Capítulo 11
465
Lecturas adicionales
cedimiento para construir matrices de amortiguamiento para los subsistemas individuales, que se suponen clásicamente amortiguados. En principio, estas matrices de amortiguamiento de los subsistemas podrían construirse mediante cualquiera de los procedimientos desarrollados en la sección 11.4, pero el amortiguamiento de Rayleigh es quizás el más conveniente para los análisis prácticos. Así, las matrices de amortiguamiento para la estructura y el suelo de cimentación (indicado por el subíndice f ) son
c = a0 m + a1 k
c f = a0 f m f + a1 f k f
(11.5.1)
Los coeficientes a0 y a1 están dados por la ecuación (11.4.10) usando una fracción de amortiguamiento apropiada para la estructura, por ejemplo ζ = 0.05, donde ωi y ωj se seleccionan como las frecuencias de los modos naturales de vibración i-ésimo y j-ésimo del sistema combinado sin amortiguamiento. Los coeficientes a0f y a1f se determinan de manera similar; deberían ser cuatro veces mayores si la fracción de amortiguamiento para la región del suelo de cimentación se estima como ζf = 0.20. El supuesto del amortiguamiento clásico puede no ser apropiado, ya sea en estructuras con dispositivos especiales para la disipación de energía (sección 7.10) o en sistemas con aislamiento en la base, incluso si la propia estructura tiene amortiguamiento clásico. La matriz de amortiguamiento no clásico para el sistema se construye evaluando la primera matriz c de amortiguamiento clásico para la estructura por sí sola (sin los dispositivos especiales), a partir de las fracciones de amortiguamiento adecuadas para la estructura y utilizando l os procedimientos de la sección 11.4. Después, las contribuciones de amortiguamiento de los dispositivos para la disipación de energía se ensamblan en c a fin de obtener la matriz de amortiguamiento para el sistema completo.
LE C T URAS ADI CI O NAL E S Caughey, T. K., “Classical Normal Modes in Damped Linear Dynamic Systems”, Journal of Applied Mechanics, ASME, 27, 1960, pp . 269-271. Caughey, T. K. y O’Kelly, M. E. J., “Classical Normal Modes in Damped Linear Dynamic Systems”, Journal of Applied Mechanics, ASME, 32, 1965, pp. 583-588. Foutch, D. A., Housner, G. W. y Jennings, P. C., “Dynamic Responses of Six Multistory Buildings during the San Fernando Earthquake”, informe No. EERL 75-02, California Institute of Technology, Pasadena, California, octubre de 1975. Hart, G. C. y Vasudevan, R., “Earthquake Design of Buildings: Damping”, Journal of the Structural Division, ASCE, 101, 1975, pp. 11-30. Hashimoto, P. S., Steele, L. K., Johnson, J. J. y Mensing, R. W., “Review of Structure Damping Values for Elastic Seismic Analysis of Nuclear Power Plants”, informe No. NUREG/CR-6011, U.S. Nuclear Regulatory Commission, Washington, D.C., marzo de 1993. Jennings, P. C. y Kuroiwa, J. H., “Vibration and Soil-Structure Interaction Tests of a Nine-Story Reinforced Concrete Building”, Bulletin of the Seismological Society of America, 58, 1968, pp. 891-916. McVerry, G. H., “Frequency Domain Identification of Structural Models from Earthquake Records”, informe No. EERL 79-02, California Institute of Technology, Pasadena, California, octubre de 1979. Newmark, N. M. y Hall, W. J., Earthquake Spectra and Design, Earthquake Engineering Research Institute, Berkeley, California, 1982, pp. 53-54.
M011_Chopra.indd 465
23/07/13 13:54