos detallados, son simples diagramas lineales que muestran la posición de cada elemento en la estructura. Los planos muestran a cada pieza individual o subensamblaje de piezas junto con las marcas de asignación de transporte o de montaje, de modo que los trabajadores del acero puedan identificar y ubicar rápidamente a los miembros en su posición correcta en la estructura. (Frecuentemente, a las personas que realizan el montaje del acero se les llama herreros de obra, que es un nombre que se conserva desde los días anteriores al acero estructural.) Generalmente se pintan indicaciones respecto a la dirección en las caras de las columnas (norte, sur, este y oeste). Algunas veces los planos de montaje dan las dimensiones de los miembros, pero esto no es necesario. Esto puede o no mostrarse, dependiendo del fabricante en particular. Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.13 Suministro de estructuras de acero 29

El Vestíbulo del Arco Redondo en el centro de exhibición en Leipzig, Alemania. (© Klaws Hackenberg/Zefa/Corbis. Usado con autorización.)

Las vigas, trabes y columnas se indicarán en los planos por las letras B, G o C seguidas por el número de miembro particular como B5, G12, etc. A menudo, habrá varios miembros con esas mismas designaciones cuando los miembros se repiten en el edificio. Los marcos de acero de múltiples pisos suelen tener varios niveles con sistemas de estructuración idénticos o casi idénticos. De esta manera, puede usarse un plano de montaje para varios pisos. Para tales situaciones, las designaciones de los miembros de las columnas, vigas y trabes tendrán los números de nivel incorporados en ellos. Por ejemplo, la columna C15 (3-5) es la columna 15, tercero a quinto pisos, mientras que B4F6 o sólo B4 (6), representan la viga B4 para el sexto piso. En la Figura 1.12 se muestra una porción de un dibujo de montaje de un edificio. Enseguida describimos brevemente el montaje de los miembros de acero estructural de un edificio. Inicialmente, un grupo de herreros de obra, algunas veces llamado la “pandilla de levantamiento”, monta los miembros de acero, instalando solamente un número suficiente Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


30

Capítulo 1

Introducción al diseño estructural en acero

B9

B10

B5

G6

24'– 0

G4

24'– 0

G2

20'–0

96'– 0

B1

G5

G3

G1

28'–0

48'–0

B6

Planta del sexto piso Elevación de piso terminado ⫽ 74'-3" Parte superior del acero, 6” debajo del piso terminado.

B2

Figura 1.12 Parte de un dibujo de montaje que muestra dónde debe localizarse cada miembro.

de pernos para mantener a los miembros en su lugar. Además, colocan tirantes donde sea necesario para la estabilidad y el aplomo del marco de acero. Otro grupo de herreros de obra, a quienes algunas veces se les llama la “pandilla del detalle”, instala los pernos restantes, realiza cualquier soldadura de campo que sea necesaria, y termina el aplomo de la estructura. Después de haber terminado los dos últimos pasos, otra brigada instala la cubierta de metal para el piso y para las losas del techo. Éstas a su vez son seguidas por la brigada que coloca el refuerzo de concreto y el concreto necesarios para estas losas.12

1.14

EL TRABAJO DEL DISEÑADOR ESTRUCTURAL El diseñador estructural distribuye y dimensiona las estructuras y las partes de éstas para que soporten satisfactoriamente las cargas a las que quedarán sometidas. Sus funciones son: el trazo general de la estructura, el estudio de las formas estructurales posibles que puedan usarse, la consideración de las condiciones de carga, el análisis de esfuerzos, deflexiones, etc., el diseño de los elementos y la preparación de los planos de diseño. Con más exactitud, la palabra diseño se refiere al dimensionamiento de las partes de una estructura después de que 12

A. R. Tamboli, editor, Steel Design Handbook LRFD Method (Nueva York: McGraw-Hill, 1997), pp. 12-37.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.16 Diseño económico de miembros de acero 31 se han calculado las fuerzas, éste será el proceso que se enfatizará a lo largo del texto, usando como material de construcción el acero estructural.

1.15

RESPONSABILIDADES DEL INGENIERIO ESTRUCTURISTA El ingeniero estructurista debe aprender a distribuir y a proporcionar las partes de las estructuras de manera que puedan montarse prácticamente, que tengan resistencia suficiente y que sean razonablemente económicas. Estos conceptos se analizan brevemente a continuación.

1.15.1 Seguridad Una estructura no sólo debe soportar con seguridad las cargas impuestas, sino soportarlas en forma tal que las deflexiones y vibraciones resultantes no sean excesivas ni alarmen a los ocupantes o causen grietas de aspecto desagradable en ella.

1.15.2 Costo El proyectista siempre debe tener en mente la posibilidad de abatir los costos de la construcción sin sacrificar la resistencia. A lo largo de este texto se analizan algunos aspectos de construcción que incluyen el uso de elementos de tamaño estándar, conexiones y detalles simples, y miembros y materiales que no requieran un mantenimiento excesivo a través de los años.

1.15.3 Factibilidad Otro objetivo es el diseño de estructuras que puedan fabricarse y montarse sin mayores problemas. Los proyectistas necesitan conocer lo relativo a los métodos de fabricación y deben adaptar sus diseños a las instalaciones disponibles. También deben aprender todo lo relativo al detallado, la fabricación y el montaje de campo de las estructuras. Entre más sepan sobre los problemas, tolerancias y holguras de taller y campo, mayor será la posibilidad de que sus diseños resulten razonables, prácticos y económicos. Este conocimiento debe incluir información relativa al transporte de los elementos estructurales a la obra (por ejemplo, el tamaño máximo de las partes que pueden transportarse por camión o ferrocarril en forma práctica), así como la disponibilidad de mano de obra y el equipo disponible para el montaje. Quizá el proyectista debe hacerse la pregunta: “¿Podría yo montar esta estructura si me enviaran a montarla?” Por último, debe dimensionar las partes de la estructura de manera que éstas no interfieran con las partes mecánicas (tuberías, ductos, etc.), o arquitectónicas.

1.16

DISEÑO ECONÓMICO DE MIEMBROS DE ACERO El diseño de un miembro de acero implica mucho más que el cálculo de las propiedades requeridas para resistir las cargas y la selección del perfil más ligero que tenga tales propiedades. Aunque a primera vista parece que este procedimiento ofrece los diseños más económicos, deben considerarse muchos otros factores.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


32

Capítulo 1

Introducción al diseño estructural en acero

Montaje de la estructura de acero del edificio Transamerica Pyramid en San Francisco, CA. (Cortesía de Kaiser Steel Corporation.)

Actualmente, se considera que los costos de mano de obra implicados en la fabricación y montaje del acero estructural son cercanos al 60% de los costos totales de las estructuras de acero. Por otro lado, los costos de materiales representan sólo aproximadamente el 25% de los costos totales. Así, podemos ver que cualquier esfuerzo que hagamos para mejorar la economía de nuestro trabajo en el acero estructural debe concentrarse principalmente en el área de la mano de obra. Cuando los diseñadores consideran los costos, tienen la tendencia a pensar solamente en las cantidades de los materiales. Como resultado, algunas veces diseñan cuidadosamente una estructura con los miembros más ligeros posibles y terminan con algunas situaciones de mano de obra muy cara con solamente ahorros menores en los materiales. Entre los múltiples factores que deben considerarse para suministrar estructuras de acero que sean económicas están los siguientes: 1. Una de las mejores maneras de obtener la economía es contar con una comunicación abierta entre los proyectistas, fabricantes, montadores y otros que intervienen en un proyecto específico. Si esto se hace durante el proceso de diseño, pueden emplearse Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.16 Diseño económico de miembros de acero 33

2.

3.

4.

5.

6.

7. 8.

13 14

las habilidades y la experiencia de cada una de las brigadas en un momento cuando todavía es posible implementar buenas ideas económicas. El diseñador necesita seleccionar las dimensiones en que se fabrican los perfiles laminados. Vigas, placas y barras de acero de tamaños poco comunes serán difíciles de conseguir en periodos de mucha actividad constructiva y resultan costosos en cualquier época. Un poco de estudio le permitirá al diseñador aprender a evitar tales perfiles. Los fabricantes de acero reciben constantemente información de los fabricantes del acero y de los distribuidores acerca de las dimensiones de perfiles disponibles. (La mayoría de los perfiles estructurales se pueden conseguir en longitudes de 60 a 75 pies, dependiendo del fabricante, aunque bajo ciertas condiciones pueden conseguirse hasta de 120 pies.) En ciertos casos, puede ser un error suponer que el perfil más ligero es el más barato. Una estructura diseñada según el criterio de la “sección más ligera” consistirá en un gran número de perfiles de formas y tamaños diferentes. Tratar de conectar y adaptar todos estos perfiles será bastante complicado y el costo del acero empleado probablemente será muy alto. Un procedimiento más razonable sería unificar el mayor número posible de perfiles en cuanto al tamaño y forma, aunque algunos sean de mayor tamaño. Las vigas escogidas para los pisos de edificios son las de mayor peralte, ya que estas secciones, para un mismo peso, tienen los mayores momentos de inercia y de resistencia. Conforme aumenta la altura de los edificios, resulta económico modificar este criterio. Como un ejemplo, considere el montaje de un edificio de 20 pisos, en el cual cada piso tiene una altura libre mínima. Se supone que los peraltes de las vigas del piso pueden reducirse 6 plg sin que se incremente demasiado el peso de las vigas. Las vigas costarán más, pero la altura del edificio se reducirá 20 × 6 plg = 120 plg, o 10 pies, con el consiguiente ahorro en muros, pozos de elevadores, alturas de columnas, plomería, cableado y cimentaciones.13 Los costos de montaje y fabricación de vigas de acero estructural son aproximadamente los mismos para miembros ligeros o pesados. Las vigas deben entonces espaciarse tanto como sea posible para reducir el número de miembros que tengan que fabricarse y montarse. Los miembros de acero estructural deben pintarse sólo si lo requiere la especificación aplicable. El acero no debe pintarse si va a estar en contacto con concreto. Además, los diversos materiales resistentes al fuego usados para proteger a los miembros de acero se adhieren mejor si las superficies no están pintadas.14 Es muy conveniente utilizar la misma sección el mayor número de veces posible. Tal manera de proceder reducirá los costosos de detallado, fabricación y montaje. Para secciones grandes, particularmente las compuestas, el diseñador necesita tener información relativa a los problemas de transporte. Esta información incluye las longitudes y alturas máximas que pueden enviarse por camión o ferrocarril (véase la Sección 1.18), los claros libres bajo puentes y líneas de transmisión que se encuentren en el camino de la obra, así como las cargas permisibles sobre los puentes que deban

H. Allison, “Low-and Medium-Rise Steel Buildings” (Chicago: AISC, 1991), pp. 1-5. Ibid., pp. 1-5.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


34

Capítulo 1

Introducción al diseño estructural en acero

cruzarse. Es posible fabricar una armadura de acero para techo en una sola pieza, pero tal vez no sea posible transportarla a la obra y montarla en una sola pieza. 9. Deben escogerse secciones que sean razonablemente fáciles de montar y que no tengan condiciones que las hagan difíciles de mantener. Por ejemplo, los elementos estructurales de un puente deben tener sus superficies expuestas, dispuestas de manera que puedan pintarse periódicamente (a menos que se utilice un acero especial resistente a la corrosión). 10. Los edificios tienen con frecuencia una gran cantidad de tuberías, ductos, conductos y otros elementos. Deberá hacerse todo lo posible para seleccionar miembros de acero que sean compatibles con los requisitos impuestos por tales instalaciones. 11. Los miembros de una estructura de acero con frecuencia están expuestos al público, sobre todo en el caso de los puentes de acero y auditorios. La apariencia puede ser el factor principal al tener que escoger el tipo de estructura, como en el caso de los puentes, que deben estar a tono con la región y que realmente deben contribuir a su apariencia. Los miembros expuestos pueden ser muy estéticos cuando se disponen de manera sencilla y tal vez cuando se escogen elementos con líneas curvas; sin embargo, ciertos arreglos pueden ser sumamente desagradables a la vista. Es un hecho que algunas estructuras de acero, bellas en apariencia, tienen un costo muy razonable. Surge con frecuencia la pregunta, ¿cómo lograr un diseño económico en acero estructural? La respuesta es simple: depende de lo que el fabricante de acero no tenga que hacer. (En otras palabras, un diseño económico se alcanza cuando la fabricación se minimiza.) El número de abril de 2000 de Modern Steel Construction (Construcción moderna con acero) tiene varios artículos que presentan un excelente material sobre el tema de la economía en la construcción con acero.15 El estudiante puede aprender bastante y muy rápidamente información valiosa con respecto al tema de la economía en acero al leer estos artículos. El autor piensa que son de lectura obligada para cualquiera que se dedique al diseño con acero.16-19

1.17

FALLAS EN ESTRUCTURAS La gente supersticiosa prefiere no hablar de neumáticos desinflados ni escribir su testamento por temor de tentar al destino. Esa misma gente probablemente no se preocuparía por analizar el tema de las fallas en la ingeniería. A pesar de la prevalencia de esta superstición, el autor considera que el conocimiento de las causas de los fracasos más frecuentes del pasado, es de gran valor para los ingenieros con experiencia o sin ella, por igual. Tal vez un estudio de las fallas ocurridas en el pasado sea más importante que un estudio de los éxitos. Benjamín

15

Modern Steel Construction, abril 2000, vol. 40, núm. 4 (Chicago: American Institute of Steel Construction), pp. 6, 25-48, 60. 16 C. J. Carter, T. M. Murray y W. A. Thornton, “Economy in Steel”, en Modern Steel Construction, abril 2000, vol. 40, núm. 4 (Chicago: American Institute of Steel Construction). 17 D. T. Ricker, “Value Engineering for Steel Construction”, en Modern Steel Construction, abril 2000, vol. 40, núm. 4 (Chicago: American Institute of Steel Construction). 18 J. E. Quinn, “Reducing Fabrication Costs”, en Modern Steel Construction, abril 2000, vol. 40, núm. 4 (Chicago: American Institute of Steel Construction). 19 Steel Joist Institute, “Reducing Joist Cost”, en Modern Steel Construction, abril 2000, vol. 40, núm. 4 (Chicago: American Institute of Steel Construction).

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.17 Fallas en estructuras

35

Montaje de la estructura de acero del edificio Transamerica Pyramid en San Francisco, CA. (Cortesía de Kaiser Steel Corporation.)

Franklin hizo la observación de que “un hombre sabio aprende más de los fracasos que de los triunfos”. El proyectista con poca experiencia necesita saber especialmente a qué debe dársele la mayor atención y dónde se requiere la asesoría exterior. La vasta mayoría de los ingenieros, con o sin experiencia, seleccionan miembros de suficiente tamaño y resistencia. El colapso de las estructuras se debe generalmente a una falta de atención a los detalles de Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


36

Capítulo 1

Introducción al diseño estructural en acero

las conexiones, deflexiones, problemas de montaje y asentamientos en la cimentación. Las estructuras de acero rara vez fallan debido a defectos del material, más bien lo hacen por su uso inadecuado. Una falla frecuente de los diseñadores se debe a que después de diseñar cuidadosamente los miembros de una estructura, se seleccionan en forma arbitraria conexiones que pueden no ser de suficiente tamaño. Los ingenieros delegan a veces el trabajo de seleccionar las conexiones a los dibujantes, quienes quizás no tengan un conocimiento suficiente de las dificultades que surgen en el diseño de las conexiones. Tal vez el error que se comete con más frecuencia en el diseño de las conexiones es despreciar algunas de las fuerzas que actúan en éstas, por ejemplo, los momentos torsionantes. En una armadura para la que se han diseñado los miembros sólo por las fuerzas axiales, las conexiones pueden estar excéntricamente cargadas, generándose así momentos que causan incrementos en los esfuerzos. Estos esfuerzos secundarios son en ocasiones tan grandes que deben considerarse en el diseño. Otra causa de fallas ocurre cuando las vigas soportadas sobre muros tienen un apoyo o anclaje insuficiente. Imagine una viga de este tipo que soporta un techo plano en una noche lluviosa y que los drenes del techo no funcionan adecuadamente. Conforme el agua empieza a encharcarse sobre el techo, éste tiende a flexionar la viga en el centro, ocasionando que se formen bolsas que captarán más agua, lo que aumentará la flecha de la viga. Al deflexionarse la viga, ésta empuja contra los muros, causando posiblemente el colapso de éstos o el deslizamiento de los extremos de la viga hacia fuera de los muros. Imagine una viga de acero de 60 pies de claro soportada sobre un muro con sólo una pulgada o dos de apoyo que se contrae cuando la temperatura desciende 50 o 60 grados en la noche. No es difícil entonces prever un colapso debido a una combinación de contracción en la viga, deflexión hacia fuera de los muros y una deflexión vertical de éstos causada por cargas de lluvia. No es difícil encontrar en la literatura técnica casos reales de esta naturaleza. Los asentamientos en las cimentaciones causan un gran número de fallas estructurales, probablemente más que cualquier otro factor. La mayoría de los asentamientos en cimentaciones no conducen a desplomes de la estructura, pero con frecuencia ocasionan grietas de aspecto desagradable y depreciación del sistema estructural. Si todas las partes de la cimentación de una estructura se asientan uniformemente, los esfuerzos en ésta, teóricamente no cambiarán. El diseñador, que generalmente no puede prevenir los asentamientos, debe procurar que el diseño de la cimentación sea tal que los asentamientos que se presenten sean uniformes. Los asentamientos uniformes pueden ser una meta imposible de alcanzar, por lo que entonces deben tomarse en cuenta los esfuerzos producidos por variaciones en los asentamientos. De acuerdo con el análisis estructural, los asentamientos no uniformes en estructuras estáticamente indeterminadas pueden causar variaciones extremas en los esfuerzos. Cuando las condiciones para cimentar son deficientes, es conveniente utilizar estructuras estáticamente determinadas, en las que los esfuerzos no son apreciablemente modificados por los asentamientos de los soportes. (El estudiante aprenderá en estudios subsecuentes que la resistencia última de las estructuras de acero generalmente se afecta sólo ligeramente por los asentamientos no uniformes de los soportes.) Algunas fallas estructurales ocurren porque no se da una atención adecuada a las deflexiones, fatiga de miembros, arriostramiento contra ladeos, vibraciones y la posibilidad de pandeo de miembros en compresión o de los patines de compresión de vigas. La estructura típica, cuando está terminada, está suficientemente arriostrada con los pisos, muros, conexiones y arriostramiento especial, pero hay ocasiones durante la construcción en que muchos de estos elementos no están presentes. Como se indicó anteriormente, las peores condiciones pueden ocurrir durante el montaje y puede entonces requerirse un arriostramiento especial temporal. Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


1.20

1.18

Las computadoras y el diseño del acero estructural 37

MANEJO Y EMBARQUE DEL ACERO ESTRUCTURAL Las siguientes reglas generales se aplican a las dimensiones y pesos de piezas de acero estructural que se pueden fabricar en un taller, embarcarse a la obra y montarse: 1. Los pesos y longitudes máximos que pueden manejarse en el taller y en un sitio de construcción son aproximadamente 90 toneladas y 120 pies, respectivamente. 2. Piezas de 8 pies de altura, 8 pies de ancho y 60 pies de largo pueden embarcarse en camiones sin dificultad (siempre que los pesos en los ejes o pesos brutos no excedan los valores permisibles indicados por las autoridades a lo largo de las rutas designadas). 3. Hay pocos problemas en el envío por ferrocarril si las piezas no tienen más de 10 pies de alto, 8 pies de ancho, 60 pies de largo y si no pesan más de 20 toneladas. 4. Las rutas deben estudiarse cuidadosamente, así como consultar a los transportistas con respecto a los pesos y tamaños que excedan los valores indicados en los puntos 2 y 3 anteriores.

1.19

EXACTITUD DE LOS CÁLCULOS Un punto muy importante, que muchos estudiantes con sus excelentes calculadoras de bolsillo y computadoras personales tienen dificultad en entender, es que el diseño estructural no es una ciencia exacta y que no tiene sentido tener resultados con ocho cifras significativas. Algunas de las razones se debe a que los métodos de análisis se basan en hipótesis parcialmente ciertas, a que las resistencias de los materiales varían apreciablemente y a que las cargas máximas sólo pueden determinarse en forma aproximada. Con respecto a esta última afirmación, ¿cuántos usuarios de este libro podrían estimar con una aproximación del 10% la carga máxima en libras por pie cuadrado que se presentará finalmente en el piso del edificio que ahora ocupan? Los cálculos con más de dos o tres cifras significativas, obviamente son de poco valor y pueden darle al estudiante una falsa impresión de exactitud y precisión. Desde un punto de vista práctico, al parecer lo mejor es calcular con todos los dígitos en la calculadora en los pasos intermedios y luego redondear las respuestas finales.

1.20

LAS COMPUTADORAS Y EL DISEÑO DEL ACERO ESTRUCTURAL La disponibilidad de las computadoras personales ha cambiado drásticamente la manera en que se analizan y diseñan las estructuras de acero. En prácticamente toda escuela y oficina de ingeniería, se usan computadoras para resolver los problemas en análisis estructural. Muchos de los programas de análisis estructural que están disponibles comercialmente también pueden realizar diseño estructural. Están implicados muchos cálculos en el diseño del acero estructural y muchos de esos cálculos consumen mucho tiempo. Con el uso de una computadora, el ingeniero estructural puede reducir considerablemente el tiempo requerido para realizar esos cálculos, y posiblemente incrementar su exactitud. A su vez, esto le dará más tiempo al ingeniero para considerar las implicaciones del diseño y el comportamiento resultante de la estructura, y más tiempo para ensayar cambios que puedan mejorar la economía o el comportamiento. Aunque las computadoras ciertamente incrementan la productividad en el diseño, éstas tienden sin duda al mismo tiempo a reducir la “intuición” del ingeniero hacia las estructuras. Esto puede ser un problema especial para los ingenieros jóvenes con poca experiencia en el diseño. A menos que los ingenieros tengan esta intuición con respecto al comportamiento de un sistema, el uso de las computadoras puede desembocar ocasionalmente en grandes y

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


38

Capítulo 1

Introducción al diseño estructural en acero

costosos errores. Estas situaciones pueden presentarse si las anomalías y las inconsistencias no son inmediatamente evidentes para el ingeniero que no tiene experiencia. Teóricamente, el diseño por computadoras de sistemas alternativos para unos cuantos proyectos deberá mejorar apreciablemente el criterio del ingeniero en poco tiempo. Sin las computadoras, el desarrollo de este mismo criterio requeriría posiblemente que el ingeniero se abra paso a través de numerosos proyectos.

1.21

PROBLEMAS PARA RESOLVER 1-1. Haga una lista de las tres regiones de un diagrama de esfuerzo-deformación para acero estructural dulce o de bajo contenido de carbono. 1-2. Haga una lista de la organización de especificación de los siguientes tipos de acero: a. Acero conformado en frío b. Acero rolado en caliente 1-3. Defina lo siguiente: a. Límite de proporcionalidad b. Límite elástico c. Esfuerzo de fluencia 1-4. Haga una lista del tipo preferido de acero (especificación de la ASTM) para los siguientes perfiles: a. Placas b. Perfiles W c. Perfiles C 1-5. Haga una lista de los dos métodos que se usan para producir perfiles de acero. 1-6. Haga una lista de cuatro ventajas del acero como material estructural. 1-7. ¿Qué tipo de acero (grado ASTM) ha hecho que el costo del acero de 50 klb/plg2 sea igual que el del acero de 36 klb/plg2 debido al uso de acero de chatarra o reciclado en el proceso de fabricación? 1-8. ¿Cuáles son las diferencias entre el hierro forjado, el acero y el hierro colado? 1-9. ¿Cuál es el rango del porcentaje de carbono para el acero al carbono dulce? 1.10. Haga una lista de cuatro desventajas del acero como material estructural. 1.11. Haga una lista de cuatro tipos de falla de las estructuras de acero estructural.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


C A P Í T U L O

2

Especificaciones, cargas y métodos de diseño

2.1

ESPECIFICACIONES Y CÓDIGOS DE CONSTRUCCIÓN El diseño de la mayoría de las estructuras está regido por especificaciones de diseño y normas. Aun si éstas no rigen el diseño, el proyectista quizá las tomará como una guía. No importa cuántas estructuras haya diseñado, es imposible que haya encontrado toda situación posible, por lo mismo, al recurrir a las especificaciones, el proyectista recomendará el mejor material disponible. Las especificaciones de ingeniería que son desarrolladas por diversas organizaciones contienen las opiniones más valiosas de esas instituciones sobre la buena práctica de la ingeniería. Las autoridades municipales y estatales, preocupadas por la seguridad pública, han establecido códigos de control de la construcción de las estructuras bajo su jurisdicción. Estos códigos, que en realidad son reglamentos, especifican las cargas de diseño, esfuerzos de diseño, tipos de construcción, calidad de los materiales y otros factores. Estos reglamentos varían considerablemente de ciudad a ciudad, hecho que origina cierta confusión entre arquitectos e ingenieros. Algunas organizaciones publican prácticas que se recomiendan para uso regional o nacional; sus especificaciones no son legalmente obligatorias, a menos que estén contenidas en el código de edificación local o formen parte de un contrato en particular; entre esas organizaciones están el AISC y la ASSHTO (American Association of State Highway and Transportation Officials). Casi todos los códigos de construcción, municipales y estatales, han adoptado las Especificaciones AISC, y casi todos los departamentos estatales de carreteras y de transporte han adoptado las Especificaciones AASHTO. Los lectores deben notar que los códigos escritos lógica y claramente son muy útiles para los ingenieros de diseño. Es un hecho que hay menos fallas estructurales en zonas que tienen buenos códigos y que se acatan estrictamente. Mucha gente considera que las especificaciones impiden al ingeniero pensar por sí mismo y tal vez haya alguna razón para tal censura. Se dice que a los antiguos ingenieros que construyeron las grandes pirámides, el Partenón y los grandes puentes romanos, los controlaban

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak

39


40

Capítulo 2

Especificaciones, cargas y métodos de diseño

El puente sobre el río South Fork Feather en el norte de California, en proceso de montaje en donde se usa un cable carril de 1 626 pies de longitud sustentado por mástiles de 210 pies de altura anclado en cada lado del cañón. (Cortesía de Bethlehem Steel Corporation.)

muy pocas especificaciones, lo que indudablemente es verdad. Por otra parte, podría decirse que sólo algunos de estos grandes proyectos perduraron durante muchos siglos, y que se hicieron aparentemente sin tomar en cuenta el costo de materiales, mano de obra y vidas humanas. Probablemente se construyeron por intuición siguiendo reglas empíricas que los constructores desarrollaron mediante la observación del tamaño o la resistencia mínimos de los miembros, que fallarían solamente bajo ciertas condiciones. Seguramente que sus numerosas fallas no han sido registradas en la historia y sólo sus éxitos han perdurado. Actualmente, sin embargo, hay centenares de proyectos realizándose al mismo tiempo en Estados Unidos, que rivalizan en importancia y magnitud con las famosas estructuras de la antigüedad. Obviamente, si a todos los ingenieros se les permitiera diseñar construcciones como las mencionadas, sin restricciones, seguramente habría muchas fallas desastrosas. Por tanto, algo que debe recordarse como importante acerca de las especificaciones es que las mismas no se han elaborado con el propósito de restringir al ingeniero, sino con el de proteger al público. No importa cuántas especificaciones se escriban, resulta imposible que cubran toda situación posible. En consecuencia, no importa qué código o especificación se use o no, la responsabilidad última del diseño de una construcción segura es del ingeniero estructurista. Obviamente, el objetivo de estas especificaciones es que la carga que se use para el diseño sea la que cause los esfuerzos más grandes. Otro código muy importante, el International Building Code1 (IBC), se desarrolló por la necesidad de un código de construcciones moderno que enfatice el comportamiento. 1

International Code Council, Inc., International Building Code (Washington, DC, 2009).

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


2.3

Cargas muertas 41

Su objetivo es enfatizar un conjunto modelo de normas que salvaguarden al público de todas las comunidades.

2.2

CARGAS Quizá la tarea más importante y difícil que debe enfrentar un diseñador de estructuras, es la estimación precisa de las cargas que recibirá una estructura durante su vida útil. No debe omitirse la consideración de cualquier carga que pueda llegar a presentarse. Después de haber estimado las cargas, es necesario investigar las combinaciones más desfavorables que pueden ocurrir en un momento dado. Por ejemplo, ¿qué situación es más desfavorable en el diseño de un puente, que se encuentre cubierto totalmente de hielo y nieve y sujeto a las cargas móviles de camiones pesados y rápidos y a vientos laterales con velocidades de 145 km/h, o bien, una combinación menos severa de estas cargas? La Sección B2 de la Especificación AISC establece que las cargas nominales que van a usarse para el diseño estructural deberán ser las estipuladas por el reglamento aplicable bajo el cual se esté diseñando la estructura o como lo determinen las condiciones involucradas. Si no hay reglamento, las cargas de diseño serán las provistas en una publicación de la American Society of Civil Engineers intitulada Minimum Design Loads for Buildings and Other Structures.2 Comúnmente se conoce a esta publicación como ASCE 7. Originalmente la publicó la American National Standards Institute (ANSI) y se le conoce como la Norma ANSI 58.1. La ASCE se hizo cargo de su publicación en 1988. En general, las cargas de clasifican de acuerdo con su naturaleza y duración de la aplicación. Como tales, se les denomina cargas muertas, cargas vivas y cargas ambientales. En las secciones que siguen se expone un poco de cada tipo de carga.

2.3

CARGAS MUERTAS Las cargas muertas son cargas de magnitud constante que permanecen fijas en un mismo lugar. Éstas son el peso propio de la estructura y otras cargas permanentemente unidas a ella. Para un edificio con estructura de acero, son cargas muertas la estructura en sí, los muros, los pisos, el techo, la plomería y los accesorios. Para diseñar una estructura es necesario estimar los pesos o cargas muertas de las diversas partes que van a usarse en el análisis. Las dimensiones y pesos exactos de las partes no se conocen hasta que se hace el análisis estructural y se seleccionan los miembros de la estructura. Los pesos, determinados de acuerdo con el diseño real, deben compararse con los pesos estimados. Si se tienen grandes discrepancias, será necesario repetir el análisis y diseñar con una estimación más precisa de las cargas. Una estimación razonable de los pesos de las estructuras puede hacerse con base en otras similares o en fórmulas y tablas diversas disponibles en varias publicaciones. Los pesos de muchos materiales se dan en la Parte 17 del Manual del Acero. En las Tablas C3-1 y C3-2 de ASCE 7-10 se proporciona información aún más detallada sobre las cargas muertas. Un ingeniero con experiencia en el diseño puede estimar aproximadamente los pesos de la mayoría de los materiales e invertirá poco tiempo repitiendo diseños debido a estimaciones incorrectas.

2

American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures. ASCE 7-10. Antes ANSI A58.1 (Reston, Va.: ASCE, 2010).

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


42

Capítulo 2

Especificaciones, cargas y métodos de diseño

TABLA 2.1

Cargas muertas típicas para algunos materiales comunes para edificios.

Concreto reforzado Acero estructural Concreto simple Muros divisorios simples de acero Emplaste sobre concreto Cielo raso colgante Fieltro de 5 capas y grava Piso de madera dura (7/8 plg) Pisos de madera dobles de 2 ⫻ 12 ⫻ 16 plg Montantes de madera con 1/2 plg de yeso en cada lado Media citara de ladrillo de arcilla (4 plg)

150 lb/pie3 490 lb/pie3 145 lb/pie3 4 lb/pie2 5 lb/pie2 2 lb/pie2 6 lb/pie2 4 lb/pie2 7 lb/pie2 8 lb/pie2 39 lb/pie2

En la Tabla 2.1 se presentan los pesos aproximados de algunos materiales comunes de construcción para techos, muros, pisos, etcétera.

2.4

CARGAS VIVAS Las cargas vivas son aquellas que pueden cambiar de lugar y magnitud. Son causadas cuando una estructura se ocupa, se usa y se mantiene. Las cargas que se mueven bajo su propio impulso como camiones, gente y grúas, se denominan cargas móviles. Aquellas cargas que pueden moverse son cargas movibles, tales como los muebles y los materiales en un almacén. En ASCE 7-10 se presenta una gran cantidad de información sobre la magnitud de estas diversas cargas, junto con los valores mínimos especificados. 1. Cargas de piso. Las cargas vivas mínimas por gravedad que deben usarse en el diseño de pisos de edificios se especifican claramente en los códigos de construcción. Desafortunadamente, sin embargo, los valores dados en esos códigos varían de ciudad a ciudad y el proyectista debe estar seguro de que sus diseños cumplen con los requisitos de la localidad. En la Tabla 2.2 se listan algunos valores comunes para cargas de piso. Estos valores se tomaron de ASCE 7-10. A falta de un código local, éste es un excelente sustituto. Muy pocos reglamentos de construcción especifican cargas concentradas que deban considerarse en el diseño. La Sección 4.4 de ASCE 7-10 y la Sección 1607.4 de IBC-2009 son dos ejemplos de este tipo. Las cargas especificadas se consideran como alternativas a las cargas uniformes anteriormente consideradas aquí. En la Tabla 2.3 se listan algunas cargas concentradas típicas tomadas de la Tabla 4-1 de ASCE 7-10 y de la Tabla 1607.1 de IBC-2009. Estas cargas deben colocarse sobre los pisos o los techos en las posiciones donde causen las condiciones más severas. A menos que se especifique otra cosa, cada una de estas cargas concentradas se extiende sobre un área de 2.5 ⫻ 2.5 pies cuadrados (6.25 pie2). 2. Cargas de tránsito en puentes. Los puentes están sujetos a una serie de cargas concentradas de magnitud variable causadas por grupos de camiones o ruedas de trenes. 3. Cargas de impacto. Las cargas de impacto son causadas por la vibración de las cargas móviles o movibles. Es obvio que un bulto arrojado al piso de un almacén o un camión que rebota sobre el pavimento irregular de un puente, causan mayores fuerzas que las

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


2.4

TABLA 2.2

Cargas vivas uniformes mínimas comunes para el diseño de edificios. Carga viva (lb/pie2)

Tipos de edificios Edificios de apartamentos Habitaciones Salones públicos Comedores y restaurantes Garajes (automóviles únicamente) Gimnasios, pisos principales y balcones Edificios de oficinas Vestíbulos Oficinas Escuelas Salones de clase Corredores en primer nivel Corredores en pisos superiores Bodegas Material ligero Material pesado Almacenes (menudeo) Primer nivel Otros pisos

TABLA 2.3

Cargas vivas 43

40 100 100 40 100 100 50 40 100 80 125 250 100 75

Cargas vivas concentradas comunes en los edificios.

Hospitales - quirófanos, salas privadas, y pabellones Edificio de manufacturas (ligero) Edificio de manufacturas (pesado) Pisos de oficina Almacenes al menudeo (primer piso) Almacenes al menudeo (piso superiores) Salones de clase Corredores de escuela

1 000 lb 2 000 lb 3 000 lb 2 000 lb 1 000 lb 1 000 lb 1 000 lb 1 000 lb

que se presentarían si las cargas se aplicaran suave y gradualmente. Las grúas que levantan cargas y los elevadores que arrancan y se detienen son otros ejemplos de cargas de impacto. Las cargas de impacto son iguales a la diferencia entre la magnitud de las cargas realmente generadas y la magnitud de las cargas consideradas como muertas. La Sección 4.6 de ASCE 7-10 requiere que las estructuras que van a soportar cargas vivas con tendencia a causar impacto, se diseñen con sus cargas nominales incrementadas por los porcentajes dados en la Tabla 2.4. 4. Cargas longitudinales. Las cargas longitudinales son otro tipo de carga que necesita considerarse en el diseño de ciertas estructuras. Al detenerse un tren sobre un puente o un camión en un puente carretero, se generan fuerzas longitudinales que deben considerarse. No es difícil imaginar la tremenda fuerza longitudinal desarrollada cuando el chofer de un camión con remolque de 40 toneladas viajando a 97 km/h tiene que Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


44

Capítulo 2

Especificaciones, cargas y métodos de diseño

TABLA 2.4

Factores de impacto para carga viva.

Maquinaria para elevador* Maquinaria impulsada por motores Maquinaria reciprocante

100% 100% 50%

*Véase la Sección C4.6, Comentario del ASCE 7-10.

frenar repentinamente al cruzar un puente. Al chocar un barco contra un muelle durante la atracada y durante la operación de grúas viajeras apoyadas en marcos estructurales, se generan otras fuerzas longitudinales. 5. Otras cargas vivas. Existen otros tipos de cargas vivas que el ingeniero estructurista debe considerar y son las siguientes: Las presiones del suelo (como las ejercidas por la presión lateral de la tierra en muros o las subpresiones (presiones hacia arriba) sobre las cimentaciones); las presiones hidrostáticas (como la presión hidráulica contra las presas, las fuerzas de inercia de grandes cantidades de agua durante un sismo, así como las presiones de levantamiento sobre tanques y estructuras de sótano); las cargas de explosiones (causadas por explosiones, roturas de la barrera del sonido, armamentos); las fuerzas térmicas (debidas a cambios en la temperatura que ocasionan deformaciones estructurales que a su vez, generan fuerzas estructurales); y las fuerzas centrífugas (como las causadas en puentes curvos por camiones o trenes o efectos similares en la montaña rusa, etcétera).

Retícula de grúa para techo o de pórtico, Savannah, GA. (Cortesía de CMC South Carolina Steel.)

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


2.5

Cargas ambientales 45

Cortina y embalse de la presa Hungry Horse en las Montañas Rocallosas, en el noroeste de Montana. (Cortesía de Montana Travel Promotion Division.)

2.5

CARGAS AMBIENTALES Las cargas ambientales son causadas por el medio ambiente en el cual se localiza una estructura particular. Para los edificios, las cargas ambientales son causadas por la lluvia, la nieve, el viento, los cambios de temperatura y los sismos. Estrictamente hablando, las cargas ambientales son cargas vivas, pero son el resultado del medio ambiente en el cual se ubica la estructura. Aun cuando ciertamente varían con el tiempo, no todas son causadas por la gravedad o por las condiciones de operación, como es común con otras cargas vivas. Se presentan algunos comentarios en los siguientes párrafos en relación con los diferentes tipos de cargas ambientales: 1. Nieve. En los estados más fríos (de Estados Unidos), las cargas de nieve con frecuencia son bastante importantes. Una pulgada de nieve equivale aproximadamente a 0.5 lb/ pie2, pero puede ser mayor en elevaciones menores, en donde la nieve es más densa. Para los diseños de techos, comúnmente se usan cargas de nieve de 10 a 40 lb/plg2; la magnitud depende principalmente de la pendiente del techo y en menor grado de la índole de la superficie de éste. Los valores mayores se usan para techos horizontales y los menores para techos inclinados. La nieve tiende a resbalar de los techos con pendiente, sobre todo de aquellos con superficies de metal o de pizarra. Una carga de aproximadamente 10 lb/plg2 podría usarse para pendientes de 45°, y una de 40 lb/plg2 para techos horizontales. Los estudios de registros de precipitación de nieve en áreas con inviernos severos pueden indicar la ocurrencia de cargas de nieve mucho mayores de 40 lb/plg2, con valores tan altos como 200 lb/plg2 en algunos estados del oeste. La nieve es una carga variable que puede cubrir todo un techo o sólo parte de éste. Las cargas de nieve que se aplican a una estructura dependen de muchos factores, incluyendo la ubicación geográfica, la inclinación del techo, el resguardo y la forma del techo. El Capítulo 7 de ASCE 7-10 suministra mucha información con respecto a las cargas de nieve, incluyendo gráficos y fórmulas para estimar su magnitud. El viento puede acumularla cerca de los muros o en las lima hoyas o entre parapetos, puede deslizarla a otros techos situados más abajo y

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


46

Capítulo 2

Especificaciones, cargas y métodos de diseño

también puede barrerla de un lado de un techo inclinado o solidificarla y dejarla en su posición original aun durante fuertes vendavales. Los puentes generalmente no se diseñan considerando las cargas de nieve, ya que el peso de ésta resulta insignificante comparada con las cargas de trenes y camiones. En todo caso no es factible que se presenten simultáneamente una carga total de nieve y una de tránsito máximo. Los puentes y las torres quedan a veces cubiertos con capas de hielo de 1 a 2 plg de espesor. El peso del hielo asciende entonces a aproximadamente 10 lb/plg2. Otro factor que se debe considerar es el área superficial incrementada de los miembros recubiertos de hielo, por lo que toca a las cargas de viento. 2. Lluvia. Aunque las cargas de nieve son un problema más serio que las cargas de lluvia en los techos comunes, la situación puede invertirse en los techos horizontales, especialmente aquellos localizados en lugares con clima cálido. Si el agua en un techo sin pendiente se acumula más rápidamente que lo que tarda en escurrir, el resultado se denomina encharcamiento, ya que la carga aumentada ocasiona que el techo se deflexione en forma de plato, que entonces puede contener más agua, lo que a su vez causa mayores deflexiones, y así sucesivamente. Este proceso continúa hasta que se alcanza el equilibrio o el colapso de la estructura. El encharcamiento es un problema muy serio, como lo atestigua el gran número de fallas que ocurren en techos horizontales cada año en Estados Unidos durante la temporada de lluvias. Se ha afirmado que casi el 50 por ciento de las demandas que enfrentan los proyectistas de edificios tienen que ver con los sistemas de techo.3 El encharcamiento es una de las causas más comunes de estos litigios. El encharcamiento ocurre hasta cierto grado en casi todo techo horizontal, aunque se disponga de drenes para el desagüe. Aunque se haga un buen uso de los drenes del techo, éstos pueden resultar insuficientes durante tormentas intensas o estar tapados parcial o totalmente. El mejor método para prevenir el encharcamiento es darle al techo una pendiente apreciable (1/4 plg/pie o mayor) junto con un buen sistema de drenes. Además del encharcamiento común, puede presentarse otro problema en los techos con áreas muy grandes (tal vez con un acre [4 000 m2 aproximadamente] o más de área superficial). Durante lluvias muy intensas en ocasiones también sobrevienen vientos muy fuertes. Si hay mucha agua en el techo, un viento fuerte podría desplazar una gran cantidad de agua hacia un extremo. El resultado puede ser un tirante hidráulico peligroso con respecto a la carga en lb/plg2 en ese extremo. Para estas situaciones, algunas veces se usan imbornales. Éstos son grandes agujeros o tubos en las paredes o parapetos que permiten que salga el agua cuando ésta alcanza cierto nivel para drenarla rápidamente fuera del techo. El Capítulo 8 de ASCE 7-10 proporciona información para estimar la magnitud de las cargas de lluvia que pueden acumularse sobre los techos sin inclinación. 3. Cargas de viento. En la bibliografía de la ingeniería de los últimos 150 años se reportan muchas fallas estructurales causadas por el viento. Quizá los casos más deplorables han tenido lugar en las estructuras de puentes como el Tay en Escocia que falló en 1879 (que causó la muerte de 75 personas) y el puente del estrecho de Tacoma, Washington, que también falló en 1940. Pero también han tenido lugar fallas desastrosas debido al viento en edificios, como el colapso del edificio de la Union Carbide en Toronto en 1958. Es importante observar que un gran porcentaje de fallas por viento en edificios han ocurrido durante el montaje.4 3

Gary Van Ryzin, 1980, “Roof Design: Avoid Ponding by Sloping to Drain”, Civil Engineering (Nueva York, ASCE, enero), pp. 77-81. 4 “Wind Forces on Structures, Task Committee on Wind Forces. Committee on Loads and Stresses, Structural Division, ASCE, Final Report”, Transactions ASCE 126, Parte II (1961): 1124-1125.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


2.5

Cargas ambientales 47

En años recientes se ha llevado a cabo una gran cantidad de investigaciones sobre el tema de las cargas de viento. Sin embargo, todavía se requiere efectuar mucho trabajo, ya que la estimación de estas fuerzas de ninguna manera puede clasificarse como una ciencia exacta. Las magnitudes de las cargas de viento varían con la ubicación geográfica, las alturas sobre el nivel del terreno, los tipos de terreno que rodean a los edificios, la proximidad y la naturaleza de otras estructuras cercanas, y otros factores. Por lo general se supone que las presiones del viento se aplican uniformemente a las superficies de barlovento de los edificios y que pueden proceder de cualquier dirección. Estas hipótesis no son muy precisas, ya que las presiones no son uniformes sobre grandes áreas, por ejemplo, cerca de las esquinas de los edificios probablemente son mayores que en cualquier otra zona debido a la aceleración del viento alrededor de las esquinas, etc. Sin embargo, desde un punto de vista práctico, no es posible considerar en el diseño todas las posibles variaciones, aunque actualmente las especificaciones tienden a ser cada vez más precisas en sus requisitos. Cuando el proyectista trabaja con grandes edificios de baja altura y hace estimaciones erróneas sobre la presión del viento, los resultados probablemente no serán muy serios, pero éste no es el caso cuando trabaje con edificios altos y esbeltos (o con puentes largos y flexibles). Durante muchos años el proyectista promedio ignoró las fuerzas del viento en edificios cuyas alturas no eran por lo menos el doble de sus dimensiones laterales mínimas. En estos casos se consideraba que los pisos y muros proporcionaban suficiente rigidez lateral para eliminar la necesidad de sistemas específicos de arriostramiento. Sin embargo, un mejor punto de vista que los proyectistas pueden suponer es considerar todas las posibles condiciones de carga que una estructura tenga que resistir. Si una o más de esas condiciones (la de viento, por ejemplo) parecen tener poca importancia, entonces pueden ignorarse. Si un edificio va a tener muros y pisos construidos con materiales ligeros y va a estar sujeto a cargas de viento extraordinariamente altas (como en las zonas costeras o montañosas), tendría que diseñarse tomando en cuenta las cargas de viento, aunque la relación entre su altura y su dimensión lateral mínima sea menor de dos. En general, los reglamentos de construcción no proporcionan las fuerzas estimadas durante los tornados. El proyectista promedio considera que las fuerzas creadas directamente en las sendas de los tornados son tan violentas que no es económicamente factible diseñar edificios que las resistan. Sin embargo, esta manera de pensar está cambiando, ya que se ha encontrado que la resistencia de las estructuras al viento (aun de los edificios pequeños, incluidas las casas) puede incrementarse considerablemente a costos razonables, usando mejores métodos de conexión entre techos, paredes y cimentaciones, así como entre marcos de ventanas, paredes y quizás otras partes de la estructura.5,6 Las fuerzas del viento actúan como presiones sobre las superficies verticales a barlovento, como presiones o succiones sobre superficies inclinadas a barlovento (dependiendo de la pendiente) y como succiones sobre superficies planas y superficies verticales o inclinadas a sotavento (debido a la creación de presiones negativas o vacíos). El estudiante habrá notado este efecto de succión en las tejas u otras cubiertas levantadas en las superficies del techo a sotavento de los edificios durante las tormentas eólicas. La succión o levantamiento se puede evidenciar fácilmente sosteniendo una hoja de papel en dos de sus extremos y soplando por encima de ella. Para algunas estructuras comunes, las cargas de levantamiento pueden ser tan grandes como 20 a 30 lb/plg2 o aún mayores. 5

P. R. Sparks, “Wind Induced Instability in Low-Rise Buildings”, Proceedings of the 5th U.S. National Conference on Wind Engineering, Lubbock, TX, noviembre 6-18, 1985. 6 P. R. Sparks, “The Risk of Progressive Collapse of Single-Story Buildings in Severe Storms”, Proceedings of the ASCE Structures Congress, Orlando, FL, agosto 17-20, 1987.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


48

Capítulo 2

Especificaciones, cargas y métodos de diseño

Puente de acceso en Renton, WA. (Cortesía de la Bethlehem Steel Corporation.)

Durante el paso de un tornado o de un huracán, ocurre una fuerte reducción de la presión atmosférica. Esta disminución de la presión no se manifiesta dentro de edificios herméticamente cerrados, y las presiones internas, al ser mayores que las externas, originan fuerzas hacia el exterior sobre los techos y las paredes. Casi todo el mundo ha oído relatos de las paredes de un edificio que “explotan” durante una tormenta. Como usted puede ver, el cálculo exacto de las presiones eólicas más severas que es necesario considerar en el diseño de edificios y puentes es un problema bastante complicado. A pesar de este hecho, actualmente se dispone de suficiente información para permitir la estimación satisfactoria de estas presiones de una manera razonablemente eficiente. En los Capítulos 26-31 de ASCE 7-10 se presenta un procedimiento para estimar las presiones eólicas aplicadas a los edificios. Intervienen varios factores cuando se intenta considerar los efectos de la velocidad del viento, la forma y orientación del edificio en cuestión, las características del terreno alrededor de la estructura, la importancia del edificio en cuanto a la vida y el bienestar humanos, etc. Aun cuando el procedimiento parezca bastante complejo, se simplifica en gran medida con las tablas presentadas en la especificación anteriormente mencionada. 4. Cargas sísmicas. Muchas áreas del mundo están situadas en “territorio sísmico”, y en esas áreas es necesario considerar fuerzas sísmicas en el diseño de todo tipo de estructuras. Durante siglos, se han tenido fallas catastróficas en edificios, puentes y otras estructuras debido a los sismos. Se ha estimado que por lo menos 50 000 personas perdieron la vida en el terremoto de 1988 en Armenia.7 Los sismos de 1989 en Loma Prieta y de 1994 en Northridge, California, ocasionaron miles de millones de dólares en daños a propiedades, así como una considerable pérdida de vidas.

7

V. Fairweather, “The Next Earthquake”, Civil Engineering (Nueva York: ASCE, marzo 1990), pp. 54-57.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


Cargas ambientales 49

FIGURA 2.1.

Bajo Moderado Bastante alto Alto

Riesgo de sismos importantes hacia 2050

2.5

Alfaomega

Diseùo de Estructuras de Acero – McCormac /Csernak


50

Capítulo 2

Especificaciones, cargas y métodos de diseño

La Figura 2.1 muestra las regiones de Estados Unidos que son más susceptibles a los eventos sísmicos. Estas regiones se establecieron sobre la base de datos de sismos pasados.8 Las estructuras de acero pueden diseñarse y construirse económicamente para resistir las fuerzas causadas durante la mayoría de los sismos. Por otra parte, el costo de proporcionar resistencia sísmica a estructuras existentes (llamado remodelación) puede ser extremadamente alto. Sismos recientes han demostrado claramente que el edificio o puente promedio que no se ha diseñado para fuerzas sísmicas, puede ser destruido por un sismo que no sea particularmente severo. Durante un sismo hay una aceleración de la superficie del terreno. Esta aceleración puede descomponerse en elementos verticales y horizontales. Por lo general, se supone que los primeros son despreciables, en tanto que los segundos pueden ser graves. El análisis estructural de los efectos esperados de un sismo debe incluir un estudio de la respuesta de la estructura al movimiento del suelo causado por el sismo. Si embargo, es común en el diseño aproximar los efectos del movimiento del suelo a un conjunto de cargas estáticas horizontales actuando en cada nivel de la estructura. Varias fórmulas se usan para cambiar las aceleraciones sísmicas en fuerzas estáticas que dependen de la distribución de la masa de la estructura, del tipo de estructuración, de su rigidez, de su posición, etc. Generalmente, esta aproximación es adecuada para edificios de poca altura con forma regular, pero no es apropiada para edificios de muchos pisos con forma irregular. Para estas estructuras, generalmente es necesario un análisis dinámico del conjunto. Algunos ingenieros piensan que las cargas sísmicas usadas en el diseño son simplemente un incremento porcentual de las cargas de viento. Sin embargo, esta hipótesis es incorrecta, ya que las cargas sísmicas difieren en su acción y no son proporcionales al área expuesta del edificio, sino a la distribución de la masa del edificio arriba del nivel particular que se considere. Las fuerzas debidas a la aceleración horizontal se incrementan con la distancia del piso por arriba del terreno, debido al “efecto de latigazo” del sismo. Obviamente, las torres, los tinacos y los departamentos en la parte superior de los edificios se encuentran en una situación precaria cuando ocurre un sismo. Otro factor por considerar en el diseño sísmico es la condición del suelo. Casi todo el daño estructural y pérdida de vidas en el sismo de Loma Prieta ocurrió en áreas que tenían suelos de arcilla blanda. Aparentemente, estos suelos amplificaron los movimientos de la roca subyacente.9 De particular importancia son los comentarios proporcionados en las especificaciones sísmicas relativas a la deriva. (La deriva se define como el movimiento o desplazamiento de un piso de un edificio con respecto al piso superior o inferior). En realidad, la especificación AISC no proporciona límites específicos para la deriva. Simplemente establece que deberán usarse límites para la deriva de piso que estén de acuerdo con el reglamento apropiado y no deberán ser tan grandes que pongan en peligro la estabilidad de la estructura. Si las estructuras se diseñan de manera que la deriva calculada para un sismo de intensidad específica esté limitada a ciertos valoras máximos, será necesario proporcionar resistencia y rigidez adicional a esas estructuras. El resultado serán estructuras cuyo desempeño será considerablemente mejor durante los sismos. El Manual AISC no proporciona especificaciones detalladas para el diseño de estructuras sujetas a cargas sísmicas, pero esta

8

American Society of Civil Engineers Minimum Design Loads for Buildings and Other Structures, ASCE 7-88 (Nueva York: ASCE), pp. 33, 34. 9 Fairweather, op. cit.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


2.6

Diseño con factores de carga y resistencia (LRFD) y (ASD) 51

información se presenta en el volumen acompañante AISC Seismic Design Manual,10 así como en ASCE 7-10. En un libro de texto que se titula Structural Analysis Using Classical and Matrix Methods se presentan ejemplos de cálculos de cargas de nieve, lluvia, viento y sísmicas, tal como las requiere la Especificación ASCE 7.11

2.6

DISEÑO CON FACTORES DE CARGA Y RESISTENCIA (LRFD) Y DISEÑO POR ESFUERZOS PERMISIBLES (ASD) La Especificación AISC proporciona dos métodos aceptables para diseñar miembros de acero estructural y sus conectores. Éstos son el Diseño con factores de carga y resistencia (LRFD: Load and Resistance Factor Design) y el Diseño por esfuerzos permisibles (ASD: Allowable Strength Design). Como vamos a aprender en este libro de texto, ambos procedimientos se basan en los principios del diseño de estados límite, el cual proporciona las fronteras de la utilidad estructural. El término estado límite se usa para describir una condición en la que una estructura o parte de ella deja de cumplir su función prescrita. Existen dos tipos de estados límite: los de resistencia y los de servicio. Los estados límite de resistencia definen la capacidad de sustentar una carga, incluyendo la fluencia excesiva, la fractura, el pandeo, la fatiga y el movimiento bruto de cuerpo rígido. Los estados límite de servicio definen el comportamiento, incluyendo la deflexión, el agrietamiento, los deslizamientos, la vibración y el deterioro. Todos los estados límite deben evitarse. Los ingenieros estructuristas han reconocido desde hace mucho tiempo la incertidumbre inherente tanto de la magnitud de las cargas que actúan sobre una estructura como de la capacidad de la misma para sustentar esas cargas. Generalmente, los efectos de las cargas múltiples son aditivos, pero en algunos casos (por ejemplo, una viga columna) una carga puede amplificar el efecto de otra. En el mejor de los casos, el efecto combinado de las cargas múltiples, en relación con un estado límite específico o modo de falla, se puede describir con una función de densidad de probabilidad matemática. Además, el estado límite estructural puede describirse con otra función de densidad de probabilidad matemática. Para este caso ideal, las dos funciones de densidad de probabilidad arrojan una relación matemática, ya sea para la diferencia entre las dos medias o su cociente, y la posibilidad de que la carga sobrepase a la resistencia. El margen establecido entre la resistencia y la carga en los casos reales tiene como objetivo reducir la probabilidad de falla, dependiendo de las consecuencias de la falla o de la falta de servicio. La pregunta que tenemos es cómo lograr este objetivo cuando generalmente se dispone de información insuficiente para una descripción completamente matemática, ya sea de la carga o de la resistencia. El LRFD es un enfoque; el ASD es otro. Ambos métodos tienen como objetivo obtener un margen numérico entre la resistencia y la carga que conduzca a una probabilidad aceptablemente pequeña de una respuesta estructural inaceptable. Hay dos diferencias notorias entre el método LRFD y el ASD. La primera tiene que ver con el método que se usa para calcular las cargas de diseño. Esta diferencia se explica en las Secciones 2.9, 2.10 y 2.11. La segunda diferencia tiene que ver con el uso de los factores de resistencia (f en el método LRFD) y los factores de seguridad (Æ en el método ASD). 10 11

American Institute of Steel Construction, 2006 (Chicago: AISC). J. C. McCormac, 2007 (Hoboken, NJ: John Wiley & Sons, Inc.), pp. 24-40.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


52

Capítulo 2

Especificaciones, cargas y métodos de diseño

Esta diferencia se explica en las Secciones 2.12 y 2.13. Estas cinco secciones deberán fijar claramente en la mente del lector una comprensión de las diferencias entre los métodos LRFD y ASD. También es importante percatarse de que tanto el método LRFD como el ASD emplean los mismos métodos de análisis estructural. Obviamente, el comportamiento de una estructura dada es independiente del método de diseño. Con ambos procedimientos LRFD y ASD, los valores esperados de las cargas individuales (carga muerta, carga viva, viento, nieve, etc.), se estiman exactamente de la misma manera que lo que requiere la especificación aplicable. A estas cargas se les denomina cargas de servicio o de trabajo a lo largo del texto. Las diversas combinaciones de estas cargas, que posiblemente ocurran al mismo tiempo, se agrupan y los mayores valores obtenidos de esta manera se usan para el análisis y diseño de las estructuras. El mayor grupo de cargas (en el método ASD) o la mayor combinación lineal de cargas en un grupo (en el método LRFD) se usan entonces para el análisis y el diseño.

2.7

RESISTENCIA NOMINAL En ambos métodos, LRFD y ASD, se usa constantemente el término resistencia nominal. La resistencia nominal de un miembro es su resistencia teórica calculada, sin la aplicación de factores de seguridad (Æs) o de resistencia (fs). En el método LRFD, se multiplica un factor de resistencia, generalmente menor que 1.0, por la resistencia nominal del miembro, o en el método ASD, la resistencia nominal se divide entre un factor de seguridad, generalmente mayor que 1.0, para considerar las variaciones de la resistencia del material, las dimensiones del miembro, y la mano de obra así como la manera y las consecuencias de la falla. En el Capítulo 3 se ilustra el cálculo de las resistencias nominales para miembros a tensión, y en capítulos subsiguientes para otros tipos de miembros.

2.8

SOMBREADO Aunque el autor piensa que el lector no tendrá ningún problema en distinguir entre los métodos LRFD y ASD y en hacer los cálculos para ambos métodos, en gran parte del libro se les ha separado hasta cierto grado mediante el sombreado de los materiales para el método ASD. Se decidió sombrear el método ASD porque los números en el Manual del Acero concernientes a ese método están sombreados (en realidad, en color verde).

2.9

CÁLCULO DE LAS CARGAS PARA LOS MÉTODOS LRFD Y ASD Con ambos procedimientos, LRFD y ASD, los valores esperados de las cargas individuales (carga muerta, carga viva, viento, nieve, etc.), se estiman primero exactamente de la misma manera que lo que requiere la especificación aplicable. A estas cargas se les denomina cargas de servicio o de trabajo a lo largo del texto. Las diversas combinaciones de estas cargas, que posiblemente ocurran al mismo tiempo, se agrupan. El mayor grupo de cargas (en el método ASD) o la mayor combinación lineal de cargas en un grupo (en el método LRFD) se usan entonces para el análisis y el diseño. En esta sección y en las dos siguientes, se presentan las condiciones de carga usadas para los métodos LRFD y ASD. En ambos métodos las cargas individuales (muerta, viva y ambiental) se estiman exactamente de la misma manera. Después de estimar las cargas individuales, el siguiente problema es seleccionar la combinación más desfavorable de cargas que pudiera ocurrir al mismo tiempo y que deberá usarse para el análisis y el diseño.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


2.10

Cálculo de las cargas combinadas con las expresiones de LRFD 53

Combinaciones de carga para el método LRFD Con el método LRFD, se forman grupos posibles de cargas de servicio, y cada carga de servicio se multiplica por un factor de carga, normalmente mayor de 1.0. La magnitud del factor de carga refleja la incertidumbre de esa carga específica. La combinación lineal resultante de las cargas de servicio en un grupo, cada uno multiplicado por su respectivo factor de carga, se llama carga factorizada. Los mayores valores determinados de esta manera se usan para calcular los momentos, los cortantes y otras fuerzas en la estructura. Estos valores de control no deben ser mayores que las resistencias nominales de los miembros multiplicadas por sus factores ø o de reducción. Entonces, los factores de seguridad han sido incorporados en los factores de carga, y podemos decir (Factor de reducción f) (Resistencia nominal de un miembro) ⱖ fuerza factorizada calculada en el miembro, Ru f Rn ⱖ Ru

Combinaciones de carga para el método ASD Con el método ASD, las cargas de servicio generalmente no se multiplican por factores de carga o de seguridad. Más bien, se acumulan, tal como estén, para diversas combinaciones factibles, y los mayores valores obtenidos de esta manera se usan para calcular las fuerzas en los miembros. Estas fuerzas totales no deben ser mayores que las resistencias nominales de los miembros, divididas por factores de seguridad apropiados. En forma de ecuación, la expresión puede escribirse como: Resistencia nominal del miembro § mayor fuerza calculada en el miembro, Ra. Factor de seguridad n Rn § Ra n

2.10

CÁLCULO DE LAS CARGAS COMBINADAS CON LAS EXPRESIONES DE LRFD En la Parte 2 del Manual del Acero, intitulada “Consideraciones generales de diseño”, se calculan factores de carga para incrementar la magnitud de las cargas de servicio para usarse con el procedimiento LRFD. El propósito de estos factores es considerar las incertidumbres implicadas en la estimación de la magnitud de las cargas muertas y vivas. Para dar al lector una idea de lo que estamos diciendo, el autor formula la siguiente pregunta: “¿Con qué certeza, en porcentaje, puede usted estimar la carga más desfavorable de viento o de nieve que se aplicará jamás al edificio que ahora está ocupando?” Al detenerse a pensar un poco en esto, probablemente comenzará a incrementar sus valores considerablemente. La resistencia requerida de un miembro para el método LRFD se determina a partir de las combinaciones de cargas dadas en el reglamento de construcciones aplicable. Si no existe este reglamento, los valores dados en ASCE 7 parecen ser buenos para usarse. La Parte 2 del Manual de AISC proporciona los siguientes factores de carga para edificios, que se basan en el ASCE 7 y que son los valores que se usan en este texto: 1. 2. 3. 4.

Alfaomega

U ⫽ 1.4D U ⫽ 1.2D + 1.6L + 0.5 (L o S o R) U ⫽ 1.2D + 1.6(L o S o R) + (L* o 0.5W) U ⫽ 1.2D + 1.0W + L* + 0.5(L o S o R) Diseño de Estructuras de Acero – McCormac /Csernak


54

Capítulo 2

Especificaciones, cargas y métodos de diseño

5. U ⫽ 1.2D + 1.0E + L* + 0.2S 6. U ⫽ 0.9D + 1.0W 7. U ⫽ 0.9D + 1.0E *El factor de carga para L en las combinaciones (3.), (4.) y (5.) debe tomarse como 1.0 para pisos en los lugares de reuniones públicas, para cargas vivas que sobrepasen a 100 lb/pie2 y para la carga viva de los garajes de estacionamiento. Se permite que el factor de carga sea igual a 0.5 para otras cargas vivas. Para estas combinaciones de cargas, se usan las siguientes abreviaturas: U ⫽ carga factorizada o de diseño D ⫽ carga muerta L ⫽ carga viva debida a la ocupación Lr ⫽ carga viva del techo S ⫽ carga de nieve R ⫽ carga nominal debida a la precipitación pluvial o el hielo iniciales, independientemente de la contribución por encharcamiento W ⫽ carga de viento E ⫽ carga de sismo Los factores de carga para las cargas muertas son menores que los de las cargas vivas, ya que los proyectistas pueden estimar con mucha mayor exactitud la magnitud de las cargas muertas que la de las cargas vivas. En este aspecto, el estudiante observará que las cargas que permanecen en su lugar por largos periodos de tiempo, tienen una magnitud menos variable, mientras que aquellas que se aplican en periodos cortos, como las cargas eólicas, tendrán variaciones mayores. Se espera que el estudio de estos factores de carga haga que el proyectista esté más consciente de las variaciones de las cargas. Los valores de carga de servicio D, L, Lr, S, R, W y E son todos valores medios. Las diferentes combinaciones de cargas reflejan valores de recurrencia de 50 años para diferentes cargas transitorias. En cada una de estas ecuaciones, a una de las cargas se le da su valor máximo estimado para un periodo de 50 años, y ese máximo se combina con otras cargas diversas cuya magnitud se estima para el instante de esa carga máxima específica. Deberá observarse en las Ecuaciones 4, 5, 6 y 7 que los factores de carga eólica y de sismo se dan como 1.0. Generalmente, los reglamentos de construcción convierten a las cargas eólicas y sísmicas a valores últimos o factorizados. Entonces, ya fueron multiplicados por un factor de carga. Si éste no es el caso, debe usarse un factor de carga mayor de 1.0. Los anteriores factores de carga no varían en relación con la gravedad de la falla. El lector puede pensar que deberá usarse un factor de carga mayor para un hospital que para un establo, pero esto no se requiere. Sin embargo, se supone que el proyectista va a considerar la gravedad de la falla cuando se especifique la magnitud de las cargas de servicio. También deberá quedar claro que los factores de carga de ASCE 7 son valores mínimos, y el proyectista tiene toda la libertad de usar valores mayores si se considera prudente. Los siguientes son algunos comentarios adicionales con respecto a la aplicación de las expresiones de combinación de cargas del método LRFD: 1. Debe observarse que al seleccionar las cargas de diseño, debe darse suficiente holgura a las condiciones de impacto antes de que las cargas se sustituyan en las expresiones de las combinaciones. Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


2.10

Cálculo de las cargas combinadas con las expresiones de LRFD 55

2. Las combinaciones de cargas 6 y 7 se usan para considerar las posibilidades de la subpresión. Se incluye esta condición para cubrir casos en que se desarrollen fuerzas de tensión, debido a momentos de volteo. Gobernará solamente para edificios altos donde estén presentes cargas laterales altas. Para estas combinaciones, las cargas muertas se reducen en un 10% para contemplar situaciones donde puedan haber sido sobreestimadas. 3. Debe observarse claramente que las fuerzas eólicas y sísmicas tienen signo, es decir, pueden ser de compresión o de tensión (esto es, tienden a causar levantamientos). Por tanto, deben tomarse en cuenta los signos para sustituirlos en las combinaciones de carga. Los signos ; no son tanto una cuestión de tensión o compresión, sino de decir que la cargas eólicas y sísmicas pueden tener una dirección horizontal y algunas veces vertical. Las combinaciones de carga 6 y 7 se aplican especialmente al caso en el cual las cargas en un miembro debidas al viento o al sismo y la carga muerta por gravedad se compensen entre sí. Para una columna específica, la fuerza máxima de tensión W o E será diferente muy probablemente de su fuerza máxima de compresión. 4. La magnitud de las cargas (D, L, Lr, etc.), deberá obtenerse del reglamento de construcciones vigente o de ASCE 7-10. Siempre que sea aplicable, las cargas vivas usadas para el diseño deberán ser los valores reducidos especificados para áreas de piso grandes, edificios de varios niveles, etcétera. Los ejemplos 2-1 a 2-3 muestran el cálculo de las cargas factorizadas, usando las combinaciones aplicables de cargas para el método LRFD. Al mayor valor obtenido se le denomina la combinación crítica o gobernante de las cargas y deberá usarse para el diseño.

Ejemplo 2-1 El sistema de piso interior mostrado en la Figura 2.2 tiene secciones W24 ⫻ 55 separadas a 8 pies entre centros que soportan una carga muerta de piso de 50 lb/pie2 y una carga viva de piso de 80 lb/pie2. Determine la carga gobernante en lb/pie que cada viga debe soportar. Solución. Observe que cada pie de la viga debe soportarse a sí mismo (carga muerta) más 8 ⫻ 1 = 8 pies2 del piso del edificio. D = 55 lb/pie + (8 pies) (50 lb/pie2) = 455 lb/pie L = (8 pies) (80 lb/pie2) = 640 lb/pie Área de losa soportada por pie de longitud por la sección W24 ⫻ 55

1 pie

Área soportada por una viga (sombreada) W24 ⫻ 55 4 pies

W24 ⫻ 55 8 pies 8 pies

4 pies

W24 ⫻ 55 W24 ⫻ 55 8 pies 8 pies 8 pies

FIGURA 2.2.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


56

Capítulo 2

Especificaciones, cargas y métodos de diseño

Calculando las cargas factorizadas, usando las combinaciones de carga de LRFD. En esta sustitución, se omiten los términos que no tienen un valor. Observe que con una carga viva de piso de 80 lb/pie2 se ha añadido un factor de carga de 0.5 a las combinaciones de carga (3.), (4.) y (5.) de acuerdo con la excepción establecida en ASCE 7-10 y con este libro para cargas vivas de piso. 1. 7U  1.4455  637 lb/pie 2. 7U  1.2455 1.6640  1 570 lb/pie 3. 7U  1.2455 0.5640  866 lb/pie 4. 7U  1.2455 0.5640  866 lb/pie 5. 7U  1.2455 0.5640  866 lb/pie 6. 7U  0.9455  409.5 lb/pie 7. 7U  0.9455  409.5 lb/pie Carga factorizada que rige = 1 570 lb/pie que debe usarse para el diseño. Resp. 1 570 lb/pie

Ejemplo 2-2 Un sistema de techo con perfiles W16 * 40 separadas a 9 pies entre centros va a usarse para soportar una carga muerta de 40 lb/pie2; una carga viva de techo, o una carga de nieve, o una carga de lluvia de 30 lb/pie2; y una carga de viento de ;32 lb/pie2. Calcule la carga factorizada que rige por pie lineal. $  40 lb/pie 9 pies40 lb/pie2  400 lb/pie ,  0

Solución.

,R o 3 o 2  9 pies30 lb/pie2  270 lb/pie 7  9 pies32 lb/pie2  288 lb/pie Sustituyendo en las expresiones de combinaciones de carga y observando que el viento puede ser hacia abajo, - o de levantamiento, + en la Ecuación 6, obtenemos las siguientes cargas: 1. 7U  1.4400  560 lb/pie 2. 7U  1.2400 0.5270  615 lb/pie 3. 7U  1.2400 1.6270 0.5288  1 056 lb/pie 4. 7U  1.2400 1.0288 0.5270  903 lb/pie 5. 7U  1.2400 0.2270  534 lb/pie 6. (a) 7U  0.9400 1.0288  648 lb/pie (b) 7U  0.9400 1.0 288  72 lb/pie Carga factorizada que rige = 1 056 lb/pie para el diseño. Resp. 1 056 lb/pie Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


2.11

Cálculo de cargas combinadas con expresiones ASD 57

Ejemplo 2-3 Las diversas cargas axiales para la columna de un edificio se han calculado de acuerdo con el reglamento de construcción aplicable, con los siguientes resultados: carga muerta = 200 k; carga del techo = 50 k (carga viva del techo); carga viva de los pisos (se ha reducido de acuerdo con las especificaciones, ya que proviene de un área de piso grande y de columnas de múltiples niveles) = 250 k; viento de compresión = 128 k; viento de tensión = 104 k; sismo de compresión = 60 k; y sismo de tensión = 70 k. Determine la carga de columna crítica de diseño, Pu, usando las combinaciones de carga de LRFD. Solución. La solución de este problema supone que la carga viva de piso columna satisface la excepción del uso del factor de carga de 0.5 en las combinaciones de carga (3.), (4.) y (5.) 1. 0U  1.4200  280 k 2. 0U  1.2200 1.6250 0.550  665 k 3. (a) 0U  1.2200 1.650 0.5250  445 k (b) 0U  1.2200 1.650 0.5128  384 k 4. (a) 0U  1.2200 1.0128 0.5250 0.550  518 k (b) 0U  1.2200 1.0104 0.5250 0.550  286 k 5. (a) 0U  1.2200 1.060 0.5250  425 k (b) 0U  1.2200 1.070 0.5250  295 k 6. (a) 0U  0.9200 1.0128  308 k (b) 0U  0.9200 1.0104  76 k 7. (a) 0U  0.9200 1.060  240 k (b) 0U  0.9200 1.070  110 k La combinación crítica de carga factorizada, o resistencia de diseño, requerida para esta columna es de 665 k, tal como se determina con la combinación de carga (2). Se observará que los resultados de la combinación (6a) y (6b) no indican un problema de levantamiento. Resp. 665 k

2.11

CÁLCULO DE CARGAS COMBINADAS CON EXPRESIONES ASD En la Parte 2 de la edición 2011 del Manual del Acero, se presentan las combinaciones de carga que se muestran enseguida para el análisis y diseño con el método ASD. Los valores resultantes no son intercambiables con los valores de LRFD. 1. 2. 3. 4.

Alfaomega

D D+L D + (Lr o S o R) D + 0.75L + 0.75(Lr o S o R) Diseño de Estructuras de Acero – McCormac /Csernak


58

Capítulo 2

Especificaciones, cargas y métodos de diseño

5. D + (0.6W o 0.7E) 6. (a) D + 0.75L + 0.75(0.6W) + 0.75(Lr o S o R) (b) D + 0.75L + 0.75(0.7E) + 0.75(S) 7. 0.6D + 0.6W 8. 0.6D + 0.7E En las expresiones séptima y octava, el lector deberá notar que no se usa la carga muerta completa. Las cargas variables W y E tienen componentes laterales y tienden a hacer que la estructura se voltee. Por otro lado, la carga muerta es una carga de gravedad, que tiende a evitar el volteo. Por lo tanto, puede verse que ocurre una condición más severa si por alguna razón no está presente la carga muerta completa. El estudiante debe percatarse de que la Especificación AISC provee lo que el AISC determina que son las cargas máximas que deben considerarse para una estructura específica. Si a juicio del proyectista las cargas serán más desfavorables que los valores recomendados, entonces los valores ciertamente pueden incrementarse. Como ejemplo, si el proyectista piensa que los valores máximos para viento y lluvia pueden ocurrir al mismo tiempo en su área, puede despreciarse el factor 0.75. El proyectista deberá considerar cuidadosamente si las combinaciones de cargas especificadas cubren adecuadamente todas las combinaciones posibles para una estructura específica. Si se piensa que no, puede tomarse la libertad de considerar cargas y combinaciones adicionales como parezca apropiado. Esto es verdad para los métodos LRFD y ASD. El ejemplo 2-4, a continuación, presenta el cálculo de la carga gobernante ASD para usarse en el sistema de techo del ejemplo 2-2.

Ejemplo 2-4 Aplicando las combinaciones de carga ASD recomendadas por el AISC, determine la carga que va a usarse para el sistema de techo del Ejemplo 2-2, donde D = 400 lb/pie, Lr o S o R = 270 lb/pie, y W = 300 lb/pie. Suponga que el viento puede ser más o menos. Solución. 1. Wa  400 lb/pie 2. Wa  400 lb/pie 3. Wa  400 270  670 lb/pie 4. Wa  400 0.75270  602.5 lb/pie 5. Wa  400 (0.6)(300)  580 lb/pie 6. (a) Wa  400 0.75[(0.6)(300)] 0.75270  737.5 lb/pie (b) Wa  400 0.75270  602.5 lb/pie 7. Wa  0.6400 (0.6)( 300)  60 lb/pie 8. Wa  0.6400  240 lb/pie Carga que rige = 737.5 lb/pie.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


2.13

2.12

Estudio de la magnitud de los factores de carga y de seguridad

59

DOS MÉTODOS PARA OBTENER UN NIVEL ACEPTABLE DE SEGURIDAD El margen establecido entre resistencia y carga en los casos reales tiene como objetivo reducir la probabilidad de falla o de falta de servicio hasta un valor aceptablemente pequeño, dependiendo de las consecuencias de la falla o de la falta de servicio. La pregunta que tenemos ahora es cómo lograr este objetivo cuando generalmente la información es insuficiente para una descripción matemática completa de la carga o de la resistencia. El método LRFD es un enfoque; el método ASD es otro. Ambos métodos tienen como objetivo obtener un margen numérico entre la resistencia y la carga que conduzca a una posibilidad aceptablemente pequeña de una respuesta estructural inaceptable. Un factor de seguridad, Æ, es un número que generalmente es mayor que 1.0, que se usa en el método LRFD. La resistencia nominal para un estado límite dado se divide entre Æ y el resultado se compara con la condición aplicable de carga de servicio. Un factor de resistencia, f, es un número generalmente menor que 1.0, que se usa en el método LRFD. La resistencia nominal para un estado límite dado se multiplica por f y el resultado se compara con la condición aplicable de carga factorizada. Debemos recordar la relación entre el factor de seguridad Æ y el factor de resistencia 1.5 1.5 f. En general n   1.67. Si f = 0.75, Æ es . (Por ejemplo, si f = 0.9, Æ es igual a 0.9  1.50  2.00.) igual a 0.75 Los factores de carga en la combinación lineal de cargas en un grupo de cargas de servicio no tienen un símbolo estándar en el Manual ASISC, pero se usara aquí el símbolo l. Entonces si hacemos Qi = una de N cargas de servicio en un grupo li = factor de carga asociado con las cargas en el método LRFD Rn = resistencia estrutural nominal Entonces para LRFD N

Rn § ; %I1I i1

Y para ASD N Rn § ; 1I n i1

2.13

ESTUDIO DE LA MAGNITUD DE LOS FACTORES DE CARGA Y DE SEGURIDAD Los estudiantes pueden pensar que es tonto diseñar estructuras con factores de carga tan grandes en el diseño LRFD y con factores de seguridad tan grandes en el diseño ASD. Sin embargo, con el paso de los años aprenderán que estos valores están sujetos a tantas incertidumbres, que pasarán noches en vela preguntándose si los factores usados serán adecuados (se unirán a otros proyectistas y llamarán a tales factores los “factores de la ignorancia”). Algunas de las incertidumbres que afectan a estos factores son las siguientes: 1. La resistencia de los materiales puede variar inicialmente en forma considerable respecto a los valores supuestos y la variación será mayor con el paso del tiempo debido al flujo plástico, a la corrosión y a la fatiga. 2. Los métodos de análisis están sujetos con frecuencia a errores considerables.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


60

Capítulo 2

Especificaciones, cargas y métodos de diseño

3. Los así llamados caprichos de la Naturaleza, o actos de Dios (huracanes, sismos, etc.), causan condiciones difíciles de predecir. 4. Los esfuerzos producidos durante la fabricación y el montaje a veces son severos. Los trabajadores de taller y campo tratan a los perfiles de acero descuidadamente. Los tiran. Los golpean. Los fuerzan violentamente a tomar su posición correcta respecto a los orificios para los conectores. De hecho, los esfuerzos que se presentan durante la fabricación y el montaje pueden exceder a los que ocurren después de terminada la estructura. Los pisos para los cuartos de apartamentos y de oficinas se diseñan generalmente para cargas vivas de servicio que varían entre 40 lb/pie2 y 80 lb/pie2. Durante el montaje de estos edificios, el contratista puede tener 10 pies de ladrillos o bloques de concreto u otros materiales de construcción apilados sobre algunos de los pisos (sin el conocimiento del ingeniero estructurista) generando cargas de varios cientos de libras por pie cuadrado. Estas observaciones no pretenden criticar la práctica usual de construcción (no que sea buena) sino hacer consciente al estudiante de lo que puede pasar durante el proceso constructivo. (Es probable que la mayoría de las estructuras de acero quedan sobrecargadas en algún momento durante la construcción, pero pocas de ellas fallan. A la ductilidad del acero debe atribuirse que no ocurran fallas con más frecuencia.) 5. Se presentan cambios tecnológicos que afectan la magnitud de las cargas vivas. Las cargas de tránsito en los puentes, que se incrementan año con año, es una ilustración de este fenómeno. El viento también parece soplar con mayor intensidad con el paso del tiempo, o por lo menos los reglamentos de construcción continúan aumentado las presiones mínimas de diseño por viento, conforme se aprende más sobre el tema. 6. Las cargas muertas de una estructura pueden estimarse generalmente con bastante exactitud, pero no así las carga vivas. Esto es muy cierto al estimar la combinación más desfavorable posible de cargas vivas que puede ocurrir en un momento cualquiera. 7. Otras incertidumbres son la presencia de esfuerzos residuales y concentraciones de esfuerzos, variaciones en las dimensiones de las secciones transversales de los miembros, etcétera.

2.14

UN COMENTARIO DEL AUTOR Si se hacen diseños con ambos métodos LRFD y ASD, los resultados serán bastante parecidos entre sí. En algunas ocasiones, los diseños con el método LRFD serán ligeramente más económicos. En efecto, el factor de carga más pequeño que se usa para las cargas muertas en los diseños con el método LRFD, en comparación con los factores de carga que se usan para las cargas vivas, dan una ligera ventaja al método LRFD. Con el diseño del método ASD, el factor de seguridad que se usa tanto para las cargas muertas como para las vivas es constante para un problema específico.

2.15

PROBLEMAS PARA RESOLVER Para los Problemas 2-1 a 2-4 determínese la combinación máxima de cargas usando las expresiones recomendadas de AISC para el método LRFD. 2-1 D = 100 lb/pie2, L = 70 lb/pie2, R = 12 lb/pie2, Lr = 20 lb/pie2 y S = 30 lb/pie2. (Resp. 247 lb/pie2.) 2-2 DS = 12 00 lb, W = ;52 000 lb. 2-3 D = 9 000 lb, L = 5 000 lb, Lr = 2 500 lb, E = ;6 500 lb. (Resp. 20 050 lb.) 2-4 D = 24 lb/pie2, Lr = 16 lb/pie2 y W = ;42 lb/pie2.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


2.15 Problemas para resolver 61 2-5 Van a colocarse vigas de acero estructural a cada 7 pies 6 plg entre centros bajo una losa de piso de concreto reforzado. Si ellas deben soportar una carga de servicio muerta D = 64 lb/pie2 de área de piso y una carga de servicio viva L = 100 lb/pie2 de área de piso, determine la carga uniforme factorizada por pie que cada viga debe soportar. (Resp. 1 776 lb/pie.) 2-6 Una viga de acero estructural sustenta un techo que pesa 20 lb/pie2. El análisis de las cargas arroja lo siguiente: S = 12 lb/pie2, Lr = 18 lb/pie2 y W = 38 lb/pie2 (hacia arriba) o 16 lb/pie2 (hacia abajo). Si las vigas tienen una separación de 6 pies 0 plg, determine la cargas distribuidas uniformemente factorizadas por pie (hacia arriba y hacia abajo, como sea conveniente) para el diseño de cada viga.

Para los Problemas 2-7 a 2-10 calcule la combinación máxima de cargas usando las expresiones recomendadas del método ASD tomadas del AISC. 2-7 Repita el Problema 2-1. (Resp. 175 lb/pie2.) 2-8 Repita el Problema 2-2. 2-9 Repita el Problema 2-3. (Resp. 18 037.5 lb.) 2-10 Repita el Problema 2-4. 2-11 Van a colocarse vigas de acero estructural a cada 7 pies 6 plg entre centros bajo una losa de piso de concreto reforzado. Si ellas deben soportar una carga de servicio muerta D = 64 lb/pie2 de área de piso y una carga de servicio viva L = 100 lb/pie2 de área de piso, determine la carga uniforme factorizada por pie que cada viga debe soportar usando las expresiones de ASD. (Resp. 1 230 lb/pie.) 2-12 Una viga de acero estructural sustenta un techo que pesa 20 lb/pie2. El análisis de las cargas arroja lo siguiente: S = 12 lb/pie2, Lr = 18 lb/pie2 y W = 38 lb/pie2 (hacia arriba) o 16 lb/pie2 (hacia abajo). Si las vigas tienen una separación de 6 pies 0 plg, determine las cargas distribuidas uniformemente factorizadas por pie (hacia arriba y hacia abajo, como sea conveniente) para el diseño de cada viga usando las expresiones de ASD.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


C A P Í T U L O

3

Análisis de miembros a tensión

3.1

INTRODUCCIÓN Es común encontrar miembros sujetos a tensión en armaduras de puentes y techos, torres, sistemas de arriostramiento y en situaciones donde se usan como tirantes. La selección de un perfil para usarse como miembro a tensión es uno de los problemas más sencillos que se encuentran en el diseño de estructuras. Como no hay peligro de que el miembro se pandee, el proyectista sólo necesita determinar la carga que va a sustentarse, como se describió anteriormente en el Capítulo 2. Luego se calcula el área requerida para sustentar esa carga como se describe en el Capítulo 4, y finalmente se selecciona una sección de acero que proporcione el área requerida. Aunque estos cálculos introductorios de miembros a tensión son muy sencillos, tienen el propósito de que el estudiante conozca las ideas del diseño y que se familiarice con el Manual del Acero como un todo. Una de las formas más simples de los miembros a tensión es la barra de sección circular, pero es un poco difícil conectarla a muchas estructuras. La barra circular se usó con frecuencia en el pasado, pero actualmente sólo tiene aplicación en los sistemas de arriostramiento, en las armaduras ligeras y en la construcción con madera. Una causa importante para que las barras circulares no se utilicen mucho actualmente es el mal uso que recibieron en el pasado; pero si se diseñan e instalan correctamente resultan muy adecuadas en muchos casos prácticos. Las barras de sección circular de tamaño promedio tienen poca rigidez a la flexión y se doblan fácilmente bajo su propio peso, afectando así la apariencia de la estructura. Estas barras provistas de rosca y utilizadas antiguamente en puentes, con frecuencia, funcionaban flojas y generaban mucha vibración. Otra desventaja de las barras redondas es la dificultad de fabricarlas a la longitud exacta requerida y los consecuentes problemas en su instalación. Cuando se usan como arriostramiento contra el viento, es conveniente aplicarles una tensión inicial, ya que esto aumentará la rigidez de la estructura y reducirá la vibración y el vaivén. El presforzado de las barras circulares limita la magnitud de la compresión que van experimentar durante la inversión de las cargas. (De manera similar, los rayos de las ruedas de una bicicleta se presfuerzan a tensión para evitar el desarrollo de la compresión en ellas.) Para obtener una tensión inicial, los miembros pueden especificarse con una longitud menor que la requerida, un método que le causa muy pocos problemas al fabricante de acero. Una regla empírica común es detallar las barras 1/16 plg más cortas por cada 20 pies de longitud.

62

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.1

Introducción 63

1 plgb 16 (Esfuerzo aproximado f = PE = (29 * 106 lb/plg2) ⫽ 7550 lb/plg2.) Otro plg b120 pies2 a 12 pie método muy satisfactorio para aplicar una tensión inicial consiste en tensar las barras con un templador o un manguito de tuerca. La Tabla 15-5 del Manual del Acero proporciona información detallada sobre estos dispositivos. La exposición anterior sobre las barras de sección circular debe aclarar por qué otras secciones laminadas como los perfiles angulares han sustituido a los redondos en la mayoría de los casos. En las primeras estructuras construidas con acero, los miembros a tensión consistían en barras de sección transversal diversa y a veces en cables. Actualmente, aunque el uso de cables se ha incrementado en estructuras de techo suspendido, los miembros a tensión consisten generalmente en ángulos simples, ángulos dobles, secciones T, canales, secciones W o secciones armadas a base de placas o perfiles laminados. Estos miembros tienen mejor apariencia que los antiguos, son más rígidos y se conectan más fácilmente. Otro tipo de sección a tensión usada con frecuencia es la placa soldada a tensión, o barra plana, cuyo uso es muy satisfactorio en torres de transmisión, anuncios, puentes peatonales y estructuras análogas. En la Figura 3.1 se ilustran algunos de los diversos tipos de miembros a tensión de uso general. En esta figura, las líneas punteadas representan las barras o placas de unión intermitentes que se usan para conectar los perfiles. Los miembros a tensión de las armaduras de acero para techo pueden consistir en ángulos simples tan pequeños con el de 2 1/2 * 2 * 1/4 para miembros menores. Un miembro más satisfactorio se construye a base de dos ángulos, espalda con espalda, con separación suficiente entre ellos para permitir la inserción de placas de conexión (también llamadas placas de empalme). Cuando las secciones se disponen espalda con espalda, deben conectarse cada 4 o 5 pies para prevenir vibración, especialmente en armaduras de puentes. Probablemente los ángulos simples y los dobles son los tipos más comunes que se usan en miembros a tensión. Las tes estructurales resultan ser miembros para cuerdas muy satisfactorios en armaduras soldadas, porque los ángulos que se acaban de mencionar pueden conectarse convenientemente al alma de una te. Los miembros a tensión en puentes y armaduras de techos grandes pueden consistir en canales, secciones W o S, o incluso secciones armadas a partir de alguna combinación de ángulos, canales y placas. Las canales simples se usan con frecuencia, ya que tienen poca excentricidad y son fáciles de conectar. Aun cuando para el mismo peso, las secciones W sean a

Barra plana

Barra redonda

Ángulo Ángulo doble Te estructural

Sección armada

Canal

Sección armada

Sección armada Sección en caja

WoS Sección armada

Sección en caja

Figura 3.1 Tipos de miembros a tensión.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


64

Capítulo 3

Análisis de miembros a tensión

más rígidas que las secciones S, tienen una desventaja desde el punto de vista de su conexión debido a su variación en los peraltes. Por ejemplo, la W12 * 79, W12 * 72 y W12 * 65 tienen peraltes ligeramente diferentes (12.4 plg, 12.3 plg y 12.1 plg, respectivamente), en tanto que todas las secciones S de un cierto tamaño nominal tienen el mismo peralte. Por ejemplo, la S12 * 50, la S12 * 40.8 y la S12 * 35 tienen un peralte de 12.00 plg. Aunque los perfiles estructurales simples son un poco más económicos que las secciones armadas, éstas se usan ocasionalmente cuando el proyectista no obtiene suficiente área o rigidez con las formas simples. Cuando se usen secciones armadas es importante recordar que se tendrán que realizar conexiones de campo y aplicar una o varias capas de pintura; por ello se debe disponer de suficiente espacio para poder efectuar estas operaciones. Cuando los miembros constan de más de una sección, éstas necesitan conectarse. Las placas de unión (también llamadas barras de unión), localizadas a diferentes intervalos, o bien, las cubreplacas perforadas, sirven para mantener las diversas secciones en sus posiciones correctas. Estas placas sirven también para corregir cualquier distribución desigual de cargas entre las diversas secciones. También mantienen a las relaciones de esbeltez de las partes individuales dentro de ciertos límites y facilitan el manejo de los miembros armados. Los miembros individuales muy largos, como los perfiles angulares, pueden resultar de difícil manejo debido a su alta flexibilidad, pero cuando se unen cuatro ángulos formando un solo miembro, como se muestra en la Figura 3.1, éste adquiere considerable rigidez. No se considera que las placas de unión intermitentes incrementen el área transversal efectiva de las secciones. Como teóricamente éstas no toman porciones de la fuerza actuante en las secciones principales, sus tamaños quedan regidos generalmente por las especificaciones y a veces por el buen juicio del proyectista. Las cubreplacas perforadas (véase la Figura 6.9) son una excepción a la regla, pues parte de sus áreas se pueden considerar efectivas para resistir la carga axial.

Construcción de la estructura reticular de un edificio. (Cortesía de Bethlehem Steel Corporation.)

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.2

Resistencia nominal de los miembros a tensión 65

Los cables de acero se fabrican con cuerdas de alambre de aleación de acero especial que se extruyen en frío con el diámetro deseado. La resistencia de los alambres resultantes, que varía entre 200 000 lb/plg2 y 250 000 lb/plg2, se puede usar económicamente en puentes colgantes, techos suspendidos, funiculares y en otras aplicaciones similares. Normalmente, para seleccionar un miembro como cable a tensión, el proyectista usa el catálogo del fabricante. Del catálogo se determinan el esfuerzo de fluencia del acero y el tamaño de cable que se requieren para la fuerza de diseño. También es posible seleccionar abrazaderas u otros dispositivos conectores para los extremos del cable. (Véase la Tabla 15-3 del Manual del AISC.)

3.2

RESISTENCIA NOMINAL DE LOS MIEMBROS A TENSIÓN Un miembro dúctil de acero, sin agujeros y sometido a una carga de tensión puede resistir, sin fracturarse, una carga mayor que la correspondiente al producto del área de su sección transversal por el esfuerzo de fluencia del acero, gracias al endurecimiento por deformación. Sin embargo, un miembro a tensión cargado hasta el endurecimiento se alarga considerablemente antes de la fractura; un hecho que muy probablemente le restará utilidad, pudiendo además causar la falla del sistema estructural del que forma parte el miembro.

El esqueleto del techo de un edificio de la Ford en construcción. (Cortesía de Bethlehem Steel Corporation.)

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


66

Capítulo 3

Análisis de miembros a tensión

Por otra parte, si tenemos un miembro a tensión con agujeros para tornillos, éste puede fallar por fractura en la sección neta que pasa por los agujeros. Esta carga de falla puede ser más pequeña que la carga requerida para plastificar la sección bruta sin considerar los agujeros. Se debe tener en cuenta que la parte del miembro que tiene un área transversal reducida por los agujeros, es muy corta comparada con su longitud total. Aunque la condición de endurecimiento por deformación se alcanza rápidamente en la porción de área neta del miembro, la plastificación en esta zona no es realmente un estado límite de importancia, ya que el cambio total en la longitud del miembro, debido a esa plastificación en esta parte tan corta, puede ser despreciable. Como resultado de la información anterior, la Especificación AISC (D2) estipula que la resistencia nominal de un miembro a tensión, Pn, será la más pequeña de los valores obtenidos sustituyendo en las dos expresiones siguientes: Para el estado límite de fluencia en la sección bruta (con la idea de prevenir un alargamiento excesivo del miembro), Pn = FyAg

(Ecuación D2-1 del AISC)

ftPn = ftFyAg = resistencia de diseño a la tensión por el método LRFD (ft ⫽ 0.9) FyAg Pn = = resistencia permisible a la tensión por el método ASD (⍀t ⫽ 1.67) Æt Æt Para fractura por tensión en la sección neta en la que se encuentren agujeros de tornillos o remaches, (Ecuación D2-2 del AISC) Pn = FuAe ftPn = ftFuAe = resistencia de diseño a la fractura por tensión por el método LRFD (ft ⫽ 0.75) Pn FuAe = ⫽ resistencia permisible a la fractura por tensión por el método ASD Æt Æt (⍀t ⫽ 2.00) En las expresiones anteriores, Fy y Fu son los esfuerzos mínimos de fluencia y de tensión especificados, respectivamente, Ag es el área bruta del miembro, y Ae es el área neta efectiva que se supone resiste la tensión en la sección a través de los agujeros. Esta área puede ser más pequeña que el área neta real, An, debido a las concentraciones de esfuerzo y a otros factores que se analizan en la Sección 3.5. En la Tabla 1.1 de este libro se proporcionan valores de Fy y Fu (Tabla 2-4 en el Manual del AISC) para los aceros estructurales de la ASTM actualmente en el mercado. Para miembros a tensión que consisten en perfiles de acero laminado, existe en realidad un tercer estado límite, el bloque de cortante, un tema que se presenta en la Sección 3.7. Las resistencias de diseño y permisible presentadas aquí no son aplicables a las barras de acero roscadas o a miembros con agujeros para pasadores (como las barras de ojo). Estos casos se analizarán en las Secciones 4.3 y 4.4. No es probable que las fluctuaciones de esfuerzos lleguen a ser un problema en los edificios comunes, porque los cambios en las cargas en dichas estructuras ocurren generalmente en forma esporádica y producen variaciones relativamente pequeñas en los esfuerzos. Las cargas de diseño por viento o sismo total ocurren con tan poca frecuencia que no se consideran en el diseño por fatiga. Sin embargo, si ocurren variaciones frecuentes o incluso cambios en el signo de los esfuerzos, debe considerarse el aspecto de la fatiga. Este tema se presenta en la Sección 4.5. Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.3

3.3

Áreas netas 67

ÁREAS NETAS Obviamente que la presencia de un agujero en un miembro sujeto a tensión incrementa el esfuerzo unitario, aun si el agujero está ocupado por un tornillo. (Cuando se usan tornillos de alta resistencia bien apretados puede haber algún desacuerdo respecto a esto, bajo ciertas circunstancias.) Se tiene menos área de acero sobre la que puede distribuirse la carga, y habrá concentración de esfuerzos a lo largo del borde del agujero. La tensión se supone uniformemente distribuida sobre la sección neta del miembro, aunque estudios de fotoelasticidad demuestran que existe un incremento en la intensidad del esfuerzo alrededor de los bordes de los agujeros, que en ocasiones puede alcanzar varias veces el valor del esfuerzo que se tendría si los huecos no estuvieran presentes. Sin embargo, para materiales dúctiles, es razonable suponer una distribución uniforme de esfuerzos cuando el material se carga más allá de su esfuerzo de fluencia. Si las fibras alrededor de los agujeros se esfuerzan hasta su punto de fluencia, éstas fluirán sin incremento de esfuerzos, con el resultado de que hay una redistribución o equilibrio de esfuerzos. Bajo carga última es razonable suponer una distribución uniforme de los esfuerzos. La influencia de la ductilidad en la resistencia de miembros a tensión atornillados se ha demostrado claramente en ensayos. Los miembros a tensión (con agujeros para tornillos) fabricados de acero dúctil han resultado entre un quinto y un sexto más resistentes que miembros similares, hechos de aceros frágiles con las mismas resistencias. Ya hemos visto en el Capítulo 1 que es posible que el acero pierda su ductilidad y se vuelva susceptible a una fractura frágil. Tal condición puede ser creada por cargas que induzcan fatiga y por temperaturas muy bajas. Este análisis inicial es aplicable solamente a miembros a tensión sometidos a cargas relativamente estáticas. Si es necesario diseñar estos miembros por cargas de fatiga, deberá ponerse especial cuidado en minimizar las fuentes de concentración de esfuerzos, tales como los cambios bruscos de sección transversal, esquinas salientes, etc. Además, como se explica en la Sección 4.5, en ocasiones los miembros tendrán que reforzarse. El término “área neta de la sección transversal”, o simplemente, “área neta”, se refiere al área bruta de la sección transversal menos la de agujeros, ranuras u otras muescas. Al considerar el área de éstos, por lo general es necesario restar un área un poco mayor que la nominal del agujero. Por ejemplo, en la fabricación de estructuras de acero para conectarse con tornillos, la práctica generalizada era perforar agujeros con un diámetro de 1/16 mayor que el correspondiente al del tornillo. Cuando se seguía esta práctica, se suponía que el punzonado de un agujero dañaba o aun destruía 1/16 plg más del metal circundante. Como resultado, el diámetro del agujero restado era 1/8 plg mayor que el diámetro del tornillo. El área del agujero era rectangular y era igual al diámetro del tornillo más 1/8 plg veces el espesor del metal. Actualmente, las brocas hechas con aceros muy mejorados permite a los fabricantes barrenar un gran número de agujeros sin el reafilado. Como resultado, una gran cantidad de orificios para tornillo se preparan actualmente con brocas de control numérico. Aun cuando parece razonable añadir solamente 1/16 plg a los diámetros de los tornillos para estos agujeros, para ser consistentes, el autor añade 1/8 plg a todos los orificios para tornillo estándar que se mencionan en este libro. (Si los agujeros deben ranurarse como se describe en el Capítulo 12, la práctica usual es añadir 1/16 plg al ancho real de los agujeros.) El acero con un espesor mayor que el diámetro del tornillo es difícil de punzonar a la medida requerida sin que se presente una deformación excesiva del material circundante. Estos agujeros deben prebarrenarse (con diámetros ligeramente menores a 3/16 plg que los especificados) y luego, cuando las piezas están ya ensambladas, escariarse al diámetro justo. Con este proceso, que es bastante caro, se daña poco el material, y como los agujeros

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


68

Capítulo 3

Análisis de miembros a tensión

resultantes son lisos y de paredes uniformes, no se considera necesario restar un 1/16 plg por daño a los lados. Puede ser necesario tener una libertad aún mayor para satisfacer las tolerancias dimensionales durante el montaje y para tornillos de alta resistencia con un diámetro mayor a 5/8 plg. Para esta situación deben usarse agujeros mayores que los de tamaño estándar sin reducir la eficiencia de la conexión. Estos agujeros de mayor tamaño pueden ser de ranura larga o ranura corta, como se describe en la Sección 12.9. El Ejemplo 3-1 ilustra los cálculos necesarios para determinar el área neta de un miembro a tensión del tipo de placa.

Ejemplo 3-1 Determine el área neta de la placa de 3/8 * 8 plg mostrada en la Figura 3.2. La placa está conectada en sus extremos con dos líneas de tornillos de 3/4 plg.

Pu

1 P 2 u 1 P 2 u Figura 3.2

Pu

PL

1 4

⫻ 8 plg

PL

3 8

⫻ 8 plg Pu

PL

1 4

⫻ 8 plg

Solución An = a 3 plgb 18 plg2 - 2a 3 plg + 1 plgb a3 plgb = 2.34 plg 2 11 510 mm22 8 4 8 8 Resp. 2.34 plg 2 Las conexiones de los miembros a tensión deben diseñarse de modo que no tengan excentricidad. (La Especificación AISC permite una excepción a esta regla para ciertas conexiones atornilladas y soldadas, como se describe en los Capítulos 13 y 14.) Si este arreglo es posible, se supone que el esfuerzo se distribuye uniformemente sobre toda la sección neta del miembro. Si las conexiones tienen excentricidad, se producirán momentos que ocasionan esfuerzos adicionales en la vecindad de la conexión. Desafortunadamente, con frecuencia es muy difícil arreglar conexiones sin excentricidad. Aunque las especificaciones abarcan algunas situaciones, el proyectista deberá usar su buen juicio al considerar las excentricidades en ciertos casos. Se supone que coinciden los ejes centroidales de los miembros de la armadura que concurren en un nodo. Si no concurren, se tendrán excentricidades y aparecerán esfuerzos secundarios. Se supone que los ejes centroidales de los miembros de la armadura coinciden con las líneas de acción de sus fuerzas respectivas. En un miembro simétrico no existe problema, ya que su eje de simetría coincide con su eje centroidal; pero en miembros no simétricos, el problema es un poco más difícil. Para estos miembros, la línea de centro no coincide con el eje centroidal, pero las práctica común es colocar dichos miembros en el nodo de manera que coincidan las líneas de gramil. Si un miembro tiene más de una línea de gramil, Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.4 Efecto de agujeros alternados 69

2Ls línea de gramill

La línea pasa por el centro de gravedad (c. g.) de cada grupo de tornillos

2Ls Figura 3.3 Alineación de los ejes centroidales de miembros.

línea de gramil

se utiliza para detallar la más cercana al eje centroidal del miembro. La Figura 3.3 muestra el nodo de una armadura en la que coinciden los centros de gravedad.

3.4

EFECTO DE AGUJEROS ALTERNADOS Si se tiene más de una hilera de agujeros para tornillos o remaches en un miembro, frecuentemente es conveniente escalonar los agujeros con el fin de tener en cualquier sección el máximo de área neta para resistir la carga. En los párrafos anteriores se ha supuesto que los miembros a tensión fallan transversalmente a lo largo de la línea AB, como se muestra en las Figuras. 3.4(a) y (b). En la Figura 3.4(c) se muestra un miembro en el que la falla puede ocurrir de otra manera. Los agujeros están alternados y es posible que la falla ocurra a lo largo de la línea ABCD, a menos que los agujeros estén muy separados. Para determinar el área neta crítica en la Figura 3.4(c) puede parecer lógico calcular el área de una sección transversal del miembro (como la ABE) menos el área de un agujero y luego el área a lo largo de la línea ABCD menos dos agujeros. El menor valor obtenido a lo largo de estas secciones nos daría el valor crítico, pero este método en realidad es erróneo. A lo largo de la línea diagonal B a C existe una combinación de esfuerzos cortantes y normales y por ello debe considerarse un área menor. La resistencia del miembro a lo largo de la sección ABCD obviamente está comprendida entre la que se obtuvo al utilizar un área calculada, restando un agujero del área de la sección transversal, y la obtenida sustrayendo dos agujeros de la sección ABCD. Las pruebas en juntas (nodos) demuestran que no se consigue mucho al utilizar fórmulas teóricas complicadas para considerar la situación de agujeros escalonados, por lo que normalmente el problema se resuelve aplicando una ecuación empírica. La Especificación AISC (B4.3b) y otras usan un método muy simple para calcular el ancho neto de un miembro

A

A

B (a)

B (b)

A B

s

C ED (c)

g

Figura 3.4 Secciones de posibles fallas en placas.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


70

Capítulo 3

Análisis de miembros a tensión

Domo Trans-World, St. Louis, MO. (Cortesía de Trade ARBED.)

a tensión a lo largo de una sección en zigzag.1 El método consiste en considerar el ancho total del miembro sin tomar en cuenta la línea a lo largo de la cual pueda ocurrir la falla, restar el diámetro de los agujeros a lo largo de la sección en zigzag considerada y añadir por cada diagonal una cantidad dada por la expresión s2/4g. (Como esta expresión sencilla se introdujo en 1922, muchos investigadores han propuesto otras reglas frecuentemente muy complicadas. Sin embargo, ninguna de ellas ofrece resultados significativamente mejores.) En esta expresión s es el espaciamiento longitudinal (o paso) entre dos agujeros cualesquiera y g es el espaciamiento transversal (o gramil) de los mismos huecos. Los valores de s y g se muestran en la Figura 3.4(c). Pueden existir varias trayectorias, cada una de las cuales puede ser crítica en una junta específica. Debe considerarse cada una de las trayectorias posibles y usarse la que dé el menor valor. El ancho neto menor obtenido se multiplica por el espesor de la placa para obtener el área neta, An. El Ejemplo 3.2 ilustra el método para calcular el área neta crítica de una sección que tiene tres hileras de tornillos. (En ángulos, el gramil entre agujeros, en lados opuestos, se considera igual a la suma de los gramiles medidos desde la espalda del ángulo menos el espesor de éste.) Los agujeros para tornillos y remaches se punzonan o se taladran normalmente en los ángulos de acero en ciertos lugares estandarizados. Estos lugares o gramiles dependen del ancho de los lados del ángulo y del número de líneas de agujeros. La Tabla 3.1, que ha sido tomada de la Tabla 1-7A, p. 1-48 del Manual del Acero, muestra estos gramiles. No es conveniente que el diseñador solicite gramiles diferentes a los mostrados en la Tabla, a menos que se presenten situaciones poco comunes, debido a los costos de fabricación mayores que resultan. 1

V. H. Cochrane, “Rules for Riveted Hole Deductions in Tension Members”, Engineering News-Record (Nueva York, noviembre 16, 1922), pp. 847-848.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.4 Efecto de agujeros alternados 71 TABLA 3.1 Gramiles usuales para ángulos, en pulgadas. g

Largo 8

7

6

5

4

3 12

3

2 12

2

1 34

1 12

1 38

1 14

1

2 12

2

1 34

1 38

1 18

1

7 8

7 8

3 4

5 8

g1

g

4 12

4

3 12

3

g2

G1

3

2 12

2 14

2

g2

3

3

2 12

1 34

Ejemplo 3-2 Determine el área neta crítica de la placa de 1/2 plg de espesor mostrada en la Figura 3.5, utilizando la Especificación AISC (Sección B4.3b). Los agujeros se punzonaron para tornillos de 3/4 plg.

A 1 22

plg B 3 plg C

11 plg 3 plg

E

1

2 2 plg Figura 3.5.

D

F

3 plg

Solución. La sección crítica podría ser la ABCD, la ABCEF, o la ABEF. Los diámetros de agujero que deben restarse son 3/4 ⫹ 1/8 ⫽ 7/8 plg. Las áreas netas para cada caso son como sigue: 7 1 1 ABCD = (11 plg) a plgb - 2 a plgb a plgb = 4.63 plg 2 2 8 2 13 plg22 1 1 7 1 ABCEF = (11 plg) a plgb - 3 a plgb a plgb + a plgb = 4.56 plg 2 — 2 8 2 413 plg2 2 13 plg22 1 1 7 1 ABEF = (11plg) a plgb - 2 a plgb a plgb + a plgb = 4.81 plg 2 2 8 2 416 plg2 2 El lector notará que es una pérdida de tiempo revisar la trayectoria ABEF para esta placa. Se requiere restar dos agujeros para las trayectorias ABCD y ABEF. Como la ABCD es más corta, obviamente predomina sobre la ABEF. Resp. 4.56 plg2 Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


72

Capítulo 3

Análisis de miembros a tensión

El problema de determinar el paso mínimo de conectores escalonados para restar sólo un cierto número de agujeros al calcular la sección neta, se trata en el Ejemplo 3-3.

Ejemplo 3-3 De las dos hileras de agujeros para tornillos mostradas en la Figura 3.6, calcule el paso necesario para tener un área neta a lo largo de DEFG igual a la correspondiente a la trayectoria ABC. El problema también puede plantearse con sigue: Determinar el paso para obtener un área neta igual al área total menos un agujero para tornillo. Los agujeros se punzonarán para tornillos de 3/4 plg.

D

A

2 plg E 2 plg 2 plg

G Paso s

Figura 3.6.

B F C

Paso s

Solución. Los diámetros de agujeros que deben restarse son 3/4 plg + 1/8 plg = 7/8 plg. 7 ABC = 6 plg - 112a plgb = 5.13 plg 8 DEFG = 6 plg - 2a

s2 s2 7 plgb + = 4.25 plg + 8 412 plg2 8 plg

ABC = DEFG 5.13 = 4.25 +

s2 8

s = 2.65 plg

La regla relativa al factor s2/4g es sólo una aproximación o simplificación de la compleja variación de esfuerzos que ocurre en miembros con arreglo escalonado de tornillos. Las especificaciones de acero sólo pueden proporcionar recomendaciones mínimas y los proyectistas deben aplicar en forma razonable dicha información para situaciones complicadas que las especificaciones no pueden cubrir en aras de la brevedad y la simplicidad. Los siguientes párrafos presentan un análisis y ejemplos numéricos de la regla relativa al factor s2/4g aplicada a casos no considerados explícitamente en la Especificación AISC. La Especificación AISC no incluye un método para determinar los anchos netos de secciones que no sean placas y ángulos. Para canales, secciones W, secciones S y otras, los espesores del alma y del patín no son los mismos. En consecuencia, es necesario trabajar con áreas netas en vez de anchos netos. Si los agujeros se sitúan en líneas rectas a través de estos

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.4 efecto de agujeros alternados 73 miembros, el área neta puede obtenerse simplemente restando las áreas de sección transversal de los agujeros del área total del miembro. Si los agujeros están escalonados, es necesario s2 multiplicar los valores por el espesor aplicable para obtener un área. Este procedimiento 4g se aplica en el Ejemplo 3.4 a una sección W que contiene agujeros sólo en su alma.

Ejemplo 3-4 Determine el área neta de la W12 * 16 (Ag = 4.71 plg2) mostrada en la Figura 3.7, suponiendo que los agujeros son para tornillos de 1 plg.

A 3 plg W12 ⫻ 16 d ⫽ 12.00 plg

t ⫽0.220 plg

B 3 plg C 3 plg D 3 plg E

bf ⫽ 3.99 plg Figura 3.7.

2 plg 2 plg

Solución. Áreas netas: el agujero f es igual a 1 plg + 18 plg  118 plg 1 ABDE = 4.71 plg 2 - 2a 1 plgb10.220 plg2 = 4.21 plg 2 8 12 plg22 1 10.220 plg2= 4.11 plg 2 ; ABCDE = 4.72 plg 2 - 3a 1 plgb 10.220 plg2 + 122 8 413 plg2

Si la línea en zigzag va de un agujero en el alma a un agujero en el patín, el espesor cambia en la unión del patín con el alma. En el Ejemplo 3.5 el autor calcula el área neta de una canal con agujeros escalonados en sus patines y alma. La canal se supone aplanada, formando una sola placa, como se muestra en las partes (b) y (c) de la Figura 3.8. El área neta a lo largo de la trayectoria ABCDEF se determina tomando el área de la canal menos el área de los agujeros a lo largo de la trayectoria en los patines y en el alma, más los valores s2/4g para cada segmento diagonal y multiplicando el resultado por el espesor correspondiente. Para el segmento CD, s2/4g se ha multiplicado por el espesor del alma. Para los segmentos BC y DE (que van de los agujeros en el alma a los agujeros en el patín), se utilizó un procedimiento aproximado en el cual los valores s2/4g se han multiplicado por el promedio de los espesores del patín y del alma.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


74

Capítulo 3

Análisis de miembros a tensión

Ejemplo 3-5 Determine el área neta a lo largo de la trayectoria ABCDEF para la C15 * 33.9 (Ag ⫽ 10.00 plg2) mostrada en la Figura 3.8. Los agujeros son para tornillos de 34 plg. 1.4 plg

A

2 plg

1.40 plg

B

3 ⫹ 2 ⫺ 0.40 ⫽ 4.60 plg

3 plg

0.650 plg

C 0.400 plg

0.400 plg

9 plg

9 plg D

C15 ⫻ 33.9

4.60 plg

3 plg

E

1.40 plg

3 plg F 1.4 plg

2 plg (a)

0.650 plg (b)

(c)

Figura 3.8.

Solución A neta aproximada a lo largo de 7 ABCDEF = 10.00 plg2- 2a plgb10.650 plg2 8 7 - 2a plgb10.400 plg2 8 +

13 plg22 10.400 plg2 419 plg2

+ 122

13 plg2 2

a 14214.60 plg2

0.650 plg+ 0.400 plg b 2

= 8.78 plg 2 Resp. 8.78 plg2

3.5

ÁREAS NETAS EFECTIVAS Si un miembro que no sea una barra o una placa plana se somete a tensión axial hasta que ocurre la falla en su sección neta, el esfuerzo real de falla a tensión probablemente será menor que el obtenido en una probeta, a menos que las diversas partes que conforman la sección estén conectadas de manera que el esfuerzo se transmita uniformemente a través de la sección.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.5 Áreas netas efectivas

Región de transición

Figura 3.9 Retraso del cortante.

75

(a) Ángulo conectado por una sola ala.

(b) Esfuerzo en la región de transición ⬎ Fy.

Si las fuerzas no se transfieren uniformemente a través de la sección transversal de un miembro, habrá una región de transición de esfuerzo no uniforme que irá de la conexión al miembro a lo largo de cierta distancia. Ésta es la situación mostrada en la Figura 3.9(a), en donde un miembro a tensión de un ángulo individual está conectado únicamente por un ala. En la conexión la mayor parte de la carga es soportada por el ala conectada y se requiere la distancia de transición mostrada en la parte (b) de la figura para que el esfuerzo se reparta uniformemente a través de todo el ángulo. En la región de transición, el esfuerzo en la parte conectada del miembro puede fácilmente exceder Fy y entrar al rango de endurecimiento por deformación. A menos que la carga se reduzca, el miembro podrá fracturarse prematuramente. Entre más nos alejamos de la conexión, más uniforme se vuelve el esfuerzo. En la región de transición, el esfuerzo cortante se ha “retrasado” y el fenómeno se conoce como retraso del cortante. En una situación así el flujo del esfuerzo de tensión entre la sección transversal del miembro principal y la del miembro más pequeño conectado a éste, no es 100% efectivo. Consecuentemente, la Especificación AISC (D.3) estipula que el área neta efectiva, Ae, de dicho miembro se determine multiplicando el área A (que es el área neta o el área bruta o el área directamente conectada, como se describe en las siguientes páginas) por un factor de reducción U. El uso de un factor tal como U toma en cuenta de manera sencilla la distribución no uniforme del esfuerzo. Ae = AnU

(Ecuación D3-1 del AISC)

El valor del coeficiente de reducción, U, está afectado por la sección transversal del miembro y por la longitud de su conexión. Enseguida se presenta una explicación de la manera en que se determinan los factores U. El ángulo mostrado en la Figura 3.10(a) está conectado en sus extremos sólo en uno de sus lados. Puede verse fácilmente que su área efectiva para resistir tensión puede incrementarse considerablemente reduciendo el ancho del lado no conectado y aumentando el del lado conectado, como se muestra en la Figura 3.10(b). Algunos investigadores han encontrado que una medida de la efectividad de un miembro, como un ángulo conectado por sólo uno de sus lados, es la distancia x entre el plano de la conexión y el centroide del área de la sección total.2,3 Entre menor sea el valor de x, mayor será el área efectiva del miembro, y por ende es mayor la resistencia de diseño del miembro.

2

E. H. Gaylord, Jr. y C. N. Gaylord, Design of Steel Structures, 2ª. ed. (Nueva York: McGraw-Hill Book Company, 1972), pp. 119-123. 3 W. H. Munse y E. Chesson, Jr., “Riveted and Bolted Joints: Net Section Design”, Journal of the Structural Division, ASCE, 89, STI (febrero 1963).

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


76

Capítulo 3

Análisis de miembros a tensión

Figura 3.10 Reducción del retraso de cortante, y por lo tanto de x, mediante la reducción de la longitud del ala no conectada.

x

x (a)

(b)

Otra medida de la efectividad de un miembro es la longitud de su conexión, L. Entre mayor sea esta longitud, será más uniforme la transferencia del esfuerzo a las partes sin conectar del miembro. En otras palabras, si se usan 3 tornillos a 3 pulgadas entre centros, el área efectiva del miembro será menor que si se usan 3 tornillos a 4 pulgadas entre centros. El efecto de estos dos parámetros, x y L, se expresa empíricamente con el factor de reducción U = 1 -

x L

A partir de esta expresión, puede verse que entre menor sea el valor de x y mayor sea el valor de L, será mayor el valor de U, y por ende será mayor el área efectiva del miembro. La Sección D3 del Comentario del AISC para la Sección D de la especificación tiene una explicación adicional del efecto de retraso del cortante. Las Figuras C-D3.1 a C-D3.4 muestran cómo se determinan x y L para diversos miembros a tensión atornillados y soldados.

3.5.1

Miembros atornillados Si una carga de tensión debe transmitirse por medio de tornillos, el área bruta se reduce al área neta An del miembro, y U se calcula como sigue: U = 1 -

x L

La longitud L usada en esta expresión es igual a la distancia entre el primero y el último tornillo en la línea. Cuando hay dos o más líneas de pernos, L es la longitud de la línea con el número máximo de tornillos. Si los pernos están a tresbolillo, L es la dimensión fuera a fuera entre los tornillos extremos en una línea. Notará usted que entre más larga se vuelve la conexión (L), más grande resultará U, así como el área efectiva del miembro. (Por otra parte, veremos en los capítulos sobre conexiones de este texto que la efectividad de los conectores se reduce en alguna medida si se usan conexiones muy largas.) No hay datos suficientes para el caso en que sólo se usa un tornillo en cada línea. Se considera que un enfoque conservador para este caso es suponer que Ae  An del elemento conectado. La Tabla 3.2 proporciona una lista detallada del retraso de cortante o de los factores U para diferentes situaciones. Esta tabla es una copia de la Tabla D3.1 de la Especificación AISC. Para algunos problemas que se presentan aquí, los autores calculan U con la expresión x 1 , el Caso 2 de la Tabla 3.2, y luego la comparan con el valor del Caso 7 para los perfiles L W, M, S, HP o tes cortadas a partir de estos perfiles y del Caso 8 para ángulos individuales. Entonces se usa el mayor valor de los dos en sus cálculos, tal como lo permite la Especificación AISC. Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


Factores de retraso de cortante para los conectores de los miembros a tensión.

4

5

HSS redonda con una placa de empalme concéntrica individual.

6

HSS rectangular

x x U  1  x l x x U  1.0 y An  área de los elementos directamente conectados l  2w. . . U  1.0 2w  l  1.5w. . . U  0.87 1.5w  l  w. . . U  0.75 l  1.3D. . . U  1.0 D  l  1.3D. . . U  1  xl x  D

con una placa de empalme concéntrica individual

l  H . . . U  1  xl x

con dos placas de empalme laterales

8

Perfiles W, M, S o HP o tes cortadas de estos perfiles. (Si U se calcula según el Caso 2, se permite usar el valor mayor.) Ángulos individuales y dobles (si U se calcula según el Caso 2, se permite usar el valor mayor).

H

B 2BH 4(B H) 2

l  H . . . U  1  xl x

7

l D

3

Todos los miembros a tensión, excepto placas y HSS, donde la carga de tensión se transmite a algunos pero no a todos lo elementos de la sección transversal mediante sujetadores o soldadura longitudinal en combinación con soldadura transversal. (En forma alterna, para W, M, S y HP, puede usarse el Caso 7. Para los ángulos, puede usarse el Caso 8.) Todos los miembros a tensión donde la carga de tensión se transmite solamente por la soldadura transversal a algunos pero no a todos los elementos de la sección transversal. Placas donde la carga de tensión se transmite solamente por soldadura longitudinal.

U  1.0

B2 4(B H)

con el patín conectado con 3 o más sujetadores por línea en la dirección de la carga

bf  2/3d . . . U  0.90 bf  2/3d . . . U  0.85

con el alma conectada con 4 o más sujetadores por línea en la dirección de la carga

U  0.70

con 4 o más sujetadores por línea en la dirección de la carga

U  0.80

con 3 sujetadores por línea en la dirección de la carga (con menos de 3 sujetadores por línea en la dirección de la carga, use el Caso 2).

U  0.60

B

2

Ejemplo

Factor de retraso de cortante, U

H B

Caso Descripción del elemento 1 Todos los miembros a tensión donde la carga de tensión se transmite directamente a cada uno de los elementos de la sección transversal mediante sujetadores o soldadura (excepto en los Casos 4, 5 y 6).

w

TABLA 3.2

l  longitud de la conexión, plg (mm); w  ancho de placa, plg (mm); x  excentricidad de la conexión, plg (mm); B  ancho total del miembro rectangular HSS, medido a 90° con el plano de la conexión, plg (mm); H  altura total del miembro rectangular HSS, medida en el plano de la conexión, plg (mm). Fuente: Especificación AISC, Tabla D3.1, p. 16.1-28, junio 22, 2010. Derechos reservados © American Institute of Steel Construction. Reproducido con autorización. Todos los derechos reservados.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


78

Capítulo 3

Análisis de miembros a tensión

x Mitad del peralte de la W Te estructural x

y en las tablas de tes estructurales

x

(b)

(a) Figura 3.11 Valores de x para diferentes perfiles.

Para calcular U para una sección W conectada sólo por sus patines, supondremos que la sección está dividida en dos tes estructurales. Entonces, el valor de x usado será la distancia desde el borde exterior del patín al centro de gravedad de la te estructural, como se muestra en las partes (a) y (b) de la Figura 3.11. La Especificación AISC permite que el proyectista use valores mayores de U que los que se obtienen de la ecuación si tales valores pueden justificarse por pruebas u otros criterios racionales. La Sección D3 del Comentario del AISC proporciona valores de x sugeridos para usarse en la ecuación para U para varias situaciones no consideradas en la Especificación. Se incluyen valores para secciones W y C atornilladas sólo a través de sus almas. También se consideran ángulos individuales con dos líneas de tornillos a tresbolillo en una de sus alas. La idea básica para calcular x para estos casos se presenta en el siguiente párrafo.4 La canal de la Figura 3.12(a) está conectada con dos líneas de tornillos a través de su alma. La parte “ángulo” de esta canal arriba del centro del tornillo superior se muestra marcada en la parte (b) de la figura. Esta parte de la canal no está conectada. Para fines del retraso del cortante podemos determinar la distancia horizontal de la cara exterior del alma al centroide de la canal. Esta distancia, que se da en las tablas de perfiles del Manual, será la x usada en la ecuación. Se piensa que con esta idea en mente, el lector podrá entender los valores mostrados en el Comentario para otras secciones. El Ejemplo 3-6 ilustra los cálculos necesarios para determinar el área neta efectiva de una sección W atornillando sus patines en cada extremo. x

Figura 3.12 Cálculo de x para una canal atornillada en su alma.

(a)

(b)

4

W. S. Easterling y L. G. Giroux, “Shear Lag Effects in Steel Tension Members”, Engineering Journal, AISC, no. 3 (3er. trimestre, 1993), pp. 77-89.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.5 Áreas netas efectivas

79

Ejemplo 3-6 Determine las resistencias de diseño por tensión LRFD y de diseño por tensión permisible ASD de una W10 * 45 con dos líneas de tornillos de 34 plg de diámetro en cada patín usando acero A572 grado 50 con Fy  50 klb/plg2 y Fu  65 klb/plg2 y la Especificación AISC. Suponga que hay por lo menos tres tornillos en cada línea a 4 plg entre centros y que los tornillos no están a tresbolillo entre sí. Solución. Usando una W10 * 45 (Ag  13.3 plg2, d  10.10 plg, bf  8.02 plg, tf  0.620 plg) Resistencia a la tensión nominal o disponible de la sección Pn  FyAg  (50 klb/plg2) (13.3 plg2)  665 k (a) Fluencia de la sección bruta LRFD con ft  0.9

ASD con t  1.67 Pn 665 k = = 398.2 k Æt 1.67

ftPn  (0.9)(665 k) = 598.5 k

(b) Resistencia a la fractura por tensión 1 3 An = 13.3 plg 2 - 142a plg + plgb10.620 plg2= 11.13 plg 2 4 8 Haciendo referencia a las tablas en el Manual para mitades de una W10 * 45 (o para una WT5 * 22.5), encontramos que x  0.907 plg (y de la Tabla 1-8 del Manual AISC) Longitud de la conexión, L  2 (4 plg)  8 plg De la Tabla 3.2 (Caso 2), U = 1 Pero bf = 8.02 plg 7

x 0.907 plg = 1 = 0.89 L 8 plg

2 2 d = a b 110.12 = 6.73 plg 3 3

‹ U de la Tabla 3.2 (Caso 7) es 0.90 ; Ae  U An  (0.90)(11.13 plg2)  10.02 plg2 Pn  FuAe  (65 klb/plg2)(10.02 plg2)  651.3 k LRFD con ft  0.75 ftPn  (0.75)(651.3 k)  488.5 k ;

ASD con t  2.00 Pn 651.3 k = 325.6 k ; = Æt 2.00

Resp. LRFD  488.5 k (la fractura controla) ASD  325.6 k (la fractura controla) Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


80

Capítulo 3

Análisis de miembros a tensión

Notas: 1. En la Tabla 3.2 (Caso 7), se establece que puede usarse U siendo igual a 0.90 para secciones W si bf Ú 2/3d. 2. Las respuestas a los problemas de resistencia a la tensión como éste se obtienen de la Tabla 5-1 del Manual. Sin embargo, los valores en esta tabla se basan en las hipótesis de que U = 0.9 y Ae = 0.75 Ag. Como resultado, los valores varían un poco de aquellos determinados con los valores calculados de U y Ae. Para este problema, los valores LRFD de la Tabla 5-9 del AISC son 599 k para la fluencia a la tensión y 487 k para la fractura a la tensión. Para el ASD, los valores permisibles son 398 k y 324 k, respectivamente.

Ejemplo 3-7 Determine las resistencias de diseño por tensión LRFD y de diseño por tensión permisible ASD de una A36 (Fy = 36 klb/plg2 y Fu = 58 klb/plg2) L6 * 6 * 3/8 plg que está conectada en sus extremos con una línea de cuatro tornillos de 7/8 plg de diámetro con agujeros estándar de 3 plg entre centros en un ala del ángulo. Solución. Usando una L6 * 6 *

3 (Ag = 4.38 plg2, y = x = 1.62 plg) resistencia a la tensión 8

nominal o disponible del ángulo Pn = FyAg = (36 klb/plg2)(4.38 plg2) 157.7 K (a) Fluencia de la sección bruta LRFD con ft  0.9 ftPn  (0.9)(157.7 k)  141.9 k ;

ASD con t  1.67 Pn Æt

=

157.7 k = 94.4 k ; 1.67

(b) Resistencia a la fractura por tensión 7 1 3 An = 4.38 plg2 - 112a plg+ plgb a plgb = 4.00 plg2 8 8 8 Longitud de la conexión, L = (3)(3 plg) = 9 plg 1.62 plg x = 1 = 0.82 U = 1 L 9 plg De la Tabla 3.2, Caso 8, para 4 o más sujetadores en la dirección de la carga, U = 0.80. Use U calculada = 0.82. Ae  AnU = (4.00 plg2)(0.82) = 3.28 plg2 Pn  FuAe = (58 klb/plg2) (3.28 plg2) = 190.2 k Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.5 Áreas netas efectivas LRFD con ft  0.75

ASD con t  2.00

ftPn  (0.75)(190.2 k)  142.6 k

Pn 190.2 k = 95.1 k = Æt 2.00

81

Resp. LRFD = 141.9 k (la fluencia controla) ASD = 94.4 k (la fluencia controla)

3.5.2

Miembros soldados Cuando se transfieren las cargas de tensión por soldaduras, deberán usarse las siguientes reglas de la Tabla D-3.1 del AISC, Tabla 3.2 de este libro, para determinar los valores de A y de U (Ae para conexiones atornilladas = AU): 1. Si la carga se transmite sólo por soldaduras longitudinales a otros elementos que no sean placas, o por soldaduras longitudinales en combinación con soldaduras transversales, A debe ser igual al área bruta total Ag del miembro (Tabla 3.2, Caso 2). 2. Si una carga de tensión se transmite sólo por soldaduras transversales, A debe ser igual al área de los elementos directamente conectados y U es igual a 1.0 (Tabla 3.2, Caso 3). 3. Las pruebas han mostrado que cuando placas o barras planas conectadas por soldaduras de filete longitudinales (término que se describirá en el Capítulo 14) se usan como miembros en tensión, ellas pueden fallar prematuramente por retraso del cortante en las esquinas si las soldaduras están muy separadas entre sí. Por tanto, la Especificación AISC establece que cuando se encuentren tales situaciones, las longitudes de las soldaduras no deben ser menores que el ancho de las placas o barras. La letra A representa el área de la placa, y UA es el área neta efectiva. Para tales situaciones, deberán usarse los siguientes valores de U (Tabla 3.2, Caso 4): Cuando l Ú 2w Cuando 2w 7 l Ú 1.5w Cuando 1.5w 7 l Ú w

U = 1.0 U = 0.87 U = 0.75

Aquí, l  longitud de la soldadura, plg w  ancho de la placa (distancia entre soldaduras), plg Para combinaciones de soldaduras longitudinales y transversales, l debe tomarse igual a la longitud de la soldadura longitudinal, porque la soldadura transversal tiene poco o ningún efecto sobre el retraso del cortante (es decir, hace poco por llevar la carga a la partes no conectadas del miembro). Los ejemplos 3-8 y 3-9 ilustran los cálculos de las áreas efectivas, las resistencias de diseño a la tensión LRFD, y las resistencias de diseño permisibles ASD de dos miembros soldados.

Ejemplo 3-8 La placa de 1 * 6 plg mostrada en la Figura 3.13 está conectada a una placa de 1 * 10 plg con soldaduras de filete longitudinales para soportar una carga de tensión. Determine las Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


82

Capítulo 3

Análisis de miembros a tensión

resistencias de diseño por tensión LRFD y de diseño por tensión permisible ASD del miembro si Fy  50 klb/plg2 y Fu  65 klb/plg2.

PL1 ⫻ 10 plg PL1 ⫻ 6 plg ⫽ 6 plg

Pu

Soldaduras de filete longitudinales

Pu

L ⫽ 8 plg

Figura 3.13.

Solución. Considerando la resistencia a la tensión nominal o disponible de la PL más pequeña de 1 plg * 6 plg Pn = FyAg = (50 klb/plg2) (1 plg * 6 plg) = 300 k

(a) Fluencia de la sección bruta LRFD con ft  0.9

ASD con t  1.67

ftPn  (0.9)(300 k)  270 k

Pn 300 k = 179.6 k = Æt 1.67

(b) Resistencia a la fractura por tensión 1.5w = 1.5 * 6 plg = 9 plg 7 L = 9 plg 7 w = 6 plg ‹ U ⫽ 0.75 de la Tabla 3.2, Caso 4 Ae ⫽ AnU = (6.0 plg2)(0.75) = 4.50 plg2 Pn ⫽ FuAe = (65 klb/plg2) (4.50 plg2) = 292.5 k LRFD con ft ⫽ 0.75

ASD con ⍀t ⫽ 2.00

ftPn ⫽ (0.75)(292.5 k) ⫽ 219.4 k ;

Pn 292.5 k = 146.2 k ; = Æt 2.00

Resp. LRFD = 219.4 k (la fractura controla) ASD = 146.2 k (la fractura controla) Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.5 Áreas netas efectivas

83

Algunas veces un ángulo tiene una de sus alas conectadas a las soldaduras tanto longitudinal como transversal, pero no se hacen conexiones a la otra ala. Determinar U de la Tabla 3.2 para este caso es más bien complicado. El autor piensa que deberá usarse el Caso x 2 de la Tabla 3.2 (es decir, U = 1 - ) para esta situación. Esto se hace en el Ejemplo 3-9. L

Ejemplo 3-9 Calcule las resistencias de diseño por tensión LRFD y de diseño por tensión permisible ASD del ángulo mostrado en la Figura 3.14. Está soldado sólo en su extremo (transversal) y a los lados (longitudinales) del ala de 8 plg. Fy = 50 klb/plg2 y Fu = 70 klb/plg2. Placa 3 4 (x ⫽ 1.56 plg, A ⫽ 9.99 plg2) L8 ⫻ 6 ⫻

Ángulo

soldadura

6 plg 8 plg 1.56 plg 8 plg

Placa

6 plg

Figura 3.14.

Solución. Resistencia a la tensión nominal o disponible del ángulo ⫽ Pn ⫽ FyAg ⫽ (50 klb/plg2)(9.99 plg2) ⫽ 499.5 k (a) Fluencia de la sección bruta LRFD con ft ⫽ 0.9

ASD con ⍀t ⫽ 1.67

ftPn ⫽ (0.9)(449.5 k) ⫽ 449.5 k

Pn 499.5 k = 299.1 k = Æt 1.67

(b) Resistencia a la fractura por tensión. (Ya que solamente un ala de L está conectada, es necesario calcular un área efectiva reducida.) Use la Tabla 3.2 (Caso 2). U = 1 -

x 1.56 plg = 1 = 0.74 L 6 plg

Ae ⫽ AgU = (9.99 plg2)(0.74) = 7.39 plg2 Pn ⫽ FuAe = (70 klb/plg2) (7.39 plg2) = 517.3 k LRFD con ft ⫽ 0.75 ftPn ⫽ (0.75)(517.3 k) ⫽ 388.0 k ;

Resp. LRFD = 388.0 k (la fractura controla) Alfaomega

ASD con ⍀t ⫽ 2.00 Pn =

517.3 k = 258.6 k ; 2.00

ASD = 258.6 k (la fractura controla)

Diseño de Estructuras de Acero – McCormac /Csernak


84

3.6

Capítulo 3

Análisis de miembros a tensión

ELEMENTOS DE CONEXIÓN PARA MIEMBROS A TENSIÓN Cuando se usan placas de empalme como elementos de conexión cargados estáticamente a tensión, su resistencia se calculará como sigue: (a) Por fluencia de elementos de conexión a tensión Rn ⫽ FyAg f ⫽ 0.90 (LRFD)

(Ecuación J4-1 del AISC) ⍀ ⫽ 1.67 (ASD)

(b) Por fractura de elementos de conexión a tensión Rn ⫽ FuAe f ⫽ 0.75 (LRFD)

(Ecuación J4-2 del AISC) ⍀ ⫽ 2.00 (ASD).

El área neta A = An, usada en la segunda de estas expresiones no debe exceder del 85% de Ag. Pruebas realizadas durante varias décadas han demostrado que los elementos de conexión a tensión remachados o atornillados pocas veces tienen una eficiencia mayor del 85%, aun cuando los agujeros representen un porcentaje muy pequeño del área total de los elementos. Las longitudes de los elementos conectores son más bien pequeñas, en comparación con las longitudes de los miembros; por lo tanto, las deformaciones inelásticas de las secciones totales son limitadas. En el Ejemplo 3-10, se determina la resistencia de un par de placas conectadas a tensión.

Ejemplo 3-10 El miembro a tensión (Fy = 50 klb/plg2 y Fu = 65 klb/plg2) del Ejemplo 3-6 se supone conectado en sus extremos con dos placas de 3/8 * 12 plg, como se muestra en la Figura 3.15. Si en cada placa se usan dos hileras de tornillos de 3/4 plg, determinar la fuerza de diseño a tensión LRFD y la fuerza permisible a tensión ASD que las dos placas pueden transmitir.

PL

3 8

⫻ 12

Pu 2 W10 ⫻ 45

Pu

Pu 2 PL

3 8

⫻ 12

Figura 3.15.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.7 Bloque de cortante 85 Solución. Resistencia nominal de las placas Rn = FyAg = 150 klb plg22a 2 *

3 plg * 12 plgb = 450 k 8

(a) Fluencia a la tensión de los elementos conectores

LRFD con f = 0.90 fRn = 10.9021450 k2 = 405 k

ASD con Æ = 1.67 Rn 450 k = = 269.5 k Æ 1.67

(b) Fractura a la tensión de los elementos conectores 3 3 1 3 An de dos placas = 2 c a plg * 12 plgb - 2 a plg + plgb a plgb d = 7.69 plg2 8 4 8 8 3 0.85Ag = 10.852a 2 * plg * 12 plgb = 7.65 plg 2 ; 8 Rn = FuAe = 165 klb/plg2217.65 plg 22 = 497.2 k

LRFD con f = 0.75 fRn = 10.7521497.2 k2 = 372.9 k ;

Resp. LRFD = 372.9 k (la fractura controla)

3.7

ASD con Æ = 2.00 Rn 497.2 k = = 248.6 k ; Æ 2.00

ASD = 248.6 k (la fractura controla)

BLOQUE DE CORTANTE Las resistencias de diseño LRFD y permisible ASD de los miembros a tensión no siempre están controladas por la fluencia a la tensión, la fractura a la tensión, o por la resistencia de los tornillos o las soldaduras con que se conectan. En lugar de ello, pueden estar controladas por la resistencia de su bloque de cortante, como se describe en esta sección. La falla de un miembro puede ocurrir a lo largo de una trayectoria que implique tensión en un plano y cortante en otro plano perpendicular, como se muestra en la Figura 3.16, donde se ilustran varias fallas posibles en el bloque de cortante. Para estas situaciones, es posible que un “bloque” de acero se desgarre.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


86

Capítulo 3

Análisis de miembros a tensión Plano de cortante

Plano de tensión a) Ángulo atornillado Las partes sombreadas pueden desgarrarse

Plano de cortante Plano de tensión

Plano de tensión Esta parte sombreada puede desgarrarse

Plano de cortante b) Patín atornillado de la sección W Plano de cortante Plano de tensión

Esta parte sombreada puede desgarrarse alrededor de los cordones de soldadura

Plano de cortante c) Placas soldadas Figura 3.16 Bloque de cortante.

Cuando una carga de tensión aplicada a una conexión particular se incrementa, la resistencia a la fractura del plano más débil estará próxima. Ese plano no fallará entonces porque está restringido por el plano más fuerte. La carga puede incrementarse hasta que se alcance la resistencia a la fractura del plano más fuerte. En ese instante, el plano más débil está fluyendo. La resistencia total de la conexión es igual a la resistencia por fractura del plano más fuerte más la resistencia por fluencia del plano más débil.5 Entonces, no es razonable sumar la resistencia por fractura de un plano a la resistencia por fractura del otro plano para determinar la resistencia por cortante de un miembro específico. Puede verse que el bloque de cortante es una situación de desgarramiento o ruptura y no una situación de fluencia. El miembro mostrado en la Figura 3.17(a) tiene un área grande de cortante y un área pequeña a tensión; entonces, la resistencia principal a una falla del bloque de cortante es el cortante y no la tensión. La Especificación AISC considera que es lógico suponer que cuando ocurre una fractura por cortante en esta zona con alta capacidad de corte, la pequeña área a tensión ya ha fluido. La parte (b) de la Figura 3.17 muestra, considerablemente aumentado, un diagrama de cuerpo libre del bloque que tiende a desgarrarse del ángulo en la parte (a). Puede verse en este croquis que el bloque de cortante es causado por el aplastamiento de los tornillos al apoyarse sobre la espalda de los agujeros. 5 L. B. Burgett, “Fast Check for Block Shear”, Engineering Journal, AISC, vol. 29, no. 4 (4o. trimestre, 1992), pp. 125-127.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.7 Bloque de cortante 87

1 5

Pu

Área grande de cortante

Pu Pu 5

Área pequeña de tensión (a) Fractura por cortante y fluencia por tensión

(b) Cuerpo libre del “bloque” que tiende a desgarrarse en el ángulo de la parte (a)

Esfuerzos cortantes Esfuerzos de tensión

Pu

Esfuerzos cortantes

(c) Fractura por tensión y fluencia por cortante Figura 3.17 Bloque de cortante.

En la parte (c) de la Figura 3.17 se muestra un miembro que en lo que respecta al bloque de cortante, tiene una gran área de tensión y una pequeña área de cortante. El AISC considera que para este caso la principal fuerza resistente contra una falla por bloque de cortante será de tensión y no de cortante. De esta manera, una falla por bloque de cortante no puede ocurrir hasta que se fracture el área a tensión. En ese momento es lógico suponer que el área a cortante ha fluido. Basada en el análisis precedente, la Especificación (J4.3) del AISC establece que la resistencia de diseño por bloque de cortante de un miembro específico se determina 1) calculando la resistencia por fractura a tensión en la sección neta en una dirección y sumado a ese valor la resistencia de fluencia por cortante en el área total del segmento perpendicular y 2) calculando la resistencia a la fractura por cortante en el área total sujeta a tensión y sumando a este valor la resistencia a la fluencia por tensión en el área neta sujeta a cortante en el segmento perpendicular. La expresión que debe aplicarse es aquella con el mayor término de fractura. Los resultados de las pruebas muestran que este procedimiento da buenos resultados. Además, es consistente con los cálculos previamente usados para miembros a tensión en los que se emplean áreas totales para el estado límite de fluencia (FyAg) y áreas netas para el estado límite de fractura (FuAe). La Especificación (J4.3) del AISC establece que la resistencia disponible Rn para la resistencia de diseño a la fractura por bloque de cortante es la siguiente: Rn = 0.6FuAnv + UbsFuAnt … 0.6FyAgv + UbsFuAnt (Ecuación J4-5 del AISC) f ⫽ 0.75 (LRFD) Alfaomega

⍀ ⫽ 2.00 (ASD)

Diseño de Estructuras de Acero – McCormac /Csernak


88

Capítulo 3

Análisis de miembros a tensión

en donde Agv = área total sujeta a cortante, plg2 (mm2) Anv = área neta sujeta a cortante, plg2 (mm2) Ant = área neta sujeta a tensión, plg2 (mm2). Otro valor incluido en la Ecuación J4-5 del AISC es un factor de reducción Ubs. Su propósito es considerar el hecho de que tal vez la distribución de esfuerzos no sea uniforme en el plano a tensión para algunas conexiones. Si la distribución de esfuerzos a tensión es uniforme, Ubs será tomado igual a 1.0, de acuerdo con la Especificación (J4.3) del AISC. Generalmente se considera que el esfuerzo de tensión es uniforme para ángulos, placas de empalme (o conexiones), y para vigas recortadas con una línea de tornillos. Las conexiones de la parte (a) de la Figura 3.18 se sitúan en esta clase. Si el esfuerzo de tensión es no uniforme, Ubs debe hacerse igual a 0.5. Esta situación ocurre en vigas recortadas con dos líneas de tornillos como se ilustra en la parte (b) de la figura. Ahí el esfuerzo es no uniforme porque la fila de tornillos más cercana al extremo de la viga absorbe la proporción mayor de la carga de cortante. Si los tornillos para las vigas recortadas se colocan a distancias no estándar a partir de los extremos de la viga, puede ocurrir la misma situación de esfuerzo de tensión no uniforme, y deberá usarse un valor de 0.5 para Ubs. La parte sombreada puede desprenderse por cortante Ángulo de extremo

Conexión de viga de una sola fila (a) Ubs ⫽ 1.0

Figura 3.18 Bloque de cortante.

Conexión de extremo de viga de filas múltiples (b) Ubs ⫽ 0.5

Los Ejemplos 3-11 a 3-13 ilustran la determinación de la resistencia por bloque de cortante de tres miembros. El tema del bloque de cortante se trata más ampliamente en los capítulos sobre conexiones de este texto, en donde encontraremos que es absolutamente necesario revisar las conexiones de la viga cuando el patín superior se despatina, como se ilustra en las Figuras 10.2(c), 10.6 y 15.6(b). Si fuera insuficiente la resistencia por bloque de cortante, ésta puede incrementarse al aumentar la distancia hasta el borde y/o la separación de los tornillos.

Ejemplo 3-11 El miembro de acero A572 Grado 50 (Fu = 65 klb/plg2) en tensión mostrado en la Figura 3.19 está conectado con tres tornillos de 3/4 plg. Determine la resistencia a la fractura del bloque de cortante LRFD y la resistencia a la fractura permisible del bloque de cortante ASD del miembro. También calcule las resistencias de diseño por tensión LRFD y de diseño por tensión permisible ASD del miembro. Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.7 Bloque de cortante 89 3

1 2

1 2 2 plg ⫽ lh

plg

2 plg ⫽ l 1

L6 ⫻ 4 ⫻ 2 (A ⫽ 4.75 plg2, x en el lado no conectado ⫽ 0.981 plg)

4 plg 10 plg 4 plg

Plano de cortante Figura 3.19.

Plano de tensión

Solución 1 Agv = 110 plg2a plgb = 5.0 plg2 2 3 1 1 Anv = c 10 plg - 12.52a plg + plgb d a plgb = 3.91 plg2 4 8 2 1 3 1 1 Ant = c 2.5 plg - a b a plg+ plgb d a plgb = 1.03 plg2 2 4 8 2 Ubs = 1.0

Rn = 10.62165 klb/plg 213.91 plg22 + 11.02165 klb/plg2211.03 plg22 = 219.44 k 2

… 10.62150 klb/plg2215.0 plg22 + 11.02165 klb/plg2211.03 plg22 = 216.95 k

219.44 k 7 216.95 k ‹ Rn = 216.95 k (a) Resistencia del bloque de cortante LRFD con f = 0.75 fRn = 10.7521216.95 k2 = 162.7 k ;

ASD con Æ = 2.00 Rn Æ

=

216.95 k = 108.5 k ; 2.00

(b) Resistencia a la tensión del ángulo nominal o disponible Pn = FyAg = 150 klb/plg2214.75 plg22 = 237.5 k Fluencia de la sección total LRFD con ft = 0.9 ftPn = 10.921237.5 k2 = 213.7 k

Alfaomega

ASD con Æ t = 1.67 Pn Æt

=

237.5 k = 142.2 k 1.67

Diseño de Estructuras de Acero – McCormac /Csernak


90

Capítulo 3

Análisis de miembros a tensión

(c) Resistencia a la fractura por tensión 3 1 1 An = 4.75 plg 2 - a plg+ plgb a plgb = 4.31 plg 2 4 8 2

L para los tornillos = 12214 plg2 = 8 plg

x 0.981 plg = 1 = 0.88 L 8 plg Ae = UAn = 10.88214.31 plg 22 = 3.79 plg 2 U = 1

-

Pn = FuAe = 165 klb plg2213.79 plg22 = 246.4 k ASD con Æ t = 2.00

LRFD con ft = 0.75 ftPn = 10.7521246.4 k2 = 184.8 k

Pn 246.4 k = 123.2 k = Æt 2.00

Resp. LRFD = 162.7 k (el bloque de cortante controla) ASD = 108.5 k (el bloque de cortante controla)

Ejemplo 3-12 Determine la resistencia de diseño LRFD y la resistencia permisible ASD de las placas de acero A36 (Fy = 36 klb/plg2, Fu = 58 klb/plg2) mostradas en la Figura 3.20. Incluya la resistencia por bloque de cortante en los cálculos.

Plano de tensión

1 2

4 plg

plg PL

Plano de cortante

Plano de cortante PL

1 2

⫻ 10

10 plg Figura 3.20.

Solución (a) Fluencia de la sección total 1 Pn = FyAg = (36 klb/plg2)a plg * 10 plgb = 180 k 2 Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.7 Bloque de cortante 91 LRFD con ft = 0.9

ASD con Æ t = 1.67

ftPn = 10.921180 k2 = 162 k ;

Pn Æt

=

180 k = 107.8 k ; 1.67

(b) Resistencia a la fractura por tensión U = 1.0 (Tabla 3.2, Caso 1) 1 Ae = 11.02a plg * 10 plg b = 5.0 plg 2 2 Pn = FuAe = 158 klb/plg2215.0 plg 22 = 290 k

LRFD con ft = 0.75

ASD con Æ t = 2.00

ftPn = 10.7521290 k2 = 217.5 k

Pn 290 k = = 145 k Æt 2.00

(c) Resistencia del bloque de cortante 1 Agv = a plgb 12 * 4 plg2 = 4.00 plg 2 2 Anv = 4.00 plg 2 1 Ant = a plgb110 plg2 = 5.0 plg 2 2 Ubs = 1.0

Rn = 10.62158 klb/plg2214.0 plg 22 + 11.002158 klb/plg2215.0 plg 22 = 429.2 k

… 10.62136 klb/plg2214.0 plg 22 + 11.002158 klb/plg2215.0 plg 22 = 376.4 k 429.2 k 7 376.4 k ‹ Rn = 376.4 k

LRFD con f = 0.75 fRn = 10.7521376.4 k2 = 282.3 k

Resp. LRFD = 162 k (la fluencia controla) Alfaomega

ASD con Æ = 2.00 Rn Æ

=

376.4 k = 188.2 k 2.00

ASD = 107.8 k (la fluencia controla)

Diseño de Estructuras de Acero – McCormac /Csernak


92

Capítulo 3

Análisis de miembros a tensión

Ejemplo 3-13 Determine la resistencia de diseño a la tensión LRFD y la resistencia a la tensión ASD de la W12 * 30 (Fy = 50 klb/plg2, Fu = 65 klb/plg2) que se muestra en la Figura 3.21 si se usan tor7 nillos de plg en la conexión. Incluya los cálculos de bloque de cortante para los patines. 8 Solución (a) Fluencia de la sección total Pn = FyAg = 150218.792 = 439.5 k ASD con Æ t = 1.67

LRFD con ft = 0.9 ftPn = 10.921439.52 = 395.5 k

Pn 439.5 = 263.2 k = Æt 1.67

(b) Resistencia a la fractura por tensión 7 1 An = 8.79 plg2 - 142a plg+ plgb 10.440 plg2= 7.03 plg2 8 8 x = y en la tabla = 1.27 plg para WT6 * 15

W12 ⫻ 30 (Ag ⫽ 8.79 plg2, d ⫽ 12.3 plg, t ⫽ 0.260 plg, tf ⫽ 0.440 plg, bf ⫽ 6.52 plg)

2 plg Plano de cortante 4 plg 10 plg 4 plg

Plano de tensión 1.51 in Figura 3.21.

Gramil 3.50 plg

1.51 plg

6.52 plg

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.7 Bloque de cortante 93 U =1 -

x 1.27 plg = 1 = 0.84 L 2 * 4 plg

bf = 6.52 plg 6

2 * 12.3 = 8.20 plg 3

‹ U = 0.85 para el Caso 7 en la Tabla 3.2

Ae = UAn = 10.85217.03 plg22 = 5.98 plg2

Pn = FuAe = 165 klb/plg2215.98 plg22 = 388.7 k

LRFD con ft = 0.75 ftPn = 10.7521388.7 k2 = 291.5 k ;

ASD con Æ t = 2.00 Pn 388.7 k = = 194.3 k ; Æt 2.00

(c) Resistencia del bloque de cortante considerando ambos patines Agv = 142110 plg210.440 plg2= 17.60 plg2 7 1 Anv = 142c 10 plg - 12.52a plg+ plgb d 0.440 plg = 13.20 plg2 8 8 1 7 1 Ant = 142c 1.51 plg - a b a plg+ plgb d0.440 plg = 1.78 plg2 2 8 8 Rn = 10.62165 klb/plg22113.20 plg22 + 11.002165 klb/plg2211.78 plg22 = 630.5 k

… 10.62150 klb/plg22117.60 plg22 + 11.002165 klb/plg2211.78 plg22 = 643.7 k

630.5 k < 643.7 k ‹ Rn = 630.5 k

LRFD con f = 0.75

ASD con Æ = 2.00

fRn = 10.7521630.5 k2 = 472.9 k

Resp. LRFD = 291.5 k (controla la fractura)

Alfaomega

Rn 630.5 k = = 315.2 k Æ 2.00

ASD = 194.3 k (controla la fractura)

Diseño de Estructuras de Acero – McCormac /Csernak


94

3.8

Capítulo 3

Análisis de miembros a tensión

PROBLEMAS PARA RESOLVER (USE AGUJEROS DE TORNILLO DE TAMAÑO ESTÁNDAR EN TODOS LOS PROBLEMAS) 3-1 al 3-12. Calcule el área neta en cada uno de los miembros indicados. 3-1. (Resp. 5.34 plg2) PL

Tornillos de

3 4

3 4

⫻8

plg ⭋

Figura P3-1.`

3-2. PL 1⫻ 12

Tornillos de 1 plg ⭋ Figura P3-2.

3-3. (Resp. 9.38 plg2)

Tornillos de

3 4

plg ⭋

W12 ⫻ 40

Figura P3-3.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.8 Problemas para resolver 95 Tornillos de 1 plg ⭋

3-4.

WT15 ⫻ 54

Figura P3.4.

3-5. Una L8 * 4 * 3/4 con dos líneas de tornillos de 34 plg Ø en el lado largo y una línea de tornillos de 34 plg Ø en el lado corto. (Resp. 6.52 plg2.) 3-6. Un par de L 4 * 4 * 14, con una línea de tornillos de 78 plg Ø en cada lado. 3-7. Una W18 * 35 con dos agujeros en cada patín y uno en el alma, todos para tornillos de 78 plg Ø. (Resp. 8.30 plg2.) 3-8. La sección compuesta mostrada en la Figura P3-8 para la que se usan tornillos de 34 plg Ø. PL 58 ⫻ 14

WT15 ⫻ 45

Figura P3-8.

3-9. La placa 1 * 8 mostrada en la Figura P3-9. Los agujeros son para tornillos de 3 plg Ø. (Resp. 6.44 plg2.) 4 3 plg 3 plg

8 plg

2 plg 1 12

plg

PL 1 ⫻ 8

Figura P3-9.

3-10. La placa 3/4 * 10 mostrada en la Figura P3-10. Los agujeros son para tornillos de 7/8 plg Ø. 2 plg 3 plg 10 plg 3 plg 2 plg 2 plg PL

Alfaomega

Figura P3-10.

3 4

⫻ 10

Diseño de Estructuras de Acero – McCormac /Csernak


96

Capítulo 3

Análisis de miembros a tensión 3-11 La placa de 7/8 * 14 mostrada en la Figura P3-11. Los agujeros son para tornillos de 7/8 plg Ø. (Resp. 10.54 plg2.)

1 12 plg

2 12 plg

PL

3

1 2

plg

4

1 2

plg

3

1 2

2

1 2

7 8

14 plg

⫻ 14

Figura P3-11.

3-12. El ángulo 6 * 4 * 1/2 mostrado tiene una línea de tornillos de 3/4 plg Ø en cada lado. Los tornillos están a 4 plg en el centro de cada línea y están en zigzag a 2 plg entre sí.

1

2 2 plg 6 plg 1

3 2 plg

1

2 2 plg

1

1 2 plg

4 plg Figura P3-12.

3-13. El miembro a tensión mostrado en la Figura P3-13 contiene agujeros para tornillos de 3/4 plg Ø. ¿Para qué paso, s, será el área neta para la sección que pasa por un agujero igual a la de la línea de fractura que atraviesa por dos agujeros? (Resp. 3.24 plg.) 2 8 plg

1 2

plg

3 plg 2

1 2

plg s

Figura P3-13.

3-14. El miembro a tensión mostrado en la Figura P3-14 contiene agujeros para tornillos de 7/8 plg Ø. ¿Para qué paso, s, será el área neta para la sección que pasa por dos agujeros igual a la de la línea de fractura que atraviesa por los tres agujeros? Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.8 Problemas para resolver 97 2 plg 10 plg

3 plg 3 plg 2 plg s

Figura P3-14.

3-15. Un L6 * 6 * 1/2 se usa como miembro a tensión con una línea de gramil para tornillos de 3/4 plg Ø en cada lado en la posición usual de gramil (véase la Tabla 3.1). ¿Cuál es el escalonamiento mínimo, s, necesario para que sólo un tornillo tenga que sustraerse del área total del ángulo? Calcule el área neta de este miembro si los agujeros se escalonan a cada 3 plg. (Resp. s = 4.77 plg, An = 5.05 plg2.) 3-16 Un L8 * 4 * 3/4 se usa como miembro a tensión con tornillos de 7/8 plg Ø en cada lado en la posición usual de gramil (véase la Tabla 3.1). Se usan dos líneas de tornillos en el lado largo, y una en el lado corto. Determine el escalonamiento mínimo, s, necesario para que sólo dos tornillos tengan que sustraerse al determinar el área neta. ¿Cuánto vale el área neta?

s

s

s

s

Figura P3-16.

3-17. Determine el área neta más pequeña del miembro a tensión mostrado en la Figura P3-17. Los agujeros son para tornillos de 3/4 plg Ø en la posición usual de gramil. El escalonamiento es de 1 1/2 plg. (Resp. 2.98 plg2.)

3 8

plg

2L 5 ⫻ 3

1 2

⫻ 14

s

Figura P3-17.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


98

Capítulo 3

Análisis de miembros a tensión

3-18. Determine el área transversal neta efectiva de la C12 * 25 mostrada en la Figura P3-18. Los agujeros son para tornillos de 3/4 plg Ø. 1

7 8

plg

3

1 2

plg

5 plg

3

1 2

plg Todas 2 plg

Figura P3-18.

3-19 Calcule el área neta efectiva de la sección armada mostrada en la Figura P3-19 si se han taladrado agujeros para tornillos de 3/4 plg Ø. Suponga U = 0.90. (Resp. 20.18 plg2.) PL

1 2

⫻ 11

C10 ⫻ 25

PL

1 2

⫻ 11

Figura P3-19.

3-20 al 3-22. Determine las áreas netas efectivas de las secciones mostradas usando los valores U dados en la Tabla 3.2 de este capítulo. 3-20.

L6 ⫻ 4 ⫻ 12 LLV 6 plg

7 Tornillos de 8 plg ⭋

4 plg 3 12 plg 3

1 2

plg

Figura P3-20.

3-21. Determine el área neta efectiva del L7 * 4 * 12 mostrado en la Figura P3-21. Suponga que los agujeros son para tornillos de 1 plg Ø. (Resp. 3.97 plg2.) Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.8 Problemas para resolver 99 2

1 2

plg

3 plg

L7 ⫻ 4 ⫻ 12 LLV

Todas 2 plg

Figura P3-21.

3-22. Una MC12 * 45 está conectada a través de su alma con tres líneas de gramil con tornillos de 7/8 plg Ø. La separación entre las líneas es de 3 plg entre centros y la separación entre los centros de los tornillos a lo largo de las líneas es de 3 plg. Si los tornillos de la línea central están alternados respecto a los de las líneas exteriores, determine el área neta efectiva de la sección transversal de la canal. Suponga que hay cuatro tornillos en cada línea. 3-23. Determine el área neta efectiva de la W16 * 40 mostrada en la Figura P3-23. Suponga que los agujeros son para tornillos de 3/4 plg Ø. (Resp. 8.53 plg2.)

W16 ⫻ 40

Tornillos

3 4

plg ⭋

Todas 3

1 2

plg

Figura P3-23.

3-24 al 3-34 Determine las resistencias de diseño LRFD y permisible ASD de las secciones dadas. Desprecie el bloque de cortante. 3-24. Acero A36 y tornillos de 7/8 plg Ø. L6 ⫻ 3 12 ⫻ 38 2

1 2

plg

3

1 2

plg 3 plg 4 plg 4 plg

Figura P3-24.

3-25. Acero A36 y tornillos de 3/4 plg Ø. (Resp. LRFD 170.42 k, ASD 113.39 k.) L7 ⫻ 4 ⫻ 12 1

1 2

plg

3 plg 2

1 2

plg 3 plg

2 plg

Figura P3-25.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


100

Capítulo 3

Análisis de miembros a tensión

3-26 Acero A36 y tornillos de 7/8 plg Ø. 2

1 2

plg

3

1 2

plg

3

1 2

plg

2

1 2

plg

Todas 2 plg

2–MC 12 ⫻ 40 Figura P3-26.

3-27. Una W18 * 40 que consiste de acero A992 y que tiene dos líneas de tornillos de 1 plg Ø en cada patín. Hay 4 tornillos en cada línea, 3 plg entre centros. (Resp. LRFD 391.1 k, ASD 260.7 k.) 3-28 Una WT8 * 50 de acero A992 que tiene dos líneas de tornillos de 7/8 plg Ø como se muestra en la Figura P3-28. Hay 4 tornillos en cada línea, 3 plg entre centros. WT 8 ⫻ 50

Figura P3-28.

3-29. Una W8 * 40 de acero A992 que tiene dos líneas de tornillos de 3/4 plg Ø en cada patín. Hay 3 tornillos en cada línea, 4 plg entre centros. (Resp. LRFD 431.2 k, ASD 287.4 k.) 3-30. Un ángulo doble, 7 * 4 * 3/4 plg con dos líneas de gramil en su lado largo y una en su lado corto, para tornillos de 7/8 plg Ø como se muestra en la Figura P3-30. Deben usarse gramiles estándar tal como se determina de la Tabla 3.1 en este capítulo. Se usa acero A36. L7 ⫻ 4 ⫻ 34

7 plg

Todas 2 plg Figura P3-30.

3-31. Una C9 * 20 (Fy = 36 klb/plg2, Fu = 58 klb/plg2) con 2 líneas de tornillos de 7/8 plg Ø en el alma como se muestra en la Figura P3-31. (Resp. LRFD 190.2 k, ASD 126.5 k.) Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


3.8 Problemas para resolver 2

3 4

plg

3

1 2

plg

2

3 4

plg

C9 × 20

101

3 plg 3 plg

Figura P3-31.

3-32. Una WT5 * 15 que consiste en acero A992 con una soldadura transversal sólo en el patín, como se muestra en la Figura P3-32. WT5 ⫻ 15

PL Soldadura transversal

Figura P3-32.

3-33. Una C6 * 10.5 que consiste en acero A36 con dos soldaduras longitudinales que se muestran en la Figura P3-33. (Resp. LRFD 99.5 k, ASD 66.2 k.) Soldadura longitudinal

C6 ⫻ 10.5

PL

5 plg Figura P3-33.

3-34. Una placa de 38 * 5 que consiste en acero A36 con dos soldaduras longitudinales, como se muestra en la Figura P3-34. Soldadura longitudinal

PL 38 ⫻ 5

PL

5 plg Figura P3-34.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


102

Capítulo 3

Análisis de miembros a tensión

3-35 al 3-37. Determine las resistencias de diseño LRFD y permisible ASD de las secciones dadas, incluyendo el bloque de cortante. 3-35. Una WT6 * 26.5, acero A992, unida por el patín con seis tornillos de 1 plg Ø como se muestra en la Figura P3-35. (Resp. LRFD 269.2 k, ASD 179.5 k.) WT6 ⫻ 26.5

5

1 2

plg Tornillos de 1 plg ⭋

2 plg 3 plg 3 plg Figura P3-35.

3-36 Una C9 * 15 (acero A36) con 2 líneas de tornillos de 3/4 plg Ø en el alma como se muestra en la Figura P3-36. C9 ⫻ 15 2

1 2

plg

4 plg 2

1 2

plg 2 plg 3 plg 3 plg

Tornillos de

3 4

plg ⭋

Figura P3-36.

3-37. Un ángulo 6 * 6 * 3/8 soldado a una placa de empalme como se muestra en la Figura P3-37. Todo el acero es Fy = 36 klb/plg2 y Fu = 58 klb/plg2. (Resp. LRFD 139.1 k, ASD 92.7 k.)

PL de

L6  6 

3 8

3 8

plg

6 plg

Figura P3-37.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


C A P Í T U L O

4

Diseño de miembros a tensión

4.1

SELECCIÓN DE PERFILES La determinación de las resistencias de diseño de varios miembros a tensión se presentó en el Capítulo 3. En este capítulo se describe la selección de miembros que deben soportar cargas de tensión. Aunque el proyectista tiene plena libertad en la selección, los miembros escogidos deben tener las siguientes propiedades: a) deberán ser compactos, b) tener dimensiones que se ajusten en la estructura con una relación razonable a las dimensiones de los otros miembros de la estructura y c) tener conexiones con tantas partes de las secciones como sea posible para minimizar el retardo del cortante. A veces la elección del tipo de miembro se ve afectada por la clase de conexiones usadas para la estructura. Algunas secciones de acero no son muy adecuadas para atornillarse a las placas usadas como nudo, en tanto que las mismas secciones pueden conectarse por medio de soldadura con poca dificultad. Los miembros a tensión formados por ángulos, canales o perfiles W o bien S probablemente se usarán cuando las conexiones sean atornilladas, en tanto que placas, canales y tes estructurales se usarán en estructuras soldadas. En los ejemplos que siguen se seleccionan varios tipos de secciones para miembros a tensión y en los casos en que se usan tornillos como conectores, se toman en cuenta los agujeros. Si las conexiones son totalmente soldadas no tendrá que añadirse área de barrenos a las superficies netas para tener el área total requerida. El estudiante debe saber, sin embargo, que con frecuencia los miembros soldados pueden tener agujeros para tornillos de montaje provisionales mientras se colocan las soldaduras de campo permanentes. Es necesario considerar esos agujeros en el diseño. También debe recordarse que en la Ecuación D2-2 del AISC (Pn = FuAe) el valor de Ae puede ser menor que el de Ag, aun cuando no existan agujeros, dependiendo del arreglo de las soldaduras y de si todas las partes de los miembros están conectadas. La relación de esbeltez de un miembro es el cociente de longitud no soportada y su radio de giro mínimo. Las especificaciones de acero presentan generalmente valores máximos de esta relación para miembros a tensión y a compresión. El propósito de estas limita-

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak

103


104

Capítulo 4

Diseño de miembros a tensión

ciones para los miembros a tensión es garantizar que posean suficiente rigidez para prevenir deflexiones laterales o vibraciones indeseables. Aunque los miembros a tensión no están expuestos al pandeo bajo cargas normales, pueden ocurrir inversiones de esfuerzo en éstos durante el transporte y el montaje y también debido a cargas de viento y sismo. Las especificaciones recomiendan que las relaciones de esbeltez se mantengan por debajo de ciertos valores máximos para que se tenga algo de resistencia a la compresión en los elementos. Para miembros a tensión, exceptuando las varillas, la Especificación AISC no proporciona una relación máxima de esbeltez para miembros a tensión, pero la Sección D.1 de la especificación sugiere que se use un valor máximo de 300. Debe notarse que la falta de rectitud no afecta mayormente la resistencia de los miembros a tensión porque las cargas de tensión tienden a enderezar los miembros. (No puede decirse lo mismo acerca de los elementos a compresión.) Por esta razón, la Especificación AISC es un poco más liberal en su consideración de los miembros a tensión, incluyendo aquellos sometidos a ciertas fuerzas compresivas debido a cargas transitorias generadas por viento o sismo. La relación de esbeltez máxima recomendada de 300 no es aplicable a varillas a tensión. Los valores máximos de L/r para varillas quedan a juicio del proyectista. Si se especificara para ellas un valor máximo de 300, rara vez se usarían, debido a sus radios de giro extremadamente pequeños, y por ende a relaciones de esbeltez muy altas. Las Especificaciones ASHTO exigen relaciones de esbeltez máximas de 200 para miembros principales a tensión y de 240 para miembros secundarios. (La AASHTO define a un miembro principal como uno en donde los esfuerzos resultan de cargas muertas y/o vivas, mientras que los miembros secundarios son aquellos usados para arriostrar las estructuras o para reducir la longitud no soportada de otros miembros —principales o secundarios.) Esta distinción no se hace en la Especificación AISC entre miembros principales y secundarios. La AASHTO también requiere que la relación máxima de esbeltez permitida para miembros sometidos a inversión de esfuerzos sea de 140. En efecto, el diseño de miembros de acero es un proceso de prueba y error, aunque las tablas tales como las dadas en el Manual del Acero con frecuencia nos permiten seleccionar directamente una sección conveniente. Para un miembro a tensión, podemos estimar el área requerida, seleccionar una sección del Manual si se conoce el área correspondiente, y verificar la resistencia de la sección, como se describió en el capítulo anterior. Después de hacer esto, puede ser necesario probar con una sección ligeramente mayor o tal vez más pequeña y repetir el proceso de verificación. El objetivo del proceso de diseño es dimensionar los miembros de modo que sean seguros satisfaciendo las condiciones de falla ilustradas en la Especificación AISC. El estudiante debe percatarse de que este proceso es iterativo y de que habrá algún redondeo hacia arriba o hacia abajo en el proceso de seleccionar la sección final. El área necesaria para un miembro a tensión específico puede estimarse con las ecuaciones de LRFD o de ASD, como se describe enseguida. Si se usan las ecuaciones de LRFD, la resistencia de diseño de un miembro a tensión es el menor de ftFy Ag, ftFu Ae, o de su resistencia por bloque de cortante. Además, la relación de esbeltez no deberá, de preferencia, exceder de 300. a. Para satisfacer la primera de estas expresiones, el área total mínima debe ser por lo menos igual a Ag mín =

Diseño de Estructuras de Acero – McCormac /Csernak

Pu . f t Fy

(4.1)

Alfaomega


4.1 Selección de perfiles

105

Armadura de transferencia en la Calle Federal 150, Boston, MA. (Cortesía de Owen Steel Company, Inc.)

b. Para satisfacer la segunda expresión, el valor mínimo de Ae debe ser por lo menos igual a Ae mín =

Pu . ftFu

Y puesto que Ae = UAn para un miembro atornillado, el valor mínimo de An es An mín =

Ae mín Pu = . U ftFuU

Entonces el Ag mínimo es = An mín + área estimada de agujeros =

Pu ftFuU + área estimada de agujeros

(4.2)

c. La tercera expresión puede evaluarse una vez que se haya seleccionado un perfil de prueba y se conocen los otros parámetros relacionados con la resistencia por bloque de cortante. El proyectista puede sustituir valores en las Ecuaciones 4.1 y 4.2, tomando el mayor valor de Ag así obtenido como una estimación inicial de las dimensiones. Sin embargo, conviene notar que la relación L/r de esbeltez máxima preferible es de 300. Con este valor es fácil calcular el mínimo valor preferible de r con respecto a cada eje principal de la sección transversal para un diseño particular, o sea, el valor de r para el cual la relación de esbeltez sea exactamente igual a 300. No conviene considerar una sección cuyo radio de giro mínimo r Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


106

Capítulo 4

Diseño de miembros a tensión

sea menor que este valor, porque entonces su relación de esbeltez excederá el valor máximo preferible de 300: L r mín = 300 Si se usan las ecuaciones ASD para el diseño de miembros a tensión, la resistencia FyA g FuUA n permisible es el menor de y . A partir de estas expresiones, las áreas totales Æt Æt mínimas requeridas son las siguientes: Æ tPa (4.1a) Ag mín = Fy Ag mín =

Æ tPa + área estimada de agujeros FuU

(4.2a)

En las expresiones para el método LRFD (4.1 y 4.2), Pu representa las fuerzas de las cargas factorizadas; en el método ASD (4.1a y 4.2a), Pa representa el resultado de nuestra aplicación de las combinaciones de cargas para el diseño ASD. Las áreas estimadas requeridas por esos dos métodos normalmente variarán un poco entre sí. El Ejemplo 4-1 ilustra el diseño de un miembro atornillado a tensión con una sección W, mientras que el Ejemplo 4-2 ilustra la selección de un miembro a tensión que es un ángulo individual atornillado. En ambos problemas, las áreas se estiman con las expresiones LRFD. Después de seleccionar las secciones en el Manual, se verifican en cuanto a sus resistencias de diseño LRFD y en cuanto a sus resistencias permisibles ASD. Independientemente de cuál de los dos métodos se use, puede ser necesario probar con una sección mayor o más pequeña y volver a hacer los cálculos. Para muchos de los problemas de diseño de ejemplo presentados en este texto, el autor ha usado solamente las expresiones LRFD para estimar las dimensiones preliminares del miembro. Igual pudieron haberse usado solamente las expresiones de diseño de ASD. Los resultados por los dos métodos serán muy cercanos entre sí. Independientemente de cuáles sean las dimensiones estimadas, éstas se verifican cuidadosamente con las ecuaciones apropiadas de LRFD y ASD. Si las ecuaciones no se satisfacen, se estimarán y se revisarán nuevas dimensiones de los miembros. Tendremos los mismos resultados finales independientemente de si nos imaginamos unas primeras dimensiones o si usamos alguna ecuación para estimarlas. En algunas ocasiones, usted encontrará que una sección ligeramente menor va a satisfacer a las ecuaciones LRFD en vez de satisfacer a las ecuaciones ASD. Una razón de esto es el hecho de que los factores de carga requeridos para las cargas muertas son mucho menores que los requeridos para las cargas vivas. Éste no es el caso con el ASD y sus factores de seguridad. Generalmente, para los ejemplos solamente en este texto, las cargas muerta D y viva L se especifican de modo que no tengamos que pasar por todas le expresiones de combinación de cargas. Entonces, para estos problemas necesitamos solamente usar las siguientes combinaciones de cargas: Para LRFD Pu = 1.4D

Para ASD Pa = D + L

Pu = 1.2D + 1.6L

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


4.1 Selección de perfiles

107

Como la primera de estas expresiones LRDF no regirá a menos que la carga muerta sea más de ocho veces mayor que la carga viva, se omitirá su consideración en los problemas que restan en este texto (a menos que D 7 8L). En el Ejemplo 4-1 se selecciona un perfil W para un conjunto dado de cargas de tensión. Para esta primera aplicación de las fórmulas de diseño por tensión, los autores han limitado el problema a una serie de perfiles W para que el lector pueda concentrarse en la aplicación de las fórmulas y no se pierda en considerar a las W8, W10, W14, etc. Puede usarse exactamente el mismo procedimiento para otro tamaño nominal de peralte que el usado aquí para una W12.

Ejemplo 4-1 Seleccione un perfil W12 de acero A992 de 30 pies de longitud para soportar una carga muerta de servicio de tensión PD = 130 klb y una carga viva de servicio de tensión PL = 110 klb. Como se muestra en la Figura 4.1, el miembro tendrá dos hileras de tornillos de 7/8 plg en cada patín (por lo menos tres en una línea a 4 plg entre centros).

Figura 4.1 Sección transversal del miembro para el Ejemplo 4-1.

4 plg

4 plg

Solución a)

Considerando las combinaciones necesarias de carga LRFD Pu = 1.4D = (1.4)(130 klb) = 182 klb Pu = 1.2D + 1.6L = (1.2)(130 klb) + (1.6)(110 klb) = 332 klb

ASD Pa = D + L = 130 klb + 110 klb = 240 klb

b)

Alfaomega

Calculando el Ag mínimo requerido, usando las Ecuaciones 4.1 y 4.2 del método LRFD 1. Ag mín =

Pu 332 klb = = 7.38 plg2 ftFy 10.902150 klb/plg2 2

2. Ag mín =

Pu + áreas estimadas de agujeros ftFuU Diseño de Estructuras de Acero – McCormac /Csernak


108

Capítulo 4

Diseño de miembros a tensión

Suponga que U = 0.85 de la Tabla 3.2, Caso 7, y suponga que el espesor del patín es aproximadamente 0.380 plg después de buscar en las secciones W12 en el Manual LRFD que tengan áreas de 7.38 plg2 o mayores. Se usó U = 0.85 ya que bf resulta ser menor que 2/3 d. Ag mín =

332 klb 7 1 + 142a plg + plgb10.380 plg2 = 9.53 plg2 ; 2 10.752165 klb/plg 210.852 8 8

c) Radio de giro mínimo r preferible r mín =

112 plg/pie2130 pies2 L = = 1.2 plg 300 300

Pruebe con una W12 * 35 (Ag = 10.3 plg2, d = 12.50 plg, bf = 6.56 plg, tf = 0.520 plg, rmín = ry = 1.54 plg) Comprobación a) Fluencia de la sección total Pn = Fy Ag = (50 klb/plg2)(10.3 plg2) = 515 klb LRFD con ft = 0.9 ftPn = 10.921515 klb2 = 463.5 klb 7 332 klb OK

ASD con Æt = 1.67 Pn Æt

=

515 klb = 308.4 7 240 klb OK 1.67

b) Resistencia de fractura a la tensión De la Tabla 3.2, Caso 2 x para la mitad de W12 * 35 o lo que es WT6 * 17.5 = 1.30 plg L = 12214 plg2 = 8 plg 1.30 plg x b = 0.84 U = a 1 - b = a1 L 8 plg De la Tabla 3.2, Caso 7 2 2 U = 0.85, ya que bf = 6.56 plg 6 d = a b112.50 plg2 = 8.33 plg, 3 3 7 1 An = 10.3 plg2 - 14 2a plg + plgb10.520 plg2 = 8.22 plg2 8 8 Ae = 10.85218.22 plg22 = 6.99 plg2

Pn = FuAe = 165 klb plg2216.99 plg22 = 454.2 klb

LRFD con ft = 0.75 ftPn = 10.7521454.2 klb2 = 340.7 klb 7 332 klb OK

Diseño de Estructuras de Acero – McCormac /Csernak

ASD con Æt = 2.00 Pn Æt

=

454.2 klb = 227.1 klb 6 240 klb N.G. 2.00

Alfaomega


4.1 Selección de perfiles

109

c) Relación de esbeltez Ly ry

=

12 plg/pie * 30 pie = 234 6 300, OK 1.54 plg

Resp. Por LRFD, use W12 * 35.

OK

Por ASD, use la siguiente sección mayor W12 * 40.

Puente sobre el Río Allegheny en Kittaning, PA. (Cortesía de American Bridge Company.)

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


110

Capítulo 4

Diseño de miembros a tensión

En el Ejemplo 4-2, se presenta una situación más amplia, en que se selecciona el ángulo satisfactorio más ligero en el Manual del Acero para un conjunto dado de cargas de tensión.

Ejemplo 4-2 Diseñe un miembro a tensión formado por un ángulo individual de 9 pies para soportar una carga muerta de trabajo a tensión de 30 klb y una carga viva de trabajo a tensión de 40 klb. El miembro estará conectado sólo por un lado con tornillos de 7/8 plg (por lo menos cuatro en cada hilera a 3 plg entre centros). Suponga que sólo se tendrá un tornillo en una sección transversal cualquiera. Use acero A36 con Fy = 36 klb/plg2 y Fu = 58 klb/plg2. Solución LRFD

ASD

Pu = 11.221302 + 11.621402 = 100 klb

Pa = 30 + 40 = 70 klb

Pu 100 = = 3.09 plg2 ftFy 10.921362

1.

Ag mín requerida =

2.

Suponga que U = 0.80, Tabla 3.2 (Caso 8) An mín requerida =

Pu 100 klb = = 2.87 plg2 ftFuU 10.752158 klb/plg2 210.802

Ag mín requerida = 2.87 plg2 + área de agujero para tornillo + 2.87 plg2 7 1 + a plg + plgb 1t2 8 8

112 plg/pie219 pie2

3.

r mín requerido =

Área total requerida = la mayor Pu/ftFy

Ángulo t(plg)

Área de un agujero para tornillo de 1 plg 1plg22

5/16

0.312

3.18

6 * 6 *

3/8

0.375

3.25

6 * 3 12 *

7/16

0.438

3.30

4 * 4 *

7 16 1A

= 3.30, rz = 0.7772 ;

5 * 3 *

7 16 1A

= 3.31, rz = 0.6442

1 2 1A

= 3.50, rz = 0.7162

300

= 0.36 plg

o bien Pu/ftFuU + área est. de agujero (pulg2)

Ángulos más ligeros disponibles, sus áreas 1plg22 y radios mínimos de giro 1plg2

1/2

0.500

3.37

4 * 312 *

5/8

0.625

3.50

4 * 3 *

Use L4 * 4 *

5 16 1A

= 3.67, rz = 1.192

3 8 1A

5 8 1A

= 3.44, rz = 0.7632

= 3.99, rz = 0.6312

7 ( x =1.15 plg) 16

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


4.2

Miembros compuestos sometidos a tensión 111

Comprobación a)

Fluencia de la sección total Pn = Fy Ag = 136 klb/plg2213.30 plg22 = 118.8 klb LRFD con ft = 0.9

ASD con Æt = 1.67

ftPn = 10.921118.8 klb2 = 106.9 klb 7 100 klb OK

Pn 118.8 klb = 71.1 klb 7 70 klb OK = Æt 1.67

b) Resistencia de fractura a la tensión An = 3.30 plg2 - 112a

7 plgb = 2.86 plg2 16 1.15 plg x = 1 = 0.87 ; U = 1 L 13)13 plg2

U de la Tabla 3.2 (Caso 8) = 0.80 Ae = U An = (0.87)(2.86 plg2) = 2.49 plg2 Pn = Fu Ae = (58 klb/plg2)(2.49 plg2) = 144.4 klb LRFD con ft = 0.75

ASD con Æt = 2.00

ftPn = 10.7521144.4 klb2 = 108.3 klb 7 100 klb OK

Pn 144.4 klb = 72.2 klb 7 70 klb OK = Æt 2.00

Resp. Por el método LRFD, use L4 * 4 *

7 7 . Por el método ASD, seleccione L4 * 4 * . 16 16

En el CD que acompaña al Manual hay diseños de miembros a tensión para otras secciones de acero. Se incluyen WT, HSS rectangulares y redondas, y secciones de ángulo doble.

4.2

MIEMBROS COMPUESTOS SOMETIDOS A TENSIÓN Las secciones D4 y J3.5 de la Especificación AISC dan un conjunto de reglas que describen cómo deben conectarse entre sí las diferentes partes de miembros compuestos sometidos a tensión. 1. Cuando se construye un miembro a tensión con elementos en contacto continuo entre sí, como una placa y un perfil o dos placas, la separación longitudinal de los conectores entre esos elementos no debe exceder de 24 veces el espesor de la placa más delgada, o de 12 plg si el miembro va a ser pintado o si no va a ser pintado y no estará sometido a efectos corrosivos.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


112

Capítulo 4

Diseño de miembros a tensión

2. Si el miembro consiste en elementos de acero intemperizado sin pintura en contacto continuo y sometidos a corrosión atmosférica, la separación máxima permisible entre conectores es de 14 veces el espesor de la placa más delgada, o 7 plg. 3. Si un miembro a tensión se construye con dos o más perfiles separados por rellenos intermitentes, los perfiles deben conectarse entre sí a intervalos tales que la relación de esbeltez de los perfiles individuales entre los conectores no exceda de 300. 4. La distancia del centro de cualquier perno al borde más cercano de la parte conectada en consideración no debe ser mayor de 12 veces el espesor de la parte conectada, o de 6 plg. 5. Para elementos en contacto continuo entre sí, la separación de los conectores se da en las Secciones J3.3 a J3.5 de la Especificación AISC. El Ejemplo 4.3 ilustra la revisión de un miembro a tensión formado por dos canales separados. En el ejemplo se incluye el diseño de las placas o barras de unión que mantienen juntas a las canales, como se muestra en la Figura 4.2(b). Estas placas, que se usan para unir las partes de miembros armados en sus lados abiertos, dan por resultado que la distribución de esfuerzos entre sus diversas piezas sea más uniforme. La Sección D4 de la Especificación AISC proporciona reglas empíricas para el diseño. (También pueden usarse cubreplacas perforadas.) Las reglas se fundamentan en muchas décadas de experiencias con miembros a tensión armados. En la sección de “Dimensiones y propiedades” de la Parte 1 del Manual, se listan las posiciones usuales para colocar tornillos en los patines de las W, C, WT, etc., bajo el encabezado “Gramil trabajable”. Para las canales que se usan en este ejemplo, el gramil g se da como 134 plg y se muestra en la Figura 4.2. En la Figura 4.2, puede verse que la distancia entre las hileras de los tonillos que conectan las placas de unión a las canales es de 8.50 plg. La Especificación (D4) de la AISC estipula que la longitud de las placas de unión (las longitudes en este texto siempre se miden paralelamente a la dirección larga de los miembros) no debe ser menor a dos tercios de la distancia entre las hileras de conectores. Además, su espesor no debe ser menor a un cincuentavo de esta distancia. El ancho mínimo permisible para las placas de unión (no mencionado en la especificación) es el ancho entre las hileras de conectores, más la distancia al borde, en cada lado, necesaria para impedir que los tornillos agrieten la placa. Para este ejemplo, esta distancia mínima al borde es de 112 plg, valor tomado de la Tabla J3.4 de la Especificación AISC. (En el Capítulo 12 se presenta información detallada relativa a las distancias a bordes de tornillos y remaches.) Las dimensiones de las placas están redondeadas para que coincidan con los tamaños de placa disponibles en las laminadoras, tal como se dan en la sección de Barras y Placas de la Parte 1 del Manual del Acero. Resulta más económico seleccionar espesores y anchos estándar que otros que requieran operaciones de corte y otras operaciones. La Especificación (D4) del AISC fija la separación máxima entre placas de unión, estipulando que la relación L/r de cada componente individual de un miembro armado colocado individualmente entre placas de unión no debe exceder de 300 de preferencia. Si el proyectista sustituye en esta expresión (L/r = 300), el menor radio de giro r de un componente individual de un miembro armado, entonces se puede despejar el valor de L. Ésta será la separación máxima entre placas de unión permitida por la Especificación AISC para este miembro.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


4.2

Miembros compuestos sometidos a tensión 113

Ejemplo 4-3 Se han seleccionado dos C12 * 30, que se muestran en la Figura 4.2, para soportar una carga muerta de trabajo a tensión de 120 klb y una carga viva de trabajo a tensión de 240 klb. El miembro de acero A36 tiene 30 pies de longitud y en cada patín tiene una hilera de tres tornillos de 7/8 plg a 3 plg entre centros. Determine si el miembro es satisfactorio de acuerdo con la Especificación AISC y diseñe las placas de unión necesarias. Suponga que los centros de huecos están situados a 1.75 plg del dorso de las canales. Solución. Usando las C12 * 30 (Ag = 8.81 plg2 cada una, tf = 0.501 plg. Ix = 162 plg4 cada una, Iy = 5.12 plg4 cada una, el eje y a 0.674 plg desde el dorso de C, ry = 0.762 plg). 5.326 plg 0.674 plg

c. g. de C x

x

12.00 plg

2 - C12  30s (A  8.81 plg2 cada una) 1 8 2 plg

3 g  1 4 plg

3 1 4 plg

12 plg (a) 1 P 2

1 P 2

Placa de unión Longitud de la placa de unión

1 P 2

Figura 4.2 Sección armada del ejemplo 4-3.

Alfaomega

1

Ancho de la 2 placa de unión

P

(b)

Diseño de Estructuras de Acero – McCormac /Csernak


114

Capítulo 4

Diseño de miembros a tensión

Solución Cargas que deben resistirse

a)

LRFD

ASD

Pu = 11.221120 klb2 + 11.621240 klb2 = 528 klb

Pa = 120 klb + 240 klb = 360 klb

Fluencia de la sección total Pn = Fy Ag = (360 klb/plg2)(2 * 8.81 plg2) = 634.3 klb LRFD con ft = 0.9

ASD con Æt = 1.67

ftPn = 10.921634.3 klb2 = 570.9 klb 7 528 klb OK

Pn 634.3 klb = 379.8 klb 7 360 klb OK = Æt 1.67

b)

Resistencia de fractura a la tensión 1 7 An = 2 c 8.81 plg2 - 122a plg+ plgb10.501 pies2 d = 15.62 plg2 8 8 U = 1 -

x 0.674 plg = 1 = 0.89 de la tabla 3.2 (Caso 2) L 12213 plg2 -

Pn = Fu UAn = 158 klb plg 22115.62 plg2 210.892 = 806.3 klb LRFD con ft = 0.75

ASD con Æt = 2.00

ftPn = 10.7521806.3 klb2 = 604.7 klb 7 528 klb OK

Pn 806.3 klb = 403.1 klb 7 360 klb OK = Æt 2.00

Relación de esbeltez Ix = 1221162 plg4 2 = 324 plg4 Iy = 12215.12 plg42 + 12218.81 plg2 215.326 plg22 = 510 plg4 rx =

324 plg4 = 4.29 plg 6 ry = 17.62 plg2

510 = 5.38 plg 17.62

‹ rmin = rx = 4.29 plg

112 plg/pie * 30 pies2 Lx = = 83.9 6 300 rx 4.29 plg

Diseño de las placas de unión (Especificación D4 del AISC)

Distancia entre hileras de tornillos = 12.00 plg - 122 A 1 43 plg B = 8.50 plg Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


4.3 Varillas y barras Longitud mínima de las placas de unión = Espesor mínimo de las placas de unión =

115

A 23 B(8.50 plg) = 5.67 plg (o bien 6 plg)

A 501 B(8.50 plg) = 0.17 plg A o bien 163 plg B

Ancho mínimo de las placas de unión = 8.50 plg + (2)A 112 plgB = 11.5 plg (o bien 12 plg)

Separación máxima preferible de las placas de unión r mínimo de una C = 0.762 plg = ry L máxima preferible = 300 r 112 plg/pie21L2 0.762 plg

= 300

L = 19.05 pies (o bien 15 pies) 3 Usar placas de unión de 16 * 6 * 1 pie 0 plg a 15 pies centro a centro.

4.3

VARILLAS Y BARRAS Cuando se usan varillas y barras como miembros a tensión, pueden soldarse simplemente sus extremos, o bien, mantenerse en posición por medio de roscas (cuerdas) con tuercas. El esfuerzo de diseño nominal a tensión del AISC para varillas roscadas, Fnt, se da en la Tabla J3.2 del AISC y es igual a 0.75Fu. Esto se aplica al área total AD de la varilla calculada con el diámetro mayor de la rosca; es decir, el diámetro de la extremidad exterior de la rosca. Entonces, el área requerida para una carga específica a tensión puede calcularse como sigue: Rn = Fnt AD = 0.75 FuAD f = 0.75 LRFD AD Ú

Pu f 0.75Fu

Æ = 2.00 ASD AD Ú

ÆPa 0.75Fu

En la Tabla 7-18 del Manual, titulada “Threading Dimensions for High-Strength and Non-High-Strength Bolts” (Dimensiones de las roscas para pernos de alta resistencia y de no alta resistencia), se presentan las propiedades de varillas estándar roscadas. El Ejemplo 4-4 ilustra la selección de una varilla usando esta tabla.

Ejemplo 4-4 Usando la Especificación AISC, seleccione una varilla roscada estándar de acero A36 para soportar una carga de trabajo muerta a tensión de 10 klb y una carga de trabajo viva a tensión de 20 klb. Solución

Alfaomega

LRFD

ASD

Pu = 11.22110 klb2 + 11.62120 klb2 = 44 klb

Pa = 10 klb + 20 klb = 30 klb

Diseño de Estructuras de Acero – McCormac /Csernak


116

Capítulo 4

Diseño de miembros a tensión AD Ú

Pu 44 klb = = 1.35 plg2 f 0.75Fu 10.75210.752158 klb/plg2 2

Intente con una varilla de 138 plg de diámetro de la Tabla 7-17 del AISC usando el área total de la varilla 1.49 plg2. Rn = 0.75 Fu AD = (0.75)(58 klb/plg2)(1.49 plg2) = 64.8 klb LRFD f = 0.75

ASD Æ = 2.00

fRn = 10.752164.8 klb2 = 48.6 klb 7 44 klb OK

Rn 64.8 klb = = 32.4 7 30 klb OK Æ 2.00

Use una varilla de 138 plg de diámetro con 6 cuerdas por plg. Como se muestra en la Figura 4.3, en algunas ocasiones se usan varillas recalcadas en las que los extremos tienen un mayor diámetro que la varilla regular y las roscas se colocan en ellos. Las roscas reducen obviamente el área de la sección transversal de una barra. Si una varilla se recalca y las roscas se colocan en esa parte de la barra, el resultado será una mayor sección transversal en la raíz de la rosca que la que se tendría si las roscas se colocaran en la parte regular de la barra. El pie de página (d) de la Tabla J3.2 de la Especificación AISC establece que la resistencia nominal a la tensión de la porción roscada del extremo recalcado es igual a 0.75Fu AD, donde AD es el área de la sección transversal en la zona de la rosca con mayor diámetro. Este valor debe ser mayor que el área nominal del cuerpo de la varilla (antes de recalcarla) multiplicada por Fy, de modo que la resistencia a la fractura de la sección neta sobrepase a la resistencia a la fluencia de la sección total. El recalque permite al proyectista usar el área entera de la parte regular de la barra para cálculos de resistencia. Sin embargo, el uso de barras recalcadas no resulta económico y debe evitarse, a menos que se fabrique una gran cantidad de ellas. Una situación en la cual algunas veces se usan varillas de tensión ocurre en los edificios industriales con estructura de acero que tienen largueros entre sus armaduras de techo para soportar la superficie del mismo. Este tipo de edificios tiene también, con frecuencia, largueros de pared entre columnas a lo largo de las paredes verticales. (Los largueros de pared son vigas horizontales usadas en los lados de los edificios, generalmente industriales, para resistir la flexión lateral debida al viento. También se usan con frecuencia para soportar láminas corrugadas u otros tipos de recubrimientos.) Pueden requerirse tensores para proporcionar soporte a los largueros paralelos a la superficie del techo y soporte vertical a los largueros de pared. En techos con pendientes mayores que 1 verticalmente a 4 horizontalmente se consideran necesarios los tensores para proporcionar soporte lateral a los largueros, especialmente cuando éstos consisten en canales de acero. Éstas comúnmente se usan como largueros, pero tienen poca resistencia a la flexión lateral. Aunque el momento resistente necesario, paralelo a la superficie del techo es pequeño, se requiere una canal extrema-

Figura 4.3 Una barra redonda recalcada.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


4.3 Varillas y barras

117

Puente New Albany sobre el Río Ohio, entre Louisville, KY, y Nueva Albany, IN. (Cortesía de la Lincoln Electric Company.)

damente grande para proporcionarlo. El uso de tensores para dar apoyo lateral a largueros hechos de canales generalmente resulta económico por la poca capacidad de flexión de éstas con respecto al eje y. Para techos ligeros (como en los que las armaduras soportan cubiertas de lámina corrugada de acero) es casi seguro que se requieran tensores en los tercios de los largueros si las armaduras se encuentran separadas ente sí a más de 20 pies. Generalmente son suficientes tensores en los puntos medios si las armaduras están a menos de 20 pies entre sí entre centros. Para techos más pesados, tales como los construidos de pizarra, láminas de asbesto-cemento, teja de barro, etc., se requerirán tensores a intervalos menores. Probablemente los puntos en los tercios serán necesarios si las armaduras se separan a intervalos mayores de 14 pies, y los puntos medios serán satisfactorios si la separación de la armaduras es menor que 14 pies. Algunos proyectistas suponen que la componente de la carga paralela a la superficie del techo puede tomarse por la cubierta, sobre todo si ésta consta de láminas corrugadas de acero, resultando entonces innecesarios los tensores. Sin embargo, esta hipótesis es dubitativa y definitivamente no deberá seguirse si el techo está muy inclinado. Los proyectistas deben usar su propio juicio al limitar los valores de la esbeltez en las varillas, ya que éstos serán varias veces mayores que los valores límite mencionados para otro tipo de miembros a tensión. Una práctica común de muchos proyectistas es usar diámetros no menores de 1/500 de su longitud, a fin de lograr cierta rigidez, aun cuando los cálculos de esfuerzo permitan diámetros menores. Normalmente es conveniente limitar a 5/8 plg el diámetro mínimo de los tensores, ya que los de menor diámetro se dañan con frecuencia durante la construcción. La rosca en perfiles redondos más delgados se daña fácilmente al apretarlos en exceso, lo que parece ser un hábito frecuente en los montadores. En el Ejemplo 4-5 se muestra un cálculo de tensores para los largueros de una armadura de techo. Se supone que los tensores soportan las reacciones de la viga simplemente apoyada, debidas a las componentes paralelas a la cubierta causadas por las cargas por la gravedad (cubierta, largueros, nieve y hielo). Se supone que las fuerzas del viento actúan perpendicularmente a la superficie del techo y teóricamente no afectan los esfuerzos de los tensores. La fuerza máxima en un tensor ocurrirá en el que se encuentra en la parte más alta (cumbrera), ya que éste debe soportar la suma de las fuerzas de los tensores inferiores. Teóricamente es posible usar perfiles redondos más delgados para los tensores inferiores, pero esta reducción en diámetro no es práctica. Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


118

Capítulo 4

Diseño de miembros a tensión

Ejemplo 4-5 Diseñe los tensores para los largueros de la armadura mostrada en la Figura 4.4. Los largueros estarán soportados en los tercios del claro entre las armaduras espaciadas a 21 pies entre centros. Use acero A36 y suponga que se permite un diámetro mínimo de 5/8 plg para los tensores. Se usa un techo con teja de arcilla que pesa 16 lb/pie2 (0.77 kN/m2) como superficie de techo y soporta una carga de nieve de 20 lb/pie2 (0.96 kN/m2) de proyección horizontal de la superficie del techo. En las Figuras 4.4 y 4.5 se muestran detalles en los largueros, así como los tensores y sus conexiones. En esas figuras las líneas punteadas representan puntales y riostras en las tableros extremos en el plano del techo, usados comúnmente para dar mayor resistencia frente a cargas localizadas en un solo lado del techo (dicha condición de carga puede presentarse cuando desaparece la nieve de uno de los lados durante un vendaval). Solución. Las cargas debidas a la gravedad en lb/pie2 de la superficie de techo son las siguientes: Peso promedio en lb/pie2 de los 7 largueros a cada lado del techo =

172111.5 lb/pie2 37.9 pies

Nieve = 20 lb/pie2 ¢

3 210

= 2.1 lb/pie 2

≤ = 19 lb/pie2 de superficie de techo

Techo de tejas = 16.0 lb/pie2 wu = (1.2)(2.1 + 16.0) + (1.6)(19.0) = 52.1 lb/pie2 Puede verse en las Figuras 4.4 y 4.5 que la mitad de la componente de la carga paralela a la superficie del techo entre los dos largueros superiores a cada lado de la armadura, es llevada directamente a los tensores horizontales entre los largueros. En este ejemplo hay siete largueros (con seis espacios entre ellos) a cada lado de la armadura. Así, 1/12 de la carga inclinada total va directamente al tensor horizontal. LRFD

ASD

Carga LRFD sobre el tensor inclinado superior, usando la ecuación controladora de factores de carga wu = (1.2)(2.1 lb/pie2 + 16 lb/pie2) + (1.6)(19 lb/pie2) = 52.1 lb/pie2

Carga ASD sobre el tensor inclinado superior, usando la ecuación controladora de carga ASD w = 2.1 lb/pie2 + 16 lb/pie2 + 19 lb/pie2 = 37.1 lb/pie2

Componente de cargas paralelas a la superficie de techo

Componente de cargas paralelas a la superficie de techo

= ¢

1

≤ 152.1 lb/pie22 = 16.5 lb/pie2

210 Carga sobre el tensor inclinado superior 11 = a b137.9 pies217 pies2116.5 lb/pie22 12 = 4013 lbs = 4.01 k = Pu

≤ 137.12 = 11.7 lb/pie2 210 Carga sobre el tensor inclinado superior 11 = a b 137.9 pies217 pies2111.7 lb/pie22 12 = 2845 lbs = 2.85 k = P = ¢

Diseño de Estructuras de Acero – McCormac /Csernak

1

Alfaomega


4.3 Varillas y barras

10

Tensor entre largueros de cumbrera 1

3 Tensores inclinados

119

37.9

Largueros C8  11.5 Techumbre de tejas

pies

Ángulos de respaldo 12 pies

6 en 12 pies = 72 pies

Largueros de la cumbrera Armadura Tirantes (desplazados entre sí 6 plg para facilitar su instalación)

21 pies Armadura

7 pies 21 pies Riostras

Largueros

7 pies

Puntales

7 pies

Figura 4.4

Área del techo usada para calcular la carga para este tensor

Planta de dos crujías del techo.



11 12

(7)(37.9)

Arandelas cónicas impiden Tensor inclinado superior la flexión de los tensores No se muestran Larguero de la los ángulos de cumbrera respaldo

Armadura

Tensor entre largueros de la cumbrera

Larguero de la cumbrera

Cuerda superior de la armadura

Figura 4.5 Detalles de la conexión de tensores.

Alfaomega

Nota: Algunos proyectistas prefieren colocar largueros de canal con sus patines apuntando hacia abajo en sentido de la inclinación del techo para evitar la acumulación de basura o la condensación en sus patines inferiores.

Diseño de Estructuras de Acero – McCormac /Csernak


120

Capítulo 4

Diseño de miembros a tensión

Selección de la sección con la expresión LRFD AD =

Pu 4.01 klb = = 0.12 plg2 f 0.75Fu 10.75210.752158 klb/plg22

Intente con un perfil redondo de 58 plg como tamaño práctico mínimo, 11 cuerdas por pulgada, de la Tabla 7-18 del AISC.

Rn = 0.75FuAD

AD = 0.307 plg2 = 10.752158 klb/plg2210.307 plg22 = 13.36 klb

LRFD con f = 0.75

ASD con Æ = 2.00

fRn = 10.752113.36 klb2 = 10.02 klb 7 4.01 klb OK

Rn 13.36 klb = = 6.68 klb 7 2.85 klb OK Æ 2.00

Use un perfil redondo de 58 plg tanto para LRFD como para ASD. Revisando la fuerza en los tensores entre largueros de la cumbrera LRFD Pu = 137.9 pies217 pies2116.5 lb/pie2 2 ¢

ASD 210 ≤ 3

= 4 614 lbs = 4.61 klb 6 10.02 klb OK

Pa = 137.9 pies217 pies2111.7 lb/pie2 2 ¢

210 ≤ 3

= 3 280 lbs = 3.28 klb 6 6.68 klb OK

Use un perfil redondo de 58 plg tanto para LRFD como para ASD.

4.4

MIEMBROS CONECTADOS POR PASADORES Hasta los primeros años del siglo xx, casi todos los puentes de Estados Unidos eran de juntas articuladas o de pasadores, pero en la actualidad es raro que se construyan así, en vista de las ventajas de las conexiones soldadas o atornilladas. Un problema en las antiguas conexiones a base de pasadores, en las armaduras, era el desgaste de éstos en los agujeros, lo que ocasionaba que las juntas se aflojaran. Una barra de ojo es un tipo especial de miembro conectado por pasadores cuyos extremos, donde están localizados los agujeros para los pasadores, se encuentran agrandados, como se muestra en la Figura 4.6. Aunque en la actualidad se han vuelto casi obsoletas, las barras de ojo en un tiempo fueron muy comúnmente usadas como miembros en tensión en armaduras de puentes.

Figura 4.6 Extremo de una barra de ojo.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


4.4 Miembros conectados por pasadores 121 Las barras de ojo conectadas con pasadores todavía se usan ocasionalmente, como miembros a tensión en los puentes de gran claro y como suspensores en algunos tipos de puentes y para estructuras que normalmente están sujetas a cargas muertas muy grandes. En consecuencia, las barras de ojo generalmente están impedidas de vibrar y de desgastarse, como lo harían bajo cargas vivas. Las barras de ojo por lo general no se fabrican por forjado, sino por un proceso de corte térmico de las placas. Como se establece en el Comentario (D6) del AISC, extensas pruebas han demostrado que los miembros cortados térmicamente conducen a diseños más balanceados. Las cabezas de las barras de ojo están conformadas especialmente para proporcionar un flujo óptimo del esfuerzo alrededor de los agujeros. Estas proporciones se basan en una larga experiencia y en pruebas con barras de ojo forjadas y los estándares resultantes son algo conservadores respecto a las miembros actuales cortados térmicamente. La Especificación (D5) del AISC aporta requisitos detallados para miembros conectados por pasadores respecto a la resistencia y proporciones de los pasadores y placas. La resistencia de diseño de tales miembros es el menor valor obtenido con las siguientes ecuaciones, donde se hace referencia a la Figura 4.7: 1. Fractura por tensión sobre el área neta efectiva. Véase la Figura 4.7(a). Pn = 2tbeFu f = 0.75 (LRFD)

(Ecuación D5-1 del AISC) Æ = 2.00 ASD

en donde t = espesor de la placa y be = 2t + 0.63, pero no debe exceder la distancia del borde del agujero a la orilla medida perpendicularmente a la línea de la fuerza.

t

d Pn  (2t)(2t  0.63)(Fu)

(a) Resistencia de la fractura a la tensión sobre el área neta efectiva t

d

a Pn  (0.6)(2t) a  d2 (Fu)

(b) Resistencia a la fractura por cortante sobre el área efectiva t

d Pn  1.8 Fydt

(c) Resistencia por aplastamiento de superficie. (Éste es el aplastamiento sobre el área rectangular proyectada detrás del tornillo.) t

d

Figura 4.7 Resistencia de miembros a tensión conectados por pasadores.

Alfaomega

Ancho

Pn  (Fy)(ancho)(t)

(d) Resistencia por fluencia a la tensión en la sección total

Diseño de Estructuras de Acero – McCormac /Csernak


122

Capítulo 4

Diseño de miembros a tensión

2. Por fractura al cortante sobre el área efectiva. Véase la Figura 4.7(b). Pn = 0.6 Fu Asf f = 0.75 (LRFD)

(Ecuación D5-2 del AISC) Æ = 2.00 ASD

en donde Asf = 2t(a + d/2), donde a es la distancia más corta del borde del agujero del pasador a la orilla del miembro medida paralelamente a la fuerza. 3. Resistencia de superficies por aplastamiento. Véase la Figura 4.7(c). Rn = 1.8 Fy Apb f = 0.75 (LRFD)

(Ecuación J7-1 del AISC) Æ = 2.00 ASD

en donde Apb = área proyectada de aplastamiento = dt. Observe que la Ecuación J7-1 del LRFD se aplica a superficies cepilladas, pasadores en agujeros escariados, taladrados o punzonados y extremos de atiesadores de apoyo ajustados. (La Especificación J7(b) del AISC también proporciona otras ecuaciones para determinar la resistencia por aplastamiento para rodillos de expansión y mecedoras.) 4. Fluencia a tensión de la sección total. Véase la Figura 4.7(d). Pn = Fy Ag ft = 0.90 (LRFD)

(Ecuación D2-1 del AISC) Æt = 1.67 (ASD)

La Especificación D6.2 del AISC establece que los espesores 6 1/2 plg para barras de ojo y placas conectadas por pasadores son sólo permisibles cuando se proporcionan tuercas externas para apretar las placas de pasador y placas de relleno en contacto sin holgura. La Especificación J7 del AISC provee la resistencia de diseño por aplastamiento de tales placas. Además de los otros requisitos mencionados, la Especificación D5 del AISC señala ciertas proporciones entre los pasadores y las barras de ojo. Esos valores se basan en una larga experiencia de la industria del acero y en el trabajo experimental de B. G. Johnston.1 Se ha encontrado que cuando las barras de ojo y los miembros conectados por pasadores están hechos de aceros con esfuerzos de fluencia mayores de 70 kilolibras por pulgada cuadrada (klb/plg2), existe la posibilidad de que se presente la falla por combado (una falla complicada de estabilidad inelástica en la que la cabeza de la barra de ojo tiende a enrollarse lateralmente en forma de plato). Por esta razón, las especificaciones del AISC requieren proporciones más robustas en los miembros para estas situaciones (el diámetro del agujero no debe exceder cinco veces el espesor de la placa y el ancho de la barra de ojo se reduce en forma correspondiente).

4.5

DISEÑO POR CARGAS DE FATIGA No es común que los esfuerzos de fatiga sean un problema en los marcos de los edificios promedio, ya que los cambios de carga en estas estructuras generalmente ocurren sólo ocasionalmente y producen variaciones de esfuerzos relativamente menores. Sin embargo, en los casos en que hay frecuentes variaciones o aun inversiones de los esfuerzos, deberá considerarse el fenómeno de la fatiga. La fatiga puede ser un problema en edificios que contienen trabes carril para grúas o se soporta maquinaria o equipo pesados móviles o vibratorios. Si los miembros de acero están sujetos a cargas que se aplican y luego se retiran o cambian muchas miles de veces, pueden aparecer en ellos grietas que se propagan tanto que llega a ocurrir la falla por fatiga. El acero debe estar sometido a inversiones de esfuerzo o 1

B. G. Johnston, “Pin-Connected Plate Links”, Transactions ASCE, 104 (1939).

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


4.5 Diseño por cargas de fatiga

123

a variaciones en el esfuerzo de tensión porque los problemas de fatiga ocurren sólo cuando está presente una tensión. (Sin embargo, algunas veces ocurren grietas por fatiga en miembros que están sujetos solamente a esfuerzos de compresión calculados si partes de esos miembros tienen esfuerzos residuales de tensión altos.) El resultado de las cargas de fatiga es que los miembros de acero pueden fallar a tensiones muy por debajo de los esfuerzos a los que ellos fallarían si estuvieran sometidos a cargas estáticas. La resistencia por fatiga de un miembro específico depende del número de ciclos de cambio de esfuerzos, del intervalo de cambio de la carga y del tamaño de los defectos. En el Apéndice 3 de la Especificación AISC, se presenta un método de diseño simple para considerar los esfuerzos por fatiga. Para este estudio, se define al término intervalo de esfuerzos como la magnitud del cambio de esfuerzos en un miembro debido a la aplicación o retiro de las cargas vivas de servicio. Si hay inversión de esfuerzos, el intervalo de esfuerzos es igual a la suma numérica de los esfuerzos de tensión y de compresión máximos repetidos. La vida por fatiga de los miembros aumenta a medida que disminuye el intervalo de esfuerzos. Además, para intervalos de esfuerzos muy bajos, la vida por fatiga es muy larga. De hecho, existe un intervalo para el cual la vida del miembro resulta ser infinita. A este intervalo se le llama el intervalo umbral de esfuerzos por fatiga. Si se supone que el número de ciclos de la carga es menor de 20 000, no es necesario considerar la fatiga. (Observe que tres ciclos por día durante 25 años es igual a 27 375 ciclos.) Si el número de ciclos es mayor de 20 000, se calcula un intervalo de esfuerzos permisible tal como se especifica en el Apéndice 3.3 de la Especificación del AISC. Si se selecciona un miembro y se encuentra que tiene un intervalo de esfuerzos de diseño por debajo del intervalo real de esfuerzos, será necesario seleccionar un miembro más grande. Las dos siguientes notas adicionales forman parte del procedimiento de diseño por fatiga del AISC: 1. El intervalo de esfuerzos de diseño determinado de acuerdo con los requisitos del AISC es aplicable solamente a las siguientes situaciones: a. Estructuras para las cuales el acero tiene una protección adecuada contra la corrosión para las condiciones esperadas en esa localidad. b. Estructuras para las cuales la temperatura no exceda de 300°F. 2. Las disposiciones de la Especificación del AISC son aplicables a esfuerzos que se calculan con cargas de servicio, y el esfuerzo máximo permitido debido a estas cargas es 0.66Fy. En el Apéndice 3 de la Especificación del AISC se dan fórmulas para calcular el intervalo de esfuerzos permisible. Para las categorías de esfuerzos A, B, B¿, C, D, E y E¿ listadas en la Tabla A3.1 del Apéndice del AISC, FSR = ¢

Cf nSR

0.333

Ú FTH

(Ecuación A-3-1 del AISC)

en donde FSR = intervalo de esfuerzos permisible, klb/plg2 Cf = constante de la Tabla A-3.1 en el Apéndice A del AISC nSR = número de fluctuaciones en el intervalo de esfuerzos en la vida de diseño = número de fluctuaciones en el intervalo de esfuerzos por día * 365 * años de vida de diseño FTH = intervalo umbral de esfuerzos permisible, intervalo máximo de esfuerzos para una vida de diseño indefinida, tomados de la Tabla A-3.1 del Apéndice del AISC, klb/plg2 Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


124

Capítulo 4

Diseño de miembros a tensión

El Ejemplo 4-6 presenta el diseño de un miembro a tensión sujeto a cargas fluctuantes, usando el Apéndice 3 de la Especificación del AISC. Las fluctuaciones e inversiones de esfuerzos son un problema cotidiano en el diseño de las estructuras de los puentes. Las Especificaciones AASHTO proporcionan intervalos permisibles de esfuerzos, determinados de manera muy parecida a la de las Especificaciones del AISC.

Ejemplo 4-6 Un miembro a tensión consta de una sección W12 (Fy = 50 klb/plg2) con conexiones en los extremos de soldadura de filete. La carga muerta de servicio es de 40 klb, mientras que se estima que la carga viva de servicio varía desde una compresión de 20 klb a una tensión de 90 klb cincuenta veces al día para una vida de diseño estimada de 25 años. Seleccione la sección, usando el procedimiento del AISC. Solución Pu = (1.2)(40 klb) + (1.6)(90 klb) = 192 klb Tamaño estimado de la sección para fluencia a tensión de la sección total Ag Ú

Pu 192 klb = = 4.27 plg2 ftFy 10.92150 klb/plg22

Intente con una W12 * 16 (Ag = 4.71 plg2) nSR = (50)(365)(25) = 456 250 De acuerdo con la Tabla A-3.1 del Apéndice 3 de la Especificación AISC, el miembro está contemplado en la Sección 1 de la tabla y en la categoría de esfuerzos A. Cf = 250 * 108 de la tabla FTH = 24 klb/plg2 de la tabla FSR = ¢

Cf nSR

0.333

= ¢

250 * 108 0.333 = 37.84 klb/plg2 ≤ 456 250

Tensión máxima de la carga de servicio =

40 klb + 90 klb = 27.60 klb/plg2 4.71 plg2

Tensión mínima de la carga de servicio =

40 klb - 20 klb = 4.25 klb/plg2 4.71 plg2

Intervalo real de esfuerzos = 27.60 - 4.25 = 23.35 klb/plg2 6 FSR = 37.84 klb/plg2

(OK)

Use una W12 * 16.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


4.6 Problemas para resolver

4.6

125

PROBLEMAS PARA RESOLVER

4-1 a 4-8.

4-1.

4-2. 4-3.

4-4.

4-5.

4-6.

4-7.

4-8.

4-9 a 4-16.

Alfaomega

Para todos estos problemas, seleccione los tamaños con las expresiones de LRFD y revise los perfiles seleccionados tanto con las expresiones de LRFD como con las de ASD. Seleccione perfiles para las condiciones descritas, usando Fy = 50 klb/plg2 y Fu = 65 klb/plg2, a menos que se indique lo contrario y sin considerar el boque de cortante. Seleccione el perfil más ligero W12 disponible para soportar cargas de trabajo a tensión de PD = 120 klb y PW = 288 klb. El miembro tiene 20 pies de largo y debe tener dos hileras de agujeros para tornillos de 3/4 plg en cada patín. Habrá por lo menos tres tornillos en cada línea a 3 plg entre centros. (Resp. W12 * 45 LRFD y ASD.) Repita el problema 4-1 seleccionando una viga W10. Seleccione la WT7 más ligera disponible para soportar una carga factorizada de tensión Pu = 250 klb, Pa = 160 klb. Suponga que hay dos líneas de tornillos de 7/8 plg en el patín (con tres tornillos por lo menos en cada línea de 4 plg centro a centro). El miembro tiene 30 pies de largo. (Resp. WT7 * 26.5 LRFD, WT7 * 24 ASD.) Seleccione el perfil S más ligero que soporte con seguridad las cargas de servicio de tensión PD = 75 klb y PL = 40 klb. El miembro tiene 20 pies de largo y debe tener una línea de agujeros para tornillos de 3/4 plg Ø en cada patín. Considere por lo menos tres agujeros en cada línea de 4 plg centro a centro. Use acero A36. Seleccione el perfil C más ligero que soporte con seguridad las cargas de servicio de tensión PD = 65 klb y PL = 50 klb. El miembro tiene 14 pies de largo y debe tener dos líneas de agujeros para tornillos de 3/4 plg Ø en el alma. Considere por lo menos tres agujeros en cada línea de 3 plg centro a centro. Use acero A36. (Resp. C8 * 18.75 LRFD y ASD.) Seleccione el perfil W10 más ligero que resista una carga de servicio de tensión PD = 175 klb y PL = 210 klb. El miembro tiene 25 pies de largo y debe tener dos líneas de agujeros en cada patín y dos líneas de agujeros en el alma. Considere por lo menos cuatro agujeros en cada línea de 3 plg centro a centro. Todos los agujeros son para tornillos de 7/8 plg Ø. Use acero A992 – Grado 50. Seleccione el perfil C más ligero que soporte con seguridad las cargas de servicio de tensión PD = 20 klb y PL = 34 klb. El miembro tiene 12 pies de largo y debe tener solamente una soldadura transversal al final de la canal. Use acero A36. (Resp. C6 * 10.5 LRFD y ASD.) Seleccione el perfil MC12 más ligero que resista una carga factorizada total de 372 klb y una carga de servicio total de 248 klb. El miembro tiene 20 pies de largo y debe estar soldado en el extremo así como en cada patín por una distancia de 6 plg a lo largo de la longitud de la canal. Use acero A36. Seleccione la sección más ligera para cada una de las situaciones descritas en la Tabla 4.1. Suponga tornillos a 3 plg entre centros (a menos que se indique otra cosa). No considere bloque de cortante. Determine U de la Tabla 3.2 de este libro (excepto si se da).

Diseño de Estructuras de Acero – McCormac /Csernak


126

Capítulo 4

Diseño de miembros a tensión

TABLA 4.1 Perfil

PD (klb)

PL (klb)

Longitud (pies)

Acero

4-9

W8

75

100

24

A992

Dos líneas de tornillos de 5/8 plg Ø (3 en una línea a 2 1/2 plg centro a centro) en cada patín

4-10

W10

120

220

30

A992

Dos líneas de tornillos de 3/4 plg Ø (3 en una línea) en cada patín

4-11

W12

150

175

26

A36

Dos líneas de tornillos de 7/8 plg Ø (2 en una W12 * 58 LRFD línea a 4 plg centro a centro) en cada patín W12 * 65 ASD

4-12

W10

135

100

28

A36

Soldadura longitudinal solamente en los patines, 6 plg de longitud

4-13

W8

100

80

30

A992

Soldadura transversal solamente en los patines

4-14

S

60

100

22

A36

Una línea de tornillos de 3/4 plg Ø (3 en una línea a 4 plg centro a centro) en cada patín

4-15

WT6

80

120

20

A992

Soldadura longitudinal solamente en el patín, 6 plg de longitud

4-16

WT4

30

50

18

A36

Soldadura transversal solamente en el patín

Prob. núm.

Conexión de extremo

Respuesta W8 * 28 LRFD y ASD

W8 * 24 LRFD W8 * 28 ASD

WT6 * 26.5 LRFD y ASD

4-17. Usando acero A36 seleccione el miembro más ligero consistente en un ángulo individual de alas iguales para resistir una carga de tensión de PD = 45 klb, PL = 25 klb y PW = 88 klb. El miembro se conectará por un ala con dos líneas de tres tornillos de 3/4 plg Ø a 3 1/2 plg centro a centro. La longitud del miembro es de 24 pies. Desprecie el bloque de cortante. (Resp. L6 * 6 * 1/2 para LRFD y ASD.) 4-18. Seleccione un par de canales C10 para un miembro a tensión sujeto a una carga muerta de 120 klb y una carga viva de 275 klb. Las canales se colocan espalda con espalda y se conectan a una placa de unión de 3/4 plg mediante tornillos de 7/8 plg Ø. Suponga acero A588 Grado 50 para las canales y suponga que es suficiente la placa de unión. El miembro tiene 25 pies de longitud. Los tornillos están dispuestos en dos líneas paralelas a la longitud del miembro. Hay dos tornillos en cada línea a 4 plg entre centros.

Figura P4-18.

4-19. Seleccione el perfil de canal C6 más ligero para usarse como un miembro a tensión de 12 pies de longitud para resistir las siguientes cargas de servicio, PD = 20 klb y PL = 32 klb. El miembro se conecta mediante una soldadura transversal solamente en el extremo de la canal. Use acero A36 Grado 36 con Fu = 58 klb/plg2. (Resp. C6 * 10.5 LRFD y ASD.) Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


4.6 Problemas para resolver

127

4-20. Diseñe el miembro L2L3 de la armadura mostrada en la Figura P4-20. Debe constar de un par de ángulos con una placa de nudo de 3/8 plg entre los ángulos en cada extremo. Use acero A36 y suponga dos hileras de tres tornillos de 3/4 plg Ø en cada ala vertical del ángulo, a 4 plg entre centros. Considere sólo los ángulos mostrados en las tablas de ángulos dobles del Manual del AISC. Para cada carga, PD = 60 klb y PL = 48 klb. No considere bloque de cortante.

12 pies

L2

L3 3 en 12 pies  36 pies

Figura P4-20.

4-21. Seleccione un perfil ST que va a usarse como un miembro a tensión de 20 pies de longitud que soporte con seguridad las cargas de servicio en tensión: PD = 35 klb, PL = 115 klb y PS = 65 klb (nieve). La conexión es a través del patín con dos líneas de tres tornillos de 3/4 plg Ø entre centros. Use acero A572 Grado 50. Desprecie el bloque de cortante. (Resp. ST10 * 33 LRFD y ASD.) 4-22. Seleccione el perfil WT4 más ligero que va a usarse como un miembro a tensión de 20 pies de longitud para resistir las siguientes cargas de servicio: carga muerta, D = 20 klb, carga viva, L = 35 klb, carga de nieve, S = 25 klb, y por sismo, E = 50 klb. La conexión es dos líneas de tornillos a través del patín con tres tornillos de 3/4 plg Ø en cada línea espaciados a 3 plg entre centros. Use acero A992 Grado 50. Desprecie el bloque de cortante. 4-23. Un miembro a tensión consta de dos canales C10 y dos PL 1/2 * 11, dispuestos como se muestra en la Figura P4-23 para soportar las cargas de servicio, PD = 200 klb y PL = 320 klb. La longitud del miembro es de 30 pies y debe tener cuatro líneas de tornillos de 3/4 plg Ø. Suponga U = 0.85. Todo el acero será A36. Desprecie el bloque de cortante. (Resp. 2 – C10 * 25 LRFD y ASD.) PL

1 2

 11

C10 C10

11 plg

PL

1 2

11 plg

 11

Figura P4-23.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


128

Capítulo 4

Diseño de miembros a tensión

4-24. Una tubería está soportada a intervalos de 25 pies con una correa para tubería que cuelga de una varilla roscada como se muestra. Se usa una tubería de acero de peso estándar de 10 plg Ø llena con agua. ¿Cuál es el tamaño de varilla redonda que se requiere? Use acero A36. Desprecie el peso de la correa para la tubería.

Varilla roscada

Correa para tubería Tubería de acero

Figura P4-24.

4-25. Seleccione una barra redonda estándar roscada para soportar una carga de tensión factorizada de 72 klb (carga de servicio a tensión = 50 klb) usando acero A36. (Resp. Barra de 134 plg Ø LRFD y ASD.) 4-26 ¿Qué tamaño de barra roscada se requiere para el miembro AC mostrado en la Figura P4-26? la carga dada es una carga viva de servicio. Use acero A36.

C

25K

8 pies

Barra roscada

A

B

6 pies Figura P4-26.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


C A P Í T U L O

5

Introducción a los miembros cargados axialmente a compresión

5.1

CONSIDERACIONES GENERALES Existen varios tipos de miembros que trabajan a compresión, de los cuales la columna es el más conocido. Entre los otros tipos se encuentran las cuerdas superiores de armaduras y diversos miembros de arriostramiento. Además, muchos otros miembros tienen compresión en alguna de sus partes. Éstos incluyen los patines a compresión de vigas laminadas y armadas y los miembros sujetos simultáneamente a cargas de flexión y de compresión. Las columnas son miembros verticales rectos cuyas longitudes son considerablemente mayores que su ancho. Los miembros verticales cortos sujetos a cargas de compresión se denominan con frecuencia puntales o, simplemente, miembros a compresión; sin embargo, en las páginas siguientes los términos columna y miembro a compresión se usan indistintamente. Hay tres modos generales según los cuales las columnas cargadas axialmente pueden fallar. Éstos son: pandeo flexionante, pandeo local y pandeo torsionante. Estos modos de pandeo se definen brevemente como sigue: 1. El pandeo flexionante (llamado también pandeo de Euler) es el tipo primario de pandeo analizado en este capítulo. Los miembros están sometidos a flexión cuando se vuelven inestables. 2. El pandeo local ocurre cuando alguna parte o partes de la sección transversal de una columna son tan delgadas que se pandean localmente en compresión antes que los

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak

129


130

Capítulo 5

Introducción a los miembros cargados axialmente a compresión

otros modos de pandeo puedan ocurrir. La susceptibilidad de una columna al pandeo local se mide por las relaciones ancho a espesor de las partes de su sección transversal. Este tema se verá en la Sección 5.7. 3. El pandeo torsionante flexionante puede ocurrir en columnas que tienen ciertas configuraciones en su sección transversal. Esas columnas fallan por torsión o por una combinación de pandeo torsional y flexionante. Este tema se verá por primera vez en la Sección 6.10. Entre más larga sea una columna para una misma sección transversal, mayor es su tendencia a pandearse y menor será la carga que pueda soportar. La tendencia de un miembro a pandearse se mide por lo general con la relación de esbeltez, que se ha definido previamente como la relación entre la longitud del miembro y su radio de giro mínimo. La tendencia al pandeo depende también de los siguientes factores: tipo de conexión en los extremos, excentricidad de la aplicación de la carga, imperfecciones en el material de la columna, torceduras iniciales en la columna y esfuerzos residuales de fabricación. Las cargas que soporta una columna de un edificio bajan por la sección transversal superior de la columna y a través de sus conexiones con otros miembros directamente a la columna. La situación ideal se tiene cuando las cargas se aplican uniformemente sobre la columna con el centro de gravedad de las cargas, coincidiendo con el centro de gravedad de la columna. Además, es deseable que la columna no tenga defectos, que consista de un material homogéneo y que sea perfectamente recta; todas estas condiciones obviamente son imposibles de satisfacerse. Las cargas que se encuentran exactamente centradas sobre una columna se denominan cargas axiales o concéntricas. Las cargas muertas pueden o no, ser axiales en una columna interior de un edificio, pero las cargas vivas nunca lo son. Para una columna exterior la posición de las cargas es probablemente aun más excéntrica, ya que el centro de gravedad estará situado por lo general hacia la parte interior de la columna. En otras palabras, resulta dudoso que alguna vez se encuentre, en la práctica, una columna cargada en forma perfectamente axial. Las otras situaciones deseables también son imposibles de lograr debido a las siguientes condiciones: imperfecciones de las dimensiones de las secciones transversales, esfuerzos residuales, agujeros taladrados para recibir remaches, esfuerzos de montaje y cargas transversales. Es muy difícil tomar en cuenta todas estas variables en una fórmula. Algunas imperfecciones pequeñas en los miembros a tensión y en vigas puede pasarse por alto, ya que son de poca consecuencia. Por otro lado, las pequeñas imperfecciones en columnas pueden revestir mucha importancia. Una columna que está ligeramente flexionada cuando se coloca en su lugar puede tener momentos flexionantes significativos iguales a la carga de la columna multiplicada por la deflexión lateral inicial. En las Tablas 1-22 a 1-28 del Manual del AISC se presentan las tolerancias de rectitud de la laminadora, tomadas de ASTM A6. Obviamente, una columna es un miembro más crítico en una estructura que una viga o un miembro a tensión, porque pequeñas imperfecciones en los materiales y en las dimensiones tienen mucha importancia en su estabilidad. Esta situación se puede ilustrar en una armadura de un puente en la que algunos de sus miembros han sido dañados por un camión. La flexión de miembros a tensión probablemente no será muy seria, ya que las cargas de tensión tenderán a enderezar a esos miembros; pero la flexión de cualquier miembro a compresión

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


5.1

Consideraciones generales 131

Two International Place, Boston, MA. (Cortesía de Owen Steel Company, Inc.)

es un asunto muy serio, ya que las cargas de compresión tenderán a incrementar la flexión en esos miembros. El análisis precedente debe mostrar claramente que las imperfecciones en columnas ocasionan flexión en éstas, y el proyectista debe considerar los esfuerzos debidos a esos momentos, así como a cargas axiales. Los Capítulos 5 a 7 se limitan al análisis de columnas cargadas axialmente y el Capítulo 11 trata de los miembros sujetos a una combinación de cargas axiales y de flexión.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


132

Capítulo 5

Introducción a los miembros cargados axialmente a compresión

La separación en planta entre columnas establece lo que se llama una crujía. Por ejemplo, si las columnas están a 20 pies entre centros en una dirección y a 25 pies en la otra dirección, el tamaño de la crujía es de 20 * 25 pies. Mayores dimensiones de las crujías incrementan la flexibilidad del usuario en la planeación del espacio. Un estudio hecho por John Ruddy1 indica que cuando se usan zapatas poco profundas, las crujías con una relación de longitud a ancho de aproximadamente 1.25 a 1.75 y áreas de aproximadamente 1 000 pies2 resultan ser las más económicas. Cuando se usan cimentaciones profundas, su estudio muestra que las áreas de crujía mayores son más económicas.

5.2

ESFUERZOS RESIDUALES Investigaciones realizadas en la Universidad de Lehigh han demostrado que los esfuerzos residuales y su distribución son factores muy importantes que afectan la resistencia de las columnas de acero cargadas axialmente. Estos esfuerzos son de gran importancia en columnas con relaciones de esbeltez de 40 a 120, intervalo que incluye un gran porcentaje de las columnas usadas en la práctica. Una causa muy importante de los esfuerzos residuales es el enfriamiento desigual que sufren los perfiles después de haber sido laminados en caliente. Por ejemplo, en un perfil W los puntos exteriores de los patines y la parte media del alma se enfrían rápidamente, en tanto que las zonas de intersección del alma con los patines lo hacen más lentamente. Las partes de la sección que se enfrían con más rapidez, al solidificarse, sufren los primeros acortamientos, en tanto que aquellas partes que están aún calientes tienden a acortarse aún más al enfriarse. El resultado neto es que las áreas que se enfriaron más rápidamente quedan con esfuerzos residuales de compresión, en tanto que las áreas de enfriamiento más lento quedan con esfuerzos residuales de tensión. La magnitud de estos esfuerzos varía entre 10 y 15 klb/plg2 (69 a 103 MPa) aunque se han encontrado valores mayores de 20 klb/plg2 (138 MPa). Cuando se prueban secciones de columnas de acero laminadas con sus esfuerzos residuales, sus límites proporcionales se alcanzan para valores de P/A de poco más que la mitad de sus esfuerzos de fluencia y la relación esfuerzo-deformación resulta no lineal desde este valor hasta el esfuerzo de fluencia. Debido a la fluencia prematura en algunos puntos de las secciones transversales de la columna, se reduce apreciablemente la resistencia al pandeo. La reducción es máxima en columnas cuya relaciones de esbeltez varían aproximadamente entre 70 y 90 y puede ser tan elevada como un 25%.2 Al incrementarse la carga en una columna, partes de ésta alcanzarán rápidamente el esfuerzo de fluencia y entrarán al intervalo plástico debido a los esfuerzos residuales de compresión. La rigidez de la columna se reduce y es función de la parte de la sección transversal que aún se comporte elásticamente. Una columna con esfuerzos residuales se comporta como si tuviese una sección transversal más pequeña. Esta sección reducida o parte elástica de la columna cambiará al hacerlo los esfuerzos aplicados. Los cálculos relativos al pandeo de una columna específica con esfuerzos residuales pueden efectuarse usando un momento de inercia efectivo Ie de la parte elástica de la sección transversal, o bien, usando el módulo tangente. Para las secciones comunes usadas como columnas, los dos métodos dan resultados casi iguales.

1

J. L. Ruddy, “Economics of Low-Rise Steel-Framed Structures”, Engineering Journal, AISC, vol. 20, núm. 3 (3er. trimestre, 1983), pp. 107-118. 2 L. S. Beedle y L. Tall, “Basic Column Strength”, Proc. ASCE 86 (julio, 1960), pp. 139-173.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


5.3

Perfiles usados para columnas 133 W con esfuerzos residuales

Figura 5.1 Efecto de los esfuerzos residuales sobre el diagrama esfuerzodeformación unitaria en columnas.

Esfuerzo f 

P A

Curva ideal

Fy

Deformación unitaria



L L

La soldadura puede producir esfuerzos residuales severos en las columnas, que pueden aproximarse al valor del esfuerzo de fluencia en las cercanías de las partes soldadas. Otro hecho importante es que las columnas también pueden flexionarse apreciablemente debido a la aplicación de la soldadura, lo que afecta su capacidad de soportar carga. La Figura 5.1 ilustra el efecto de los esfuerzos residuales (debido al enfriamiento y la fabricación) sobre el diagrama esfuerzo-deformación unitaria para un perfil W laminado en caliente. El soldado entre sí de perfiles para piezas compuestas causa con frecuencia esfuerzos residuales aún mayores que los ocasionados por el enfriamiento desigual de secciones H laminadas en caliente. Los esfuerzos residuales también pueden causarse durante la fabricación al combar la columna mediante flexión en frío o por el enfriamiento posterior a la aplicación de la soldadura. El combeo es el flexionamiento de un miembro en una dirección opuesta a la dirección de la flexión que será causada por las cargas de servicio. Por ejemplo, podemos flexionar una viga hacia arriba inicialmente, de manera que quede más o menos horizontal cuando se apliquen las cargas normales por gravedad.

5.3

PERFILES USADOS PARA COLUMNAS En teoría puede seleccionarse un sinfín de perfiles para resistir con seguridad una carga de compresión en una estructura dada. Sin embargo, desde el punto de vista práctico, el número de soluciones posibles se ve limitado por el tipo de secciones disponibles, por problemas de conexión y el tipo de estructura en donde se va a usar la sección. Los párrafos que siguen intentan dar un breve resumen de las secciones que han resultado satisfactorias para ciertas condiciones. Estas secciones se muestran en la Figura 5.2, y las letras entre paréntesis en los párrafos que siguen se refieren a las partes de esta figura. Las secciones utilizadas para miembros a compresión por lo común son similares a las empleadas para miembros a tensión con ciertas excepciones. Las excepciones las causa el hecho de que las resistencias de los miembros a compresión varían en cierta relación inversa con las relaciones de esbeltez y se requieren entonces miembros rígidos. Las barras, placas y varillas individuales son generalmente demasiado esbeltas para funcionar en forma satisfactoria como miembros a compresión, a menos que sean muy cortas y reciban carga ligera. Los miembros formados por ángulos sencillos (a) son satisfactorios como arriostramientos y miembros a compresión de armaduras ligeras. Los ángulos de lados iguales pueden

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


134

Capítulo 5

Introducción a los miembros cargados axialmente a compresión

Ángulo simple Ángulo doble (a) (b)

Tubular Sección en caja rectangular HSS con cuatro ángulos (h)

Canal (d)

Te (c) Celosía

(i)

Columna W (e)

Tubo o perfil Tubular tubular HSS cuadrado HSS (f)

Sección en caja (j)

Sección en caja (k)

(g)

Sección en caja (l)

Sección en caja

W con cubreplacas

Sección armada

Sección armada

W con canales

Sección armada

Sección armada

(m)

(n)

(o)

(p)

(q)

(r)

(s)

Figura 5.2 Tipos de miembros a compresión.

ser más económicos que los de lados desiguales porque sus radios de giro mínimo r son mayores para la misma área de acero. Las cuerdas superiores de armaduras atornilladas para techos pueden consistir en un par de ángulos espalda con espalda (b). Generalmente se deja un espacio entre éstos para insertar una placa de unión o de nudo, necesaria para efectuar la conexión a otros miembros. Un examen de esta sección mostrará que probablemente sea conveniente usar ángulos de lados desiguales con los lados largos espalda con espalda para lograr una mejor distribución de los radios de giro r respecto a los ejes x y y. Si se sueldan las armaduras, las placas de nudo pueden ser innecesarias, entonces es posible usar tes estructurales (c) para los miembros a compresión de la cuerda superior, ya que los miembros de la celosía pueden soldarse directamente al alma de las tes. Las canales sencillas (d) no son satisfactorias como miembros a compresión debido a su radio de giro r pequeño, respecto a los ejes centroidales paralelos al alma. Éstas pueden usarse si se encuentra la manera de proporcionar soporte lateral adicional en la dirección débil. Los perfiles W (e) son los más comunes para columnas de edificios y para los miembros a compresión de puentes carreteros. Aunque sus valores r están lejos de ser iguales respecto a los dos ejes, están mejor balanceados que en las canales. Varios puentes famosos construidos durante el siglo xix (como el Firth of Forth en Escocia y el Ead en St. Louis, Missouri) utilizaron ampliamente los perfiles tubulares. Sin embargo, el uso de éstos declinó debido a los problemas en sus conexiones y a los costos de fabricación, pero con el desarrollo de tubos soldados más económicos, su uso está incrementándose de nuevo (aunque los perfiles tubulares actuales son mucho más pequeños que los usados en el pasado en aquellos antiguos puentes de acero). Las secciones estructurales huecas (HSS: Hollow Structural Sections) (cuadradas, rectangulares o redondas) y los tubos de acero son secciones muy valiosas para edificios, puentes y otras estructuras. Estas secciones de aspecto limpio y agradable se fabrican y se montan fácilmente. Para cargas pequeñas y medianas, las secciones tubulares (f) son muy Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


5.3

Perfiles usados para columnas 135

satisfactorias. Se usan a menudo como columnas en ventanales largos, como columnas cortas en almacenes, como columnas para los techos de andadores cubiertos, en los sótanos y garajes de residencias, y en otras aplicaciones. Las columnas a base de tubos tienen la ventaja de ser igualmente rígidas en todas direcciones y por lo general son muy económicas, a menos que los momentos sean demasiado grandes para los tamaños disponibles. El Manual del AISC proporciona los tamaños de estas secciones y las clasifica ya sea como secciones HSS redondas o tubo de acero estándar, extra fuerte, o doble extra fuerte. Las secciones tubulares cuadradas y rectangulares (g) y (h) se usan cada vez más año con año. Durante muchos años sólo unas cuantas laminadoras en Estados Unidos fabricaron tubería de acero con fines estructurales. Tal vez la principal causa del poco uso de las secciones tubulares era la dificultad de efectuar las conexiones con tornillos o remaches. Este problema se ha eliminado con el surgimiento de las técnicas modernas de soldar. El uso de perfiles tubulares con propósitos estructurales, por arquitectos e ingenieros, probablemente se verá incrementado en los próximos años por las siguientes razones: 1. El miembro a compresión más eficiente es aquel que tiene un radio de giro constante respecto a su centroide, propiedad que poseen las secciones HSS redondas y los tubos. Los perfiles tubulares cuadrados son los siguientes miembros a compresión en orden de eficiencia. 2. Los tubulares estructurales de cuatro lados y redondos son más fáciles de pintar que las secciones abiertas de seis lados como las secciones W, S y M. Además, las esquinas redondeadas facilitan la aplicación de la pintura u otros recubrimientos uniformemente alrededor de las secciones. 3. Tienen menos área superficial para pintar o proteger contra el fuego. 4. Tienen excelente resistencia a la torsión. 5. Las superficies de los perfiles tubulares son muy atractivas. 6. Cuando están expuestas, la resistencia al viento de los tubos circulares es aproximadamente de sólo 2/3 de las de superficies planas del mismo ancho. 7. Si la limpieza es importante, los tubulares estructurales huecos son ideales, y no tienen el problema de la acumulación de basura entre los patines de los perfiles estructurales abiertos. Una pequeña desventaja que se presenta en ciertos casos es que los extremos de las secciones tubulares y de los tubos que están sujetos a atmósferas corrosivas deben sellarse para proteger sus superficies interiores inaccesibles contra la corrosión. Aunque resultan muy atractivos para usarse expuestos como vigas, los perfiles tubulares están en desventaja con las secciones W, que poseen momentos resistentes mucho mayores para el mismo peso. Para muchas situaciones en columnas, el peso de las secciones tubulares cuadradas o rectangulares —usualmente llamadas secciones estructurales huecas (HSS)— puede ser menor que la mitad de los pesos requeridos para secciones de perfil abierto (W, M, S, canales y angulares). Es cierto que las secciones tubulares y tubos pueden costar tal vez 25% más por libra que las secciones abiertas, pero esto nos permite aún lograr ahorros de hasta 20% en muchos casos.3 Las secciones estructurales huecas están disponibles con resistencias a la fluencia de hasta 50 klb/plg2 y pueden obtenerse con una resistencia mejorada a la corrosión atmosférica.

3

“High Design, Low Cost”, Modern Steel Construction (Chicago: AISC, marzo-abril, 1990), pp. 32-34.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


136

Capítulo 5

Introducción a los miembros cargados axialmente a compresión

Edificio administrativo, Pensacola Christian College, FL. (Cortesía de Britt, Peters y Asociados.)

Actualmente constituyen un pequeño porcentaje del acero estructural fabricado para edificios y puentes en Estados Unidos. En Japón y Europa, los valores son, respectivamente, 15% y 25% y siguen creciendo. Es probable por ello que su uso continúe aumentando en Estados Unidos en los próximos años.4 Puede obtenerse información detallada que incluye varias tablas sobre secciones estructurales huecas en el Steel Tube Institute (STI), 2000 Ponce de Leon, Suite 600, Coral Gables, Florida 33134. Cuando se diseñan miembros a compresión para estructuras muy grandes, puede ser necesario usar secciones armadas. Estas secciones se requieren cuando los miembros son muy largos y soportan cargas muy grandes, o bien, cuando representan ventajas desde el punto de vista de las conexiones. En términos generales, un perfil sencillo tal como una sección W, es más económico que una sección armada que tenga la misma área en su sección transversal. Cuando las cargas son muy grandes, frecuentemente pueden usarse aceros de

4

Ibídem, p. 34.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


5.4

Desarrollo de las fórmulas para columnas 137

alta resistencia con mayor economía, siempre que este incremento de la resistencia permita el uso de secciones W en vez de secciones armadas. Cuando se usan secciones armadas, éstas deben conectarse en sus lados abiertos con algún tipo de celosía (también llamadas barras de retícula) que mantenga sus partes unidas en la posición apropiada y les permita trabajar conjuntamente como una unidad. Los extremos de estos miembros se conectan con placas de unión (también llamadas planchas atiesadoras o de rigidez). En la Figura 6.9 se muestran varios tipos de celosía para miembros armados a compresión. Las líneas punteadas en la Figura 5.2 representan celosías o partes discontinuas y las líneas sólidas representan partes que son continuas en toda la longitud de los miembros. A veces se disponen cuatro ángulos como se muestra en (i) para producir valores grandes de r. Este tipo de miembro se ve con frecuencia en torres y en pescantes de grúas. Un par de canales (j) se usan a veces como columnas en edificios o como miembros de la celosía en armaduras de gran tamaño. Nótese que existe un cierto espaciamiento para cada par de canales en el cual sus valores r respecto a los ejes x y y son iguales. A veces las canales se disponen espalda con espalda, como se muestra en (k). Una sección muy adecuada para las cuerdas superiores de las armaduras de puente está formada por un par de canales con una cubreplaca en la parte superior (l) y celosía en la parte inferior. Las placas de unión o de los nudos se conectan fácilmente en el interior de las canales y pueden usarse también como empalmes. Cuando las canales disponibles más grandes no proporcionan suficiente resistencia, puede usarse como cuerda superior una sección armada del tipo mostrado en (m). Cuando los perfiles laminados no tienen suficiente resistencia para soportar la carga de una columna de un edificio o de una armadura de puente muy grande, sus áreas pueden incrementarse con la adición de placas a los patines (n). En años recientes se ha encontrado que, en estructuras soldadas, una columna armada del tipo mostrado en (o) es más satisfactoria que una W con cubreplacas soldadas (n). Parece ser que durante la flexión (como en el caso donde una viga se conecta al patín de una columna) es difícil transferir eficientemente la fuerza de tensión de la cubreplaca a la columna sin que la placa se separe de la columna. Para cargas muy grandes en columnas, una sección en caja soldada del tipo mostrado en (p) ha resultado muy satisfactoria. Otras secciones armadas se muestran en (q), (r) y (s). Las secciones armadas mostradas de (n) a (q) tienen la ventaja sobre las mostradas en (i) a (m) de no requerir de la inversión financiera de barras o placas de celosías, que son necesarias para algunas de las otras secciones armadas. Las fuerzas cortantes laterales son despreciables en las columnas a base de perfiles sencillos y en las secciones armadas sin celosía, pero de ninguna manera pueden despreciarse en las columnas armadas con celosía. Actualmente se ha incrementado el uso de las columnas compuestas. Éstas consisten en tubos estructurales o tubos de acero rellenos con concreto o en perfiles W ahogados en concreto, generalmente con sección cuadrada o rectangular. (Estas columnas se estudian en el Capítulo 17.)

5.4

DESARROLLO DE LAS FÓRMULAS PARA COLUMNAS El uso de columnas se remonta a la prehistoria, pero fue hasta 1729 que el matemático holandés Pieter van Musschenbroek publicó un artículo científico sobre columnas.5 Él presentó una fórmula empírica para columnas para estimar la resistencia de columnas rectangulares.

5

L. S. Beedle et al., Structural Steel Design (Nueva York: Ronald Press, 1964), p. 269.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


Capítulo 5

Introducción a los miembros cargados axialmente a compresión

Figura 5.3 Curva resultado de la prueba.

A

Pu

en la falla

138

L r Curva resultado de la prueba

Unos años más tarde, en 1757, Leonhard Euler, un matemático suizo, escribió un artículo de gran valor relativo al pandeo de columnas. Probablemente él fue la primera persona en darse cuenta de la importancia del pandeo. La fórmula de Euler, la más famosa de todas las expresiones para columnas, se deduce en el Apéndice A de este texto. Esta fórmula, que se analiza en la siguiente sección, marcó el verdadero principio de la investigación teórica y experimental sobre columnas. La bibliografía técnica contiene muchas fórmulas desarrolladas para condiciones ideales de las columnas, pero estas condiciones no se encuentran en la realidad práctica. En consecuencia, el diseño práctico de columnas se basa principalmente en fórmulas que se han desarrollado para concordar, con exactitud razonable, con las curvas resultado de la prueba. La justificación de este procedimiento es el hecho de que la deducción independiente de expresiones paras columnas no conduce a fórmulas que den resultados comparables con los valores de las curvas resultado de la prueba para toda relación de esbeltez. Las pruebas de columnas con diferentes resultados de relaciones de esbeltez producen una serie de valores dispersos como los representados por la banda ancha de puntos en la Figura 5.3. Los puntos no quedarán situados en una curva continua, aunque las pruebas se hagan en el mismo laboratorio, debido a la dificultad de centrar exactamente las cargas, a la falta de perfecta uniformidad de los materiales, a la variabilidad de las dimensiones de las secciones, a los esfuerzos residuales, a los cambios de las restricciones de los extremos, y a otros aspectos este tipo. La práctica común consiste en desarrollar fórmulas que den resultados representados por un promedio aproximado de los resultados de las pruebas. El estudiante también debe darse cuenta de que las condiciones de laboratorio no son análogas a las de campo y que las pruebas de columnas probablemente dan los valores límite de su resistencia. Las magnitudes de los esfuerzos de fluencia de las seccione probadas son muy importantes en las columnas cortas, ya que sus esfuerzos de falla tienen valores cercanos a los de fluencia. Para columnas con relaciones de esbeltez intermedias, los esfuerzos de fluencia tienen menor importancia en sus efectos sobre los esfuerzos de falla, y no tienen ninguna importancia en las columnas largas y esbeltas. Para columnas en el rango intermedio, los esfuerzos residuales tienen mayor influencia en los resultados, en tanto que los esfuerzos de falla de columnas largas y esbeltas son muy sensibles a las condiciones de apoyo en los extremos. Otro factor dominante en su efecto sobre la resistencia de las columnas, además de los esfuerzos residuales y de la no linealidad de los materiales, es la falta de rectitud axial.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


5.5 La fórmula de Euler

5.5

139

LA FÓRMULA DE EULER El esfuerzo bajo el cual una columna se pandea, obviamente decrece conforme la columna se hace más larga. Después de que ésta alcanza una cierta longitud, ese esfuerzo se habrá reducido al límite proporcional del acero. Para esa longitud y longitudes mayores, el esfuerzo de pandeo será elástico. Para que una columna se pandee elásticamente, deberá ser larga y esbelta. Su carga de pandeo P se puede calcular con la fórmula de Euler siguiente: p2EI . L2 Esta fórmula se escribe usualmente de un modo un poco diferente que implica la relación de esbeltez de la columna. Como r = 2I/A, podemos decir que I = Ar2. Sustituyendo este valor en la fórmula de Euler, y dividiendo ambos lados por el área de la sección transversal, se obtiene el esfuerzo de pandeo de Euler: P =

P p2E = Fe. = A 1L/r22 El Ejemplo 5.1 ilustra la aplicación de la fórmula de Euler a una columna de acero. Si el valor obtenido para una columna particular excede el límite proporcional del acero, la fórmula elástica de Euler no es aplicable.

Ejemplo 5-1 a)

b)

Una W10 * 22 se usa como columna articulada en sus apoyos de 15 pies de altura. Usando la expresión de Euler, determine la carga crítica o de pandeo de la columna. Suponga que el acero tiene un límite proporcional de 36 klb/plg2. Repita la parte (a) si la longitud se cambia a 8 pies.

Solución a)

Usando una W10 * 22 de 15 pies de longitud 1A = 6.49 plg2, rx = 4.27 plg, ry = 1.33 plg2 r mínimo = ry = 1.33 plg 112 plg/pie2115 pies2 L = 135.34 = r 1.33 plg

Esfuerzo elástico o de pandeo Fe =

b)

1p22129 * 103 klb/plg22

1135.3422 = 15.63 klb/plg2 6 el límite proporcional de 36 klb/plg2 OK la columna está en el rango elástico Carga elástica o de pandeo = 115.63 klb/plg2216.49 plg22 = 101.4 k Usando una W10 * 22 de 8 pies de longitud, 112 plg/pie218 pies2 L = = 72.18 r 1.33 plg

Esfuerzo elástico o de pandeo Fe =

1p22129 * 103 klb/plg2 2

172.1822 = 54.94 klb/plg2 7 36 klb/plg2

‹ la columna se encuentra en el rango inelástico y la ecuación de Euler no es aplicable. Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


140

Capítulo 5

Introducción a los miembros cargados axialmente a compresión

El estudiante notará cuidadosamente que la carga de pandeo determinada por la ecuación de Euler es independiente de la resistencia del acero utilizado. La ecuación de Euler sólo resulta útil cuando las condiciones de apoyo de sus extremos se consideran cuidadosamente. Los resultados que se obtienen por la aplicación de la fórmula en ejemplos específicos son bastante parecidos con los obtenidos con pruebas de columnas esbeltas, largas y cargadas axialmente con extremos articulados. Sin embargo, el ingeniero no encontrará columnas ideales de este tipo. Las columnas con las que trabajará no tienen extremos idealmente articulados y no pueden girar libremente porque sus extremos están atornillados, remachados o soldados a otros miembros. Dichas columnas prácticas tienen diversos grados de restricción a la rotación, que varían de limitaciones ligeras a condiciones de casi empotramiento perfecto. Para los casos reales que existen en la práctica, donde los extremos no tienen libertad de rotación, pueden usarse en la fórmula diferentes valores para la longitud, obteniendo esfuerzos de pandeo más realistas. Para usar la ecuación de Euler con buen resultado en las columnas prácticas, el valor de L se tomará como la distancia entre los puntos de inflexión de la elástica pandeada. Esta distancia se considera como la longitud efectiva de la columna. Para una columna articulada en sus extremos (que puedan girar pero no desplazarse), los puntos de inflexión o de momento nulo se localizan en los extremos, separados por una distancia L. Para columnas con diferentes condiciones de apoyo, las longitudes efectivas serán totalmente distintas. Las longitudes efectivas se estudian ampliamente en la siguiente sección.

450 Lexington Ave., Ciudad de Nueva York. (Cortesía de Owen Steel Company, Inc.)

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


5.6

5.6

Restricciones en los extremos y longitud efectiva de una columna 141

RESTRICCIONES EN LOS EXTREMOS Y LONGITUD EFECTIVA DE UNA COLUMNA La restricción en los extremos y su efecto en la capacidad de carga de una columna es en verdad un concepto muy importarte. Las columnas con restricciones apreciables de rotación y desplazamiento pueden soportar cargas mucho mayores que aquellas con poca restricción de rotación de los extremos, como es el caso de columnas con extremos articulados. La longitud efectiva de una columna se definió en la última sección como la distancia entre puntos de momento nulo en la columna, es decir, la distancia entre sus puntos de inflexión. En las especificaciones de acero la longitud efectiva de una columna se denomina KL, en donde K es el factor de longitud efectiva. K es el número por el que debe multiplicarse la longitud de la columna para obtener su longitud efectiva. Su magnitud depende de la restricción rotacional en los extremos de la columna y de la resistencia al movimiento lateral de ésta. El concepto de longitud efectiva es simplemente un método matemático para reemplazar una columna con cualquier condición en los extremos, por una columna equivalente con extremos articulados. Se podría efectuar un análisis complejo del pandeo de un marco para determinar el esfuerzo crítico en una columna particular. El factor K se determina encontrando la columna articulada con una longitud equivalente que proporcione el mismo esfuerzo crítico. El procedimiento del factor K es un método para encontrar soluciones simples a problemas complicados de pandeo en marcos. Columnas con condiciones de extremo diferentes tienen longitudes efectivas completamente distintas. En esta exposición inicial, se supone que no es posible el ladeo o traslación de las juntas entre los extremos del miembro. El ladeo o traslación de las juntas implica que uno o ambos extremos de una columna pueden moverse lateralmente entre sí. Si una columna está articulada en sus dos extremos con articulaciones sin fricción, como se muestra en la Fig. 5.4(a), su longitud efectiva es igual a su longitud real y K es entonces igual a 1.0. Si los extremos están perfectamente empotrados, sus puntos de inflexión (o puntos de momento nulo) se localizan en los cuartos de la altura y la longitud efectiva es igual a L/2 como se muestra en (b) de la Fig. 5.4. Como resultado, el valor de K sería igual a 0.50.

Punto de inflexión (típico)

KL  0.7L KL  L

KL  0.5L

L

L

Figura 5.4 Longitudes efectivas (KL) de columnas en marcos arriostrados (ladeo impedido).

Alfaomega

K  1.0 (a)

K  0.50 (b)

K  0.70 (c)

Diseño de Estructuras de Acero – McCormac /Csernak


142

Capítulo 5

Introducción a los miembros cargados axialmente a compresión

Resulta claro que entre menor sea la longitud efectiva de una columna, menor será el peligro de que se pandee y mayor su capacidad de carga. En (c) de la Fig. 5.4 se muestra una columna con un extremo empotrado y el otro articulado. El valor de K para esta columna es teóricamente igual a 0.70. Este estudio parecería indicar que las longitudes efectivas de las columnas siempre varían entre un mínimo absoluto de L/2 y un máximo absoluto de L, pero hay excepciones a esta afirmación. En la Fig. 5.5(a) se da un ejemplo de esto con un marco simple. La base de cada una de las columnas está articulada y el otro extremo puede rotar y moverse lateralmente (llamado ladeo). En la figura se ve que la longitud efectiva excederá a la longitud real de la columna, ya que la curva elástica tomará en teoría la forma de la curva de una columna doblemente articulada de longitud doble y K será igual a 2.0. Nótese en la parte (b) de la figura lo pequeña que sería la deflexión lateral de la columna AB si estuviera articulada en ambos extremos para impedir el ladeo. Las columnas de acero estructural sirven como partes de marcos, los que a veces tienen arriostramiento y en otras ocasiones no. Un marco arriostrado es aquel en el que el desplazamiento de sus juntas está impedido por medio de riostras, muros de cortante o por el soporte lateral de las estructuras adjuntas. Un marco sin arriostrar no tiene ninguno de estos tipos de soporte y depende de la rigidez de sus propios miembros y de la rigidez rotacional de las juntas entre los miembros del marco para impedir el pandeo. En marcos arriostrados los valores de K nunca pueden ser mayores que 1.0, pero en los marcos sin arriostrar, éstos siempre son mayores que 1.0 debido al ladeo. La Tabla C-C2.2 del Comentario a la Especificación del AISC presenta los factores de longitud efectiva recomendados cuando se tienen condiciones ideales aproximadas. Esta tabla se reproduce aquí como la Tabla 5.1 con permiso del AISC. Se proporcionan en la tabla dos grupos de valores K; uno de ellos es el valor teórico y el otro el valor recomendado para el diseño, basado en el hecho de que no son posibles las condiciones de articulación y empotramiento perfecto. Si los extremos de la columna en la Fig. 5.4(b) no fueran perfectamente

L Deflexión lateral La columna se encuentra en esta posición después del ladeo y de la rotación de las juntas

B

B

L

Deflexión L lateral

A

A (a)

(b)

Figura 5.5.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


5.6 Tabla 5.1

Restricciones en los extremos y longitud efectiva de una columna 143 Valores aproximados del factor de longitud efectiva, K. (a)

(b)

(c)

(d)

(e)

(f )

0.5

0.7

1.0

1.0

2.0

2.0

0.65

0.80

1.2

1.0

2.10

2.0

Las líneas punteadas muestran la forma pandeada de la columna

Valor K teórico Valores recomendados de diseño cuando las condiciones reales son aproximadas

Rotación y traslación impedidas Rotación libre y traslación impedida Símbolos para las condiciones de extremo

Rotación impedida y traslación libre Rotación y traslación libres

Fuente: Comentario de la Especificación, Apéndice 7 – Tabla C-A-7.1, p. 16.1-511, junio 22, 2010. Derechos reservados © American Institute of Steel Construction. Reproducido con autorización. Todos los derechos reservados.

fijos, la columna podría deflexionarse un poco y la distancia entre sus puntos de inflexión se incrementaría. El valor K recomendado en la Tabla 5.1 para diseño es de 0.65, en tanto que el teórico es de 0.5. Como no existen extremos de columna que estén perfectamente empotrados o que tengan articulaciones perfectas, el proyectista puede desear interpolar entre los valores dados en la tabla, utilizando su buen juicio al estimar las condiciones reales de restricción. Los valores en la Tabla 5.1 son muy útiles para diseños preliminares. Al usar esta tabla casi siempre aplicamos los valores de diseño y no los valores teóricos. De hecho, los valores teóricos deberían usarse sólo en aquellas raras situaciones en que los extremos empotrados están en realidad casi perfectamente empotrados y/o cuando los soportes simples están casi por completo libres de fricción. (Esto significa que casi nunca.) Usted notará en la tabla que para los casos (a), (b), (c) y (e), los valores de diseño son mayores que los valores teóricos, pero eso no es así para los casos (d) y (f), donde los valores son los mismos. La razón para esto en cada uno de esos dos últimos casos es que si las condiciones articuladas no se encuentran perfectamente sin fricción, los valores K resultarán más pequeños en vez de más grandes. Entonces, haciendo los valores de diseño iguales a los teóricos, quedamos del lado de la seguridad. Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


144

Capítulo 5

Introducción a los miembros cargados axialmente a compresión

Los valores K en la Tabla 5.1 son probablemente muy satisfactorios para diseñar columnas aisladas, pero para columnas en marcos continuos son probablemente satisfactorios sólo para hacer diseños preliminares o aproximados. Tales columnas están restringidas en sus extremos por sus conexiones a varias vigas, y las vigas mismas están conectadas a otras columnas y vigas en sus otros extremos y resultan por ello también restringidas. Estas conexiones pueden afectar considerablemente los valores de K. En consecuencia, en la mayoría de los casos, los valores en la Tabla 5.1 no son adecuados para los diseños finales. Para marcos continuos es necesario usar un método más exacto para calcular los valores K. Generalmente, esto se hace usando nomogramas que serán presentados en la primera sección del Capítulo 7. Ahí encontraremos nomogramas para determinar valores K para columnas de marcos arriostrados contra ladeo y para marcos no arriostrados contra ladeo. Dichos nomogramas deben usarse siempre para los diseños finales de columnas.

5.7

ELEMENTOS RIGIDIZADOS Y NO RIGIDIZADOS Hasta ahora el autor sólo ha considerado la estabilidad de conjunto de los miembros, pero es muy posible que los patines delgados o almas de una columna o viga se pandeen localmente en compresión antes de que ocurra el pandeo total del miembro. Las placas delgadas que se usan para tomar esfuerzos de compresión son muy susceptibles al pandeo respecto a sus ejes menores, debido a los pequeños momentos de inercia en esas direcciones. La Especificación AISC (Sección B4) proporciona valores límite para la relación ancho a espesor de las partes individuales de miembros a compresión y de las partes de vigas en regiones de compresión. El estudiante seguramente está consciente de la falta de rigidez de las piezas delgadas de cartón, plástico o metal con bordes libres. Sin embargo, si uno de esos elementos se pliega o restringe, su rigidez se incrementa apreciablemente. Por esta razón en el Manual AISC se consideran dos tipos de elementos: los elementos rigidizados y los no rigidizados. Un elemento no rigidizado es una pieza proyectante con un borde libre, paralelo a la dirección de la fuerza de compresión, en tanto que un elemento rigidizado está soportado a lo largo de los dos bordes en esa dirección. Estos dos tipos de elementos se ilustran en la Figura 5.6. En cada caso se muestran el ancho b y el espesor t de los elementos en cuestión. Dependiendo de los rangos de diferentes relaciones ancho a espesor de los elementos a compresión y de si éstos son rigidizados o no, los elementos se pandearán bajo diferentes condiciones de esfuerzo. Para establecer los límites de las relaciones ancho a espesor de los elementos de los miembros a compresión, la Especificación AISC agrupa a los miembros en las tres clasificaciones siguientes: secciones compactas, secciones no compactas y elementos esbeltos a compresión. Esta clasificación, de la que dependen los esfuerzos de diseño por compresión usados en columnas, se estudia en los siguientes párrafos.

5.7.1

Clasificación de las secciones a compresión por el pandeo local Las secciones a compresión se clasifican como elementos no esbeltos o esbeltos. Un elemento no esbelto es aquel en el cual la relación ancho a espesor de sus elementos a compresión no excede a lr, de la Tabla B4.1a de la Especificación AISC. Si la relación ancho a espesor no excede a lr, la sección se define como una sección de elemento esbelto. Los valores

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


5.8 Columnas largas, cortas e intermedias b

b

145

b

b t

t

t

Soldaduras

a) Elementos no rigidizados b t

b

b

b t

t

t

b) Elementos rigidizados Figura 5.6.

límites de lr se dan en la Tabla 5.2 de este texto, que es la Tabla B4.1a de la Especificación AISC. Casi todos los perfiles W y HP listados en la Sección de Miembros a Compresión del Manual AISC son no esbeltos para aceros con esfuerzo de fluencia de 50 klb/plg2. Algunos de ellos son esbeltos (y así se indica en las tablas de columnas del Manual). Los valores en las tablas reflejan los esfuerzos de diseño reducidos disponibles para secciones esbeltas. Si el miembro se define como un miembro a compresión de elemento no esbelto, deberá hacerse referencia a la Sección E3 de la Especificación AISC. Entonces, la resistencia nominal a compresión se determina basándose solamente en el estado límite del pandeo a flexión. Si el miembro se define como un miembro a compresión de elemento esbelto, la resistencia nominal a compresión se tomará como el valor más bajo basado en los estados límite del pandeo a flexión, el pandeo por torsión, y el pandeo por flexión-torsión. Deberá hacerse referencia a la Sección E7 de la Especificación AISC para esta condición. La Sección 6.9 de este texto presenta una ilustración de la determinación de las resistencias de diseño y permisible de una columna que contiene elementos esbeltos.

5.8

COLUMNAS LARGAS, CORTAS E INTERMEDIAS Una columna sujeta a compresión axial se acortará en la dirección de la carga. Si la carga se incrementa hasta que la columna se pandea, el acortamiento cesará y la columna se flexionará o deformará súbitamente en sentido lateral, pudiendo al mismo tiempo torcerse en una dirección perpendicular a su eje longitudinal.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


146

Capítulo 5

Caso

TABLA 5.2

Elementos no rigidizados

1

2

3

4

Introducción a los miembros cargados axialmente a compresión

Razones ancho–espesor: Elementos a compresión en miembros sujetos a compresión axial.

Descripción del elemento

Razón anchoespesor

Relación límite ancho-espesor lr (no esbelto/esbelto)

Patines de perfiles laminados I, placas salientes de perfiles laminados I, lados salientes de pares de ángulos conectados con contacto continuo, patines de canales, y patines de tes

b/t

E 0.56 A Fy

Patines de perfiles compuestos I y placas o lados de ángulos salientes de perfiles compuestos I

b/t

Lados de ángulos simples, lados de ángulos dobles con separadores, y todos los demás elementos no rigidizados

b/t

Almas de tes

d/t

Ejemplos

b t

b

b

b

t

t

t b t

h

kcE 0.64 A Fy

[a]

b t t

h

E 0.45 A Fy

b

b

b t

t

t b

b t

E 0.75 A Fy

t

d

(Continúa)

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


5.8 Columnas largas, cortas e intermedias

Caso

TABLA 5.2

5

Elementos rigidizados

6

7

8

9

147

Continuación.

Descripción del elemento

Razón anchoespesor

Relación límite ancho-espesor lr (no esbelto/esbelto)

Almas de perfiles I y canales doblemente simétricos

h/tw

E 1.49 A Fy

Paredes de HSS rectangulares y cajones de espesor uniforme

b/t

Cubreplacas de patines y placas de diafragmas ente líneas de conectores o soldaduras

b/t

Todos los otros elementos rigidizados

b/t

HSS redondo

D/t

Ejemplos

tw

h

tw

h

t

E 1.40 A Fy b

E 1.40 A Fy

1.49

E A Fy

0.11

E Fy

b

b t

t

b t

D t

Fuente: Especificación AISC, Tabla B4.1A, p. 16.1-16. junio 22, 2010. Derechos reservados © American Institute of Steel Construction. Reproducido con autorización. Todos los derechos reservados.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


148

Capítulo 5

Introducción a los miembros cargados axialmente a compresión

La resistencia de una columna y el modo de falla dependen en gran medida de su longitud efectiva. Una columna de acero muy corta y robusta puede cargarse hasta que el acero fluya y tal vez prosiga hasta el rango de endurecimiento por deformación. Como resultado, puede soportar aproximadamente la misma carga a compresión que a tensión. Al crecer la longitud efectiva de una columna, disminuye su esfuerzo de pandeo. Si la longitud efectiva excede un cierto valor, el esfuerzo de pandeo será menor que el límite proporcional del acero. Las columnas en este intervalo fallan elásticamente. Como se mostró previamente en la Sección 5.5, las columnas muy largas de acero fallan bajo cargas que son proporcionales a la rigidez por flexión (EI) de la columna e independientes de la resistencia del acero. Por ejemplo, una columna larga construida con un acero con 36 klb/plg2 de esfuerzo de fluencia fallará aproximadamente bajo la misma carga que una construida de acero con un esfuerzo de fluencia de 100 klb/plg2. Las columnas se clasifican a veces como largas, cortas e intermedias. En los párrafos siguientes se da una breve explicación de esta clasificación.

5.8.1

Columnas largas La fórmula de Euler predice muy bien la resistencia de columnas largas en las que el esfuerzo axial de pandeo permanece por abajo del límite proporcional. Dichas columnas se pandean elásticamente.

5.8.2

Columnas cortas En columnas muy cortas el esfuerzo de falla será igual al esfuerzo de fluencia y no ocurrirá el pandeo. (Para que una columna quede en esta clasificación, debe ser tan corta que no tendrá ninguna aplicación práctica. Siendo así, no se hará aquí más referencia a ellas.)

5.8.3

Columnas intermedias En columnas intermedias, algunas fibras alcanzarán el esfuerzo de fluencia y otras no. Los miembros fallarán tanto por fluencia como por pandeo y su comportamiento se denomina inelástico. La mayoría de las columnas caen en este rango. (Para que la fórmula de Euler sea aplicable a estas columnas, ésta deberá modificarse de acuerdo con el concepto de módulo reducido o al de módulo tangente para tomar en cuenta la presencia de esfuerzos residuales.) En la Sección 5.9 se presentan fórmulas con las que el AISC estima la resistencia de columnas en estos diversos intervalos.

5.9

FÓRMULAS PARA COLUMNAS La Especificación AISC proporciona una ecuación (la de Euler) para columnas largas con pandeo elástico y una ecuación parabólica empírica para las columnas cortas e intermedias. Con estas ecuaciones se determina un esfuerzo de pandeo a flexión, Fcr, para un miembro a compresión. Una vez calculado este esfuerzo para un miembro particular, se multiplica por el área de la sección transversal para obtener su resistencia nominal Pn. La resistencia de

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


5.9 Fórmulas para columnas 149 diseño LRFD y la resistencia permisible ASD de una columna pueden determinarse como sigue: Pn = F cr Ag

(Ecuación E3-1 del AISC)

fc Pn = fc F cr Ag = resistencia a la compresión LRFD (fc = 0.90) FcrAg Pn = resistencia a la compresión permisible ASD (Æc = 1.67) = Æc Æc Las siguientes expresiones muestran cómo puede determinarse Fcr, el esfuerzo de pandeo por flexión de una columna, para miembros sin elementos esbeltos: a) Si

Fy E KL … 4.71 ao … 2.25b r A Fy Fe Fy

Fcr = B 0.658F R Fy

(Ecuación E3-2 del AISC)

e

b) Si

Fy E KL 7 4.71 ao … 2.25b r A Fy Fe Fcr = 0.877Fe

(Ecuación E3-3 del AISC)

En estas expresiones, Fe es el esfuerzo de pandeo crítico elástico —es decir, el esfuerzo de Euler— calculado con la longitud efectiva de la columna KL. Fe =

p 2E

(Ecuación E3-4 del AISC)

KL 2 b a r

Fcr esfuerzo de pandeo por flexión

Estas ecuaciones se representan gráficamente en la Fig. 5.7.

Ecuación E3-2 del AISC (pandeo inelástico)

Punto de tangencia de las curvas Ecuación E3-3 del AISC (pandeo elástico)

KL de transición entre ecuaciones r (134 para Fy = 36 klb/plg2, 113 para Fy = 50 klb/plg2, etc.) Figura 5.7 Curva para columna según el AISC.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


150

Capítulo 5

Introducción a los miembros cargados axialmente a compresión

Después de observar estas ecuaciones de columnas, el lector podrá pensar que su uso debe resultar muy tedioso y tardado si se emplea una calculadora de bolsillo. Sin embargo, estos cálculos rara vez tienen que efectuarse porque el Manual del AISC proporciona valoF res calculados de los esfuerzos críticos fcFcr y cr en su Tabla 4-22. Los valores están dados Æc para valores prácticos de KL/r (0 a 200) y para aceros con Fy = 35, 36, 42, 46 y 50 klb/plg2.

5.10

RELACIONES DE ESBELTEZ MÁXIMAS La Especificación AISC ya no proporciona una relación de esbeltez máxima específica, como lo hacía anteriormente y como es costumbre con muchas otras especificaciones. Sin embargo, el Comentario (E2) del AISC ciertamente indica que si KL/r es 7 200, el esfuerzo crítico Fcr será menor que 6.3 klb/plg2. En el pasado, el máximo KL/r permitido por el AISC era de 200. Ese valor se basaba en un criterio de ingeniería, en la economía práctica, y en el hecho de que tenía que tenerse un cuidado especial para conservar la integridad de un miembro tan esbelto durante la fabricación, el flete y el montaje. Como resultado de estas importantes consideraciones prácticas, el ingeniero que aplique la Especificación AISC de 2010 probablemente va a seleccionar miembros a compresión con valores de esbeltez menores a 200, excepto en ciertas situaciones especiales. Para esos casos especiales, tanto los fabricantes como los instaladores estarán advertidos de ser muy cuidadosos en el manejo de los miembros.

5.11

PROBLEMAS DE EJEMPLO En esta sección se presentan cuatro ejemplos numéricos sencillos. En cada uno se calcula la resistencia de diseño de una columna. En el Ejemplo 5-2(a) se determina la resistencia de una sección W. El valor de K se calcula como se indicó en la Sección 5.6, se calcula la relación F de esbeltez efectiva, y se obtienen los esfuerzos críticos disponibles fcFcr y cr de la Tabla Æ 4-22 en el Manual. Se verá que en las Tablas 4-1 a 4-11 de la Parte 4 del Manual se han simplificado aún más los cálculos requeridos para la determinación de la resistencia de diseño de columnas P LRFD 1fcP n2 y la resistencia permisible para columnas ¢ n ≤ para cada sección de acero Æc usada normalmente como columnas para las longitudes efectivas o valores KL comúnmente usados. Estas resistencias se determinaron con respecto al radio de giro mínimo de cada sección, y los valores de Fy usados son los recomendados que se dan en la Tabla 1.1 de este texto (Tabla 2-3 en el Manual). Usted también va a observar que los valores ASD están sombreados en verde en el manual.

Ejemplo 5-2 a)

b) c)

Usando los valores de esfuerzo crítico de columna en la Tabla 4-22 del Manual, Pn determine la resistencia de diseño LRFD fcPn y la resistencia permisible ASD Æc 2 para la columna mostrada en la Figura 5.8, si se usa acero de 50 klb/plg . Repita el problema, usando la Tabla 4-1 del Manual. Pn Calcule fcPn y usando las ecuaciones de la Sección E3 del AISC. Æc

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


5.11 Problemas de ejemplo 151 Pu o P a

W12  72

Figura 5.8.

15 pies

P u o Pa

Solución a)

Usando una W12 * 72 1A = 21.1 plg2, rx = 5.31 plg, ry = 3.04 plg, d = 12.3 plg, bf = 12.00 plg, tf = 0.670 plg, k = 1.27 plg, tw = 0.430 plg2 12.00>2 29 000 E b = = 8.96 6 0.56 = 0.56 = 13.49 t 0.670 A Fy A 50 ‹ Elemento de patín no rigidizado no esbelto 29 000 h E d - 2 k 12.3 - 2(1.27) = 22.70 6 1.49 = = = 1.49 = 35.88 tw tw 0.430 A Fy A 50 ‹ Elemento de alma rigidizada no esbelta K = 0.80 de la Tabla 5.1. Es obvio que 1KL/r2y 7 1KL/r2x por lo que rige a

10.802112 * 152 plg KL = 47.37 b = r y 3.04 plg

Fcr Por interpolación lineal, fc Frc = 38.19 klb/plg2 y = 25.43 klb/plg2 de la Tabla 4-22 Æc 2 en el Manual usando acero con Fy = 50 klb/plg .

LRFD

ASD

fcPn = fcFcrAg = 138.192121.12 = 805.8 k

Alfaomega

Pn Æc

=

FcrAg Æc

= 125.432121.12 = 536.6 k

Diseño de Estructuras de Acero – McCormac /Csernak


152

Capítulo 5 b)

c)

Introducción a los miembros cargados axialmente a compresión Al entrar en la Tabla 4-1 del Manual con KL (0.8)(15) = 12 pies

LRFD

ASD

ftPn = 807 k

Pn = 537 k Æc

Esfuerzo de pandeo crítico elástico a

KL b = 47.37 r y

Fe =

p2E KL 2 b a r

=

de la parte 1a2 1p22129 0002 147.3722

= 127.55 klb/plg2

(Ecuación E3-4 del AISC)

Esfuerzo de pandeo por flexión F cr 4.71

29 000 klb/plg2 KL E b = 47.37 = 4.71 = 113.43 7 a r y A 50 klb/plg2 A Fy

‹ Fcr = C 0.658F D Fy = C 0.658127.55 D 50 = 42.43 klb/plg2 (Ecuación E3-2 del AISC) Fy

50

e

LRFD fc = 0.90

ASD Æ c = 1.67

fcFcr = 10.902142.432 = 38.19 klb/plg2

Fcr

fcPn = fcFcrA = 138.192121.12

Fcr Pn = A = 125.412121.12 Æc Æc

= 805.8 k

Æc

=

42.43 2 = 25.41 klb/plg 1.67

= 536.2 k

Ejemplo 5-3 Se usa una HSS 16 * 16 * con apoyos simples.

1 con Fy = 46 klb/plg2 para una columna de 18 pies de longitud 2 Pn con las ecuaciones apropiadas del AISC. Æc

a)

Determine fcPn y

b)

Repita la parte (a) usando la Tabla 4-4 del Manual del AISC.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


5.11 Problemas de ejemplo 153 Solución a)

Usando una HSS 16 * 16 * Calcule

1 1A = 28.3 plg2, tpared = 0.465 plg, rx = ry = 6.31 plg2 2

b (Tabla B4.1a, Caso 6 del AISC) t

b se aproxima como el tamaño de tubo -2 * tpared 16 - 2(0.465) 29 000 E b = = 32.41 6 1.40 = 1.40 t 0.465 B Fy B 46 = 35.15

‹ la sección no tiene elementos esbeltos

la relación Calcule

b también está disponible en la Tabla 1-12 del Manual t

KL y Fcr r

K = 1.0 a

11.02112 * 182 plg KL KL b = a b = = 34.23 r x r y 6.31 plg 29 000 E 6 4.71 = 4.71 = 118.26 A Fy B 46

‹ use la Ec. E3-2 del AISC para Fcr Fe =

1p22129 0002 p2E = = 244.28 klb/plg2 KL 2 134.2322 a b r

Fcr = C 0.658F D Fy = C 0.658244.28 D 46 Fy

46

e

= 42.51 klb/plg2

LRFD fc = 0.90 fcFcr = 10.902142.512 = 38.26 klb/plg2

Fcr

fcPn = fcFcrA = 138.262128.32

Fcr Pn = A = 125.462128.32 Æc Æc

= 1 082 k

Alfaomega

ASD Æ c = 1.67

Æc

=

42.51 2 = 25.46 klb/plg 1.67

= 720 k

Diseño de Estructuras de Acero – McCormac /Csernak


154

Capítulo 5

Introducción a los miembros cargados axialmente a compresión

b)

del Manual, Tabla 4-4 LRFD

ASD

fc Pn = 1 080 k

Pn = 720 k Æc

Aun cuando deberán revisarse las relaciones ancho-espesor para todas las secciones de vigas y columnas que se usen en el diseño, la mayoría de estos cálculos necesarios se dejan fuera de este texto para ahorrar espacio. Para hacer esta verificación en la mayoría de las situaciones, es necesario solamente referirse a las tablas de columna del Manual donde las secciones esbeltas están claramente indicadas para perfiles comunes. En el Ejemplo 5-4, el autor ilustra los cálculos necesarios para determinar la resistencia de diseño de una sección de columna compuesta. En el Capítulo 6 se describen varios requisitos especiales para las secciones de columnas compuestas.

Ejemplo 5-4 Pn para Æc la columna cargada axialmente mostrada en la Figura 5.9 si KL = 19 pies y se usa acero de 50 klb/plg2.

Determine la resistencia de diseño LRFD fcPn y la resistencia permisible ASD

Solución Ag = 1202 A 12 B + 122112.62 = 35.2 plg2 y de la parte superior =

110210.252 + 122112.6219.502 35.2

Ix = 12215542 + 122112.6219.50 - 6.8722 + a = 1 721 plg4

= 6.87 plg

1 3 1 b1202a b + 110216.87 - 0.2522 12 2

Iy = 122114.32 + 122112.6216.87722 + rx =

A 121 B A 12 B 12023 = 1 554 plg4

1 721 = 6.99 plg A 35.2 PL 12  20 y x

x

MC18  42.7 (A  12.6 plg2, d  18.00 plg, Ix  554 plg4, Iy  14.3 plg4, x  0.877 plg desde la espalda de la C)

18.50 plg 12 plg

Figura 5.9.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


5.11 Problemas de ejemplo 155 ry = a a

1554 = 6.64 plg A 35.2

11221192 KL = 32.62 b = r x 6.99

11221192 KL b = = 34.34 ; r y 6.64

Del Manual, Tabla 4-22, leemos para Fcr = 27.47 klb/plg2, para acero de 50 klb/plg2. Æc

KL r

LRFD

= 34.34 que fc Fcr = 41.33 klb/plg2 y

ASD

fcPn = fcFcr Ag = 141.332135.22 = 1 455 k

FcrAg Pn = = 127.472135.22 = 967 k Æc Æc

Para determinar el esfuerzo de diseño a compresión por usarse en una columna particular es necesario teóricamente, calcular tanto (KL/r)x como (KL/r)y. Sin embargo, el lector observará que para la mayor parte de las secciones de acero usadas como columnas, ry es mucho menor que rx. En consecuencia, para la mayoría de las columnas sólo se calcula (KL/r)y para luego usarse en las fórmulas apropiadas de columnas. Para algunas columnas, en especial para las largas, el soporte lateral se aplica perpendicularmente al eje menor, reduciendo así la esbeltez o la longitud libre para pandeo en esa dirección. Esto puede lograrse por medio de riostras o vigas enmarcadas en los lados de la columna. Por ejemplo, los largueros de pared horizontales dispuestos paralelamente a los muros exteriores de un edificio pueden enmarcarse en los lados de las columnas. El resultado es columnas más fuertes y en estos casos es necesario calcular (KL/r)x y (KL/r)y. La mayor relación obtenida para una columna dada indica cuál es la dirección débil y se usará para F cr calcular el esfuerzo de diseño fc Fcr y el esfuerzo permisible para ese miembro. Æc Los elementos de arriostramiento deben ser capaces de proporcionar las fuerzas laterales necesarias sin pandearse. Las fuerzas que deben tomar son bastante pequeñas y con frecuencia se estiman conservadoramente igual a 0.02 veces las cargas de diseño de la columna. Estos elementos se diseñan igual que los otros miembros a compresión. Un elemento de arriostramiento debe conectarse a otros miembros que puedan transferir la fuerza horizontal por cortante al siguiente nivel restringido. Si esto no se hace así, se proporcionará poco soporte lateral a la columna considerada. Si la riostra para el soporte lateral consta de una sola barra o varilla ( ), ésta no impedirá el pandeo torsionante o el torcimiento de la columna. (Véase el Capítulo 6.) Como el pandeo torsionante es un problema difícil de tratar, debe proporcionarse soporte lateral que prevenga el movimiento tanto lateral como rotacional.6

6 J. A. Yura, “Elements for Teaching Load and Resistance Factor Design” (Nueva York: AISC, agosto, 1987), p. 20.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


156

Capítulo 5

Introducción a los miembros cargados axialmente a compresión

Las columnas de acero también se pueden colocar dentro de muros de mampostería de manera que queden soportadas lateralmente en la dirección débil. Sin embargo, el proyectista debe ser muy cuidadoso al suponer que existe un soporte lateral total paralelo al muro, porque tal vez no se sepa en qué condiciones está el muro y un muro mal construido no proporciona 100% de soporte lateral. El Ejemplo 5-5 muestra los cálculos necesarios para determinar la resistencia de diseño LRFD y la resistencia permisible ASD de una columna con dos longitudes efectivas diferentes.

Ejemplo 5-5 a)

b)

Determine la resistencia de diseño LRFD fcPn y la resistencia de diseño permisiP ble ASD n para la W14 * 90 cargada axialmente con 50 klb/plg2 mostrada en la Æc Figura 5.10. Debido a su gran altura, esta columna está arriostrada en dirección perpendicular a su eje débil, o eje y, en los puntos mostrados en la figura. Se supone que estas conexiones permiten la rotación del miembro en un plano paralelo al plano de los patines. Sin embargo, al mismo tiempo se supone que evitan el desplazamiento o ladeo y el torcimiento de la sección transversal alrededor de un eje longitudinal que pasa por el centro de cortante de la sección transversal. (El centro de cortante es el punto en la sección transversal del miembro por el cual debe pasar la resultante de las cargas transversales para que no ocurra torsión. Véase el Capítulo 10.) Repita la parte a), usando las tablas de columnas de la Parte 4 del Manual.

c Pn

o

Pn 

10 pies

Soporte general perpendicular a la dirección xy

W14  90

Figura 5.10.

Diseño de Estructuras de Acero – McCormac /Csernak

10 pies

32 pies

12 pies

c Pn

o

Pn 

Alfaomega


5.11 Problemas de ejemplo 157 Solución a)

Usando W14 * 90 (A = 26.5 plg2, rx = 6.14 plg, ry = 3.70 plg) Determinación de las longitudes efectivas KxLx = 10.8021322 = 25.6 pies KyLy = 11.021102 = 10 pies ; rige para KyLy KyLy = 10.8021122 = 9.6 pies

Cálculo de las relaciones de esbeltez 1122125.62 KL b = = 50.03 ; r x 6.14 11221102 KL b = = 32.43 a r y 3.70

a

fcFcr = 37.49 klb/plg2 del Manual, Fcr Tabla 4q22, Fy = 50 klb/plg2 = 24.90 klb/plg2 s Æc

LRFD

ASD

fcPn = fcFcrAg = 137.492126.52

FcrAg Pn = = 124.902126.52 = 660 k Æc Æc

= 993 k

b)

En la parte a) de la solución se observan dos valores diferentes de KL KxLx = 25.6 pies KyLy = 10 pies Nos gustaría saber cuál de estos dos valores es el que va a controlar. Esto puede descubrirse fácilmente si se determina un valor de KxLx que sea equivalente a KyLy. La relación de esbeltez en la dirección x se iguala a un valor equivalente en la dirección y como sigue: KyLy KxLx = equivalente rx ry KxLx KxLx = KyLy equivalente = ry rx rx ry Entonces, el KyLy de control para usarse en las tablas es el mayor de KyLy = 10 pies que es real, o el KyLy equivalente.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


158

Capítulo 5

Introducción a los miembros cargados axialmente a compresión rx para W14 * 90 (de la parte inferior de la Tabla 4-1 del Manual) = 1.66 ry KyLy equivalente =

25.6 = 15.42 pies 7 KyLy de 10 pies 1.66

De las tablas para columnas con KyLy = 15.42 pies, encontramos por interpolación que fcPn = 991 k y

5.12

Pn = 660 k. Æc

PROBLEMAS PARA RESOLVER 5.1 a 5.4 Determine la carga crítica de pandeo para cada una de las columnas, usando la ecuación de Euler. E = 29 000 klb/plg2. Límite proporcional = 36 000 lb/plg2. Suponga extremos simplemente apoyados y una relación de esbeltez máxima permisible L/r = 200. 5-1. Una barra sólida redonda de 1¼ plg de diámetro: a. L = 4 pies 0 plg (Resp. 14.89 klb) b. L = 2 pies 3 plg (Resp. La ecuación de Euler no es aplicable, Fe excede el límite proporcional) c. L = 6 pies 6 plg (Resp. La ecuación de Euler no es aplicable, L/r excede a 200) 5-2. La sección tubular mostrada: a. L = 21 pies 0 plg b. L = 16 pies 0 plg c. L = 10 pies 0 plg 6 plg

3 8

plg

Figura P5-2.

5-3. Una W12 * 50, L = 20 pies 0 plg (Resp. 278.7 k) 5-4. Las cuatro L4 * 4 * ¼ mostradas para L = 40 pies 0 plg 1

L4  4  4

(típico de 4)

12 plg

12 plg Figura P5-4.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


5.12 Problemas para resolver

159

5-5 a 5-8. Determine la resistencia de diseño LRFD, fcPn, y la resistencia permisible ASD, Pn/1c, para cada uno de los miembros a compresión mostrados. Use la Especificación AISC y un acero con Fy = 50 klb/plg2, excepto para el Problema 5-8, Fy = 46 klb/plg2. 5-5. (Resp. 212 klb LRFD; 141 klb ASD) 5-6.

W8  31

20 pies 0 plg

Figura P5-5.

18 pies 0 plg

Figura P5-6.

5-7 (Resp. 678.4 klb LRFD; 451.5 klb ASD)

W12  65

W10  60

22 pies 0 plg

5-8.

HSS 6  6  14

2 pies 0 plg

Fy  46 klb/plg2

Figura P5-7.

Figura P5-8.

5-9 a 5-17. Determine fcPn, y Pn/1c para cada una de las columnas, usando la Especificación AISC y Fy = 50 klb/plg2, a menos que se especifique otra cosa. 5-9. a. W12 * 120 con KL = 18 pies (Resp. 1 120 klb LRFD; 744 klb ASD) b. HP10 * 42 con KL = 15 pies (Resp. 371 klb LRFD; 247 klb ASD) c. WT8 * 50 con KL = 20 pies (Resp. 294 klb LRFD; 196 klb ASD) 5-10. Observe que Fy es diferente para las partes c) a e). a. Una W8 * 24 con extremos articulados, L = 12 pies b. Una W14 * 109 con extremos empotrados, L = 20 pies c. Una HSS 8 * 6 * 3/8, Fy = 46 klb/plg2 con extremos articulados, L = 15 pies d. Una W12 * 152 con un extremo empotrado y el otro articulado, L = 25 pies 0 plg, Fy = 36 klb/plg2 e. Un tubo 10 STD con extremos articulados, L = 18 pies 6 plg, Fy = 35 klb/plg2 Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


160

Capítulo 5

Introducción a los miembros cargados axialmente a compresión

5-11. Una W10 * 39 con una cubreplaca de 1/2 * 10 plg soldada a cada patín se va a usar como columna con KL = 14 pies (Resp. 685 klb LRFD; 455 klb ASD) 3 5-12. PL 5 8

3 8

plg

PL

KL = 9 pies 2L4

3

1 4

PL 1 4

8

8

KL = 12 pies 3 8

LLBB

1 4

PL

(a)

8

(b)

5-13.

28.5

MC 10 4 PL

3 8

6

3

6 4 plg

KL

12 pies 8 plg

KL

6 plg

18 pies

10 plg

(a) (Resp. 297 klb LRFD; 198 klb ASD) (b) (Resp. 601 klb LRFD; 400 klb ASD) 5-14.

L3

4 - W10

49 PL

8 plg

KL = 40 pies

KL = 8 pies Fy

PL

1 2

12 PL

MC8

36 klb/plg2

8

L3 3 36 klb/plg2

1 4

1 2

8

21.4 W8

KL Fy

3 8

(b)

(a)

5-15.

1 4

3

20 pies

8 plg

(a) (Resp. 451.9 klb LRFD; 301.0 klb ASD) Diseño de Estructuras de Acero – McCormac /Csernak

31 KL Fy

18 pies 50 klb/plg2

(b) (Resp. 525.9 klb LRFD; 350.0 klb ASD) Alfaomega


5.12 Problemas para resolver

161

C9  20

5-16.

W8  21 Fy  50 klb/plg2

KL  16 pies (a)

PL

1 2

 12

KL  21 pies 2 plg Fy  42 klb/plg2 MC 13  50

(b)

5-17. Una columna W12 * 96 de 24 pies cargada axialmente que tiene el arriostramiento y las condiciones de apoyo en los extremos que se muestran en la figura. (Resp. 1 023.3 klb LRFD; 680.4 klb ASD)

10 pies 24 pies 14 pies

eje x–x

eje y–y

Figura P5-17.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


162

Capítulo 5

Introducción a los miembros cargados axialmente a compresión

5-18. Determine la carga viva máxima de servicio que la columna mostrada puede soportar si la carga viva es el doble de la carga muerta. KxLx = 18 pies, KyLy = 12 pies y Fy = 36 klb/plg2. Resuelva mediante los dos métodos LRFD y ASD.

C8  18.75

Figura P5-18.

5-19. Calcule la carga viva de servicio máxima total que se puede aplicar a la Sección A36 mostrada en la figura, si KxLx = 12 pies, KyLy = 10 pies. Suponga que la carga es 1/2 carga muerta y 1/2 carga viva. Resuelva mediante ambos métodos LRFD y ASD. (Resp. 29.0 klb LRFD; 27.0 klb ASD.)

2L4  3 

3 8

3 plg

4 plg

3 plg

Figura P5-19.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


C A P Í T U L O

6

Diseño de miembros cargados axialmente a compresión

6.1

INTRODUCCIÓN En este capítulo se presentan los diseños de varias columnas cargadas axialmente. Se incluye la selección de perfiles sencillos, de perfiles W con cubreplacas y de secciones armadas construidas con canales. También se incluyen los diseños de miembros cuyas longitudes, sin soporte lateral, son diferentes en las direcciones x y y, así como el dimensionamiento de celosías y placas de unión de secciones armadas con lados abiertos. Otro tema que se considera es el del pandeo por flexitorsión de las secciones. El diseño de columnas por medio de fórmulas es un proceso de ensayo y error. El esfuerzo de diseño fcFcr del LRFD y el esfuerzo permisible Fcr>Æc del ASD no se conocen hasta que se ha seleccionado un perfil y viceversa. Una vez que se escoge una sección de prueba, se obtiene del Manual o se calculan los valores r para esa sección, y se determina el esfuerzo de diseño por sustitución en la fórmula para columnas que sea apropiada. Entonces puede ser necesario probar con una sección más larga o más pequeña. Los Ejemplos 6-1, 6-3 y 6-4 ilustran este procedimiento. El proyectista puede suponer un esfuerzo de diseño LRFD o un esfuerzo permisible ASD y dividir la carga apropiada de la columna entre ese esfuerzo para obtener un área estimada de la columna, seleccionar una sección de columna con esa área aproximada, determinar su esfuerzo de diseño, y multiplicar ese esfuerzo por el área de la sección transversal de la sección para obtener la resistencia de diseño del miembro. De esta manera, el proyectista puede ver si la sección seleccionada está sobredimensionada o subdimensionada, y si es así, escoger otra. El estudiante puede pensar que no tiene la suficiente experiencia o conocimientos para hacer una estimación inicial razonable del esfuerzo de diseño. Sin embargo, si el estudiante lee la información contenida en los siguientes párrafos podrá hacer inmediatamente excelentes estimaciones. La relación de esbeltez efectiva (KL/r) de una columna promedio de 10 a 15 pies de longitud será aproximadamente de entre 40 y 60. Para una columna particular, se supone una KL/r en este intervalo aproximado y se sustituye en la ecuación apropiada de columna para

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak

163


164

Capítulo 6

Diseño de miembros cargados axialmente a compresión

obtener el esfuerzo de diseño. (Para hacer esto, observará primero que el AISC ha sustituido valores de KL/r de 0 a 200 en las ecuaciones, con los resultados mostrados en la Tabla 4-22 del AISC. Esto facilita enormemente nuestros cálculos.) Para estimar la relación de esbeltez efectiva para una columna particular, el proyectista puede escoger un valor algo mayor que los del intervalo de 40 a 60 si la columna es mucho mayor de 10 a 15 pies y viceversa. Una columna con una carga factorizada muy grande, digamos de 750 a 1 000 klb o más, requerirá un radio de giro grande y el proyectista escogerá

Georgia Railroad Bank and Trust Company Building, Atlanta, GA. (Cortesía de Bethlehem Steel Corporation.)

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.1

Introducción 165

entonces un menor valor de KL/r. Para miembros de soporte lateral ligeramente cargados se pueden escoger relaciones de esbeltez tal vez mayores de 100. En el Ejemplo 6.1, se selecciona una columna mediante el método LRFD. Se supone una relación de esbeltez efectiva de 50, y se selecciona de la Tabla 4-22 del AISC el correspondiente esfuerzo de diseño fcFcr. Al dividir la carga factorizada de la columna entre este valor, se obtiene el área requerida para la columna y se selecciona una sección de prueba. Después de seleccionar una sección se prueba con esa área aproximada, se determinan la relación de esbeltez y la resistencia de diseño reales. El primer tamaño estimado en el Ejemplo 6.1, aunque muy cercano, es aún algo pequeño y al ensayar la siguiente sección mayor en la serie de perfiles se encuentra que es satisfactoria. El autor sigue un procedimiento similar con la fórmula ASD que es el siguiente: Supóngase KL/r = 50, determine Fcr>Æc de la Tabla 4-22 del AISC, divida la carga de la columna según ASD entre este valor y obtenga el área estimada que se requiere, y seleccione una sección de prueba y determine su carga permisible.

Ejemplo 6-1 Usando Fy = 50 klb/plg2, seleccione el perfil W14 más ligero disponible para las cargas de servicio de la columna PD = 130 klb y PL = 210 klb. KL = 10 pies. Solución

LRFD

ASD

Pu = (1.2)(130 klb) + (1.6)(210 klb) = 492 klb Suponemos

Pa = 130 klb + 210 klb = 340 klb

KL = 50 r

Suponemos

Usando Fy = acero de 50 klb/plg2

Usando Fy = acero de 50 klb/plg2 Fcr

fcFcr de la Tabla 4-22 del AISC = 37.5 klb/plg2

A requerida =

Æc

Pu 492 klb = 13.12 plg 2 = fcFcr 37.5 klb/plg 2

Ensaye W14 * 48 (A = 14.1 plg2, rx = 5.85 plg, ry = 1.91 plg)

¢

KL = 50 r

= 24.9 klb/plg 2 (Tabla 4-22 del AISC)

A requerida =

Pa 340 klb = = 13.65 plg 2 Fcr/Æ 24.9 klb/plg 2

Ensaye W14 * 48 (A = 14.1 plg2, rx = 5.85 plg, ry = 1.91 plg)

112 plg/pie2110 pies2 KL = 62.83 ≤ = r y 1.91 plg

¢

112 plg/pie2110 pies2 KL = 62.83 ≤ = r y 1.91 plg

fcFcr = 33.75 klb/plg2 de la Tabla 4-22 del AISC fcPn = (33.75 klb/plg2)(14.1 plg2) = 476 klb 6 492 klb se rechaza

Alfaomega

Fcr Æc

= 22.43 klb/plg2 de la Tabla 4-22 del AISC

Diseño de Estructuras de Acero – McCormac /Csernak


166

Capítulo 6

Diseño de miembros cargados axialmente a compresión

Ensaye la siguiente sección más grande W14 * 53 (A = 15.6 plg2, ry = 1.92 plg)

¢

112 plg/pie2110 pies2 KL = 62.5 ≤ = r y 1.92 plg

fcPn = (33.85 klb/plg2)(15.6 plg2)

Use W14 : 53.

Ensaye la siguiente sección más grande W14 * 53 (A = 15.6 plg2, ry = 1.92 plg). a

fcFcr = 33.85 klb/plg2

= 528 klb > 492 klb

Pn = 122.43 klb/plg22114.1 plg22 = 316 klb 6 340 klb se rechaza Æc

OK

112 pie2110 pies2 KL b = = 62.5 r y 1.92 plg Fcr = 22.5 klb/plg 2 Æc Pn Æc

= 122.5 klb/plg 22115.6 plg22 = 351 klb 7 340 klb OK

Use W14 : 53.

Nota: la Tabla 4-1 no indica que la W14 * 53 sea un miembro esbelto para la compresión.

6.2

TABLAS DE DISEÑO SEGÚN EL AISC En el Ejemplo 6-2, se usa la Tabla 4-1 del Manual para seleccionar varios perfiles de columnas sin tener que emplear el método de tanteos (ensayo y error). Estas tablas proporcionan resistencias de diseño axial (fcPn) y cargas de diseño permisibles (Pn>Æc) para varias longitudes efectivas prácticas de los perfiles de acero usados comúnmente como columnas. Los valores están dados con respecto al radio de giro mínimo, para perfiles W y WT con acero de 50 klb/plg2. Comúnmente se usan otros grados de acero para otros tipos de perfiles, como se muestra en el Manual y se listan aquí. Entre éstos se incluyen el de 35 klb/plg2 para tubos de acero, el de 36 klb/plg2 para las L, el de 42 klb/plg2 para perfiles redondos HSS, y el de 46 klb/plg2 para secciones rectangulares y cuadradas HSS. Para la mayoría de las columnas que consisten en perfiles simples de acero, la relación de esbeltez efectiva con respecto al eje y (KL/r)y es mayor que la relación de esbeltez efectiva con respecto al eje x (KL/r)x. En consecuencia, el esfuerzo de diseño que rige, o sea el más pequeño, es respecto al eje y. Debido a esto, las tablas del AISC proporcionan resistencias de diseño para columnas con respecto a sus ejes y. Veremos en las siguientes páginas qué hacer en los casos en que (KL/r)x es mayor que (KL/r)y. El uso de las tablas es muy sencillo. El proyectista toma el valor KL para el eje principal menor en pies, consulte la tabla apropiada por el lado izquierdo y proceda horizontalmente a través de ella. Bajo cada perfil se indica la resistencia de diseño fcPn y la resistencia de diseño permisible Pn>Æc para esa KL y para el esfuerzo de fluencia del acero. Por ejemplo, supongamos que tenemos una resistencia factorizada de diseño Pu = 1 200 klb, KyLy = 12 pies, y queremos seleccionar el perfil W14 más ligero disponible, usando acero de 50 klb/plg2 y el método LRFD. Consultamos las tablas con KL = 12 pies en la columna izquierda de la primera página de la Tabla 4-1 del AISC y leemos de izquierda a derecha bajo las columnas para fcPn. Los valores son sucesivamente 9 030 klb, 8 220 klb, 7 440 klb, y así hasta que unas cuantas páginas más adelante, encontramos los valores consecutivos 1 290 klb y 1 170 klb. El valor 1 170 klb no es suficiente, y regresamos al valor 1 290 klb, que se encuentra bajo el perfil W14 * 109. Puede seguirse un procedimiento similar en las tablas que siguen después de la Tabla 4-1 del AISC para la sección de perfiles rectangulares, cuadrados y redondos HSS; perfiles WT; ángulos, etcétera.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.2 Tablas de diseño según el AISC

167

El Ejemplo 6-2 ilustra la selección de diversas secciones posibles para usarse para una columna particular. Entre las secciones seleccionadas están las secciones redondas HSS en la Tabla 4-5 del AISC y las secciones de tubo de acero mostradas en la Tabla 4-6 del Manual. Es posible soportar una carga dada con un tubo estándar (rotulado “std” en la tabla); con un tubo extra fuerte (XS) que tiene menor diámetro, pero paredes más gruesas y por consiguiente es más pesado y costoso o bien con un tubo superfuerte (XXS) que tiene un diámetro aun menor y paredes y peso aun mayores. Los tamaños XXS están disponibles solamente para ciertos tamaños (tubos 4, 5, 6 y 8).

Ejemplo 6-2 Use las tablas de columnas de AISC (tanto LRFD como ASD) para los siguientes diseños. a) b) c) d)

Seleccione el perfil W más ligero disponible para las cargas, acero y KL del Ejemplo 6-1. Fy = 50 klb/plg2. Seleccione los perfiles rectangular o cuadrado HSS más ligeros satisfactorios para las condiciones dadas en la parte (a). Fy = 46 klb/plg2. Seleccione el perfil HSS redondo más ligero satisfactorio, Fy = 42 klb/plg2 para las condiciones dadas en la parte (a). Seleccione la sección de tubo más ligero satisfactorio, Fy = 35 klb/plg2, para las condiciones dadas en la parte (a).

Solución Consulte las tablas con KyLy = 10 pies, Pu = 492 klb para el método LRFD y Pa = 340 klb para el método ASD de la solución del Ejemplo 6-1.

LRFD

ASD

a) W8 * 48 (fcPn = 497 klb > 492 klb) de la Tabla 4-1 b) HSS rectangular 3 @ 47.8 #/pie 8 1fcPn = 499 klb 7 492 klb2

HSS 12 * 8 *

de la Tabla 4-3

(a) W10 * 49 ¢

Pn = 366 klb 7 340 klb≤ Æc

de la Tabla 4-1 b) HSS rectangular HSS 12 * 10 *

¢

3 @ 52.9 #/pie 8

Pn = 379 klb 7 340 klb≤ Æc

de la Tabla 4-3 HSS cuadrada 3 HSS 10 * 10 * @ 47.8 #/pie 8 1fcPn = 513 klb 7 492 klb2 de la Tabla 4-4

HSS cuadrada ** HSS 12 * 12 *

¢

Pn Æc

5 @ 48.8 #/pie 16

= 340 klb = 340 klb≤

de la Tabla 4-4

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


168

Capítulo 6

Diseño de miembros cargados axialmente a compresión

c) HSS redonda 16.000 * 0.312

c) HSS redonda 16.000 * 0.312

@ 52.3 #/pie (fcPn = 529 klb > 492 klb)

@ 52.3 #/pie ¢

de la Tabla 4-5

Pn Æc

= 352 klb 7 340 klb≤

de la Tabla 4-5 d) Tubo XS 12 @ 65.5 #/pie

d) Tubo XS 12 @ 65.5 #/pie

(fcPn = 530 klb > 492 klb)

¢

de la Tabla 4-6

Pn = 353 klb 7 340 klb≤ Æc

de la Tabla 4-6 **Nota: La tabla de columnas del AISC que se usa en este problema indica que solamente la HSS 12 * 12 * 5/16 de la parte b): método de diseño ASD es un miembro esbelto para compresión. El valor de Pn/Æc = 340 klb refleja la resistencia de diseño reducida disponible para secciones esbeltas (según la Especificación E7 del AISC).

En la Figura 6.1 se muestra una columna cargada axialmente con restricción lateral en su dirección débil. El Ejemplo 6.3 ilustra el diseño de dicha columna con longitudes no soportadas diferentes en las direcciones x y y. El estudiante puede resolver fácilmente este problema por tanteos. Se escoge un perfil de prueba como se describió en la Sección 6.1, se calculan Fcr KL KL los valores de esbeltez a seleccionando el valor b ya b , y se determinan fcFcr y r x r y Æc Pn más grande y se multiplican, respectivamente, por Ag para determinar fcPn y . Luego, si Æc es necesario, se prueba otro perfil y así sucesivamente. Pu o Pa

Esta riostra debe ser un perfil que impida el movimiento lateral y la torsión de la columna. Una varilla o una barra no son satisfactorias.

L 2

L

L 2

Figura 6.1 Columna restringida lateralmente a la mitad de su altura en su dirección débil.

Diseño de Estructuras de Acero – McCormac /Csernak

Pu o Pa

Alfaomega


6.2 Tablas de diseño según el AISC

169

En la siguiente exposición suponemos que K es la misma en ambas direcciones. Entonces, si queremos tener resistencias iguales respecto a los ejes x y y, debe cumplirse la siguiente relación: Ly Lx = rx ry Para que Ly sea equivalente a Lx debemos tener Lx = Ly

rx ry

Si Ly(rx/ry) es menor que Lx, entonces Lx rige; si es mayor, rige Ly. Basándose en la información anterior, el Manual AISC proporciona un método mediante el cual puede seleccionarse un perfil con pocos tanteos, cuando las longitudes sin soporte lateral son diferentes. Se consulta la tabla apropiada con KyLy, se escoge un perfil, se toma el valor dado para rx/ry en la tabla para ese perfil y se multiplica por Ly. Si el resultado es mayor que KxLx, entonces KyLy rige y el perfil escogido inicialmente es el correcto. Si el resultado de la multiplicación es menor que KxLx, entonces KxLx rige y se tendrá que volver a consultar las tablas con un KyLy mayor e igual a KxLx/(rx/ry) y seleccionar el perfil final. El Ejemplo 6.3 ilustra los dos procedimientos descritos aquí para seleccionar una sección W que tiene longitudes efectivas diferentes en las direcciones x y y.

Ejemplo 6-3 Seleccione el perfil W12 más ligero disponible usando ambos métodos LRFD y ASD para las siguientes condiciones: Fy = 50 klb/plg2, PD = 250 klb, PL = 400 klb, KxLx = 26 pies y KyLy = 13 pies. a) b)

Por tanteos Usando las tablas del AISC

Solución a)

Usando el método por tanteos para seleccionar un perfil, usando las expresiones del método LRFD, y luego revisando el perfil con ambos métodos LRFD y ASD

LRFD

ASD

Pu = (1.2)(250 klb) + (1.6)(400 klb) = 940 klb Suponemos

P = 250 klb + 400 klb = 650 klb

KL = 50 r

Suponemos

Usando Fy = acero de 50 klb/plg2 fcFcr = 37.5 klb/plg2 de la Tabla 4-22 del AISC

A requerida =

Alfaomega

940 klb = 25.07 plg2 37.5 klb/plg 2

KL = 50 r

Usando Fy = acero de 50 klb/plg2 Fcr = 24.9 klb/plg2 (de la Tabla 4-22 del AISC) Æc A requerida =

650 klb = 26.10 plg2 24.9 klb/plg 2

Diseño de Estructuras de Acero – McCormac /Csernak


170

Capítulo 6

Diseño de miembros cargados axialmente a compresión

Ensaye W12 * 87 (A = 25.6 plg2, rx = 5.38 plg, ry = 3.07 plg)

Ensaye W12 * 87 (A = 25.6 plg2, rx = 5.38 plg, ry = 3.07 plg)

112 plg/pie2126 pies2 KL a b = r x 5.38 plg

112 plg/pie2126 pies2 KL KL a b = = 57.99 ; ‹ rige a b r x 5.38 plg r x

= 57.99 ; ‹ rige a

KL b r x

112 plg/pie2113 pies2 KL a b = = 50.81 r y 3.07 plg fcFcr = 35.2 klb/plg2 (Tabla 4-22) fcPn = (35.2 klb/plg2)(25.6 plg2) = 901 klb 6 940 klb se rechaza

112 plg/pie2113 pies2 KL b = = 50.81 a r y 3.07 plg Fcr = 23.4 klb/plg2 (Tabla 4-22) Æc Pn = 123.4 klb/plg22125.6 plg22 Æc = 599 klb 6 650 klb se rechaza

Edificio de la Eversharp, Inc., en Milford, CN. (Cortesía de Bethlehem Steel Corporation.)

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.3 Empalmes de columnas 171 Una revisión subsiguiente de la siguiente sección mayor W12, una W12 * 96, muestra que funcionará para ambos procedimientos LRFD y ASD. b) Usando las Tablas del AISC. Suponiendo que rige KyLy Consulte la Tabla 4-1 con KyLy = 13 pies, Fy = 50 klb/plg2 y Pu = 940 klb LRDF Ensaye W12 * 87 ¢ KyLy equivalente =

rx = 1.75 ≤ ; fPn = 954 klb ry KxLx rx ry

26 = 14.86 > KyLy de 13 pies ‹ rige KxLx 1.75 Use KyLy = 14.86 pies y consulte las tablas nuevamente =

LRFD

ASD Use W12 * 96

Use W12 * 96 fcPn = 994 klb 7 940 klb

OK

Pn Æc

= 662 klb 7 650 klb

OK

Nota: La Tabla 4-1 no indica que la W12 * 96 sea un miembro esbelto para compresión.

6.3

EMPALMES DE COLUMNAS Los empalmes de columnas de edificios de múltiples niveles conviene colocarlos 4 pies arriba de los pisos terminados para permitir la unión de cables de seguridad a las columnas, según se requiera en bordes o aberturas de pisos. Este desfasamiento también nos permite impedir que los empalmes interfieran con las conexiones de vigas y columnas. En la Figura 6.2 se muestran empalmes típicos de columnas. Se muestran muchos ejemplos más en la Tabla 14-3 del Manual AISC. Los extremos de las columnas son usualmente maquinados de manera que pueden colocarse firmemente en contacto entre sí para fines de transmisión de la carga. Cuando las superficies de contacto han sido maquinadas, una gran parte de la compresión axial (si no es que toda) puede transferirse a través de las áreas de contacto. Sin embargo, es obvio que las placas de empalme son necesarias, aun cuando se tenga contacto pleno entre las columnas y que sólo cargas axiales estén implicadas. Por ejemplo, es necesario mantener juntas las dos secciones de la columna durante el montaje y después. Lo que se necesita para mantenerlas unidas se basa principalmente en la experiencia y buen juicio del ingeniero estructurista. Las placas de empalme son aún más necesarias cuando se consideran las fuerzas cortantes y momentos que existen en las columnas reales sometidas a cargas excéntricas, a fuerzas laterales, a momentos, etcétera. Es obvio que existe una gran diferencia entre los empalmes a tensión y los empalmes a compresión. En los empalmes a tensión, toda la carga tiene que transferirse a través del empalme, en tanto que para los miembros a compresión, gran parte de la carga puede transferirse directamente por apoyo de una columna sobre otra. En este caso, el material del empalme es necesario para transmitir solamente el resto de la carga que no se transmite por contacto.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


172

Capítulo 6

Diseño de miembros cargados axialmente a compresión Para la columna superior Distancia libre de montaje

Distancia libre de montaje

Símbolos de soldadura de campo (véase el Capítulo 14)

Tornillos de montaje según se requiera

Placa de empalme

Símbolos de soldadura de taller (véase el Capítulo 14)

d para columna inferior (a) Soldaduras de campo

Soldaduras de taller Soldaduras de taller

Ángulos de ajuste Placa de apoyo o a tope Tornillos de montaje

(b) Figura 6.2 Empalmes de columnas. a) Columnas de la misma serie W con peraltes totales próximos entre sí (dinf 6 2 plg mayor que el dsup). b) Columnas de series W diferentes.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.3 Empalmes de columnas 173 La magnitud de la carga que deben soportar las placas de empalmes es difícil de estimar. Si los extremos de las columnas no se maquinan, las placas deberán diseñarse para soportar el 100% de la carga. Cuando las superficies se maquinan y sólo trabajan bajo la acción de cargas axiales, la magnitud de la carga que soportan las placas puede estimarse entre un 25 y un 50% de la carga total. Si se trata de flexión, quizá del 50 al 75% de la carga total será absorbida por el material de empalme. Las especificaciones para puentes estipulan muy detalladamente los requisitos que deben cumplir los empalmes para miembros sujetos a compresión, pero la Especificación del AISC no procede así. En la Sección J1.4 de la Especificación del AISC se dan unos cuantos requisitos generales. La Figura 6.2(a) muestra un empalme que puede usarse para columnas con prácticamente los mismos peraltes nominales. El estudiante notará en el Manual del AISC que los perfiles W de un tamaño nominal dado pueden dividirse en grupos que son rolados con el mismo conjunto de rodillos. Debido a las dimensiones fijas de cada conjunto de rodillos, las distancias libres entre patines son constantes para cada perfil en ese grupo, aunque sus peraltes totales pueden variar considerablemente. Por ejemplo, la distancia interior para cada una de las 28 formas (de la W14 * 61 a la W14 * 730) es de 12.60 plg aproximadamente, aunque sus peraltes totales varían de 13.9 plg a 22.4 plg. (Observe que los valores T, que son las distancias ente las puntas del alma de los filetes, son todos de 10 plg para la W14 * 90 hasta la W14 * 730.) Es muy económico usar los empalmes simples de la Figura 6.2(a). Esto puede lograrse fácilmente cuando se usa una serie de perfiles en tantos pisos de un edificio como sea posible. Por ejemplo, podemos seleccionar una sección W14 de columna específica para el piso superior o los dos pisos superiores de un edificio y luego seleccionar secciones W14 cada vez más pesadas conforme descendemos por el edificio. Podemos también cambiar a columnas de acero de mayor resistencia al descender por el edificio, lo que nos permite permanecer

Empalmes de columnas soldadas para el Edificio del Estado de Colorado, Denver, CO. (Cortesía del Lincoln Electric Company.)

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


174

Capítulo 6

Diseño de miembros cargados axialmente a compresión

con la misma serie W en más pisos. Será necesario usar placas de relleno entre las placas de empalme y la columna superior si ésta tiene un peralte total considerablemente menor que el de la columna inferior. En la Figura 6.2(b) se muestra un tipo de empalme que puede usarse para columnas de iguales o diferentes peraltes nominales. Para este tipo de empalme, la placa a tope se suelda en el taller a la columna inferior, y los ángulos sujetadores que se usan para el montaje de campo se sueldan en el taller a la columna superior. Los tornillos de montaje mostrados se colocan en el campo, y la columna superior se suelda en el campo en la placa a tope. La soldadura horizontal en esta placa resiste los esfuerzos de corte y los momentos en las columnas. A veces se usan los empalmes sobre los cuatro lados de las columnas. Los empalmes de alma se atornillan y se sueldan en el campo a las almas de las columnas. Los empalmes de patín se sueldan en el taller a la columna inferior y se sueldan en el campo a la columna superior. Las placas de alma se designan como placas de cortante y las placas de patín como placas de momento. Para edificios de niveles múltiples, las columnas se pueden fabricar para uno o más niveles. Teóricamente, los tamaños de columnas se pueden cambiar en cada nivel de piso, de manera que resulte el peso mínimo total de columnas. Sin embargo, los empalmes necesarios en cada piso son costosos, y por ello es usualmente más económico usar los mismos tamaños de columnas en por lo menos dos pisos, aunque el peso total de acero será mayor. Rara vez se usan los mismos tamaños en tres pisos debido a la dificultad de montar columnas de tal altura. Las columnas de dos pisos de altura pueden montarse sin mayor problema.

6.4

COLUMNAS COMPUESTAS Como se describió previamente en la Sección 5.3, los miembros a compresión pueden construirse con dos o más perfiles compuestos en un solo miembro. Ellos pueden consistir de partes en contacto entre sí, como las secciones con cubreplacas; o pueden consistir en partes que casi se toquen unas con otras, como pares de ángulos que pueden estar separados por una pequeña distancia igual al espesor de las conexiones de extremos o placas de nudo entre ellos. Ellos pueden consistir de partes bastante separadas, como pares de canales o cuatro ángulos , etcétera. Las secciones de dos ángulos son probablemente el tipo más común de miembros compuestos. (Por ejemplo, ellos suelen usarse como miembros de armaduras ligeras.) Cuando un par de ángulos se usan como miembro en compresión, ellos necesitan sujetarse uno al otro para actuar como una unidad. Las soldaduras pueden usarse a intervalos (con barras separadoras entre las partes si los ángulos están separados) o pueden conectarse por medio de pernos de costura. Cuando las conexiones son atornilladas, arandelas o anillos de relleno se colocan entre las partes para mantenerlas a la distancia apropiada si los ángulos van a estar separados. Para columnas largas puede ser conveniente usar secciones compuestas donde las partes de las columnas están apartadas o ampliamente separadas una de otra. Antes de que se tuvieran disponibles las secciones W pesadas, tales secciones se usaban muy comúnmente tanto en puentes como en edificios. Actualmente, estos tipos de columnas compuestas se usan comúnmente para pescantes de grúas y para los miembros en compresión de varios tipos de torres. Las partes ampliamente separadas de estos tipos de miembros compuestos deben conectarse cuidadosamente por celosía o unirse entre sí. Las Secciones 6.5 y 6.6 tratan los miembros en compresión que se construyen de partes en contacto directo (o casi en contacto) entre ellas. La Sección 6.7 trata los miembros en compresión cuyas partes están ampliamente separadas.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.5

6.5

Columnas compuestas con componentes en contacto entre sí

175

COLUMNAS COMPUESTAS CON COMPONENTES EN CONTACTO ENTRE SÍ Si una columna consta de dos placas de igual tamaño sin estar conectadas entre sí, como se muestra en la Figura 6.3, cada placa actuará como una sola columna aislada que resistirá aproximadamente la mitad de la carga total de la columna. En otras palabras, el momento de inercia total de la columna será igual a dos veces el momento de inercia de una placa. Las dos “columnas” se comportarán igual y tendrán iguales deformaciones, como se aprecia en la parte (b) de la figura. Si las dos placas están conectadas en forma tal que el deslizamiento entre éstas se impida, como se muestra en la Figura 6.4, trabajarán como una unidad. Su momento de inercia se calculará para todo el conjunto armado de la sección y será cuatro veces más grande de lo que era para la columna de la Figura 6.3, donde no estaba impedido de deslizamiento. El lector deberá observar que las placas de la columna en la Figura 6.4 se deformarán con magnitudes diferentes al flexionarse lateralmente la columna. Si las placas están unidas sólo en unos cuantos puntos, la resistencia de la columna resultante tendrá un valor intermedio entre los dos casos antes descritos. En la Figura 6.3 (b) se observa que el desplazamiento máximo entre las dos placas se presenta en los extremos y el mínimo a la mitad de la altura. En consecuencia, las conexiones situadas en los extremos de la columna que impiden el deslizamiento entre las partes, tienen el máximo efecto resistente, mientras que aquellas situadas a media altura tienen el menor efecto. Pu Pu 2 2

Figura 6.3 Columna formada por dos placas sin conexión entre ellas.

I⫽2

bd 3 12

bd 3 6

d

Las placas se deforman en igual cantidad

b

d Pu Pu 2 2

(a) Sección transversal de la columna

(b) Forma deformada de la columna Pu

I 

(b)(2d)3 12 4 6

La placa izquierda se deforma más que la derecha.

bd 3

Figura 6.4 Columna formada de dos palcas conectadas en forma continua.

Alfaomega

Pu

Diseño de Estructuras de Acero – McCormac /Csernak


176

Capítulo 6

Diseño de miembros cargados axialmente a compresión Pu

Conexión tipo fricción

Conexión tipo fricción Figura 6.5 Columna formada de dos placas conectadas sólo en sus extremos.

Pu

Si las placas se conectan en sus extremos con conectores tipo fricción, esos extremos se deformarán conjuntamente y la columna adoptará la forma mostrada en la Figura 6.5. Al mantenerse unidos los extremos de la columna, ésta se deformará en forma de una S, como se ve en la figura. Si la columna se flexiona en forma de S, su factor K será teóricamente igual a 0.5 y su valor KL/r será el mismo que el de la columna conectada en forma continua mostrada en la Figura 6.4.1 1121L2 KL = 1.732L para la columna de la Figura 6.4 = r 246 bd3/2bd KL para la columna unida en sus extremos, de la Figura 6.5 = r

10.521L2

1 bd3/2bd 6

= 1.732L

Entonces, los esfuerzos de diseño son iguales para los dos casos y las columnas resistirán las mismas cargas. Esto es cierto para el caso particular descrito aquí, pero no es aplicable para el caso común en donde las partes de la columna en la Figura 6.5 empiezan a separarse.

6.6

REQUISITOS DE CONEXIÓN EN COLUMNAS ARMADAS CUYAS COMPONENTES ESTÁN EN CONTACTO La Especificación E6 del AISC presenta varios requisitos respecto a las columnas armadas. Cuando dichas columnas constan de componentes diferentes que están en contacto y que se apoyan en placas de base o superficies laminadas, éstas deben conectarse en sus extremos con tornillos o soldadura. Si se sueldan, las longitudes de los cordones deben ser iguales, por lo menos al ancho máximo del miembro. Si se usan tornillos, éstos no deben espaciarse longitudinalmente a más de cuatro diámetros entre centros, y la conexión debe prolongarse una distancia igual, por lo menos, a 1 12 veces el ancho máximo del miembro. 1

J. A. Yura, Elements for Teaching Load and Resistance Factor Design (Chicago: AISC, Julio, 1987), pp. 17-19.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.6

Requisitos de conexión en columnas armadas cuyas componentes están en...

177

La Especificación AISC también requiere el uso de conexiones soldadas o atornilladas entre las componentes del extremo de la columna descritas en el párrafo anterior. Estas conexiones deben ser suficientes para transmitir los esfuerzos calculados. Si se desea tener un ajuste perfecto sobre todas las superficies en contacto entre las componentes, puede ser necesario colocar los conectores más cerca aún de lo requerido para la transmisión del cortante. Cuando la componente de una columna armada consta de una placa exterior, la Especificación AISC estipula un espaciamiento específico máximo para los conectores. Si se usan cordones intermitentes a lo largo de los bordes de las componentes, o si se usan tornillos a lo largo de las líneas de gramil en cada sección, su separación máxima no debe ser mayor que 0.752E/Fy, veces el espesor de la placa exterior más delgada ni mayor de 12 plg. Si los tornillos se colocan en forma escalonada sobre cada línea de gramil, su separación en cada línea no debe ser mayor que 1.122E/Fy, veces el espesor de la parte más delgada ni mayor de 18 plg (Sección E6.2 de la Especificación AISC). En el Capítulo 12 los tornillos de alta resistencia se clasifican como apretados sin holgura o de deslizamiento crítico. Los tornillos apretados sin holgura son aquellos que se aprietan hasta que todas las capas de una conexión están en firme contacto entre sí. Esto usualmente implica el apriete obtenido por el esfuerzo manual de un trabajador con una llave de cola o el apriete obtenido después de unos cuantos impactos con una llave neumática. Los tornillos de deslizamiento crítico son apretados mucho más firmemente que los tornillos apretados sin holgura. Ellos se aprietan hasta que sus cuerpos o vástagos adquieren esfuerzos muy altos de tensión (acercándose al límite inferior de su esfuerzo de fluencia). Tales tornillos oprimen las partes conectadas de una conexión con tal fuerza entre el vástago y la cabeza de la tuerca que las cargas son resistidas por fricción y el deslizamiento es nulo. (Veremos en el Capítulo 12 que cuando el deslizamiento es potencialmente un problema, deben usarse tornillos de deslizamiento crítico. Por ejemplo, deben utilizarse si las cargas de trabajo o servicio causan un gran número de cambios en el esfuerzo resultando una posible situación de fatiga en los tornillos.) En el siguiente análisis, la letra a representa la distancia entre conectores y ri es el radio de giro mínimo de una componente individual de la columna. Si se usan miembros en compresión que constan de dos o más perfiles, deben conectarse entre sí a intervalos tales que la relación de esbeltez efectiva Ka/ri de cada uno de los perfiles componentes entre los conectores no sea mayor de 3/4 veces la relación de esbeltez gobernante de todo el miembro compuesto (Comentario E6.1 del AISC). Las conexiones de extremo deben hacerse con soldadura o con tornillos de deslizamiento crítico con superficies limpias de escama o con superficies de contacto pulidas mediante aspersión de arena con recubrimiento Clase A o B. (Estas superficies se describen en la Sección J3.8 de la Especificación del AISC.) La resistencia de diseño de miembros en compresión compuestos de dos o más perfiles en contacto entre sí, será determinada con las Secciones E3, E4 o E7 del AISC usualmente aplicables, con una excepción. Si la columna tiende a pandearse de manera que las deformaciones relativas en las diferentes partes causen fuerzas cortantes en los conectores entre las partes, será necesario modificar el valor KL/r para ese eje de pandeo. La Sección E6 de la Especificación del AISC requiere esta modificación. Haremos referencia aquí a la columna con cubreplacas de la Figura 6.6. Si esta sección tiende a pandearse respecto a su eje y, los conectores entre el perfil W y las placas no están sometidos a ninguna carga calculable. Por otra parte, si tiende a pandearse respecto a su eje x, los conectores quedan sometidos a fuerzas cortantes. Los patines de la sección W y las cubreplacas tendrán esfuerzos diferentes y por consiguiente deformaciones diferentes. (En Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


178

Capítulo 6

Diseño de miembros cargados axialmente a compresión y

x

x

y

Figura 6.6

este caso, los cubreplacas y los patines W a los cuales están unidos se flexionan de la misma manera, y por tanto desde el punto de vista teórico no se presenta entre ellos ni cortante ni deslizamiento.) El resultado será la presencia de esfuerzos cortantes en la conexión entre esas partes y la (KL/r)x tendrá que modificarse según las Ecuaciones E6-1, E6-2a o E6-2b del AISC como se describe a continuación. (La Ecuación E6-1 se basa en resultados de pruebas que toman en cuenta las deformaciones por cortante en los conectores. Las Ecuaciones E6-2a y E6-2b se basan en consideraciones teóricas y fue revisada por medio de ensayos.) a.

Para conectores intermedios que están atornillados sin holgura, a

b.

KL 2 a 2 KL a b + a b b = ri r m C r o

(Ecuación E6-1 del AISC)

Es importante recordar que la resistencia de diseño de una columna compuesta se reducirá si la separación entre conectores es tal que una de las componentes de la columna puede pandearse antes de que se pandee toda la columna. Para conectores intermedios soldados o que tienen tornillos pretensionados, como se requiere para las juntas de deslizamiento crítico: cuando

a … 40 ri a

cuando

KL KL b = a b r m r o

(Ecuación E6-2a del AISC)

a 7 40 ri a

Ki a 2 KL 2 KL a b b + a b = ri r m C r o

(Ecuación E6-2b del AISC)

En estas dos ecuaciones, Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.6

Requisitos de conexión en columnas armadas cuyas componentes están en...

179

KL b = relación de esbeltez de la columna de todo el miembro compuesto r o actuando como una unidad en la dirección del pandeo KL a b = relación de esbeltez modificada del miembro compuesto causada por r m el cortante a = distancias entre conectores, plg ri = radio de giro mínimo de una componente individual, plg Ki = 0.50 para ángulos dobles = 0.75 para canales dobles = 0.86 para todos los otros casos a

Para el caso en que la columna tiende a pandearse respecto a un eje tal que se genere cortante en la conexión entre la partes de la columna, será necesario calcular una relación de esbeltez modificada (KL/r)m para ese eje y revisar si ese valor ocasionará un cambio en la resistencia de diseño del miembro. Si esto ocurre, puede ser necesario revisar las dimensiones y repetir los pasos descritos antes. La Ecuación E6-1 del AISC se usa para calcular la relación de esbeltez modificada (KL/r)m alrededor del eje principal para investigar si es mayor que la relación de esbeltez alrededor del eje menor. Si lo es, ese valor deberá usarse para determinar la resistencia de diseño del miembro. La Sección E6 del Comentario del AISC establece que, basándose en el criterio y la experiencia, la separación longitudinal de los conectores para miembros compuestos a compresión debe ser tal que las relaciones de esbeltez de las partes individuales de los miembros no excedan de tres cuartos de la relación de esbeltez de todo el miembro. El Ejemplo 6.4 ilustra el diseño de una columna que consiste en una sección W con cubreplacas atornilladas a sus patines, como se muestra en la Figura 6.7. Aunque se usan tornillos apretados sin holgura para esta columna, debe ser claro que la Especificación E6 del AISC establece que los tornillos extremos deben ser pretensionados con superficies empalmadas Clase A o B, o bien los extremos deben soldarse. Esto se requiere para que las partes de la sección compuesta no se deslicen entre sí y puedan actuar como una unidad para resistir las cargas. (Como nota práctica, cabe mencionar que la empresa contratada para apretar los tornillos extremos a una condición de deslizamiento crítico probablemente apretará todos a esa misma condición.) Como este tipo de sección compuesta no se muestra en las tablas de columnas del Manual del AISC, es necesario usar un procedimiento de diseño por tanteos. Se supone una relación de esbeltez efectiva. Entonces, se determinan fcFcr o Fcr/Æc para esa relación de esbeltez y la carga de diseño de la columna se divide entre este valor para estimar el área requerida de la columna. El área de la sección W se resta del área total estimada para obtener el área estimada de la cubreplaca. Se seleccionan entonces tamaños de cubreplacas para proporcionar el área requerida estimada.

13.1 plg

W12 ⫻ 120 (A ⫽ 35.2 plg2, d ⫽ 13.1 plg, bf ⫽ 12.3 plg, Ix ⫽ 1070 plg4, Iy ⫽ 345 plg4 )

Figura 6.7 Sección W usada como columna con cubreplacas.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


180

Capítulo 6

Diseño de miembros cargados axialmente a compresión

Ejemplo 6-4 Se desea diseñar una columna para PD = 750 klb y PL = 1 000 klb, usando Fy = 50 klb/plg2 y KL = 14 pies. Se dispone de una W12 * 120 (para la cual fcPn = 1 290 klb y Pn/Æc = 856 klb de la Tabla 4-1 del Manual del AISC). Diseñe cubreplacas atornilladas sin holgura a 6 plg entre centros a la sección W mostrada en la Figura 6.7, para que esta columna soporte la carga requerida. Solución

Suponga

LRFD

ASD

Pa = (1.2)(750) + (1.6)(1 000) = 2 500 klb

Pa = 750 + 1 000 = 1 750 klb

KL = 50 r fcFcr = 37.50 klb/plg2 de la Tabla 4-22 del AISC A requerida =

2 500 klb = 66.67 plg2 37.50 klb/plg2

-A de W12 * 120 = -35.30 A estimada de 2 placas = 31.37 plg2 o 15.69 plg2 cada una Ensaye una PL1 * 16 en cada patín A = 35.20 + (2)(1)(16) = 67.20 plg2 Ix = 1 070 + 1221162a rx = a

13.1 + 1.00 2 b = 2 660 plg4 2

2 660 = 6.29 plg A 67.20

112 plg/pie2114 pies2 KL = 26.71 b = r x 6.29 plg Iy = 345 + 122a ry =

1 b11211623 = 1 027.7 plg4 12

1 027.7 = 3.91 plg A 67.20

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.6

Requisitos de conexión en columnas armadas cuyas componentes están en... a

181

112 plg/pie2114 pies2 KL b = = 42.97 ; r y 3.91 plg

Calculando la relación de esbeltez modificada se obtiene

1 a b (16)1123 12 I = = 0.289 plg ri = AA S 112(16) a 6 plg = = 20.76 ri 0.289 plg a

KL 2 a 2 KL b + a b = 2126.7122 + 120.7622 (Ecuación E6-1 del AISC) a b = ri r x C r 0 = 33.83 6 42.97 ‹ no controla

Revisando la relación de esbeltez de las placas, tenemos

ka 3 KL 3 = 20.76 6 a b = a b142.972 = 32.23 ri 4 r y 4

Para ¢

KL ≤ = 42.97. r y

LRFD

ASD

fcFcr = 39.31 klb/plg2 de la Tabla 4-22, Fy = 50 klb/plg2 fcPn = (39.31)(67.30) = 2 646 klb > 2 500 klb

Fcr = 26.2 klb/plg2 de la Tabla 4-22, Fy = 50 klb/plg2 Æc Pn Æc

= (26.2)(67.30) = 1 763 klb > 1 750 klb

Use W12 * 120 con un cubreplaca 1 * 16 en cada patín, Fy = 50 klb/plg2. (Nota: Se podrían haber seleccionado muchos otros tamaños de placas.)

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


182

6.7

Capítulo 6

Diseño de miembros cargados axialmente a compresión

COLUMNAS COMPUESTAS CON COMPONENTES SIN CONTACTOT ENTRE SÍ El Ejemplo 6.5 presenta el diseño de un miembro compuesto por dos canales que no están en contacto entre sí. Las partes de tales miembros deben conectarse entre sí o instalarse una celosía a través de sus lados abiertos. El diseño de la celosía se analiza inmediatamente después de este ejemplo y se ilustra en el Ejemplo 6.6.

Ejemplo 6-5 Seleccione un par de canales estándar de 12 plg para la columna mostrada en la Figura 6.8, usando Fy = 50 klb/plg2. Para propósitos de conexión, la distancia entre espalda y espalda de las canales es de 12 plg. PD = 100 klb y PL = 300 klb. Considere ambos procedimientos LRFD y ASD. P o Pu Dimensiones de la sección de prueba x = 0.674 plg 5.326 plg y

20 pies x

x

12 plg

12 plg Figura 6.8

y

Columna compuesta por dos canales.

P o Pu

Solución

Suponga

LRFD

ASD

Pu = (1.2) (100) + (1.6) (300) = 600 klb

Pa = 100 + 300 = 400 klb

KL = 50 r

fcFcr = 37.50 klb/plg2, de la Tabla 4-22 (acero con Fy = 50 klb/plg2) A requerida =

600 klb = 16.00 plg2 37.50 klb/plg 2

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.7

Columnas compuestas con componentes sin contactot entre sí 183

Ensaye 2C12 * 30. (Para cada canal, A = 8.81 plg2, Ix = 162 plg4, Iy = 5.12 plg4, x = 0.674 plg.) Ix = 12211622 = 324 plg4

Iy = 12215.122 + 12218.81215.32622 = 510 plg4 rx =

324 = 4.29 plg controla A 12218.812

KL = 11.02120 pies2 = 20 pies

112 plg/pie2120 pies2 KL = = 55.94 r 4.29 plg

LRFD

ASD

fcFcr = 35.82 klb/plg2 (Tabla 4-22 del AISC) Fy = 50 klb/plg2

Fcr Æc

= 23.81 klb/plg2 (Tabla 4-22 del AISC)

Fy = 50 klb/plg2 fcPn = (35.82)(2 * 8.81) = 631 klb OK

Pn = (23.81)(2 * 8.81) = 419.5 klb > 400 klb OK Æc

Revisando con las relaciones de espesores de las canales (d = 12.00 plg, bf = 3.17 plg, tf = 0.501 1 plg, tw = 0.510 plg, k = 1 plg2 8 Patines 29 000 b 3.17 = 13.49 = = 6.33 6 0.56 t 0.501 B 50

OK (Caso 1, Tabla B4-1a del AISC)

Almas 12.00 - 12211.1252 29 000 h 9 = = 19.12 6 1.49 tw 0.510 B 50 = 35.88 (Caso 5, Tabla B4-1a del AISC) ‹ miembro no esbelto Use 2C12 : 30. Los lados abiertos de miembros a compresión fabricados con placas o perfiles pueden conectarse entre sí por medio de cubreplacas continuas con agujeros perforados para fines de acceso, o bien por medio de celosía y placas de unión. (La consideración de la celosía es importante debido al trabajo de remodelación donde se usa especialmente para canales.) Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


184

Capítulo 6

Diseño de miembros cargados axialmente a compresión

El propósito de las cubreplacas perforadas y de la celosía, es mantener las diversas partes paralelas, así como la distancia correcta entre ellas e igualar la distribución del esfuerzo entre las partes. El estudiante entenderá la necesidad de la celosía si considera un miembro compuesto que conste de varias secciones (como el miembro de 4 ángulos de la Figura 5.2(i)) que soporta una fuerte carga de compresión. Cada una de las partes tenderá a pandearse individual y lateralmente, a menos que éstas se unan entre sí para actuar como una unidad al soportar la carga. Además de la celosía es necesario tener placas de unión (también llamadas placas de apoyo o de celosía) tan cerca de los extremos de los miembro como sea posible, y en los puntos intermedios si la celosía es interrumpida. Las partes (a) y (b) de la Figura 6.9 muestran arreglos de las placas de unión y de celosía. En las partes (c) y (d) de la misma figura se muestran otras posibilidades.

Placa de unión de extremo

Celosía simple

(a) Celosía doble

Placas de nudo

Placas de unión intermedia (a cada lado de interrupciones) (b) Cubreplacas perforadas

(c) Placas de celosías (no consideradas por el AISC)

(d) Figura 6.9 Celosía y cubreplacas perforadas.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.7

Columnas compuestas con componentes sin contactot entre sí 185

En el pasado el mal funcionamiento de varias estructuras ha sido atribuido a celosías inadecuadas de los miembros compuestos a compresión. Tal vez el ejemplo mejor conocido es la falla del puente de Quebec en 1907. Después de su caída, la opinión general fue que el funcionamiento de la celosía de las cuerdas de compresión fue demasiado débil y provocó la falla. Si se usan cubreplacas continuas perforadas con agujeros de acceso para unir los miembros entre sí, la Especificación E6.2 del AISC establece que: a) éstas deben satisfacer las razones límite de ancho a espesor especificadas para elementos en compresión por la Sección B4.1 de la Especificación AISC; b) la razón de la longitud del agujero de acceso (en la dirección del esfuerzo) al ancho del agujero no debe exceder de 2; c) la distancia libre entre los agujeros en la dirección del esfuerzo no debe ser menor que la distancia transversal entre las líneas más cercanas de conectores o soldaduras; y d) la periferia de los agujeros en todos los puntos debe tener un radio no menor de 112 plg. Las concentraciones de esfuerzo y los esfuerzos por flexión secundaria generalmente se desprecian, pero deben revisarse las fuerzas cortantes laterales, así como se hace para otros tipos de celosía. (Se supone que el ancho no soportado de tales placas en los agujeros de acceso contribuye a la resistencia de diseño fcPn del miembro si se cumplen las condiciones en las medidas, razones de ancho a espesor, etc., descritas en la Especificación E6 del AISC.) Las cubreplacas perforadas son atractivas para muchos diseñadores debido a varias ventajas que poseen: 1. Son fáciles de fabricar con los métodos modernos de corte con gas. 2. Algunas especificaciones permiten la inclusión de sus áreas netas en la sección efectiva de los miembros principales, siempre y cuando los agujeros estén hechos de acuerdo con los requerimientos empíricos, los cuales se han desarrollado basándose en extensas investigaciones. 3. Probablemente se simplifica el pintado de los miembros, si se compara con las barras de celosía ordinarias. Generalmente, las dimensiones de las placas de unión y de la celosía son controladas por especificaciones. La Sección E6 de la Especificación del AISC establece que las placas de unión deben tener un espesor por lo menos igual a un cincuentavo de la distancia entre las líneas de conexión de soldaduras u otros sujetadores. La celosía puede consistir de barras planas, ángulos, canales u otras secciones roladas. Estas piezas deben estar espaciadas de tal manera que las partes individuales conectadas no tengan valores L/r entre conexiones que excedan tres cuartos de los valores que rigen para el miembro compuesto total. (El valor que rige es KL/r para la sección compuesta total.) Se supone que la celosía está sometida a una fuerza cortante perpendicular al miembro, igual a no menos del 2% de la resistencia de diseño en compresión fcPn del miembro. Se usan las fórmulas para columnas del AISC para diseñar la celosía de la manera habitual. Las relaciones de esbeltez se limitan a 140 para celosía simple y a 200 para celosía doble. La celosía doble o la celosía sencilla hecha con ángulos deben preferirse si la distancia entre líneas de conexión es mayor de 15 plg. El Ejemplo 6-6 ilustra el diseño de la celosía y de las placas de unión en los extremos para la columna armada del Ejemplo 6.5. Las especificaciones para puentes son algo diferentes respecto a los requisitos del AISC para la celosía, pero los procedimientos de diseño son prácticamente los mismos.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


186

Capítulo 6

Diseño de miembros cargados axialmente a compresión

Ejemplo 6-6 Usando la Especificación del AISC y acero de 36 klb/plg2, diseñe la celosía simple atornillada para la columna del Ejemplo 6-5. Se hace referencia a la Figura 6.10. Suponga que se usan tronillos de 3/4 plg. Solución. La distancia entre líneas de tornillos es de 8.5 plg 6 15 plg; se puede usar entonces celosía simple. Suponga que las barras de la celosía estarán inclinadas a 60° con el eje del miembro. La longitud de las canales entre las conexiones de la celosía es de 8.5/cos 30° = 9.8 plg y KL/r de 1 canal entre conexiones es de 9.8/0.762 = 12.9 6 3/4 * 55.94, que es la KL/r del miembro principal, ya determinada previamente en el Ejemplo 6-5. Sólo se muestra la solución de LRFD. Fuerza de una barra de celosía: Vu = 0.02 veces la resistencia de diseño a compresión del miembro (del Ejemplo 6-5), fPn = 631 klb Vu = (0.02)(631 klb) = 12.62 klb 1 Vu = 6.31 klb = fuerza cortante en cada plano de celosía 2 Fuerza en una barra (con referencia a las dimensiones indicadas en la Figura 6.10): a

9.8 b16.312 = 7.28 klb 8.5

Propiedades de una barra plana: I =

1 3 12 bt

A = bt r =

1 bt3 12

C bt

= 0.289t

9.8 plg 60

C12  30

9.8

(rmín  ry  0.762 plg)

g  1.75 plg

8.5 plg

g  1.75 plg

plg

8.5 plg

12 plg Figura 6.10 Sección de columna de dos canales con celosía.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.8

Miembros en compresión de un solo ángulo 187

Diseño de la barra: Suponga

KL = valor máximo de 140 y K = 1.0 r

(1.0) 9.8 plg = 140 0.289t plg t = 0.242 plg (ensaye una barra plana de 14 plg) (1.0) 9.8 plg KL = 136 = r 10.289210.250 plg2 fcFcr = 12.2 klb/plg2, de la Tabla 4-22 del AISC, Fy = 36 klb/plg2 Área requerida =

7.28 klb = 0.597 plg2 A se necesita 2.39 * 12.2 klb/plg 2

1 4

B

1 1 Use una barra de 4 * 22

Distancia mínima al borde usando tornillos de 34 plg = 1 14 plg

Tabla J3.4 del AISC

‹ la longitud mínima de la barra = 9.8 + 122 A 1 14 B = 12.3 plg, digamos 14 plg Use barras de 14 * 2 12 * 1 pie 2 plg, Fy = 36 klb/plg2. Diseño de las placas de extremo: Longitud mínima = 8.5 plg t mínima =

A 501 B 18.52 = 0.17 plg

Ancho mínimo = 8.5 + 122 A 1 14 B = 11 plg 3 * 8 12 * 0 pie 12 plg. Use placas de extremo de 16

6.8

MIEMBROS EN COMPRESIÓN DE UN SOLO ÁNGULO Notará usted que hasta este momento el autor no ha tratado el diseño de miembros a compresión de un solo ángulo. El AISC ha estado preocupado desde hace mucho tiempo con los problemas implicados en cargar tales miembros concéntricamente. Esto puede lograrse bastante bien si los extremos de los ángulos están recanteados y si las cargas son aplicadas a través de placas de apoyo. Sin embargo, en la práctica, las columnas de ángulos simples se usan a menudo en una forma tal que se tienen presentes grandes excentricidades de la carga aplicada. En consecuencia, es muy fácil subdiseñar tales miembros. En la Sección E5 de la Especificación AISC, se proporciona una especificación especial para el diseño de miembros a compresión de un solo ángulo. Si bien esta especificación incluye información para cargas de tensión, cortante, compresión, flexión y cargas combinadas, el presente análisis trata sólo del caso de compresión. En la Tabla 4-11 del Manual se proporcionan las resistencias calculadas de ángulos simples cargados concéntricamente. Los valores mostrados se basan en valores de KL/rz.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


188

Capítulo 6

Diseño de miembros cargados axialmente a compresión

Sin embargo, muy frecuentemente, los ángulos simples están conectados en sus extremos solamente por un lado, lo que constituye una situación de carga excéntrica. La Sección E5 de la Especificación AISC presenta un método para manejar estas situaciones, en las cuales se introducen cargas de compresión excéntricas a ángulos a través de un lado conectado. Los redactores de la especificación supusieron que las conexiones de un lado del ángulo suministraban considerable resistencia a la flexión con respecto al eje y de ese ángulo o del que sea perpendicular al lado conectado. Consecuentemente, se supuso que el ángulo se flexionaría y se pandearía alrededor del eje x del miembro; por tanto, se da atención a la relación L/rx. Para tomar en cuenta la excentricidad de las cargas, las ecuaciones E5-1 a E5-4 del AISC proveen relaciones L/rx mayores para diversas situaciones, las que deben usarse para obtener los esfuerzos de diseño. Las dos primeras de estas ecuaciones son aplicables a ángulos de lados iguales y a ángulos de lados desiguales conectados por sus lados mayores. Además, los ángulos deben usarse como miembros en armaduras bidimensionales o planas, donde los otros miembros que unen a los considerados están conectados en sus extremos al mismo lado de las placas de nudos o al mismo lado de los miembros de la cuerda de la armadura. Para estas condiciones, deben usarse las siguientes relaciones de esbeltez incrementadas para los cálculos de la resistencia: Si L/rx … 80: KL L = 72 + 0.75 r rx

(Ecuación E5-1 del AISC)

KL L = 32 + 1.25 … 200 r rx

(Ecuación E5-2 del AISC)

Si L/rx > 80:

Se dan algunas variantes en la especificación para ángulos de lados desiguales si las relaciones de longitudes de lados son 6 1.7 y si el lado menor está conectado. Además, se proporcionan las Ecuaciones E5-3 y E5-4 del AISC para casos en los cuales los ángulos simples son miembros de armaduras de cajón o espaciales. El Ejemplo 6-7 que sigue ilustra el uso de la primera de esas ecuaciones.

Ejemplo 6-7 Determine los valores de fcPn y Pn/Æc para un ángulo 8 * 8 * 3/4 A36 de 10 pies de longitud con conexiones de extremo simple, que se usa en una armadura plana. Los otros miembros del alma que concurren en los extremos de este miembro están conectados al mismo lado de las placas de nudos. Solución Usando una L8 * 8 *

3 1A = 11.5 plg2, rx = 2.46 plg2 4

(12 plg/pie)110 pies2 L = 48.78 6 80 = rx 2.46 plg Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.9 ‹

Secciones que contienen elementos esbeltos 189

KL L = 72 + 0.75 r rx

(Ecuación E5-1 del AISC)

= 72 + (0.75)(48.78) = 108.6

LRFD

ASD

fcFcr de la Tabla 4.22 del AISC, Fy = 36 klb/plg2

Fcr Æc

= 17.38 klb/plg2

de la Tabla 4-22 del AISC, Fy = 36 klb/plg2 = 11.58 klb/plg2

Pn Fcr = Ag Æc Æc

fcPn = fcFcrAg = (17.38 klb/plg2)(11.5 plg2) = 199.9 klb

= (11.58 klb/plg2)(11.5 plg2) = 133.2 klb

La Tabla 4-12 del Manual proporciona valores de diseño para ángulos cargados excéntricamente en el Ejemplo 6-7, debido a que el AISC usó algunas condiciones diferentes para resolver el problema. Los valores en la tabla son las resistencias a compresión axial limitadas inferiormente de ángulos simples, sin considerar restricciones en los extremos. Si no se cumplen las condiciones descritas en la Especificación E5 del AISC, puede usarse esta tabla. Los valores dados se calcularon considerando flexión biaxial alrededor del eje principal del ángulo, con la carga aplicada con una excentricidad dada, como se describe en la página 4-8 del Manual.

6.9 SECCIONES QUE CONTIENEN ELEMENTOS ESBELTOS Gran parte de las HSS cuadradas y rectangulares tienen paredes esbeltas. El lector estará satisfecho de darse cuenta de que se han incluido en las tablas de la Parte 4 del Manual los efectos de los miembros esbeltos sobre las resistencias de las columnas. Consecuentemente, rara vez el proyectista tienen que repasar los cálculos para tomar en cuenta esos aspectos. En las Secciones E7.1 y E7.2 del AISC se presentan varias ecuaciones para considerar los miembros que contienen elementos esbeltos. Se incluyen secciones con elementos rigidizados y secciones con elementos no rigidizados. El Ejemplo 6-8 hace uso de las ecuaciones apropiadas para calcular la resistencia de estos miembros. Los valores obtenidos en el problema de ejemplo que sigue (Ejemplo 6-8) son menores que los valores dados en la Tabla 4-3 del Manual para secciones HSS rectangulares, ya que se supuso que f es igual a Fy, mientras que en las ecuaciones apropiadas en realidad es Pn . Esta hipótesis conservadora hará que nuestros cálculos manuales para la resisigual a Ae tencia de diseño, cuando estén presentes elementos esbeltos, estén del lado conservador o de la seguridad. Para usar el valor correcto de f, es necesario usar una solución iterativa; un procedimiento para el cual la computadora es ideal. En todo caso, los valores calculados a mano, que se muestran enseguida, serán un múltiplo en porcentaje del lado conservador o de la seguridad. Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


190

Capítulo 6

Diseño de miembros cargados axialmente a compresión

Ejemplo 6-8 Determine la resistencia de diseño en compresión axial fcPn y la resistencia de diseño perPn 1 de una sección de columna HSS 14 * 10 * de 24 pies de longitud. Se considera 4 Æc que la base de la columna está empotrada, mientras que el extremo superior se considera articulado. Fy = 46 klb/plg2.

misible

Solución Usando una HSS 14 * 10 *

1 (A = 10.8 plg2, rx = 5.35 plg, ry = 4.14 plg, tw = 0.233 plg, 4

b h = 39.9 y = 57.1). Todos los valores proceden de la Tabla 1-11. t t Relación limitante ancho-espesor (Tabla B4.1a del AISC, Caso 6) 29 000 E b h lr = 1.40 = 1.40 = 35.15 6 y A Fy B 46 t t ‹ tanto las paredes de 10 plg como las de 14 plg son elementos esbeltos. Con el cálculo de b y h y observando que no contamos con las dimensiones exactas de los filetes, el AISC recomienda que los anchos y los peraltes entre las puntas del alma de los filetes sean iguales a las dimensiones exteriores -3tw. b = 10.00 - (3)(0.233) = 9.30 plg h = 14.00 - (3)(0.233) = 13.30 plg El cálculo de los anchos efectivos y las alturas de las paredes usando la Ecuación E7-18 del AISC arroja E 0.38 E be = 1.92 t B1 R … b Af 1b/t2 A f be para la pared de 10 plg = 11.92210.2332

B

29 000 0.38 29 000 B1 R 46 39.9 B 46

= 8.55 plg 6 9.30 plg Longitud no susceptible de uso = 9.30 - 8.55 = 0.75 plg be para la pared de 14 plg = 11.92210.2332

B

29 000 0.38 29 000 B1 R 46 57.1 B 46

= 9.36 plg 6 13.30 plg Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.10

Pandeo flexotorsional de miembros a compresión 191

Longitud no susceptible de uso = 13.30 - 9.36 = 3.94 plg Ae = 10.8 - 12210.233210.752 - 12210.233213.942 = 8.61 plg2 Q = Qa =

Ae 8.61 = = 0.7972 Ag 10.8

Determine la ecuación que debe usarse para Fcr a

10.82112 plg/pie * 24 pies2 KL = 55.65 b = r y 4.14 plg 6 4.71

Fe =

29 000 = 132.45 B 10.797221462

p2E KL b a r

2

=

1p22129 0002 155.6522

= 92.42 klb/plg 2

Fcr = Q C 0.658 F D Fy

(Ecuación E3-4 del AISC)

QFy

(Ecuación E7-2 del AISC)

e

= 0.7972 C 0.658

0.7972 * 46 92.42

D 46

= 31.06 klb/plg 2 Pn = (10.8)(31.06) = 335.4 klb

LRFD fc = 0.90 fcPn = 10.9021335.4 klb2 = 301.9 klb

6.10

(Ecuación E7-1 del AISC)

ASD Æ c = 1.67 Pn 335.4 klb = 200.8 klb = Æc 1.67

PANDEO FLEXOTORSIONAL DE MIEMBROS A COMPRESIÓN Los miembros simétricos, por lo general, se usan como columnas, tales como los perfiles W. No habrá torsión en estos perfiles si las líneas de acción de las cargas laterales pasan por sus centros de cortante. El centro de cortante es el punto de la sección transversal de un miembro por el cual debe pasar la resultante de las cargas transversales para que no ocurra torsión. En el Capítulo 10 se presentan los cálculos necesarios para localizar los centros de cortante. Los centros de cortante de los perfiles doblemente simétricos que se usan comúnmente ocurren en sus centroides. Éste no es necesariamente el caso para otros perfiles tales como las canales y los ángulos. En la Figura 6.11 se muestran las ubicaciones de los centros de cortante de varios tipos de perfiles. También se muestran en la figura las coordenadas x0 y y0 del centro de cortante de cada perfil con respecto a su centroide. Estos valores son necesarios para resolver las fórmulas de flexotorsión, que se presentan posteriormente en esta sección. Aun cuando las cargas pasen por los centros de cortante, todavía puede presentarse el pandeo de torsión. Si usted carga cualquier perfil a través de su centro de cortante, no

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


192

Capítulo 6

Diseño de miembros cargados axialmente a compresión y x

x0 ⫽ y0 ⫽ 0 x

x

y

y

x0 ⫽ 0

y0 x

x

x0 ⫽ 0

y

y0 x

y

Centros de cortante mostrados con puntos negros grandes y y

y

x

x y0 ⫽ 0

x

x y0 x0

x0 y

y

Figura 6.11 Ubicaciones de los centros de cortante de algunos perfiles comunes de columna.

se presentará la torsión, pero aun así, se calcula la resistencia al pandeo de torsión para estos miembros, es decir, la carga de pandeo no depende de la naturaleza de la carga axial o transversal; más bien depende de las propiedades de la sección transversal, de la longitud de la columna y de las condiciones de apoyo. Los miembros cargados axialmente a compresión pueden fallar teóricamente de cuatro maneras diferentes: por el pandeo local de los elementos que forman la sección transversal, por pandeo de flexión, por pandeo de torsión o por pandeo flexotorsionante. El pandeo de flexión (llamado también pandeo de Euler cuando se presenta comportamiento elástico) es el que se ha considerado hasta ahora en nuestro tratamiento de las columnas donde hemos calculado las relaciones de esbeltez para los ejes principales de las columnas y hemos determinado fcFcr para la mayor relación obtenida. Mientras que los miembros de columnas de doble simetría (como las secciones W) están sujetos sólo a pandeo local, pandeo de flexión y pandeo de torsión. Como el pandeo de torsión puede ser muy complejo, es conveniente evitar que se presente. Esto se puede lograr mediante un cuidadoso arreglo de los miembros y proporcionando soportes que impidan el movimiento lateral y la torcedura. Si se proporcionan suficientes soportes laterales en los extremos y en los puntos intermedios, el pandeo de flexión siempre dominará sobre el pandeo de torsión. Las resistencias de diseño de columnas dadas en las tablas de columnas del AISC para perfiles W, M, S, tubos y secciones de tubería se basan en el pandeo de flexión. Las secciones abiertas W, M y canales tienen poca resistencia a la torsión, pero no así las vigas en cajón. Entonces, si se presenta un caso de torsión, es aconsejable usar secciones en caja o bien construir secciones en caja con secciones W a las cuales se sueldan placas la). Otra manera de reducir los problemas de torsión es acortar las longitudes de terales ( miembros que están sujetos a torsión. Para un perfil con simetría simple como una te o un ángulo doble, el pandeo de Euler puede ocurrir respecto a los ejes x o y. Para ángulos simples de lados iguales, el pandeo de Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.10

Pandeo flexotorsional de miembros a compresión 193

Euler puede ocurrir alrededor del eje z. Para todas estas secciones, el pandeo flexotorsional es definitivamente una posibilidad y puede llegar a dominar. (Siempre dominará en columnas formadas con un ángulo simple de lados desiguales.) Los valores dados en la tablas de cargas de columnas del AISC para secciones de ángulos dobles y tes estructurales, se calcularon para pandeo respecto al eje débil x o y y para pandeo flexotorsional. El proyectista promedio no considera el pandeo de torsión de perfiles simétricos o el pandeo flexotorsional de perfiles asimétricos. Él considera que esas condiciones no rigen en la determinación de la carga crítica, o por lo menos no la afectan mucho. Esta hipótesis puede estar alejada de la realidad. Sin embargo, cuando se tienen columnas asimétricas o incluso columnas simétricas hechas con placas delgadas, encontramos que el pandeo de torsión o el flexotorsional pueden reducir significativamente la capacidad de la columna. La Sección E4 de la Especificación AISC trata del pandeo de torsión o flexotorsional de las columnas de acero. La parte (b) de la sección presenta un método general para manejar el problema que es aplicable a todos los perfiles. La parte (a) de la misma sección es una modificación del procedimiento presentado en la parte (b) y es aplicable específicamente a ángulos dobles y perfiles te que se usan como columnas. Aquí se presenta el enfoque general de la parte (b). El procedimiento incluye el uso de la Ecuación E4-9 del AISC para la determinación del esfuerzo de pandeo de torsión elástico Fez (que es análogo al esfuerzo de pandeo de Euler). Después de determinar este valor, se usa en la ecuación que sea apropiada de las Ecuaciones E4-4, E4-5 y E4-6 del AISC para obtener Fe, el esfuerzo de pandeo elástico de torsión o flexotorsional. Entonces se determina el esfuerzo crítico, Fcr, de acuerdo con la Ecuación E3-2 o E3-3. Enseguida se presenta el procedimiento para la parte (a), que es para miembros a compresión de ángulos dobles y perfiles te. El esfuerzo crítico, Fcr, se determina usando la Ecuación E4-2 del AISC. En esta ecuación, Fcry se toma como Fcr de las Ecuaciones E3-2 o E3-3, y Fcrz así como H se obtienen de las Ecuaciones E4-3 y E4-10 respectivamente. Para cualquiera de los dos procedimientos, se determina la resistencia de compresión nominal Pn para los estados límite de pandeo de torsión y flexotorsional usando la Ecuación E4-1 del AISC. En la ecuación, el valor de Fcr previamente calculado se multiplica por Ag. Generalmente no es necesario considerar el pandeo de torsión para perfiles de doble simetría. Además, rara vez tenemos que considerar el tema para perfiles sin eje de simetría debido a que probablemente nunca se usarán ese tipo de miembros como columnas. Sin embargo, en algunas ocasiones, probablemente se seleccionarán perfiles con un eje de simetría como columnas, y en ese caso debe considerarse el pandeo de torsión lateral. En esta sección se presenta un ejemplo numérico (Ejemplo 6-9) para pandeo flexotorsional para una sección WT que se usa como columna. Para este tipo de perfil el eje x estará sujeto a pandeo de flexión, mientras que puede haber pandeo de flexión alrededor del eje y (el eje de simetría) así como pandeo de torsión lateral. Hay cuatro etapas que intervienen en la solución de este tipo de problema con la Especificación AISC, que son las siguientes: 1. Determine la resistencia al pandeo de flexión del miembro para su eje x usando las Ecs. E3-4, E3-2 o E3-3 del AISC, la que sea aplicable, y E3-1. 2. Determine la resistencia al pandeo de flexión del miembro para su eje y usando las Ecs. E3-4, E3-2 o E3-3 del AISC, la que sea aplicable, y E3-1. 3. Determine la resistencia al pandeo flexotorsionante del miembro para su eje y usando las Ecs. E4-11, E4-9, E4-10, E4-5, E3-2 o E3-3 del AISC, la que sea aplicable, y E4-1. 4. Seleccione el valor más pequeño de Pn determinado en los tres pasos anteriores. Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


194

Capítulo 6

Diseño de miembros cargados axialmente a compresión

Ejemplo 6-9 Determine la resistencia nominal a la compresión, Pn, de una WT10.5 * 66 con KLx = 25 pies y KLy = KLz = 20 pies. Use el enfoque general dado en la parte (b) de la Especificación E4(b) del AISC y acero A992. Solución Usando una WT10.5 * 66 (A = 19.4 plg2, tf = 1.04 plg, Ix = 181 plg4, rx = 3.06 plg, Iy = 166 plg4, ry = 2.93 plg, y = 2.33 plg, J = 5.62 plg4, Cw = 23.4 plg6 y G = 11 200 klb/plg2) 1) Determine la resistencia al pandeo de flexión para el eje x a Fex =

112 plg/pie2125 pies2 KL b = = 98.04 r x 3.06 plg

1p22129 0002 p 2E = = 29.78 klb/plg2 198.0422 KL 2 a b r x a

(Ecuación E3-4 del AISC)

29 000 KL b = 98.04 6 4.71 = 113.43 r x B 50 ‹ Fcr = C 0.658 F D Fy Fy

e

(Ecuación E3-2 del AISC)

= C 0.65829.78 D 50 = 24.76 klb/plg2 50

La resistencia nominal Pn para el pandeo de flexión alrededor del eje x es Pn = FcrAg = 124.762119.42 = 480.3 klb

(Ecuación E3-1 del AISC)

2) Determine la resistencia al pandeo de flexión para el eje y a Fey =

KL 12 plg/pie * 20 pies b = = 81.91 r y 2.93 plg

1p22129 0002 p2E = = 42.66 klb/plg2 181.9122 KL 2 b a r y a

(Ecuación E3-4 del AISC)

29 000 KL = 113.43 b = 81.91 6 4.71 r y B 50

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.10

Pandeo flexotorsional de miembros a compresión 195 Fy

‹ Fcr = C 0.658 F D Fy

(Ecuación E3-2 del AISC)

e

50 42.66

= C 0.658

D 50 = 30.61 klb/plg

2

La resistencia nominal Pn para el pandeo de flexión alrededor del eje y es Pn = FcrAg = (30.61)(19.4) = 593.8 klb

(Ecuación E3-1 del AISC)

3) Determine la resistencia al pandeo flexotorsional del miembro alrededor del eje y. Observe que x0 y y0 son las coordenadas del centro de cortante con respecto al centroide de la sección. Aquí x0 es igual a 0 porque el centro de cortante de la WT está localizado tf sobre el eje y-y, mientras que y0 es igual a y - ya que el centro de cortante está localizado 2 en la intersección de las líneas de centro del alma y del patín como se muestra en la Figura 6.11. x0 = 0 tf

y0 = y -

2

= 2.33 -

1.04 = 1.81 2

r0 = radio polar de giro alrededor del centro de cortante r20 = x20 + y20 +

Ix + Iy

= 02 + 1.812 + Fez = ¢ = c

p2ECw

1KzL2

2

181 + 166 = 21.16 plg2 19.4

+ GJ ≤

p2(29 000)(23.4) (12 * 20)

2

H = 1 -

(Ecuación E4-11 del AISC)

Ag

1 Agr20 + 11 200(5.62) d

(Ecuación E4-9 del AISC) 1 = 153.62 klb/plg 2 19.4(21.16)

x20 + y20

(Ecuación E4-10 del AISC)

r20

02 + 1.812 = 0.84517 21.16 4FeyFezH Fey + Fez Fe = ¢ ≤ B1 - 1 R B 2H 1Fey + Fez22 = 1 -

= a

(Ecuación E4-5 del AISC)

142142.6621153.62210.845172 42.66 + 153.62 1 b B1 R B 12210.845172 142.66 + 153.6222

= 40.42 klb/plg 2

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


196

Capítulo 6

Diseño de miembros cargados axialmente a compresión

Ahora necesitamos regresar ya sea a la Ecuación E3-2 o E3-3 del AISC para determinar la resistencia a la compresión del miembro. 40.42 klb/plg 2 7

Fy 2.25

= 22.22 klb/plg2

‹ Debe usar la Ecuación E3-2 del AISC. Fy

Fcr = C 0.658 F D Fy = A 0.65840.42 B 50 = 29.79 klb/plg 2 50

e

La resistencia nominal es

Pn = FcrAg = 129.792119.42 = 577.9 klb

(Ecuación E4-1 del AISC)

4) Nuestra carga nominal es el valor más pequeño de los valores de Pn determinados en a), b) y c). Pn ⴝ 480.3 klb LRFD fc = 0.90 fc Pn = (0.90) (480.3 klb) = 432.3

6.11

ASD Æ c = 1.67 Pn Æc

=

480.3 klb = 287.6 klb 1.67

PROBLEMAS PARA RESOLVER Todas las columnas en los siguientes problemas forman parte de marcos arriostrados contra desplazamiento lateral. Cada problema debe resolverse con ambos procedimientos LRFD y ASD. 6-1 al 6-3. Use el siguiente procedimiento de tanteos: estime un valor KL/r, determine los esfuerzos fcFcr y Fcr /Æc de la Tabla 4-22 del AISC, determine el área requerida, seleccione una sección de prueba, seleccione otra sección en caso de ser necesario. 6-1. Seleccione la sección W10 más ligera para soportar las cargas axiales de compresión PD = 100 klb y PL = 160 klb si KL = 15 pies y se usa acero A992 Grado 50. (Resp. W10 * 49, LRFD y ASD.) 6-2. Seleccione la sección W8 más ligera para soportar las cargas axiales PD = 75 klb y PL = 125 klb si KL = 13 pies y Fy = 50 klb/plg2. 6-3. Repita el Problema 6-2 si Fy = 36 klb/plg2. (Resp. W8 * 48, LRFD y ASD.) 6-4 al 6-17. Use las tablas de columnas disponibles en el Manual del AISC, especialmente las de la Parte 4. 6-4. Repita el Problema 6-1. 6-5. Repita el Problema 6-2. (Resp. W8 * 35, LRFD y ASD.) 6-6. Repita el Problema 6-1 si PD = 150 klb y PL = 200 klb. 6-7. Van a diseñarse varias columnas de edificio, usando acero A992 y la Especificación AISC. Seleccione las secciones W más ligeras disponibles y establezca la resistencia de diseño, fcPn, y la resistencia permisible ASD, Pn /Æc, para esas columnas que se describen a continuación: a. PD = 170 klb, PL = 80 klb, L = 16 pies, extremos articulados, W8. (Resp. W8 * 48, LRFD fcPn = 340 klb > Pu = 332 klb; W8 * 58, ASD Pn/Æc = 278 klb > Pa = 250 klb.)

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.11 Problemas para resolver

6-8.

6-9.

6-10.

6-11.

6-12.

6-13.

6-14. 6-15.

6-16.

Alfaomega

197

b. PD = 100 klb, PL = 220 klb, L = 25 pies, empotrada en la base, articulada arriba, W14. (Resp. W14 * 74, LRFD fcPn = 495 klb > Pu = 472 klb; W14 * 74, ASD Pn/Æc = 329 klb > Pa = 320 klb.) c. PD = 120 klb, PL = 100 klb, L = 25 pies, extremos empotrados, W12. (Resp. W12 * 50, LRFD fcPn = 319 klb > Pu = 304 klb; W12 * 53, ASD Pn/Æc = 297 klb > Pa = 220 klb.) d. PD = 250 klb, PL = 125 klb, L = 18.5 pies, extremos articulados, W14. (Resp. W14 * 74, LRFD fcPn = 546 klb > Pu = 500 klb; W14 * 82, ASD Pn/Æc = 400 klb > Pa = 375 klb.) Diseñe una columna con una longitud efectiva de 22 pies para sustentar una carga muerta de 65 klb, una carga viva de 110 klb, y una carga eólica de 144 klb. Seleccione la W12 más ligera de acero A992. Va a seleccionarse un perfil W10 para sustentar las cargas PD = 85 klb y PL = 140 klb. El miembro, que deberá tener una longitud de 20 pies, está empotrado en la base y está fijo contra la rotación pero tiene libertad de traslación en la parte superior. Use acero A992. (Resp. W10 * 68, LRFD y ASD, fcPn = 363 klb y Pn/Æc = 241 klb.) Va a seleccionarse un perfil W14 para sustentar las cargas PD = 500 klb y PL = 700 klb. El miembro tiene 24 pies de longitud con extremos articulados y tiene soporte lateral en la dirección débil en los tercios de la longitud total de la columna. Use acero de 50 klb/plg2. Repita el Problema 6-10 si la longitud de la columna es de 18 pies de longitud y PD = 250 klb y PL = 350 klb. (Resp. W14 * 74, LRFD, fcPn = 893 klb; W14 * 82, ASD, Pn/Æc = 655 klb.) Una columna de 28 pies de longitud está articulada en la parte superior y empotrada en la base, y tiene un apoyo articulado adicional en la dirección del eje débil en un punto a 12 pies desde la parte superior. Suponga que la columna es parte de un marco arriostrado. Las cargas gravitacionales axiales son PD = 220 klb y PL = 270 klb. Seleccione la columna W12 más ligera. Una columna de 24 pies en un edificio de marcos arriostrados se va a construir en un muro de manera que estará soportada en forma continua en la dirección de su eje débil, pero no en la dirección de su eje fuerte. Si el miembro va a consistir de 50 klb/plg2 y se supone que está empotrado en ambos extremos, seleccione el perfil W10 más ligero disponible que sea satisfactorio usando la Especificación AISC. Las cargas son PD = 220 klb y PL = 370 klb. (Resp. W10 * 77 LRFD y ASD.) Repita el Problema 6-13 si PD = 175 klb y PL = 130 klb. Seleccione el perfil W8 más ligero disponible que sea satisfactorio. Una sección W12 de acero de 50 klb/plg2 deberá seleccionarse para soportar las cargas axiales de compresión PD = 375 klb y PL = 535 klb. El miembro tiene 36 pies de longitud, está articulado en ambos extremos y tendrá soporte lateral en los cuartos de su altura, perpendicularmente al eje y (articulado). (Resp. W12 * 152 LRFD; W12 * 170 ASD.) Usando los aceros contemplados en las tablas de columnas en la Parte 4 del Manual, seleccione las secciones laminadas más ligeras disponibles (W, HP, HSS cuadrada y HS redonda) adecuadas para las siguientes condiciones: a. PD = 150 klb, PL = 225 klb, L = 25 pies, un extremo articulado y otro empotrado b. PD = 75 klb, PL = 225 klb, L = 16 pies, extremos empotrados c. PD = 50 klb, PL = 150 klb, L = 30 pies, extremos articulados Diseño de Estructuras de Acero – McCormac /Csernak


198

Capítulo 6

Diseño de miembros cargados axialmente a compresión

6-17. Suponiendo sólo cargas axiales, seleccione secciones W10 para una columna interior del marco arriostrado lateralmente que se muestra en la siguiente figura. Use Fy = 50 klb/plg2 y solamente el método LRFD. Se proporciona un empalme de columna justo arriba del punto B; por tanto, seleccione una sección de columna para la columna AB y una segunda sección de columna diferente para las columnas BC y CD. Datos pertinentes: peso del concreto 150 lb/pie3. Carga viva sobre el techo = 30 lb/pie2. Carga muerta del techado = 10 lb/pie2. Carga viva en los pisos = 15 lb/pie2. Carga muerta superpuesta en los pisos = 12 lb/pie2. Carga de muros divisorios sobre pisos = 15 lb/pie2. Todos los nudos se consideran articulados. Separación centro a centro de los marcos: 35 pies. (Resp. Columna AB: W10 * 68, columna BC y CD: W10 * 39.) 25 pies

25 pies

Techo D 14 pies

Losa de concreto de 2 plg

Tercero C 14 pies

Empalme de columna

Losas de concreto de 6 plg

Segundo B 18 pies

Primero

A

Figura P6-17.

6-18. Se le pide diseñar una columna para PD = 225 klb y PL = 400 klb, usando acero A992 con KL = 16 pies. Se dispone de una W14 * 68 que tal vez no suministre suficiente capacidad. Si no lo hace, pueden añadirse cubreplacas a la sección para aumentar la capacidad de la W14. Diseñe las cubreplacas para que tengan un ancho de 12 plg y se suelden a los patines de la sección para que la columna resista la carga requerida (véase la Figura P6-18). Determine el ancho mínimo de placa requerido, suponiendo que las placas están disponibles en incrementos de 1/16 plg. 12 plg

W14 ⫻ 68

cubreplacas

Figura P6-18.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


6.11 Problemas para resolver

199

6-19. Determine la resistencia de diseño LRFD y la resistencia permisible ASD de la sección mostrada si se usan tornillos apretados sin holgura a 3 pies entre centros para conectar los ángulos A36. Los dos ángulos, 5 * 312 * 12 están orientados con las alas largas espalda con espalda (2L 5 * 312 * 12 LLBB) y separados 3/8 plg. La longitud efectiva (KL)x = (KL)y = 15 pies. (Resp. 101.9 klb LRFD; 67.8 klb ASD.) y 3 8

plg

x

x

2L 5 ⫻ 3

1 2

⫻ 12 LLBB

y

Figura P6-19.

6-20. Repita el Problema 6-19 si los ángulos están soldados ente sí con sus alas largas espalda con espalda a intervalos de 5 pies. 6-21. Cuatro ángulos de 3 * 3 * 14 se usan para formar el miembro mostrado en la siguiente figura. Éste tiene 24 pies de longitud, tiene extremos articulados, y consta de acero A36. Determine la resistencia de diseño LRFD y la resistencia permisible ASD del miembro. Diseñe la celosía simple y la placa de unión en los extremos suponiendo que la conexión con los ángulos es por medio de tornillos de 34 plg. (Resp. 159.1 klb LRFD; 106.0 klb ASD.) 12 plg

12 plg

Figura P6-21.

6-22. Seleccione el par más ligero de canales C9 para soportar las cargas PD = 50 klb y PL = 90 klb. El miembro tiene 20 pies de longitud con ambos extremos articulados y estará armado como se muestra en la siguiente figura. Use acero A36 y diseñe la celosía simple y las placas de unión en los extremos con tornillos de conexión de 34 plg de diámetro. Suponga que los tornillos están ubicados a 114 plg desde la espalda de las canales. Resuelva según los procedimientos LRFD y ASD.

6 plg

Alfaomega

Figura P6-22.

Diseño de Estructuras de Acero – McCormac /Csernak


C A P Í T U L O

7

Diseño de miembros cargados axialmente a compresión (continuación) y placas de base para columnas

7.1

INTRODUCIÓN En este capítulo se considera la resistencia axial disponible de columnas que se usan en marcos de acero sin arriostramiento. A estos marcos también se les conoce como marcos rígidos o marcos con desplazamiento impedido. Como los extremos de las columnas pueden moverse en sentido lateral, éstas deben tener capacidad para resistir tanto cargas axiales como momentos de flexión. Como consecuencia, generalmente se les conoce como columnas-vigas. Estos miembros se estudian con detalle en el Capítulo 11 de esta obra. La Especificación del AISC proporciona varios métodos para tratar el análisis de la estabilidad y el diseño de las columnas-vigas. Uno es el Método de análisis directo (DM) que se especifica en el Capítulo C de la Especificación. Este enfoque emplea factores que se requieren para determinar con mayor exactitud las fuerzas y los momentos durante la fase del análisis y elimina el requisito de calcular el factor de longitud efectiva, K. Esto se debe al hecho de que la longitud efectiva de los miembros a compresión, KL, se toma como la longitud real, L, es decir, K se toma igual a 1.0. Un segundo método, el Método de la longitud efectiva (ELM), se da en el Apéndice 7 de la Especificación. En este método, K se calcula usando uno de los procedimientos estudiados en este capítulo. Estos dos métodos de diseño se estudiarán más a fondo en el Capítulo 11 de este texto. En este capítulo, se determinará la resistencia disponible de los miembros a compresión, £Pn, en marcos de edificios calculando KL con el uso del Método de la longitud efectiva.

200

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


7.2

7.2

Una exposición más amplia de las longitudes efectivas

201

UNA EXPOSICIÓN MÁS AMPLIA DE LAS LONGITUDES EFECTIVAS El concepto de longitud efectiva se introdujo en el Capítulo 5 y se presentaron algunos factores de K en la Tabla 5.1. Estos factores se obtuvieron para columnas con ciertas condiciones idealizadas de restricción en sus extremos, que pueden ser muy diferentes con respecto a las condiciones prácticas de diseño. Los valores tabulados son normalmente satisfactorios para diseños preliminares y para situaciones en las que el desplazamiento lateral (ladeo) está impedido por soportes laterales. Sin embargo, si las columnas forman parte de un marco continuo sometido a desplazamiento lateral, es a menudo conveniente efectuar un análisis más detallado, como se describe en esta sección. En menor grado, esto es también conveniente para columnas en marcos arriostrados contra desplazamiento lateral. Es adecuado hacer algunos comentarios respecto al desplazamiento lateral en relación con las longitudes efectivas. En este sentido el desplazamiento lateral se refiere a un tipo de pandeo. En estructuras estáticamente indeterminadas el desplazamiento lateral ocurre donde los marcos se curvan lateralmente debido a la presencia de cargas laterales, o cargas verticales asimétricas, o donde los marcos son asimétricos. Asimismo el desplazamiento lateral ocurre en columnas cuyos extremos se pueden mover transversalmente cuando son cargadas hasta que ocurre el pandeo. Si se usan marcos con arriostramiento diagonal o muros rígidos de cortante, las columnas no sufrirán ladeo y tendrán algo de restricción rotatoria en sus extremos. Para estas situaciones, ilustradas en la Figura 7.1, los factores K estarán entre los casos (a) y (d) de la Tabla 5.1. El Apéndice 7 (7.2.3(a)) de la Especificación del AISC establece que debe usarse K = 1.0 para columnas en marcos con ladeo impedido, a menos que un análisis muestre que puede usarse un menor valor. Una especificación como K = 1.0 es con frecuencia un valor bastante conservador, y un análisis como el descrito aquí puede conducir a algunos ahorros. La longitud efectiva verdadera de una columna es una propiedad de toda la estructura de la cual forma parte. En muchos edificios existentes es probable que los muros de mampostería proporcionen suficiente soporte lateral para impedir el ladeo. Sin embargo, cuando se usan muros de cortina ligeros, como se hace con frecuencia en los edificios modernos, tal vez se tendrá poca resistencia al ladeo. En los edificios altos está presente también el ladeo en cantidades apreciables, a menos que se use un sistema de arriostramiento diagonal o muros de cortante. Para esos casos parece lógico suponer que la resistencia al ladeo sea proporcionada principalmente por la rigidez lateral del marco solo. Pueden usarse análisis matemáticos teóricos para determinar las longitudes efectivas, pero tales procedimientos son usualmente muy largos y tal vez muy difíciles para el ingeniero promedio. El procedimiento usual es consultar la Tabla 5.1, interpolando entre los valores idealizados según lo considere apropiado el ingeniero, o bien los nomogramas descritos en esta sección. El método más común para obtener las longitudes efectivas es emplear los nomogramas mostrados en la Figura 7.2. Fueron desarrollados por O. G. Julian y L. S. Lawrence, y frecuentemente se les conoce como los nomogramas de Jackson y Moreland, en honor de la compañía donde trabajaban Julian y Lawrence.1, 2 Los nomogramas se desarrollaron a

1

O. G. Julian y L. S. Lawrence, “Notes on J and L Monograms for Determination of Effective Lengths” (1959). Sin publicar. 2 Structural Stability Research Council, Guide to Stability Design Criteria for Metal Structures, 4a. ed., T. V. Galambos, ed. (Nueva York: Wiley, 1988.)

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


202

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación)

Figura 7.1 Ladeo impedido.

(a) Arriostramiento diagonal

(b) Muro de cortante

partir de un análisis de pendiente-deflexión de los marcos, incluyendo el efecto de las cargas en las columnas. Un nomograma se desarrolló para columnas arriostradas contra ladeo y el otro para columnas sometidas a ladeo. Su uso permite al ingeniero estructurista obtener buenos valores de K sin tener que usar largos procedimientos de tanteos con las ecuaciones de pandeo. Para usar los nomogramas es necesario proponer primero tamaños preliminares para las trabes y columnas que se conectan con la columna en consideración antes de poder determinar el factor K para esa columna. En otras palabras, antes de poder usar el nomograma, tenemos que suponer tamaños para los miembros o llevar a cabo un diseño preliminar. Cuando decimos que el ladeo está impedido, significa que se tienen otros elementos aparte de trabes y columnas para impedir la traslación horizontal de los nudos. Esto significa que tenemos un sistema bien definido de arriostramiento lateral, o bien muros de cortante. Si decimos que el ladeo no está impedido, esto significa que la resistencia a la traslación horizontal es suministrada sólo por la resistencia a la flexión y la rigidez de las trabes y vigas del marco en consideración con sus juntas continuas. La resistencia a la rotación proporcionada por las vigas y trabes que se unen en el extremo de una columna depende de las rigideces rotacionales de esos miembros. El momento necesario para producir una rotación unitaria en un extremo de un miembro, cuando el otro está empotrado se denomina rigidez rotatoria (angular). De nuestros estudios de análisis estructural, esto resulta ser igual a 4EI/L para un miembro homogéneo de sección transversal constante. Con base en lo anterior podemos decir que la restricción rotatoria en el extremo de una columna particular es proporcional a la razón de la suma de las rigideces de las columnas a la suma de las rigideces de las trabes que se unen en ese nudo, o sea Ec Ic 4EI a L a L de las columnas c G = = . Eg Ig 4EI de las trabes a L a L g Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


7.2

Una exposición más amplia de las longitudes efectivas GA ⬁ 50.0 10.0 5.0 4.0 3.0

K 1.0

0.9

203

GB ⬁ 50.0 10.0 5.0 4.0 3.0

2.0

2.0 0.8

Los subíndices A y B se refieren a los nudos en los extremos de las columnas consideradas. G se define como:

EcIc aa L b c G = EgIg aa L b

1.0 0.9 0.8 0.7 0.6 0.5

1.0 0.9 0.8 0.7 0.6 0.5

0.7

0.4

0.4

Ecuación (C-A-7-2) del AISC

0.3

0.3

g

0.6

0.2

El símbolo © es la sumatoria de todos los miembros conectados rígidamente al nudo localizados en el plano de pandeo de la columna considerada. Ec es el módulo elástico de la columna, Ic es el momento de inercia de la columna, y Lc es la longitud no soportada de la columna. Eg es el módulo elástico de la trabe; Ig es el momento de inercia de la trabe, y Lg es la longitud no soportada de la trabe o de otro miembro restrictivo. Ic e Ig se toman respecto a ejes perpendiculares al plano de pandeo que se está considerando. Los nomogramas son válidos para diferentes materiales si se usa una rigidez apropiada, EI, en el cálculo de G. Ajustes para columnas con condiciones de extremo diferentes. Para extremos de columnas soportadas, pero no rígidamente conectadas a la cimentación o la zapata, G es teóricamente igual a infinito, pero a menos que la unión se construya como una verdadera articulación sin fricción, se deberá tomar igual a 10 para diseños prácticos. Si la columna está unida rígidamente en su extremo a la cimentación, G puede tomarse igual a 1.0. Se pueden usar valores menores si se justifican analíticamente. Tomado de la Especificación del American Institute of Steel Construction, ANSI/AISC 360-10, Comentario del Apéndice 7. Figura C-A-7.1 y C-A7.2, pp. 16.1-512 y 16.1-513 (Chicago: AISC, 2010). “Derechos reservados © American Institute of Steel Construction. Reproducido con autorización. Todos los derechos reservados.”

0.2

0.1

0.1

0.0

0.5

0.0

(a) Ladeo impedido (marco arriostrado) GA

K

⬁ 100.0 50.0 30.0 20.0 10.0 8.0 7.0 6.0 5.0 4.0 3.0

⬁ 20.0 10.0 5.0 4.0

Ejemplo 7-1 del miembro AB

3.0

2.0 1.76

GB ⬁ 100.0 50.0 30.0 20.0 10.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0

2.0 1.5

1.0

1.0

0.0

1.0

0.0

(b) Ladeo no impedido (marco rígido) Figura 7.2 Nomogramas de Jackson y Moreland para determinar longitudes efectivas de columnas en marcos continuos.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


204

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación)

Shearson Lehman/Centro de Servicios Informativos de la American Express, en Nueva York. (Cortesía de Owen Steel Company, Inc.)

En la aplicación de los nomogramas, los factores G en las bases de las columnas son bastante variables. Se recomienda aplicar las dos reglas siguientes para obtener sus valores: 1. Para columnas articuladas, G es teóricamente infinito, como cuando una columna está conectada a una zapata por medio de una articulación sin fricción. Como en realidad tal conexión nunca está libre de fricción, se recomienda que G se tome igual a 10 cuando se usen tales soportes no rígidos. 2. Para conexiones rígidas de columnas a zapatas, G teóricamente tiende a cero, pero desde un punto de vista práctico, se recomienda un valor de 1.0, ya que ninguna conexión es perfectamente rígida. Los Ejemplos 7-1 y 7-2 ilustran la determinación de los factores K para las columnas de un marco de acero mediante nomogramas. Se dan los siguientes pasos: 1. Seleccione el nomograma apropiado (ladeo impedido o ladeo no impedido). Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


7.3

Marcos que cumplen con las hipótesis de los nomogramas 205 Trabe

Figura 7.3.

2. Calcule G en cada extremo de la columna y designe los valores GA y GB como se desee. 3. Dibuje una línea recta sobre el nomograma entre los valores GA y GB y lea K donde la línea corte a la escala K central. Cuando se calculan los factores G para una estructura de marco rígido (rígido en ambas direcciones), la resistencia de torsión de las trabes perpendiculares generalmente se desprecia en los cálculos. Con referencia a la Figura 7.3, se supone que estamos calculando G para el nudo mostrado por pandeo en el plano del papel. Para tal caso, la resistencia de torsión de la trabe mostrada, que es perpendicular al plano considerado, probablemente se desprecie. Si las trabes en un nudo son muy rígidas (es decir, tienen valores EI/L muy grandes), el valor de G = ©(EcIc/Lc)/©(EgIg/Lg) tenderá a cero y los factores K serán pequeños. Si G es muy pequeño, los momentos de la columna no harán girar mucho el nudo, por lo que éste estará cercano a una condición de empotramiento. Sin embargo, G es usualmente mayor que cero en forma apreciable, dando como resultado valores considerablemente mayores para K. Las longitudes efectivas de cada una de las columnas de un marco se estiman con los nomogramas en el Ejemplo 7.1. (Cuando el ladeo es posible, se encontrará que las longitudes efectivas son siempre mayores que las longitudes reales, como se ilustra en este ejemplo. Cuando los marcos están arriostrados de tal manera que el ladeo no es posible, K será menor que 1.0.) Un diseño inicial nos ha dado dimensiones preliminares para cada uno de los miembros del marco. Después de determinar las longitudes efectivas, cada columna se rediseña. Si los tamaños cambian apreciablemente, nuevas longitudes efectivas pueden determinarse, el diseño de las columnas se repite, etc. Se usan varias tablas en la solución de este ejemplo. Éstas se entienden fácilmente una vez que se examinan las notas dadas en los nomogramas.

7.3

MARCOS QUE CUMPLEN CON LAS HIPÓTESIS DE LOS NOMOGRAMAS Los nomogramas de Jackson y Moreland se desarrollaron basándose en un cierto conjunto de hipótesis, cuya lista completa se da en la Sección 7.2 del Comentario del Apéndice 7 de la Especificación del AISC. Entre estas hipótesis están las siguientes: 1. Los miembros son elásticos, tienen sección transversal constante, y están conectados con nudos rígidos.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


206

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación)

2. Todas las columnas se pandean simultáneamente. 3. Para marcos arriostrados, los giros en los extremos opuestos de cada viga son de igual magnitud, y cada viga se flexiona con curvatura simple. 4. Para marcos no arriostrados, los giros en los extremos opuestos de cada viga son de igual magnitud, pero cada viga se flexiona con curvatura doble. 5. Las fuerzas axiales de compresión en las trabes son despreciables. Se supone que el marco de la Figura 7.4 cumple con todas las hipótesis para las cuales se desarrollaron los nomogramas. Los factores de longitud efectiva de columna se determinan de los monogramas, como se muestra en el Ejemplo 7-1.

Ejemplo 7-1 Determine el factor de longitud efectiva de cada una de las columnas del marco mostrado en la Figura 7.4 si éste no está arriostrado contra ladeo. Use los nomogramas de la Figura 7.2 (b). I W8  24

W8  24

W18  50

B

W16  57

F W8  40

W16  36

C

W18  97

W8  40

A

D

12 pies  144 plg G

30 pies  360 plg

20 pies  240 plg

Figura 7.4.

H W8  24

W8  24

E

10 pies  120 plg

Solución. Factores de rigidez: se supone que E es igual a 29 000 klb/plg2 para todos los miembros y por tanto se desprecia en la ecuación para calcular G.

Miembro

Columnas

Trabes

Perfil

I

L

I/L

AB

W8 * 24

82.7

144

0.574

BC

W8 * 24

82.7

120

0.689

DE

W8 * 40

146

144

1.014

EF

W8 * 40

146

120

1.217

GH

W8 * 24

82.7

144

0.574

HI

W8 * 24

82.7

120

0.689

BE

W18 * 50

800

240

3.333

CF

c EH

W16 * 36

448

240

1.867

W18 * 97

1750

360

4.861

FI

W16 * 57

758

360

2.106

e

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


7.3

Marcos que cumplen con las hipótesis de los nomogramas 207

Factores G para cada nudo:

Nudo A

π1Ic/Lc2/π1Ig/Lg2

G

Columna articulada, G = 10

10.0

0.574 + 0.689 3.333 0.689 1.867

B C

0.379 0.369

Columna articulada, G = 10 1.014 + 1.217 13.333 + 4.8612

D E F

1.217 11.867 + 2.1062

G

Columna articulada, G = 10

I

0.272 0.306

0.574 + 0.689 4.861 0.689 2.106

H

10.0

10.0 0.260 0.327

Factores K de columna según el nomograma [Figura 7.2 (b)]: Columna AB BC DE EF GH HI

GA 10.0 0.379 10.0 0.272 10.0 0.260

GB 0.379

K* 1.76

0.369

1.12

0.272

1.74

0.306

1.10

0.260

1.73

0.327

1.10

*Es un poco difícil leer los nomogramas con los tres decimales mostrados aquí por el autor. Éste ha usado una copia mayor de la Figura 7.2 para su trabajo. Para todo propósito de diseño práctico, los valores K se pueden leer con dos decimales, lo que se puede lograr fácilmente con esta figura.

Para la mayoría de los edificios, los valores de Kx y Ky deben examinarse por separado. La razón para tal estudio individual estriba en las posibles condiciones diferentes de arriostramiento en las dos direcciones. Muchos marcos de múltiples niveles consisten en marcos rígidos en una dirección y en marcos conectados convencionalmente susceptibles de ladeo en la otra. Además, los puntos de soporte lateral pueden a menudo estar situados en lugares completamente diferentes en los dos planos. Se dispone de un conjunto de ecuaciones bastante sencillas para calcular los factores de longitud efectiva. En algunas ocasiones, el ingeniero estructurista puede encontrar más conveniente usar esas ecuaciones que los nomogramas antes descritos. Tal vez la situación Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


208

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación)

más útil es cuando se aplican a programas de computadora. Puede verse que resulta muy inconveniente detenerse en medio de un diseño con computadora para leer factores K en los nomogramas y volver a entrar con ellos al programa. Sin embargo, las ecuaciones pueden incluirse fácilmente en los programas, eliminando la necesidad de usar nomogramas.3 El nomograma de la Figura 7.2(b) para marcos con ladeo siempre da valores K Ú 1.0. De hecho, factores K calculados de 2.0 a 3.0 son comunes y ocasionalmente se obtienen valores mayores. A muchos proyectistas estos valores tan grandes no les parecen razonables. Si se obtienen factores K aparentemente muy altos, el proyectista deberá revisar con sumo cuidado los valores que adoptó del nomograma (es decir, los valores G), así como las hipótesis básicas usadas al preparar éste. Estas hipótesis se analizan con detalle en las Secciones 7.4 y 7.5.

7.4

MARCOS QUE NO CUMPLEN CON LAS HIPÓTESIS DE LOS NOMOGRAMAS CON RESPECTO A LOS GIROS DE LOS NUDOS En esta sección, se presentan algunos comentarios con respecto a marcos cuyos giros de nudos (y por tanto la rigidez de sus vigas) no concuerdan con las hipótesis hechas para desarrollar los nomogramas. Mediante el análisis estructural puede mostrarse que el giro en el punto B del marco de la Figura 7.5 es dos veces el giro de B supuesto en la elaboración de los nomogramas. Por lo tanto, la viga BC en la figura es solamente la mitad de rígida que el valor supuesto para el desarrollo de los nomogramas. Los nomogramas de Jackson y Moreland se pueden usar con exactitud para situaciones en las cuales los giros son diferentes de los supuestos haciendo ajustes a las rigideces de viga calculadas antes de leer los valores del nomograma. Mediante el análisis estructural también se pueden determinar las rigideces relativas para situaciones que no sean la mostrada en la Figura 7.5. La Tabla 7.1 presenta factores de corrección que se multiplican por las rigideces de viga calculadas, para situaciones donde las condiciones de extremo de las vigas son diferentes de las supuestas para el desarrollo de los nomogramas. El Ejemplo 7-2 muestra cómo aplicar los factores de corrección a un marco de edificio donde los giros en los extremos de algunas de las vigas varían de las condiciones supuestas de los nomogramas.

B

C

A Figura 7.5.

3

P. Dumonteil, “Simple Equations for Effective Length Factors”, Engineering Journal, AISC, vol. 29, Núm. 3 (3er. trimestre, 1992), pp. 111-115.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


7.4

Marcos que no cumplen con las hipótesis de los nomogramas con respecto a...

209

TABLA 7.1 Multiplicadores para miembros unidos rígidamente Condición en el extremo opuesto de la trabe

Desplazamiento impedido, multiplique por:

Desplazamiento no impedido, multiplique por:

Articulado Empotrado contra el giro

1.5 2.0

0.5 0.67

Ejemplo 7-2 Determine los factores K para cada una de las columnas del marco mostrado en la Figura 7.6. Aquí, se han seleccionado tentativamente perfiles W para cada uno de los miembros del marco y se han determinado sus valores I/L que se muestran en la figura. Solución. Primero, se calculan los factores G para cada nudo en el marco. En este cálculo, los valores I/L de los miembros FI y GJ se multiplican por los factores apropiados de la Tabla 7.1. 1. 2.

Para el miembro FI, el valor I/L se multiplica por 2.0, ya que su extremo opuesto está empotrado y no hay desplazamiento en ese nivel. Para el miembro GJ, I/L se multiplica por 1.5, ya que su extremo opuesto está articulado y no hay desplazamiento en ese nivel. GA = 10 como se describe en la Sección 7.2, columna articulada 23.2 + 23.2 = 0.663 70 23.2 + 20.47 = 0.624 GC = 70 GB =

Perfiles de acero, incluyendo sus valores I/L.

Alfaomega

B

W24 ⫻ 76 (70)

W12 ⫻ 40 (20.47)

W24 ⫻ 76 (70)

H 15 pies

G W18 ⫻ 35 (21.25)

W12 ⫻ 58 (31.67)

C

W18 ⫻ 50 (26.67)

J 15 pies

F W24 ⫻ 55 (56.25)

W12 ⫻ 58 (31.67)

Figura 7.6

W12 ⫻ 45 (23.2)

W12 ⫻ 45 (23.2)

W12 ⫻ 40 (20.47)

D

I 15 pies

E

A 30 pies

24 pies

Diseño de Estructuras de Acero – McCormac /Csernak


210

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación) GD = GE = GF = GG = GH =

20.47 = 0.768 26.67 1.0 como se describe en la Sección 7.2, columna empotrada 31.67 + 31.67 = 0.347 70 + 12.02156.252 31.67 + 20.47 = 0.512 70 + 11.52121.252 20.47 = 0.768 26.67

Finalmente, los factores K se seleccionan del nomograma apropiado de la Figura 7.2. Columna

AB BC CD EF FG GH

Factores G

10 y 0.663 0.663 y 0.624 0.624 y 0.768 1.0 y 0.347 0.347 y 0.512 0.512 y 0.768

Nomograma usado

7.2 a) sin desplazamiento 7.2 a) sin desplazamiento 7.2 b) con desplazamiento 7.2 a) sin desplazamiento 7.2 a) sin desplazamiento 7.2 b) con desplazamiento

Factores K

0.83 0.72 1.23 0.71 0.67 1.21

Base Robins de la Fuerza Aérea, GA. (Cortesía de Britt, Peters y asociados.)

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


7.5 Factores de reducción de la rigidez

7.5

211

FACTORES DE REDUCCIÓN DE LA RIGIDEZ Como se mencionó anteriormente, los nomogramas se elaboraron con base en un conjunto de condiciones idealizadas que rara vez se dan en una estructura real. Algunas de estas condiciones son las siguientes: el comportamiento de las columnas es elástico, todas las columnas se pandean simultáneamente, todos los miembros tienen secciones transversales constantes, todos los nudos son rígidos, etcétera. Si las condiciones reales son diferentes de las supuestas, se pueden obtener de los nomogramas valores K muy grandes y los diseños resultantes serán sumamente conservadores. Un gran porcentaje de columnas fallan en el intervalo inelástico, pero los nomogramas se preparan suponiendo comportamiento elástico. Esta situación expuesta previamente en el Capítulo 5 se ilustra en la Figura 7.7. Para estos casos los valores de K son muy conservadores y deben corregirse como se describe en esta sección. En el intervalo elástico la rigidez de una columna es proporcional a EI, en donde E = 29 000 klb/plg2, en tanto que en el intervalo inelástico la rigidez es más bien proporcional a ETI, en donde ET es el módulo reducido o el módulo tangente. En los nomogramas se mostró que la resistencia al pandeo de columnas en estructuras reticulares está relacionada con G =

©1EI/L2 de las columnas rigidez de la columna = rigidez de la trabe ©1EI/L2 de las trabes

Si las columnas se comportan elásticamente, el módulo de elasticidad se cancela en la expresión anterior para G. Sin embargo, si el comportamiento de la columna es inelástico, los factores de rigidez de la columna serán menores e iguales a ETI/L. Como resultado, el factor G usado para consultar el nomograma será menor y el factor K seleccionado del nomograma resultará más pequeño. Aunque los nomogramas se elaboraron para una acción elástica de las columnas, pueden usarse para una situación inelástica si el valor de G se multiplica por un factor de corrección, tb. Este factor de reducción se especifica en la Sección C2-3 de la Especificación AISC.

Fcr

Elástico

Inelástico

Figura 7.7.

Alfaomega

Longitud no soportada

Diseño de Estructuras de Acero – McCormac /Csernak


212

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación)

TABLA 7.2

Factor de reducción de rigidez, tb. Fy, klb/plg2

ASD LRFD Pa Ag

Pu Ag

35

36

42

46

ASD

LRFD

ASD

LRFD

ASD

45 44 43 42 41 40

– – – – – –

– – – – – –

– – – – – –

– – – – – –

– – – – – –

– – – – 0.0930 0.181

– – – – – –

39 38 37 36 35

– – – – –

– – – – –

– – – – –

– – – – 0.108

– – – – –

0.265 0.345 0.420 0.490 0.556

34 33 32 31 30

– – – – –

0.111 0.216 0.313 0.405 0.490

– – – – –

0.210 0.306 0.395 0.478 0.556

– – – – –

29 28 27 26 25

– – – – –

0.568 0.640 0.705 0.764 0.816

– – – – –

0.627 0.691 0.750 0.802 0.849

24 23 22 21 20

– – – 0.154 0.313

0.862 0.901 0.934 0.960 0.980

– – 0.0869 0.249 0.395

19 18 17 16 15

0.457 0.583 0.693 0.786 0.862

0.993 0.999 1.00

0.525 0.640 0.739 0.822 0.889

14 13 12 11 10

0.922 0.964 0.991 1.00

0.940 0.976 0.996 1.00

LRFD

ASD

50

LRFD

ASD

LRFD

0.0851 0.166 0.244 0.318 0.388 0.454

– – – – – –

0.360 0.422 0.482 0.538 0.590 0.640

– – – – –

0.516 0.575 0.629 0.681 0.728

– – – – –

0.686 0.730 0.770 0.806 0.840

0.617 0.673 0.726 0.773 0.816

– – – – –

0.771 0.811 0.847 0.879 0.907

– – – 0.0317 0.154

0.870 0.898 0.922 0.942 0.960

– – – 0.0377 0.181

0.855 0.889 0.918 0.943 0.964

– 0.102 0.229 0.346 0.454

0.932 0.953 0.970 0.983 0.992

0.267 0.373 0.470 0.559 0.640

0.974 0.986 0.994 0.998 1.00

0.889 0.923 0.951 0.972 0.988

0.313 0.434 0.543 0.640 0.726

0.980 0.991 0.998 1.00

0.552 0.640 0.719 0.788 0.847

0.998 1.00

0.713 0.777 0.834 0.882 0.922

0.997 1.00

0.800 0.862 0.913 0.952 0.980

0.896 0.936 0.967 0.987 0.998

0.996 1.00

1.00

0.953 0.977 0.992 0.999 1.00

9 8 7 6 5 –Indica que el parámetro de reducción de rigidez no es aplicable porque la resistencia requerida sobrepasa a la resistencia disponible para KL/r = 0.

Fuente: Manual del AISC, Tabla 4-21, p. 4-321, 14a. ed., 2011. “Derechos reservados © American Institute of Steel Construction. Reproducido con autorización. Todos los derechos reservados.”

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


7.5 Factores de reducción de la rigidez

213

Si aPr>Py es menor que o igual a 0.5, entonces tb es igual a 1.0 según la Ecuación C2-2a del AISC. Si aPr>Py es mayor que 0.5 entonces tb = 4(aPr>Py)[1 - (aPr>Py)] según la Ecuación C2-2b del AISC. El factor a se toma igual a 1.0 para el método LRFD y como 1.6 para la base de diseño ASD. Pr es la resistencia axial a compresión requerida usando las combinaciones de carga LRFD o ASD, Pu o Pa respectivamente. Py es la resistencia axial a la fluencia, Fy multiplicada por el área total de la columna, Ag. Los valores de tb se muestran para diversos valores de Pu>Ag y Pa>Ag en la Tabla 7.2, que es la Tabla 4-21 del Manual del AISC. Entonces se usa el factor tb para reducir la rigidez de la columna en la ecuación para calcular G, donde G(inelástico) =

tb a (Ic>Lc) a (Ig>Lg)

= tbG(elástico) Si el extremo de la columna está

articulado (G = 10.0) o empotrado (G = 1.0), el valor de G en ese extremo no deberá multiplicarse por un factor de reducción de rigidez. El Ejemplo 7-3 ilustra los pasos que se usan para la determinación del factor de longitud efectiva inelástica para una columna en un marco con desplazamientos laterales. Se verá en este ejemplo que el autor sólo ha considerado comportamiento en un plano y sólo flexión respecto al eje x. Como consecuencia del comportamiento inelástico, el factor de longitud efectiva se reduce apreciablemente. Las estructuras diseñadas por el análisis inelástico deben satisfacer las disposiciones del Apéndice 1 de la Especificación del AISC.

Ejemplo 7-3 a) Determine el factor de longitud efectiva para la columna AB del marco no arriostrado mostrado en la Figura 7.8, suponiendo que tenemos comportamiento elástico y que se cumplen todas las otras hipótesis para el desarrollo de los nomogramas. PD = 450 klb, PL = 700 klb, Fy = 50 klb/plg2. Suponga que la columna AB es una W12 * 170 y las columnas arriba y abajo son como se indica en la figura. b) Repita la parte (a) si se considera comportamiento inelástico de la columna. W12 ⫻ 152 W21 ⫻ 50 (I ⫽ 984 plg4) W21 ⫻ 50

12 pies

W21 ⫻ 50 A

12 pies

B W21 ⫻ 50 W12 ⫻ 170

30 pies

Figura 7.8.

12 pies

30 pies

Solución LRFD Pu = (1.2)(450) + (1.6)(700) = 1 600 klb

Alfaomega

ASD Pu = 4.50 + 700 = 1 150 klb

Diseño de Estructuras de Acero – McCormac /Csernak


214

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación)

a) Suponiendo que la columna esté en el rango elástico. Usando W12 * 170 (A = 50 plg2, Ix = 1 650 plg4) para la columna AB y para la columna de abajo. Usando W12 * 152 (A = 44.7 plg2, Ix = 1 430 plg4) para la columna de arriba. GA =

a (Ic>Lc)

a (Ig>Lg)

GB =

=

a (Ic>Lc)

a (Ig>Lg)

1 430 1 650 + 12 12 2¢ 2¢ =

1 650 ≤ 12

= 3.91

984 ≤ 30

= 4.19

984 ≤ 30

Del nomograma de la Figura 7.2(b) K = 2.05 b) Solución inelástica LRFD

ASD a = 1.6

a = 1.0 Pr = Pu = 1 660 klb

Pr = Pa = 1 150 klb

Py = FyAg = 50 klb/plg (50 plg ) = 2 500 klb 2

a

Pr Py

=

1.0(1 660) 2 500

2

= 0.664 7 0.5

Py = FyAg = 50 klb/plg2 (50 plg2) = 2 500 klb a

Pr Py

=

1.6(1 150) 2 500

= 0.736 7 0.5

Use la Ecuación C2-2b del AISC

Use la Ecuación C2-2b del AISC

Pr bd b c1 - a a tb = 4 aa Py Py

tb = 4 a a

tb = 4(0.664)[1 - (0.664)]

tb = 4(0.736)[1 - (0.736)]

tb = 0.892

tb = 0.777

Determine tb de la Tabla 7.2

Determine tb de la Tabla 7.2

Pu 1 660 = = 33.2 Ag 50

Pa 1 150 = 23 = Ag 50

Pr

‹ tb = 0.892

Pr Py

b c1 - aa

Pr Py

bd

‹ tb = 0.777

GA(inelástico) = tb GA(elástico)

GA(inelástico) = tb GA(elástico)

0.892 (3.91) = 3.49

0.777 (3.91) = 3.04

GB(inelástico) = tb GB(elástico)

GB(inelástico) = tb GA(elástico)

0.892 (4.19) = 3.74

0.777 (4.19) = 3.26

Del nomograma de la Figura 7.2(b) K = 1.96

Diseño de Estructuras de Acero – McCormac /Csernak

Del nomograma de la Figura 7.2(b) K = 1.86

Alfaomega


7.6

7.6

Diseño en un plano de columnas apoyadas entre sí 215

DISEÑO EN UN PLANO DE COLUMNAS APOYADAS ENTRE SÍ Cuando se tiene un marco sin arriostrar con vigas rígidamente conectadas a columnas, se puede diseñar con seguridad cada columna usando el nomograma con ladeo no impedido para obtener los factores K (que probablemente serán bastante mayores que 1.0). Una columna no puede pandearse por ladeo a menos que todas las columnas en el mismo piso se pandeen por ladeo. Una de las hipótesis supuestas al preparar el nomograma de la Figura 7.2(b) es que todas las columnas del piso se pandean al mismo tiempo. Si esta hipótesis es correcta, las columnas no pueden soportarse entre sí, porque si una está a punto de pandearse, las demás también estarán en esa condición. Sin embargo, en algunos casos ciertas columnas en un marco tienen un exceso de resistencia al pandeo. Si, por ejemplo, las cargas de pandeo de las columnas exteriores del marco sin arriostrar de la Figura 7.9 no se han alcanzado cuando se alcanzan las cargas de pandeo de las columnas interiores, el marco no se pandeará. En efecto, las columnas interiores se apoyarán sobre las exteriores, o sea que las columnas exteriores arriostrarán a las interiores. Para esta situación se proporciona una resistencia al cortante en las columnas exteriores que resiste la tendencia al ladeo.4 Una columna articulada en su extremo que no ayuda a proporcionar estabilidad lateral a una estructura se denomina columna apoyada. Tal columna depende de las otras partes de la estructura para proporcionar estabilidad lateral. La Sección 7.2 del Apéndice 7 del Comentario del AISC establece que los efectos de las columnas apoyadas cargadas por gravedad deberán incluirse en el diseño de columnas de marcos sometidos a momento. Existen muchas situaciones prácticas en las que algunas columnas tienen resistencia excesiva al pandeo. Esto puede pasar cuando el diseño de diferentes columnas de un piso depende de diferentes condiciones de carga. Para estos casos, la falla del marco ocurrirá sólo cuando las cargas por gravedad se incrementen lo suficiente para contrarrestar la resistencia adicional de las columnas menos cargadas. Como consecuencia, las cargas críticas de las columnas interiores de la Figura 7.7 se incrementan y sus longitudes efectivas decrecen. En otras palabras, si las columnas exteriores están soportando a las interiores contra el ladeo, los factores K para esas columnas interiores se aproximan a 1.0. Yura5 afirma que la longitud efectiva de algunas de las columnas en un marco sujeto a ladeo puede reducirse a 1.0 en este tipo de situaciones, aun cuando aparentemente no está presente ningún sistema de soporte lateral o de arriostramiento.

Figura 7.9.

4

J. A. Yura, ”The Effective Length of Columns in Unbraced Frames”, Engineering Journal, AISC, vol. 8, Núm. 2 (segundo trimestre, 1971), pp. 37-42.

5

Ibid., pp. 39-40.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


216

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación) 200 klb

700 klb

200 klb

700 klb

200 klb

500 klb

700⌬

200⌬ Figura 7.10.

(a)

(b)

(c)

El efecto neto de la información presentada aquí es que la carga total por gravedad que un marco sin soporte lateral puede resistir, es igual a la suma de las resistencias de las columnas individuales. En otras palabras, la carga total por gravedad que puede ocasionar pandeo por ladeo en un marco, puede repartirse entre las columnas en cualquier proporción, con la condición de que la carga máxima aplicada a cualquier columna no exceda la máxima carga que la columna podría resistir si estuviese soportada contra el ladeo con K = 1.0. En la exposición que sigue nos referiremos al marco sin soporte lateral de la Figura 7.10(a). Se supone que cada columna tiene una K = 2.0 y se pandeará bajo las cargas mostradas. Cuando el ladeo ocurra, el marco se inclinará hacia un lado como se muestra en la parte (b) de la figura y se desarrollarán momentos P¢ iguales a 200¢ y 700¢. Suponga que cargamos el marco con 200 klb en la columna izquierda y con 500 klb en la columna derecha (200 klb menos que antes). Sabemos que para esta situación, que se muestra en la parte (c) de la figura, el marco no se pandeará por ladeo hasta que se alcance un momento de 700¢ en la base de la columna derecha. Esto significa que la columna derecha puede tomar un momento adicional de 200¢. Entonces, como afirma Yura, la columna derecha tiene una reserva de resistencia que puede usarse para soportar la columna izquierda y prevenir su pandeo por ladeo. Obviamente, la columna izquierda está ahora soportada contra el ladeo, y el pandeo por ladeo no ocurrirá hasta que el momento en su base alcance el valor 200¢. Por lo tanto, se puede diseñar con un factor K menor de 2.0 y puede soportar una carga adicional de 200 klb, obteniéndose así un total de 400 klb; sin embargo, esta carga no debe ser mayor que la capacidad que se obtendría si la columna estuviese soportada lateralmente contra el ladeo con K = 1.0. Debe mencionarse que la carga total que el marco puede soportar sigue siendo de 900 klb, como en la parte (a) de la figura. La ventaja del comportamiento del marco descrito aquí se ilustra en la Figura 7.11. En este caso, las columnas interiores de un marco están soportadas contra el ladeo por las columnas exteriores. Se supone entonces que cada columna interior tiene factores K = 1.0. Éstas se diseñan para las cargas factorizadas mostradas (660 klb cada una). Luego se determinan los factores K para las columnas exteriores con el nomograma de ladeo no impedido de la Figura 7.2 y cada una se diseña para cargas iguales a 440 + 660 = 1 100 klb. Para entender completamente el beneficio de la teoría de la columna más apoyada, primero debemos percatarnos de que se supone que el marco está arriostrado contra el ladeo en la dirección y que está fuera del plano de modo que Ky = 1.0. Cada una de las columnas extremas de Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


7.6

Diseño en un plano de columnas apoyadas entre sí 217

la Figura 7.11 deberá soportar 440 klb + 660 klb, pero estas cargas tenderán a pandear las KL columnas extremas alrededor del eje x. Como resultado el valor usado para determinar r Fcr KL KL fcFcr ¢o b y no el valor mucho mayor de a b . ≤ es a r x r y Æc

Ejemplo 7-4 Para el marco de la Figura 7.11, que consiste en acero de 50 klb/plg2, las vigas están rígidamente conectadas a las columnas exteriores, mientras que todas las demás conexiones son simples. Las columnas están soportadas lateralmente arriba y abajo contra desplazamientos laterales (ladeo) hacia afuera del plano del marco, de modo que Ky = 1.0 en esa dirección. El ladeo es posible en el plano del marco. Usando el método LRFD, diseñe las columnas interiores suponiendo que Kx = Ky = 1.0, y diseñe las columnas exteriores con Kx determinado a partir del nomograma y Pu = 1 100 klb. (Con este enfoque del pandeo de columna, las columnas interiores no podrían soportar carga en absoluto, ya que parecen ser inestables bajo condiciones de ladeo.) Se supone que las columnas extremas no tienen momento de flexión en la parte superior del miembro. Solución. Diseño de las columnas interiores: Suponemos Kx = Ky = 1.0, KL = (1.0)(15) = 15 pies, Pu = 660 klb. Use W14 * 74; fPn = 667 klb 7 Pu = 660 klb Diseño de las columnas exteriores: En el plano Pu = 440 + 660 = 1 100 klb, Kx se determina con el nomograma. Se calcula un tamaño de columna un poco mayor que el necesario para Pu = 1 100 klb. Ensayamos una W14 * 120 (A = 35.3 plg2, Ix = 1 380 plg4, rx = 6.24 plg, ry = 3.74 plg). Garriba =

1 380/15 = 2.63 2 100/30 * 0.5

(observando que la rigidez de la trabe se multiplica por 0.5, ya que se permite el ladeo y el extremo alejado de ella está articulado). Gabajo = 10 Kx = 2.22 de la Figura 7.2(b) Pu ⫽ 440 klb Conexión rígida

Pu ⫽ 660 klb

Pu ⫽ 660 klb

Pu ⫽ 440 klb Conexión rígida

W24 ⫻ 76 (Ix ⫽ 2 100 plg4) 1

30 pies

Conexiones 2 simples

30 pies

15 pies 3

4

30 pies

Figura 7.11.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


218

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación) 12.222112 * 152 KxLx = = 64.04 rx 6.24 fcFcr = 33.38 klb/plg2

fcPn = 133.382135.32 = 1 178 klb 7 Pu = 1 100 klb

Fuera del plano: Ky = 1.0, Pu = 440 klb Ky Ly ry

=

1.0 (12 * 15) = 48.13 3.74

fFcr = 37.96 klb/plg2 fcPn = (37.96) (35.3) = 1 340 klb > Pu = 440 klb Use W14 : 120. Es preocupante pensar sobre las adiciones a edificios existentes a la luz de la teoría de la columna apoyada. Si tenemos un edificio (representado por las líneas continuas en la Figura 7.12) y decidimos ampliarlo (indicado por las líneas punteadas en la misma figura), podría pensarse que podemos usar la estructura vieja para arriostrar la nueva y que podríamos continuar ampliándola lateralmente sin efecto sobre el edificio existente. Esto no es así. El apoyo de las nuevas columnas puede ocasionar el colapso de alguna de las ya existentes.

7.7

PLACAS BASE PARA COLUMNAS CARGADAS CONCÉNTRICAMENTE El esfuerzo de diseño por compresión en una zapata de concreto o de mampostería es mucho menor que el correspondiente a la base de acero de una columna. Cuando una columna de acero se apoya en una zapata, es necesario que la carga de la columna se distribuya en un área suficiente para evitar que se sobrecargue la zapata. Las cargas de las columnas de acero se transmiten a través de una placa de base de acero a un área razonablemente grande del cimiento, que se localiza abajo de dicha placa. (Nótese que el cimiento tiene una función semejante, ya que éste distribuye la carga sobre un área aun mayor, de modo que el terreno subyacente no se sobrecargue.) Las placas base de las columnas de acero pueden soldarse directamente a las columnas, o pueden ligarse por medio de alguna oreja de ángulo remachada o soldada. Estos métodos de conexión se ilustran en la Figura 7.13. Se muestra una placa base soldada directamente a la columna en la parte (a) de la figura. Para columnas pequeñas, estas placas pueden soldarse a la columna en el taller, pero para columnas mayores es necesario embarcar las placas por separado y colocarlas en su nivel correcto. Para este segundo caso, las columnas se conectan a la zapata con pernos de anclaje que atraviesan a las orejas de ángulo que se han soldado a las columnas en el taller. Este tipo de arreglo se muestra en la parte (b) de la figura. Algunos diseñadores prefieren utilizar orejas tanto en los patines como en el alma. (El lector deberá

Figura 7.12.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


7.7

Placas base para columnas cargadas concéntricamente

219

Anclas

Anclas

Soldar Placa base

Placa base Zapata de concreto

Ancla

Lechada

Lechada

(a)

(b)

Figura 7.13 Placas base para columnas.

considerar los reglamentos de OSHA para el montaje de seguridad del acero estructural, que requiere el uso de no menos de cuatro pernos de anclaje para cada columna. De preferencia, estos pernos deberán colocarse en las esquinas de la placa base. Una fase crítica en el montaje de un edificio de acero es el posicionamiento correcto de las placas base de las columnas. Si éstas no están localizadas en sus elevaciones correctas, pueden ocurrir cambios serios de esfuerzos en las vigas y columnas de la estructura de acero. Se usa uno de los tres métodos siguientes para preparar el sitio para el montaje de una columna en su elevación apropiada: placas niveladoras, tuercas niveladoras o placas base precolocadas. Un artículo de Ricker6 describe estos procedimientos con considerable detalle. Para placas base de pequeño a mediano tamaño (de 20 a 22 plg), se envían a la obra placas niveladoras de un espesor aproximado de 0.25 plg con las mismas dimensiones que las placas base (o un poco mayores) y se enlechan cuidadosamente en su lugar a las elevaciones apropiadas. Luego las columnas con sus placas base unidas a ellas se fijan sobre las placas niveladoras. Como estas placas niveladoras son muy ligeras y pueden manejarse manualmente, son fijadas por el contratista de la cimentación. Esto es también así para las placas base más ligeras. Por otra parte, las placas base grandes que tienen que ser levantadas con una grúa, generalmente son fijadas por el montador de la estructura de acero. Para placas base más grandes, de hasta 36 plg, se usan algunos tipos de tuercas niveladoras para ajustar en dirección vertical las placas base. Para garantizar estabilidad durante el montaje, estas tuercas deben usarse en por lo menos cuatro pernos de anclaje. Si las placas base son mayores de aproximadamente 36 plg, las columnas con las placas base unidas a ellas son tan pesadas e incómodas de manejar, que es difícil embarcarlas juntas. Para tales casos, las placas base se envían a la obra y se colocan antes de proceder al montaje de la estructura de acero. Éstas pueden nivelarse con calzas o cuñas.

6

D. T. Ricker, “Some Practical Aspects of Column Bases”, Engineering Journal, AISC, vol. 26, Núm. 3 (3er. trimestre, 1989), pp. 81-89.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


220

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación)

Para placas base sumamente grandes con peso de varias toneladas o más, pueden construirse marcos a base de ángulos para soportar las placas. Éstos se nivelan cuidadosamente y se rellenan de concreto, que es enrasado a las elevaciones correctas, y las placas base se apoyan directamente sobre el concreto. Una columna transfiere su carga a la pila de apoyo o la zapata a través de la placa base. Si el área A2 del concreto de soporte es mayor que el área A1 de la placa, la resistencia del concreto será mayor. En ese caso el concreto que rodea al área de contacto proporciona un soporte lateral apreciable a la parte directamente cargada, y en consecuencia el concreto cargado puede soportar más carga. Este hecho se refleja en los esfuerzos de diseño. Las longitudes y anchos de las placas base para columnas generalmente se seleccionan en múltiplos de pares de pulgada y sus espesores en múltiplos de 1 8 hasta 1.25 plg, y en múltiplos de 1 4 plg después. Para garantizar que las cargas de las columnas se repartan uniformemente sobre sus placas base, es esencial que exista contacto entre las dos. La preparación de la superficie de esas placas está regida por la Sección M2.8 de la Especificación AISC. En esa sección se estipula que placas de apoyo de 2 plg de espesor o menores pueden usarse sin maquinarlas si se obtiene un contacto satisfactorio. (Las superficies maquinadas se han aserrado con exactitud o se han terminado hasta ser un plano verdadero.) Las placas de entre 2 plg y 4 plg de espesor pueden enderezarse por aplicación de presión o pueden maquinarse de acuerdo con el fabricante del acero. Las placas con espesor mayor de 4 plg deben maquinarse si éstas no cumplen las tolerancias de lisura especificadas en la Tabla 1-29 de la Parte 1 del Manual del AISC, con el título “Placas rectangulares”. Deberá hacerse cuando menos un orificio cerca del centro de las placas base de área grande para colocar lechada. Estos orificios permitirán una colocación más uniforme de la

Base Robins de la Fuerza Aérea, GA. (Cortesía de Britt Peters y asociados.)

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


7.7

Placas base para columnas cargadas concéntricamente

221

lechada bajo las placas, lo que tenderá a evitar las bolsas de aire. No se necesitan orificios para lechada si ésta se empaca en seco. Generalmente, los orificios para los pernos de anclaje y los de lechada se cortan con flama, ya que frecuentemente son de un diámetro demasiado grande para la punzadura y el taladrado normales. La Parte 14 del Manual del AISC presenta considerablemente más información con respecto a la instalación de las placas base. Si la superficie del fondo de la placa debe estar en contacto con la lechada de cemento para asegurar un contacto completo con la cimentación, las placas no requieren de maquinado. Además, la parte superior de las placas mayores de 4 plg de espesor no requiere maquinado si se usan soldaduras de penetración completa (descritas en el Capítulo 14). Note que cuando se requiere cierto acabado como el descrito aquí, las placas tienen que ordenarse un poco más gruesas que sus dimensiones finales para tomar en cuenta los cortes. Se considerarán inicialmente columnas que soportan cargas de magnitud media. Si las cargas son muy pequeñas, de modo que las placas base resultan también muy pequeñas, el procedimiento de diseño se tendrá que revisar como se describe más adelante en esta sección. Pu o Pa

La placa base tiene la tendencia a levantarse

Zapata P Pu lb/plg2 o a lb/plg2 A A n

0.80 bf

n

m

0.95d

d N

m bf Figura 7.14.

Alfaomega

B

Diseño de Estructuras de Acero – McCormac /Csernak


222

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación)

La Especificación del AISC no estipula un método específico para diseñar placas base de columnas. El método presentado aquí se basa en los problemas ejemplo mostrados en el CD que acompaña al Manual. Para analizar la placa base mostrada en la Figura 7.14, observe que se supone que la columna transmite a la placa base una carga total igual a Pu (para el LRFD) o Pa (para el ASD). Entonces se supone que la carga se transmite uniformemente a través de la placa a la cimentación debajo, con una presión igual a Pu>A o Pa>A, donde A es el área de la placa base. La cimentación reaccionará a su vez con una presión igual y tenderá a flexionar las partes de la placa base que quedan en voladizo, fuera de la columna, como se muestra en la figura. Esta presión también tiende a empujar hacia arriba la parte de la placa base comprendida entre los patines de la columna. En relación con la Figura 7.14, el Manual del AISC sugiere que los momentos máximos en una placa base ocurren a distancias entre 0.80bf y 0.95d. El momento de flexión se calcula en cada una de estas secciones, y se utiliza el mayor de los valores para determinar el espesor necesario de la placa. Este método de análisis es sólo una aproximación de las condiciones verdaderas, ya que los esfuerzos reales en la placa son causadas por una combinación de la flexión en las dos direcciones.

7.7.1

Área de la placa La resistencia de diseño de contacto del concreto debajo de la placa base debe ser por lo menos igual a la carga soportada. Cuando la placa base cubre el área total del concreto, la resistencia nominal de contacto del concreto (Pp) es Pp = 0.85fcœA1.

(Ecuación J8-1 del AISC)

En esta expresión, fcœ es la resistencia a compresión a los 28 días del concreto y A1 es el área de la placa base. Para el diseño por LRFD fc es 0.65, mientras que para el diseño por ASD Æc es 2.31. Si el área total del soporte de concreto no es cubierta por la placa, el concreto debajo de la placa, rodeado por el concreto exterior, será algo más fuerte. Para esta situación, la Especificación del AISC permite que la resistencia nominal 0.85fcœ A1 se incremente multiplicándola por 2A2 /A1.. En la expresión resultante, A2 es el área máxima de la porción de concreto soportante, que es geométricamente similar y concéntrica con el área cargada. El valor de 2A2 /A1 está limitado a un valor máximo de 2, como se muestra en la siguiente expresión. Deberá percatarse de que A1 no debe ser menor que la profundidad de la columna multiplicada por el ancho de su patín. (Mín A1 = bf d.) A2 … 1.7fcœA1 A A1

Pp = 10.85fcœA12

LRFD con fc = 0.65

ASD con Æ c = 2.31

Pu = fcPp = fc10.85fcœ A12

A2 A A1

A1 =

(Ecuación J8-2 del LRFD)

Pu A2 fc10.85fcœ 2 A A1

Diseño de Estructuras de Acero – McCormac /Csernak

Pa = A1 =

Pp Æc

=

A2 0.85fcœ A1 A A1 Æc

Pa Æ c 10.85fcœ 2

A2 A A1

.

Alfaomega


7.7

Placas base para columnas cargadas concéntricamente

223

Después de que el valor gobernante A1 se determina como se describió anteriormente, se seleccionan las dimensiones B y N de la placa (mostradas en la Figura 7.14) a la 1 o 2 pulgadas más cercanas, de manera que los valores de m y n mostrados en la figura son aproximadamente iguales. Tal procedimiento hará los momentos de los voladizos en las dos direcciones aproximadamente iguales. Esto nos permitirá mantener el espesor de la placa en un mínimo. La condición m = n puede aproximarse si se satisface la siguiente ecuación: N L 2A1 + ¢ Aquí,

A1 = área de la placa = BN ¢ = 0.5 10.95 d - 0.80 bf 2

N = 2A1 + ¢ B L

A1 N

Desde un punto de vista práctico, los proyectistas frecuentemente usan placas de base cuadradas con pernos de anclaje dispuestos según un patrón cuadrado. Esta práctica simplifica tanto el trabajo de campo como el de taller.

7.7.2

Espesor de la placa Para determinar el espesor de placa requerido, t, se toman momentos en las dos direcciones como si la placa estuviese en voladizo con las dimensiones m y n. Se hace referencia aquí nuevamente a la Figura 7.14. En las expresiones que siguen, la carga P es Pu para el diseño LRFD y Pa para el diseño ASD. Los momentos en las dos direcciones son Pu Pu m 2 P m n Pm 2 o a b 1n2a b = , ambos calculados para un ancho de ¢ ≤ 1m2a b = BN 2 2BN BN 2 2BN 1 plg de placa. Si se diseñan por el procedimiento recién descrito placas base ligeramente cargadas para las columnas de edificios de poca altura y edificios de metal prefabricados, ellas tendrán áreas muy pequeñas. Consecuentemente, se extenderán poco fuera de los bordes de las columnas y los momentos calculados, y los espesores de placa resultantes serán muy pequeños, tal vez de un tamaño no práctico. Se han propuesto varios procedimientos para tratar este problema. En 1990, W. A. Thornton7 combinó tres de estos métodos en un solo procedimiento aplicable a placas base fuerte o ligeramente cargadas. Este método modificado se usa para los problemas ejemplo de placas de base en el CD que acompaña al Manual del AISC, así como para los problemas de ejemplo en este capítulo. Thornton propuso que el espesor de las placas se determine usando el mayor valor entre m, n o ln¿. Él llamó a este valor máximo /. / = máx 1m, n o ln¿2

7

W. A. Thornton, “Design of base Plates for Wide Flange Columns – A Concatenation of Methods”, Engineering Journal, AISC, vol. 27, Núm. 4 (4o. trimestre, 1990), pp. 173, 174.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


224

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación)

Para determinar ln¿, es necesario sustituir en las siguientes expresiones, que se obtienen en su artículo: fcPp = fc0.85fcœA1 fcPp = fc0.85fcœ A1

para placas que cubren el área total del soporte de concreto

A2 A2 debe ser … 2 para placas que no cubren el área , donde A A1 A A1 entera del soporte de concreto LRFD

X = B

l =

ln¿ =

ASD

4dbf Pu R 1d + bf22 fcPp 2 2X

1 + 21 - X

4dbf Æ cPa 1d + bf22 Pp

X =

… 1

2 2X

l =

l 2dbf

1 + 21 - X l2dbf

lm¿ =

4

… 1

4

De acuerdo con Thornton, es permisible suponer conservadoramente que l es igual a 1.0 para todos los casos; esta práctica se sigue en el siguiente ejemplo. Como resultado, no es necesario hacer sustituciones en las ecuaciones listadas para X, l y ln¿. Entonces los autores suprimen la variable l de la expresión ln¿ y usan solamente n¿. Haciendo de / el mayor valor de m, n o ln¿, encontramos que el mayor momento en la Pu Pu/2 Pa/2 / placa es igual a ¢ para LRFD y para ASD. ≤ 1/2a b = BN 2 2BN 2BN En los siguientes capítulos de este texto, el lector aprenderá a calcular los momentos resistentes de las placas (así como los momentos resistentes para otras secciones de acero). fb Fy bt2 Fy bt2 Para placas, estos valores son para ASD, con para LRFD, con fb = 0.9, y 4 4Æ b 1b = 1.67. Si estos momentos resistentes se igualan a los momentos de flexión máximos, puede despejarse el espesor o profundidad t de las expresiones resultantes con los siguientes resultados, observando que b = 1 plg: LRFD con fb = 0.9 fbFy bt2 4

=

Pu l2 2BN

treq = /

2Pu A 0.9FyBN

ASD con Æ b = 1.67 Fy bt2 4Æ b

=

Pa l 2 2BN

treq = /

3.33Pa A FyBN

En las siguientes páginas se presentan cuatro ejemplos de diseño de placas base. El Ejemplo 7.5 ilustra el diseño de una placa base soportada por una zapata grande de concreto reforzado, con A2 muchas veces mayor que A1. En el Ejemplo 7-6 se diseña una placa base que es soportada por un pedestal de concreto, donde la placa cubre toda el área de concreto.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


7.7

Placas base para columnas cargadas concéntricamente

225

En el Ejemplo 7-7 se selecciona una placa base para una columna que va a estar soportada sobre un pedestal 4 plg más ancho en cada lado que la placa. Esto implica que A2 no puede determinarse sino hasta que se calcule el área de la placa. Finalmente, el Ejemplo 7-8 presenta el diseño de una placa base para una columna HSS.

Ejemplo 7-5 Diseñe una placa base de acero A36 (Fy = 36 klb/plg2) para una columna W12 * 65 (Fy = 50 klb/plg2) que soporta las cargas PD = 200 klb y PL = 300 klb. El concreto tiene una resistencia a compresión fcœ = 3 klb/plg2, y la zapata tiene las dimensiones 9 pies * 9 pies. Solución. Usando una columna W12 * 65 (d = 12.1 plg, bf = 12.0 plg) LRFD

ASD

Pu = 11.2212002 + 11.6213002 = 720 klb A2 = área de la zapata = a 12

P = 200 + 300 = 500 klb

plg plg * 9 piesb a12 b = 11 664 plg2 pie pie

A2 = 11 664 in2

Determine el área requerida de la placa base A1 = BN. Observe que el área del conA2 = 2.0. creto de soporte será mucho más grande que el área de la placa base, tal que A A1 ASD Æ c = 2.31

LRFD fc = 0.65 A1 =

=

Pu

A1 =

fc10.85fcœ 2

A2 A A1

720 = 217.2 plg2 10.65210.852132122

Pa Æ c A2 0.85fcœ A A1

=

1500212.312

10.852132122

= 226.5 plg2

La placa base debe ser por lo menor tan grande como la columna bf d = (12.0)(12.1) = 145.2 plg2 6 217.2 plg2 y 226.5 plg2 optimiza las dimensiones de la placa base, ya que hace que m y n sean aproximadamente iguales. Remítase a la Figura 7.15. LRFD ¢ = =

ASD

0.95d - 0.8bf

¢ = 0.947 plg

2 10.952112.12 - 10.82112.02 2

= 0.947 plg

N = 2A1 + ¢ = 2217.2 + 0.947 = 15.7 plg Digamos 16 plg A1 217.2 = = 13.6 plg B = N 16

Alfaomega

N = 2226.5 + 0.947 = 16.0 plg Digamos 16 plg 226.5 = 14.2 plg B= 16

Diseño de Estructuras de Acero – McCormac /Csernak


226

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación) bf ⫽ 12.00 plg m ⫽ 2.25 plg

d ⫽ 12.1 plg

0.95d ⫽ 11.50 plg N ⫽ 16 plg

m ⫽ 2.25 plg n ⫽ 3.20 plg 0.8bf ⫽ 9.60 plg

n ⫽ 3.20 plg

B ⫽ 16 plg

Figura 7.15.

Como se mencionó anteriormente, podemos simplificar las placas haciéndolas cuadradas; digamos 16 plg * 16 plg. Revise la resistencia al contacto del concreto LRFD fc = 0.65 fcPp = fc0.85fcœA1

ASD Æ c = 2.31 Pp

A2 A A1

Æc

= 10.65210.852132116 * 162122 = 848.6 klb 7 720 klb

= =

0.85fcœ A1 Æc

A2 A A1

10.852132116 * 162122

= 565.2 klb 7 500 klb OK

2.31

OK

Cálculo del espesor requerido de la placa base 16 - 10.952112.12 N - 0.95d = = 2.25 plg 2 2 B - 0.8bf 16 - 10.82112.02 n = = = 3.20 plg 2 2 2dbf 2112.12112.02 = = 3.01 plg n¿ = 4 4 / = el mayor de m, n o n¿ = 3.20 plg m =

LRFD treq = /

ASD

2Pu A 0.9FyBN

= 3.20

Use PL 1

12217202

B 10.921362116 * 162

treq = / = 1.33 plg

1 * 16 * 1 pie 4 plg A36. 2

Diseño de Estructuras de Acero – McCormac /Csernak

3.33Pa A FyBN

= 3.20

Use PL 1

13.33215002

B 136211621162

= 1.36 plg

1 * 16 * 1 pie 4 plg A36. 2

Alfaomega


7.7

Placas base para columnas cargadas concéntricamente

227

Ejemplo 7-6 Se debe diseñar una placa base para una columna W12 * 152 (Fy = 50 klb/plg2) que soporta las cargas PD = 200 klb y PL = 450 klb. Seleccione una placa A36 (Fy = 36 klb/plg2) para cubrir toda el área del pedestal de concreto de 3 klb/plg2 subyacente. Solución. Usando una columna W12 * 152 (d = 13.7 plg, bf = 12.5 plg)

ASD

LRFD Pu = 11.2212002 + 11.6214502 = 960 klb

Pa = 200 + 450 = 650 klb

A2 Determine el área requerida de la placa base, observando que el término es igual A1 A a 1.0, ya que A1 = A2. LRFD fc = 0.65 A1 =

=

ASD Æ c = 2.31

Pu

A1 =

A2 fc10.85fcœ 2 A A1 960 10.65210.85 * 32112

= 579.2 plg2 ;

A1 mín = dbf = 113.72112.52

=

Pa Æ c A2 0.85fcœ A A1

1650212.312

10.852132112

= 588.8 plg2 ;

A1 mín = dbf = 113.72112.52

= 171.2 plg

= 171.2 plg2

2

Optimización de las dimensiones de la placa base n , m

ASD

LRFD ¢ = =

0.95d - 0.8bf 2 10.952113.72 - 10.82112.52 2

= 1.51 plg

N = 2A1 + ¢ = 2579.2 + 1.51 = 25.6 plg A1

Digamos 26 plg

579.2 B = = = 22.3 plg N 26 Digamos 23 plg

Alfaomega

¢ = 1.51 plg N = 2588.8 + 1.51 = 25.8 plg

Digamos 26 plg

588.8 B = = 22.6 plg 26 Digamos 23 plg

Diseño de Estructuras de Acero – McCormac /Csernak


228

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación)

Revise la resistencia al contacto del concreto ASD Æ c = 2.31

LRFD fc = 0.65 fcPp = fc0.85fcœ A1

A2 A A1

Pp Æc

=

0.85fcœ A1 Æc

A2 A A1

10.852132123 * 262

= 10.65210.852132123 * 26211.02

=

= 991.2 klb 7 960 klb OK

= 660.1 klb 7 650 klb OK

2.31

11.02

Cálculo del espesor requerido de la placa base 26 - 10.952113.72 N - 0.95d = = 6.49 plg 2 2 B - 0.8bf 23 - 10.82112.52 = = 6.50 plg n = 2 2 2dbf 2113.72112.52 = = 3.27 plg n¿ = 4 4 m =

/ = máximo de m, n o n¿ = 6.50 plg ASD

LRFD treq = /

2Pu A 0.9FyBN

= 6.50

treq = / 12219602

B 10.921362126 * 232

= 2.05 plg

3.33Pa A FyBN

= 6.50

13.33216502

B 1362123 * 262

= 2.06 plg

1 Use placa base de 2 * 23 * 2 pies 2 plg A36 con pedestal de concreto de 23 * 26 1 fcœ = 3 8 klb/plg22.

Ejemplo 7-7 Repita el Ejemplo 7-6 si la columna va a estar soportada por un pedestal de concreto 2 plg más ancho en cada lado de la placa base. Solución. Usando una W12 * 152 (d = 13.7 plg, bf = 12.5 plg) LRFD

ASD

Pu = 11.2212002 + 11.6214502 = 960 klb

Pa = 200 + 450 = 650 klb

El A1 requerida de la solución del Ejemplo 7-6 fue 579.2 plg2

El A1 requerida de la solución del Ejemplo 7-6 fue 588.8 plg2

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


7.7

Placas base para columnas cargadas concéntricamente

229

Si ensayamos una placa 24 * 25 (A1 = 600 plg2), el área del pedestal será igual a (24 + 4) A2 812 = 1.16. Recalculando los valores de A1 da (25 + 4) = 812 plg2, y será igual a A 600 A A1 ASD Æ c = 2.31

LRFD fc = 0.65 A1 =

Pu fc10.85fcœ 2

Pa Æ c

A1 =

A2

A2 0.85fcœ A A1

A A1

=

960 = 499.3 plg2 10.65210.85213211.162

1650212.312

=

10.85213211.162

= 507.6 plg2

Ensayando una placa 22 * 23 (506 plg2), el área del pedestal será (22 + 4)(23 + 4) = A2 702 702 plg2, y = = 1.18. Así, A1 (LRFD) será 490.8 plg2 y A1 (ASD) será 499.0 plg2. A 506 A A1 Optimización de las dimensiones de la placa base n , m ASD

LRFD ¢= =

0.95d - 0.8bf 2

10.952113.72 - 10.82112.52 2

= 1.51 plg

N = 2A1 + ¢ = 2490.8 + 1.51 = 23.66 plg B =

¢ = 1.51 plg N = 2A1 + ¢ = 2499.0 + 1.51 = 23.85 plg

Digamos, 24 plg

A1 490.8 = = 20.45 plg N 24 Digamos, 21 plg

B =

Digamos, 24 plg

A1 499 = = 20.79 plg N 24

Digamos, 21 plg

Use pedestal 25 * 28 12521282 A2 = = 1.18 A A1 B 12121242

Igual.

Revisar la resistencia de contacto del concreto ASD Æ c = 2.31

LRFD fc = 0.65 Pp

A2 fcPp = fc0.85fcœ A1 A A1

Æc

= 10.65210.852132121 * 24211.182 = 985.7 k 7 960 klb OK

Alfaomega

=

0.85fcœ A1

A2 Æ c A A1 10.852132121 * 242

11.182 2.31 = 656.5 k 7 650 klb OK =

Diseño de Estructuras de Acero – McCormac /Csernak


230

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación)

Cálculo del espesor requerido para la placa base 24 - 10.952113.72 N - 0.95d = = 5.49 plg 2 2 B - 0.8bf 21 - 10.82112.52 n = = = 5.50 plg 2 2 2dbf 2(13.7)(12.5) n¿ = = = 3.27 plg 4 4 m =

/ = máximo de m, n o n¿ = 5.50 plg LRFD treq = /

ASD

2Pu A 0.9FyBN

= 5.50

treq = /

12219602

3.33Pa A FyBN

= 5.50

B 10.92136212121242

= 1.89 plg

13.33216502

B 136212121242

= 1.90 plg

Use una placa base 2 * 21 * 2 pies 0 plg A36 con pedestal de concreto 25 * 28 (fcœ = 3 klb/ (plg2).

Ejemplo 7-8 5 con Fy = 46 klb/plg2 para soportar las cargas de servicio PD 16 = 100 klb y PL = 150 klb. Una zapata corrida subyacente tiene las dimensiones 9 pies 0 plg * 9 pies 0 plg y consiste de concreto reforzado con fcœ = 4 000 lb/plg2. Diseñe una placa base para esta columna con acero A36 (Fy = 36 klb/plg2 y Fu = 58 klb/plg2). Se usa una HSS 10 * 10 *

Solución. Resistencia requerida ASD

LRFD Pu = 11.2211002 + 11.6211502 = 360 klb

Pa = 100 + 150 = 250 klb

Ensaye una placa base que se prolonga 4 plg desde el paño de la columna en cada dirección; es decir, una placa de 18 plg * 18 plg. Determine la resistencia disponible de la zapata de concreto. A1 = 11821182 = 324 plg 2

A2 = 112 * 92112 * 92 = 11 664 plg 2 A2 11 664 = 10.85214213242 A 324 A A1

Pp = 0.85fcœ A1

Diseño de Estructuras de Acero – McCormac /Csernak

6 609.6 klb Alfaomega


7.7

Placas base para columnas cargadas concéntricamente

231

11 664 = 6.0 > 2.0 Pp = 1.7fcœ A1 A 324 Pp = 1.7fcœA1 = 1.7(4)(324) = 2 203.2 klb

como

LRFD fc = 0.65

ASD Æ c = 2.31

fcPp = 10.65212 203.22

Pp Æc

= 1 432.1 k 7 360 klb OK

=

2 203.2 2.31

= 953.8 k 7 250 klb OK

Determine el espesor de la placa. N - 10.952(dimensión exterior de la HSS)

m = n =

2

=

18 - 0.95 10 2

= 4.25 plg

Observe que estos valores de m y n son menores que la distancia del centro de la placa base al centro de los muros HSS. Sin embargo, el momento en la placa fuera de los muros es mayor que el momento en la placa entre los muros. Usted puede verificar esta afirmación dibujando los diagramas de momento para la situación mostrada en la Figura 7.16.

HSS

Pu Pa o Aefectiva Aefectiva mon

mon B ⫽ N ⫽ 18 plg

Figura 7.16.

LRFD fpu =

Pu 360 = 1.11 klb/plg2 = Aefectiva 11821182

treq = /

2Pu A 0.9FyBN

= 4.25

fpa =

Pa Aefectiva

treq = /

12213602

B 10.92136211821182

Use una placa de base A36 de 1 Alfaomega

ASD

= 1.11 plg

=

250 = 0.772 klb/plg2 324

3.33Pa A FyBN

= 4.25

13.33212502

B 136211821182

= 1.14 plg

1 * 18 * 1 pies 6 plg A36 tanto para LRFD como para ASD. 4 Diseño de Estructuras de Acero – McCormac /Csernak


232

7.7.3

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación)

Bases de columnas resistentes a momento El proyectista suele necesitar bases de columnas resistentes a momentos. Sin embargo, antes de presentar tal tema, el estudiante necesita estar familiarizado con el diseño de soldaduras (Capítulo 14) y conexiones resistentes al momento entre miembros (Capítulos 14 y 15). Por esto, el tema de las placas base resistentes a momentos se ha situado en el Apéndice D.

7.8

PROBLEMAS PARA RESOLVER 7-1. Usando el nomograma de la Especificación del AISC, determine los factores de longitud efectiva para las columnas IJ, FG y GH para el marco mostrado en la siguiente figura, suponiendo que el marco está sujeto al ladeo y que se cumplen todas las hipótesis para el desarrollo de los nomogramas. (Resp. 1.27, 1.20 y 1.17.)

B W21 ⫻ 44

A 24 pies

H

W21 ⫻ 50

G

W24 ⫻ 62

F

L W10 ⫻ 49 W10 ⫻ 39 W10 ⫻ 39

C W21 ⫻ 44

W10 ⫻ 77 W10 ⫻ 54 W10 ⫻ 54

W10 ⫻ 45 W10 ⫻ 33 W10 ⫻ 33

D W18 ⫻ 35

W24 ⫻ 62

E

12 pies K 12 pies J

14 pies I

30 pies

Figura P7-1.

7-2. Determine los factores de longitud efectiva para todas las columnas del marco mostrado en la figura siguiente. Observe que las columnas CD y FG están sujetas al ladeo, mientras que las columnas BC y EF están arriostradas contra el ladeo. Suponga que se cumplen todas las hipótesis para el desarrollo de los nomogramas.

20 pies

W8 ⫻ 24

C W18 ⫻ 35

G

W8 ⫻ 24

W8 ⫻ 31

A W16 ⫻ 26

W8 ⫻ 24

D W16 ⫻ 31

B

10 pies F 10 pies E

24 pies

Figura P7-2.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


7.8 Problemas para resolver

233

7-3 a 7-6. Use ambos métodos LRFD y ASD. 7-3. a. Determine la resistencia de columna disponible para la columna AB en el marco mostrado si Fy = 50 klb/plg2, y solamente se considera el comportamiento en el plano. Adicionalmente, suponga que las columnas inmediatamente arriba o abajo de AB tienen el mismo tamaño que AB, y también que se cumplen todas las otras hipótesis para el desarrollo de los nomogramas. (Resp. 825 klb, LRFD; 549 klb, ASD.) b. Repita la parte (a) si se considera comportamiento inelástico y PD = 200 klb y PL = 340 klb. (Resp. 838 klb, LRFD; 563 klb, ASD.) W18 ⫻ 35

B

W21 ⫻ 44

A

W18 ⫻ 40 W12 ⫻ 72

15 pies

W24 ⫻ 55 15 pies

24 pies

28 pies

Figura P7-3.

7-4. Repita el Problema 7-3 si PD = 250 klb y PL = 400 klb y se usa una sección W14 * 90. 7-5. Determine la resistencia de columna disponible para la columna AB en el marco mostrado para el cual Fy = 50 klb/plg2. Por lo demás, las condiciones son exactamente las mismas que las descritas para el Problema 7-3. a) Suponga comportamiento elástico. (Resp. 1 095 klb, LRFD; 729 klb, ASD.) b) Suponga comportamiento inelástico y PD = 240 klb y PL = 450 klb. (Resp. 1 098, LRFD; 735 klb, ASD.)

W24 ⫻ 76

B W24 ⫻ 76

14 pies

W14 ⫻ 99

14 pies

A

30 pies

30 pies

Figura P7-5.

7-6. Repita el Problema 7-5 si PD = 225 klb y PL = 375 klb y se usa una sección W12 * 87. 7-7 a 7-13. Use el método de la longitud efectiva, suponga comportamiento elástico, y use ambos métodos LRFD y ASD. Se supone que las columnas no tienen momentos de flexión. Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


234

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación)

7-7. Diseñe las columnas W12 para el marco mostrado en la figura siguiente, con acero de 50 klb/plg2. Las columnas están arriostradas arriba y abajo contra desplazamientos fuera del plano del marco, de modo que Ky = 1.0 plg en esa dirección. El ladeo es posible en el plano del marco, el eje x-x. Diseñe la columna derecha como una columna de apoyo, Kx = Ky = 1.0 y la columna izquierda como columna de marco rígido, con Kx determinado por medio del nomograma. PD = 350 klb y PL = 240 klb para cada columna. La viga está rígidamente conectada la columna izquierda, y tiene una conexión simple o articulada con la columna derecha. (Resp. [Derecha] W12 * 79, LRFD; W12 * 87, ASD - [Izquierda] W12 * 170, LRFD; W12 * 190, ASD.) Conexión rígida W21 ⫻ 101

Conexión articulada

15 pies

25 pies Figura P7-7.

7-8. Repita el Problema 7-7 si las cargas en cada columna son PD = 120 klb y PL = 220 klb, y la trabe es una W21 * 68. 7-9. Diseñe las columnas W14 para el marco mostrado en la figura siguiente, con acero de 50 klb/plg2. Las columnas están arriostradas arriba y abajo contra desplazamientos hacia fuera del plano del marco de modo que Ky = 1.0 en esa dirección. El ladeo es posible en el plano del marco, el eje x-x. Diseñe la columna interior como una columna de apoyo, Kx = Ky = 1.0 y las columnas exteriores como columnas de marco rígido, con Kx determinado por medio del nomograma. (Resp. [Interior] W14 * 176, LRFD; W14 * 193, ASD –[Exterior] W14 * 211, LRFD y ASD.) PD ⫽ 250 klb PL ⫽ 400 klb

PD ⫽ 500 klb PL ⫽ 800 klb

W27 ⫻ 114

PD ⫽ 250 klb PL ⫽ 400 klb

W27 ⫻ 114

Conexión articulada Conexión rígida

28 pies

18 pies

28 pies

Figura P7-9.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


7.8 Problemas para resolver

235

7-10. Repita el Problema 7-9, suponiendo que las columnas exteriores están empotradas en la base. 7-11. El marco mostrado en la figura siguiente no está arriostrado contra desplazamientos alrededor del eje x-x. Determine Kx para la columna AB. Las condiciones de apoyo en la dirección perpendicular al marco son tales que Ky = 1.0. Determine si la columna W14 * 109 para el miembro AB tiene la capacidad de resistir una carga muerta de 250 klb y una carga viva de 500 klb. Se usa acero A992. (Resp. LRFD W14 * 109, OK, £Pn= 1 205 klb 7 Pu = 1 100 klb; ASD W14 * 109, OK, Pn>1 = 803 klb 7 Pa = 750 klb.) W18 ⫻ 55 W14 ⫻ 90 Conexión rígida, típica

13 pies

W18 ⫻ 50 B W14 ⫻ 109

15 pies

A 25 pies Figura P7-11.

7-12. El marco mostrado en la siguiente figura no está arriostrado contra desplazamientos alrededor del eje x-x. Las columnas son W8 y las vigas son W12 * 16. Se usa acero ASTM A572 para las columnas y las vigas. Las vigas y columnas están orientadas de modo que ocurra flexión alrededor del eje x-x. Suponga que Ky = 1.0, y para la columna AB la carga de servicio es 175 klb, de la cual 25 porciento es carga muerta y 75 porciento es carga viva. Seleccione el perfil W8 más ligero para la columna AB. Conexión rígida, típica B 13 pies A 20 pies

20 pies

20 pies

Figura P7-12.

7-13. Seleccione el perfil W12 más ligero para la columna AB del marco articulado en la base y rígido no arriostrado mostrado en la figura. Todo el acero es ASTM A992. La trabe horizontal es una W18 * 76. La trabe y las columnas están orientadas de modo que la flexión es alrededor del eje x-x. En el plano Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


236

Capítulo 7

Diseño de miembros cargados axialmente a compresión (continuación) perpendicular al marco, Ky = 1.0 y se suministra arriostramiento al eje y-y de la columna en la parte superior y a media altura usando conexiones articuladas en los extremos. Las cargas en cada una son PD = 150 klb y PL = 200 klb. (Resp. W12 * 53, LRFD; W12 * 58, ASD.) P

P W18 ⫻ 76

B 8 pies 16 pies Riostra del eje y-y, típica.

8 pies A 30 pies

Figura P7-13.

7-14. Diseñe una placa base cuadrada con acero A36 para una columna W10 * 60 con una carga muerta de servicio de 175 klb y una carga viva de servicio de 275 klb. La resistencia del concreto a los 28 días, fcœ, es de 3 000 lb/plg2. La placa base descansa sobre una zapata de concreto de 12 pies 0 plg * 12 pies 0 plg. Use los métodos de diseño LRFD y ASD. 7-15. Repita el Problema 7-14 si la columna está soportada por un pedestal de concreto de 24 plg * 24 plg. (Resp. B PL - 1¾ * 18 * 1 pie 6 plg A36 LRFD y ASD.) 7-16. Diseñe una placa base rectangular para una columna W8 * 28 con PD = 80 klb y PL = 150 klb si se usa acero A36 y fcœ = 3 klb/plg2 para el concreto. Suponga que la columna va a estar soportada por una zapata de concreto de 7 pies 0 plg * 7 pies 0 plg. Use los métodos de diseño LRFD y ASD.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


C A P Í T U L O

8

Introducción al estudio de vigas

8.1

TIPOS DE VIGAS Generalmente se dice que las vigas son miembros que soportan cargas transversales. Se usan generalmente en posición horizontal y quedan sujetas a cargas por gravedad o verticales; sin embargo, existen excepciones, por ejemplo, el caso de los cabios. Entre los muchos tipos de vigas cabe mencionar las siguientes: viguetas, dinteles, vigas de fachada, largueros de puente y vigas de piso. Las viguetas son vigas estrechamente separadas para soportar los pisos y techos de edificios; los dinteles se colocan sobre aberturas en muros de mampostería como puertas y ventanas. Las vigas de fachada soportan las paredes exteriores de edificios y también parte de las cargas de los pisos y corredores. Se considera que la capacidad de las vigas de acero para soportar muros de mampostería (junto con la invención de los elevadores) como parte de un marco estructural, permitió la construcción de los rascacielos actuales. Los largueros de puente son las vigas en los pisos de puentes que corren paralelas a la superficie de rodamiento, en tanto que las vigas de piso son las vigas más grandes que en muchos pisos de puentes corren perpendicularmente a la superficie de rodamiento y se usan para transferir las cargas del piso, de los largueros de puente a las trabes o armaduras sustentantes. El término trabe se usa en forma algo ambigua, pero usualmente denota una viga grande a la que se conectan otras de menor tamaño. Éstos y otros tipos de viga se analizan en las siguientes secciones.

8.2

PERFILES USADOS COMO VIGAS Los perfiles W generalmente resultan las secciones más económicas al usarse como vigas y han reemplazado en esta aplicación casi por completo a las canales y a las secciones S. Las canales se usan a veces como largueros cuando las cargas son pequeñas y en lugares en donde se requieren patines estrechos. Éstas tienen muy poca resistencia a fuerzas laterales y requieren soporte lateral, como se ilustró en el problema de tensores en el Capítulo 4. Los perfiles W tienen un mayor porcentaje de acero concentrado en sus patines que las vigas S, por lo que poseen mayores momentos de inercia y momentos resistentes para un mismo peso. Éstos son relativamente anchos y tienen una rigidez lateral apreciable. (El poco espacio

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak

237


238

Capítulo 8

Introducción al estudio de vigas

Puente Avenida Harrison en Beaumont, TX. (Cortesía de Bethlehem Steel Corporation.)

dedicado a las vigas S en el Manual del AISC evidencia claramente cómo ha disminuido su uso con respecto a años anteriores. Hoy en día se usan principalme0nte para situaciones especiales, como cuando se requieren anchos pequeños de patines, cuando las fuerzas cortantes son muy grandes o cuando son convenientes mayores espesores de patín en la cercanía del alma por motivos de flexión lateral, como ocurre quizás con los rieles de guía para grúas o los monorrieles.) Otro tipo común de viga es la vigueta de acero de alma abierta, o vigueta de barras, que se analiza con detalle en el Capítulo 19. Este tipo de viga que se usa comúnmente para soportar losas de piso y techo es en realidad una armadura ligera de cuerdas paralelas. Resulta muy económica para grandes claros y cargas ligeras.

8.3

ESFUERZOS DE FLEXIÓN Consideremos una viga de sección rectangular y los diagramas de esfuerzos de la Figura 8.1 para estudiar los esfuerzos de flexión. (Para este análisis inicial supondremos que el patín a compresión de la viga está completamente soportado contra el pandeo lateral. El pandeo lateral se estudiará en el Capítulo 9.) Si la viga está sujeta a momento de flexión, el esfuerzo en cualquier punto se puede calcular con la fórmula de la flexión: fb = Mc/I. Debe recordarse que esta expresión es aplicable solamente cuando el máximo esfuerzo calculado en la viga es menor que el límite elástico. La fórmula se basa en las hipótesis elásticas usuales: el esfuerzo es proporcional a la deformación unitaria, una sección plana antes de la flexión permanece plana después de la aplicación de las cargas, etc. El valor I/c es una constante para una sección específica y se denomina módulo de sección (S). La fórmula de la flexión puede escribirse entonces de la manera siguiente: fb =

M Mc = I S

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


8.4 Fy

fb

x

Articulaciones plásticas 239

Fy

Fy

Fy

x

fb (a)

(b)

Fy (c)

Fy (d)

Fy (e)

Fy (f )

Figura 8.1 Variaciones del esfuerzo de flexión debidas a incrementos del momento alrededor del eje x.

Inicialmente, cuando el momento se aplica a la viga, el esfuerzo varía linealmente desde el eje neutro hasta las fibras extremas. Esta situación se muestra en la parte (b) de la Figura 8.1. Si se incrementa el momento, se mantendrá la variación lineal de los esfuerzos hasta que se alcanza el esfuerzo de fluencia en las fibras extremas, como se muestra en la parte (c) de la figura. El momento de fluencia de una sección transversal se define como el momento de inicio del esfuerzo de fluencia en las fibras extremas de la sección. Si el momento en una viga de acero dúctil se incrementa más allá del momento de fluencia, las fibras extremas que se encontraban previamente sometidas al esfuerzo de fluencia se mantendrán bajo este mismo esfuerzo, pero en estado de fluencia y el momento resistente adicional necesario lo proporcionarán las fibras más cercanas al eje neutro. Este proceso continuará con más y más partes de la sección transversal de la viga, alcanzando el esfuerzo de fluencia como se muestra en los diagramas de esfuerzos (d) y (e) de la figura, hasta que finalmente se alcanza la distribución plástica total mostrada en (f). Observe que la variación de deformación del eje neutro hacia las fibras externas permanece lineal en todos estos casos. Cuando la distribución de esfuerzos ha alcanzado esta etapa, se dice que se ha formado una articulación plástica, porque no puede resistirse en esta sección ningún momento adicional. Cualquier momento adicional aplicado en la sección causará una rotación en la viga con poco incremento del esfuerzo. El momento plástico es el momento que producirá una plastificación completa en una sección transversal del miembro creándose ahí mismo una articulación plástica. La relación del momento plástico Mp al momento de fluencia My se denomina factor de forma. Los factores de forma son iguales a 1.50 en las secciones rectangulares y varían entre 1.10 y 1.20 en las secciones laminadas estándar.

8.4

ARTICULACIONES PLÁSTICAS Esta sección se dedica a describir la formación de una articulación plástica en la viga simple que se muestra en la Figura 8.2. La carga mostrada que se aplica a la viga crece en magnitud hasta que se alcanza el momento de fluencia con las fibras extremas sometidas al esfuerzo de fluencia. La magnitud de la carga continúa incrementándose y las fibras extremas empiezan a fluir. La plastificación se extiende hacia otras fibras fuera de la sección de momento máximo con se indica en la figura. La longitud en donde se presenta esta plastificación hacia ambos lados de la sección considerada, depende de las condiciones de carga y de la sección transversal del miembro. Para una carga concentrada aplicada en el centro del claro de una viga simplemente apoyada con sección rectangular, la plastificación en las fibras extremas cuando se forma la articulación plástica se extenderá sobre un tercio del claro. En un perfil W en circunstancias similares, la fluencia se extenderá aproximadamente sobre un octavo del claro.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


240

Capítulo 8

Introducción al estudio de vigas Pu Perfil W

Articulación plástica

Figura 8.2 Una articulación plástica.

Área de fluencia

Durante este mismo periodo las fibras interiores en la sección de momento máximo fluirán gradualmente hasta que todas alcancen el esfuerzo de fluencia y se forme una articulación plástica, como se ve en la Figura 8.2. Aunque el efecto de una articulación plástica se extiende sobre un cierto tramo a lo largo de la viga, se supone que la articulación está concentrada en una sola sección para propósitos de análisis. Para el cálculo de deflexiones y para el diseño del soporte lateral, la longitud sobre la cual se extiende la fluencia es de gran importancia. Para que se forme una articulación plástica, las secciones deben ser compactas. Este término se introdujo anteriormente en la Sección 5.7.1. Ahí se define a una sección compacta como aquella que tiene un perfil suficientemente robusto, de modo que tenga la capacidad de desarrollar una distribución de esfuerzos totalmente plastificada antes de que se pandee localmente. Este tema se continúa con algún detalle en la Sección 9.9. El estudiante debe percatarse de que para el desarrollo de las articulaciones plásticas, los miembros no solamente deben ser compactos, sino que también deben tener soporte lateral de manera tal que se impida el pandeo lateral. Este tipo de soporte lateral se estudia en la Sección 9.4. Finalmente, también se consideran los efectos del esfuerzo cortante, la torsión y las cargas axiales. Éstos pueden ser suficientemente grandes como para causar la falla del miembro antes de la formación de una articulación plástica. En el estudio del comportamiento plástico, no se considera el endurecimiento por deformación. Cuando los marcos de acero se cargan hasta la falla, los puntos en donde se concentra la rotación (articulaciones plásticas) resultan visibles al observador antes de que el colapso ocurra.

8.5

DISEÑO ELÁSTICO Hasta hace pocos años, casi todas las vigas de acero se diseñaban con base en la teoría elástica. La carga máxima que una estructura podía soportar se suponía igual a la carga que primero generaba un esfuerzo igual al de fluencia del material. Los miembros se diseñaban de manera que los esfuerzos de flexión calculados para cargas de servicio no excediesen el esfuerzo de fluencia dividido entre un factor de seguridad (por ejemplo, 1.5 a 2.0). Las estructuras de ingeniería se diseñaron durante muchas décadas mediante este método con resultados satisfactorios. Sin embargo, los proyectistas saben desde hace muchos años que los miembros dúctiles no fallan sino hasta que ocurre una gran plastificación después de que se alcanza el esfuerzo de fluencia. Esto significa que tales miembros tienen mayores márgenes de seguridad contra la falla que lo que parece indicar la teoría elástica.

8.6

EL MÓDULO PLÁSTICO El momento de fluencia My es igual al esfuerzo de fluencia multiplicado por el módulo elástico. El módulo elástico es igual a I/c o bd 2/6 para una sección rectangular, y el momento de fluencia es entonces igual a Fybd 2/6. Este mismo valor se puede obtener considerando el par interno resistente mostrado en la Figura 8.3.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


8.6

Módulo plástico 241

Fy Fy bd C ⫽ 1 Fy d b ⫽ 2 2 4

d 2 x

2 3

d

d

d 2 Figura 8.3.

x Fy bd T ⫽ 1 Fy d b ⫽ 2 2 4

Fy

b

El momento resistente es igual a T o C multiplicado por el brazo de palanca entre ellos, como sigue: My = ¢

Fy bd 4

≤ a db = 2 3

Fy bd2 6

Se observa que el módulo elástico de la sección es igual nuevamente a bd2/6 para una viga de sección rectangular. El momento resistente para la plasticidad total se puede determinar de manera similar. El resultado es el así llamado momento plástico, Mp. También es el momento nominal de la sección, Mn. Este momento plástico o nominal es igual a T o C veces el brazo de palanca entre ellos. Para la viga rectangular de la Figura 8.4, se tiene: Mp = Mn = T

d d bd d bd2 = C = ¢ Fy ≤ a b = Fy . 2 2 2 2 4

Se dice que el momento plástico es igual al esfuerzo de fluencia multiplicado por el módulo plástico de la sección. De la expresión anterior para una sección rectangular, se ve que el módulo plástico Z es igual a bd 2/4. El factor de forma, que es igual a Mp/My = FyZ/ Fy S, o a Z/S, es (bd 2/4)/(bd 2/6) = 1.50 para una sección rectangular. Un estudio del módulo plástico de la sección determinado aquí muestra que es igual al momento estático de las áreas a tensión y a compresión respecto al eje neutro plástico. A menos que la sección sea simétrica, el eje neutro para la condición plástica no coincidirá con el de la condición elástica. La compresión interna total debe ser igual a la tensión interna total. Como se considera que todas las fibras tienen el mismo esfuerzo (Fy) en la condición plástica, las áreas arriba y abajo del eje neutro plástico deben ser iguales. Esta situación no se presenta en secciones asimétricas en la condición elástica. El Ejemplo 8.1 ilustra los cálculos necesarios para determinar

Fy C ⫽ Fy d b 2

d 2 x

d 2

d d 2

Figura 8.4.

Alfaomega

b

x T ⫽ Fy d b 2

Fy

Diseño de Estructuras de Acero – McCormac /Csernak


242

Capítulo 8

Introducción al estudio de vigas

el factor de forma de una viga T y la carga uniforme nominal wn que la viga teóricamente puede soportar.

Ejemplo 8-1 Determine My, Mn y Z para la viga T de acero mostrada en la Figura 8.5. Calcule también el factor de forma y la carga nominal (wn) que puede aplicarse a la viga en un claro simple de 12 pies. Fy = 50 klb/plg2. 8 plg 1 12 plg

y x

n,

klb/pie

x 6 plg

Figura 8.5.

12 pies

2 plg

Solución. Cálculos elásticos: 1 A = 18 plg2a 1 plgb + 16 plg212 plg2 = 24 plg2 2 112 plg210.75 plg2+112 plg214.5 plg2 y = = 2.625 plg desde el patín superior 24 plg 2 1 1 18 plg211.5 plg23 + (8 plg)(1.5 plg)(1.875 plg)2 + 12 plg2(6 plg)3 12 12 + (2 plg)(6 plg)(1.875 plg) 2 = 122.6 plg 4

I =

I 122.6 plg4 = 25.1 plg3 = c 4.875 plg 150 klb/plg2 2125.1 plg 32 My = Fy S = = 104.6 pie-klb 12 plg/pie S =

Cálculos plásticos (eje neutro plástico en la base del patín): Z = 112 plg2210.75 plg2 + 112 plg2213 plg2 = 45 plg3 Mn = Mp = Fy Z = Factor de forma =

Mp My

o

150 klb/plg22145 plg32 12 plg/pie

= 187.5 pie-klb

Z 45 plg3 = 1.79 = S 25.1 plg3

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


8.7 Teoría del análisis plástico wn L2 8 1821187.5 pie-klb2

Mn = ‹

wn =

112 pies22

243

= 10.4 klb/pie

Los valores de los módulos de sección plástica para secciones estándar de vigas de acero están tabulados en la Tabla 3-2 del Manual del AISC, bajo el encabezado “W Shapes Selection by Zx”, y se enlistan para cada perfil en la sección “Dimensions and Properties” del Manual (Parte 1). Estos valores Z se usarán frecuentemente a lo largo del texto.

8.7

TEORÍA DEL ANÁLISIS PLÁSTICO La teoría plástica básica tiene que ver con la distribución de esfuerzos en una estructura, después de que en ciertos puntos de ésta se ha alcanzado el esfuerzo de fluencia. Según la teoría plástica, aquellas partes de una estructura que han alcanzado el esfuerzo de fluencia no pueden resistir esfuerzos adicionales. Más bien, esas partes fluirán la cantidad necesaria para permitir que la carga o esfuerzos adicionales sean transferidos a otras partes de la estructura donde los esfuerzos se encuentran por debajo del esfuerzo de fluencia y son capaces de absorber esfuerzos adicionales. Se puede decir que la plasticidad sirve para igualar los esfuerzos en casos de sobrecarga. Hacia 1914, el Dr. Gabor Kazinczy, de Hungría, percibió que la ductilidad del acero permitía una redistribución de esfuerzos cuando se sobrecargaban las estructuras estáticamente indeterminadas.1 En Estados Unidos, el Prof. J. A. Van den Broek, presentó su teoría de la plasticidad, a la que llamó “diseño al límite”. Esta teoría fue publicada en un artículo titulado “Theory of Limit Design” (Teoría del diseño al límite), en febrero de 1939, en las Memorias de la ASCE. Para esta exposición, se considera que el diagrama esfuerzo-deformación, tiene la forma ideal mostrada en la Figura 8.6. Se supone que para este acero coinciden en el mismo punto tanto el punto de fluencia como el límite de proporcionalidad, y que el diagrama esfuerzo-deformación es una línea recta en la zona plástica. Más allá de la zona plástica está la zona

Figura 8.6. 1

Fy

iento recim n Endu formació e por d

Elasticidad

Esfuerzo unitario

Plasticidad

Deformación unitaria

Lynn S. Beedle, Plastic Design of Steel Frames (Nueva York: Wiley, 1958), p. 3.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


244

Capítulo 8

Introducción al estudio de vigas

de endurecimiento por deformación. En esta última zona, teóricamente podría permitirse que los miembros de acero soporten esfuerzos adicionales, pero desde el punto de vista práctico, las deformaciones ocasionadas serían tan grandes que no puede considerarse. Además, el pandeo inelástico limitará la habilidad de una sección para desarrollar un momento mayor que Mp, aun si el endurecimiento por deformación es apreciable.

8.8

EL MECANISMO DE FALLA Una viga estáticamente determinada falla si se desarrolla en ella una articulación plástica. Para ilustrar este hecho, se considera la viga mostrada en la Figura 8.7(a) de sección transversal constante, solicitada por una carga concentrada a la mitad del claro. Si se incrementa la carga hasta producir una articulación plástica en el punto de momento máximo (en este caso abajo de la carga), se daría lugar a una estructura inestable, como se muestra en la parte (b) de la figura. Cualquier incremento adicional de la carga causaría la falla. Pn representa la carga máxima nominal o teórica que la viga puede soportar. P

(a) Pn Articulación real

Articulación real Articulación plástica (b)

Figura 8.7.

Para que una estructura estáticamente indeterminada falle, es necesario que se forme más de una articulación plástica. Se demostrará que el número de articulaciones plásticas necesarias para que fallen las estructuras estáticamente indeterminadas, varía de estructura a estructura, pero nunca puede ser menos de dos. La viga empotrada en sus dos extremos, que se ilustra en la parte (a) de la Figura 8.8, no puede fallar si no se han formado las tres articulaciones plásticas indicadas en la parte (b) de la figura. P

(a) Pn

Figura 8.8.

Articulaciones plásticas (b)

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


8.9 El método del trabajo virtual

245

Aun cuando en una estructura estáticamente indeterminada se haya formado una articulación plástica, la carga aún puede incrementarse sin que ocurra la falla, siempre que la geometría de la estructura lo permita. La articulación plástica actuará como una articulación real, por lo que respecta al incremento de carga. A medida que la carga se incrementa, hay una redistribución de momentos, pues la articulación plástica no puede soportar mayor momento. Al ir apareciendo en la estructura otras articulaciones plásticas, llegará el momento en que habrá el número suficiente de ellas, para causar la falla de la estructura. En realidad, puede proporcionarse cierta carga adicional después del momento indicado, y antes de que la falla ocurra, ya que los esfuerzos serían los correspondientes a la zona de endurecimiento del material; sin embargo, esta condición no debe tomarse en cuenta porque las deformaciones son muy grandes para ser aceptables. La viga empotrada en un extremo y apoyada en el otro, en la parte (a) de la Figura 8.9, es un ejemplo de una estructura que fallará después de la aparición de dos articulaciones plásticas. Para que se produzca la falla se necesitarían tres articulaciones; se tiene una real en el extremo derecho. En esta viga, el mayor momento elástico causado por la carga concentrada de diseño está en el empotramiento. A medida que la magnitud de la carga se incrementa se va formando una articulación plástica en dicho punto. P

(a) Pn Articulación real Articulaciones plásticas (b)

Figura 8.9.

La carga puede incrementarse nuevamente hasta que el momento en algún otro punto alcance el valor del momento plástico (en este caso es en el punto donde está la carga concentrada). Una carga adicional causará la falla de la viga. Se llama mecanismo de falla a la disposición de articulaciones plásticas y quizá de articulaciones reales que permiten la falla de la estructura. Las partes (b) en las Figuras 8.7, 8.8 y 8.9 muestran mecanismos de falla para varias vigas. Después de observar el gran número de vigas doblemente empotradas y empotradas en un extremo y apoyadas en el otro, utilizadas como ilustración en este libro, el lector podría formarse la idea errónea de que encontrará frecuentemente esas vigas en la práctica de la ingeniería. Estos tipos de vigas son difíciles de encontrar en las estructuras reales, pero es muy conveniente utilizarlas en ejemplos ilustrativos. Son muy convenientes para la introducción del análisis plástico antes de considerar vigas continuas y marcos.

8.9

EL MÉTODO DEL TRABAJO VIRTUAL Un método muy satisfactorio usado para el análisis plástico de estructuras es el método del trabajo virtual. Se supone que la estructura considerada está cargada a su capacidad nominal, Mn, y que luego se deflexiona con un desplazamiento pequeño adicional después de que se alcanza la carga última. El trabajo realizado por las cargas externas durante este desplazamiento se iguala al trabajo interno absorbido por las articulaciones. En esta exposición se usa

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


246

Capítulo 8

Introducción al estudio de vigas wn , klb/pie

L ⫽ 18 pies

L 2 2 L 2

Figura 8.10.

L 2

la teoría del ángulo pequeño. Según esta teoría, el seno de un ángulo pequeño es igual a la tangente del mismo ángulo y también a éste expresado en radianes. En las páginas siguientes, el autor usa estos valores de modo intercambiable porque los desplazamientos pequeños considerados aquí, producen rotaciones o ángulos extremadamente pequeños. Como primera ilustración, se considera la viga doblemente empotrada con carga uniformemente repartida de la Figura 8.10. En la figura se reproducen dicha viga y su mecanismo de falla. Por simetría, las rotaciones en las articulaciones plásticas de los extremos son iguales y se representan por u en la figura; así, la rotación en la articulación plástica del centro será 2u. El trabajo realizado por la carga externa total (wnL) es igual al producto de wnL multiplicado por la deformación angular promedio del mecanismo. La deformación angular promedio es igual a la mitad de la deformación de la articulación plástica del centro (1/2 * u * L/2). El trabajo externo se iguala al trabajo interno absorbido por las articulaciones, o a la suma de los productos de Mn en cada articulación plástica por el ángulo que ha girado. De la expresión resultante pueden despejarse los valores Mn y wn como sigue: Mn 1u + 2u + u2 = wnLa Mn = wn =

wn L2 16 16Mn L2

1 L * u * b 2 2

.

Para el claro de 18 pies utilizado en la Figura 8.10, resultan los valores: Mn = wn =

1wn211822 16

= 20.25 wn

Mn . 20.25

El análisis plástico puede utilizarse de modo semejante para la viga apoyada en un extremo y empotrada en el otro en la Figura 8.11. Ahí se muestra el mecanismo de falla y las rotaciones en los extremos (que se suponen iguales) se supone que valen u. El trabajo realizado por la carga externa Pn al moverse la distancia u * L/2 se iguala al trabajo interno realizado por los momentos plásticos en las articulaciones. Nótese que no hay movimiento en la articulación real en el extremo derecho de la viga. Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


8.9 El método del trabajo virtual Pn

L ⫽ 10 pies 2

247

L ⫽ 10 pies 2

L ⫽ 20 pies Articulación real 2

L 2

Figura 8.11.

Mn1u + 2u2 = Pn a u

L b 2

Pn L 1o 3.33Pn para la viga mostrada de 20 pies2 6 6Mn 1o 0.3Mn para la viga mostrada de 20 pies2 Pn = L

Mn =

Enseguida se considera la viga empotrada en ambos extremos de la Figura 8.12, conjuntamente con su mecanismo de falla y las rotaciones angulares supuestas. De esta figura se pueden determinar los valores de Mn y Pn, mediante el método del trabajo virtual, como sigue: Mn 12u + 3u + u2 = Pn a 2u *

L b 3

Pn L 1o 3.33Pn para esta viga2 9 9Mn Pn = 1o 0.3Mn para esta viga2. L

Mn =

El lector que inicia el estudio del análisis plástico necesita aprender a pensar en todas la posibilidades de falla que tiene una estructura particular. Tal hábito resulta de máxima importancia cuando se empiezan a analizar estructuras más complicadas. En este contexto, se L ⫽ 10 pies 3

Pn

2L ⫽ 20 pies 3

L ⫽ 30 pies 2 L/3

2 Figura 8.12.

Alfaomega

3

Diseño de Estructuras de Acero – McCormac /Csernak


248

Capítulo 8

Introducción al estudio de vigas

hace el análisis plástico de la viga propuesta en la Figura 8.13 por el método del trabajo virtual. Se muestra la viga con sus dos cargas concentradas, junto con cuatro posibles mecanismos de falla y los cálculos necesarios. Es cierto que los mecanismos de las Figuras (b), (d) y (e) no son críticos, pero este hecho no es obvio para el lector normal, a menos que haga los cálculos del trabajo virtual para cada caso. En realidad, el mecanismo de la parte (e) se basa en la hipótesis de que el momento plástico se alcanza simultáneamente bajo las cargas concentradas (una situación que podría ocurrir). El valor para el cual la carga de falla Pn es mínima en función de Mn es el valor correcto (o el valor donde Mn es máximo en función de Pn). Para esta viga, la segunda articulación plástica se forma en la carga concentrada Pn, siendo Pn igual a 0.154Mn.

0.6Pn

Pn

10 pies

10 pies

10 pies

(a) Articulación real

2

Mn(5 ) ⫽ (0.6Pn)(20 ) ⫹ (Pn)(10 ) Mn ⫽ 4.4Pn Pn ⫽ 0.227Mn

10

20 3 (b)

Articulación real 10

20

2 3

Mn(4 ) ⫽ (0.6Pn)(10 ) ⫹ (Pn)(20 ) Mn ⫽ 6.5Pn Pn ⫽ 0.154Mn

(c) Articulación real Mn(3 ) ⫽ (Pn)(10 ) Mn ⫽ 3.33Pn Pn ⫽ 0.3Mn

10 2 (d)

Articulación real

10

10

Mn(3 ) ⫽ (0.6Pn)(10 ) ⫹ (Pn)(10 ) Mn ⫽ 5.33Pn Pn ⫽ 0.1875Mn

(e) Figura 8.13.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


8.10

8.10

Localización de la articulación plástica para cargas uniformes

249

LOCALIZACIÓN DE LA ARTICULACIÓN PLÁSTICA PARA CARGAS UNIFORMES No existe dificultad para localizar las articulaciones plásticas en la viga con carga uniformemente repartida y doblemente empotrada; pero para otras vigas, también con carga uniformemente repartida, empotradas en un extremo y apoyadas en el otro, o aun en vigas continuas, el problema es un tanto más difícil. En esta sección se considera la viga empotrada en un extremo y apoyada en el otro con carga uniformemente distribuida, mostrada en la Figura 8.14(a). El diagrama de momentos de flexión para esta viga trabajando elásticamente se muestra con línea sólida en la parte (b) de la figura. A medida que la carga uniforme se incrementa, se formará una articulación plástica en el extremo empotrado. Ahora la viga será, en efecto, una viga “simplemente apoyada” (por lo que concierne al incremento de carga) con una articulación plástica en un extremo y una articulación real en el otro. Los incrementos subsiguientes de la carga causarán la modificación del diagrama de momentos, como se ha representado con línea punteada en la parte (b) de la figura. Este proceso continuará hasta que en algún otro lugar (en la figura, a una distancia x del apoyo de la derecha), el momento valga Mn y produzca otra articulación plástica. La expresión del trabajo virtual para el mecanismo de falla de esta viga, mostrado en la parte (c) de la Figura 8.14 se escribe como sigue: Mn a u + u +

L - x 1 ub = 1wnL21u21L - x2a b. x 2

Despejando Mn de esta ecuación y haciendo dMn/dx = 0, puede calcularse el valor de x y se encuentra que es igual a 0.414L. Este valor también es aplicable a claros extremos de vigas continuas con cargas uniformemente repartidas, con extremos simplemente apoyados, y se ilustrará en la siguiente sección. wn , klb/pie

L (a) Mn

x

Mn (b)

L⫺x x

(L⫺x)

Articulación real

L⫺x x

(c)

Figura 8.14.

Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


250

Capítulo 8

Introducción al estudio de vigas Mn

n,

L⫺x

klb/pie

x L (a) 0.586 L

1.414

2.414 0.414L

0.586L Figura 8.15.

(b)

La viga y su mecanismo de falla se reproducen en la Figura 8.15, y se escribe la siguiente expresión para el momento plástico y carga uniforme mediante el procedimiento del trabajo virtual:

1 Mn1u + 2.414u2 = 1wnL210.586uL2a b 2 Mn = 0.0858wnL2 wn = 11.65

8.11

Mn L2

VIGAS CONTINUAS Las vigas continuas son muy comunes en las estructuras de ingeniería. Su continuidad hace que su análisis sea algo complicado al usar la teoría elástica y la distribución resultante de esfuerzos no es tan exacta como pudiera suponerse, aún al emplear alguno de los métodos “exactos” de análisis. El análisis plástico es aplicable tanto a estructuras continuas como a vigas de un solo claro. Los valores resultantes reflejan en forma más realista la resistencia límite de una estructura, que la que se obtiene con el análisis elástico. Las vigas continuas estáticamente indeterminadas pueden tratarse con el método del trabajo virtual tal como se hizo en el caso de las vigas estáticamente indeterminadas de un solo claro. Se presentan los Ejemplos 8.2 y 8.3 para ilustrar dos de los casos más elementales de vigas continuas. Se supone aquí que la falla ocurre si una parte o el total de la estructura falla. Entonces, en las vigas continuas que analizaremos se escriben las expresiones del trabajo virtual para cada claro por separado. De las expresiones resultantes se pueden despejar las cargas máximas que las vigas pueden soportar.

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


8.11

Vigas continuas 251

Ejemplo 8-2 Se ha seleccionado una W18 * 55 (Zx = 112 plg3) para la viga mostrada en la Figura 8.16. Usando acero de 50 klb/plg2 y suponiendo soporte lateral total, determine el valor de wn. wn, klb/pie

24 pies

Figura 8.16.

30 pies

Solución Mn = Fy Z =

150 klb/plg2 21112 plg 32 12 plg/pie

= 466.7 pie-klb

Dibujando los mecanismos (falla) para los dos claros: Articulación real 1.414 14.06

15 2.414

9.94 pies

14.06 pies

15 pies

15 pies

Claro izquierdo: 1 1Mn213.414u2 = 124wn2a b114.06u2 2 wn = 0.0202 Mn = 10.020221466.72 = 9.43 klb/pie

Claro derecho: 1 1Mn214u2 = 130wn2a b115u2 2

wn = 0.0178 Mn = 10.017821466.72 = 8.31 klb/pie ;

Los claros adicionales tienen poco efecto sobre la cantidad de trabajo implícito en el procedimiento del análisis plástico. No puede decirse lo mismo del análisis elástico. El Ejemplo 8-3 ilustra el análisis de una viga con tres claros, que soporta una carga concentrada en cada claro. El estudiante, con base en su conocimiento del análisis elástico, percibirá que las articulaciones plásticas se formarán primero en los apoyos interiores y luego en los centros de los claros extremos, en ese momento cada claro extremo poseerá un mecanismo de falla.

Ejemplo 8-3 Usando una W21 * 44 (Zx = 95.4 plg3) que consiste de acero A992, determine el valor de Pn para la viga de la Figura 8.17. Alfaomega

Diseño de Estructuras de Acero – McCormac /Csernak


252

Capítulo 8

Introducción al estudio de vigas Pn

15 pies

Articulación real

1.5Pn

15 pies

15 pies

15 pies

30 pies

30 pies

15

15

2

Pn

2

15 pies

15 pies

30 pies Articulación real 15 (Mecanismo de falla) 2

Figura 8.17.

Solución

Mn = Fy Z =

150 klb/plg22195.4 plg32 12 plg/pie

= 397.5 pie-klb

Para el primer y tercer claros: Mm 13u2 = 1Pn2115u2

Pn = 0.2 Mn = 10.221397.52 = 79.5 klb

Para el claro central: 1Mn214u2 = 11.5 Pn2115u2

Pn = 0.178 Mn = 10.17821397.52 = 70.8 klb ;

8.12

MARCOS DE EDIFICIOS En esta sección el análisis plástico se aplica a un pequeño marco de edifico. No es la intención del autor estudiar los marcos detalladamente en este capítulo. Más bien, desea mostrar al lector que el método del trabajo virtual es aplicable tanto a marcos como a vigas y que hay otros tipos de mecanismos además de los tipos de viga. Para el marco considerado, se supone que se usa la misma sección W tanto para la viga como para las columnas. Si estos miembros difieren en tamaño, será necesario tomar eso en cuenta en el análisis. El marco articulado en sus apoyos mostrado en la Figura 8.18 es estáticamente indeterminado de primer grado. El desarrollo de una articulación plástica lo convertirá en estáticamente determinado, y la formación de una segunda articulación puede crear un mecanismo. Hay, sin embargo, varios tipos de mecanismos que podrían ocurrir en este marco. Un posible mecanismo de viga se muestra en la parte (b), un mecanismo de ladeo se muestra en la parte (c) y un mecanismo combinado de viga y ladeo se muestra en la parte (d). La condición crítica es la que dé el menor valor de Pn. El Ejemplo 8-4 presenta el análisis plástico del marco en la Figura 8.18. Las distancias a través de las cuales las cargas tienden a moverse en los diversos mecanismos deben estudiarse

Diseño de Estructuras de Acero – McCormac /Csernak

Alfaomega


8.12 Marcos de edificios 253 Pn 0.6 Pn

20 2

20 pies

20 pies

(Pn)(20 ) ⫽ Mn(4 ) Pn ⫽ 1 Mn 5

20 pies

40 pies (a) Marco y cargas

(b) Mecanismo de viga 20

20

20

B 2

A

(0.6 Pn)(20 ) ⫽ Mn(2 ) Pn ⫽ 1 Mn 6

(0.6 Pn)(20 ) ⫹ (Pn)(20 ) ⫽ Mn(4 ) Pn ⫽ 1 Mn 8

(c) Mecanismo de ladeo

(d) Mecanismo combinado de viga y ladeo

Figura 8.18 Mecanismos posibles para un marco.

cuidadosamente. La solución de este problema evidencia un punto de la mayor importancia: La superposición no es aplicable en el análisis plástico. Esto puede verse fácilmente estudiando las expresiones del trabajo virtual para las partes (b), (c) y (d) de la figura. Los valores de Pn obtenidos por separado para los mecanismos de viga y ladeo no se suman para obtener el mecanismo combinado de viga y ladeo. Para cada mecanismo tenemos que considerar la situación en la que se tenga el menor número posible de articulaciones plásticas que causan el colapso. Si se fija usted en una de las expresiones del trabajo virtual, notará que Pn resulta más pequeño conforme el número de articulaciones plásticas disminuye. Véase al respecto la parte (d) de la Figura 8.18. El marco se puede ladear hacia la derecha sin la formación de una articulación plástica en la parte superior de la columna izquierda. Las dos articulaciones plásticas marcadas A y B son suficientes para que el colapso ocurra.