Dinámica de Estructuras 4a. Ed. Anil K. Chopra Parte 1

Page 86

50

Vibración libre

u

Capítulo 2

˙ u(0) 1

Estructura no amortiguada

re– ζv nt

Estructura amortiguada

u(0)

t

–re –ζvnt

Tn = 2p/vn TD = 2p/vD

Figura 2.2.2 Efectos del amortiguamiento sobre la vibración libre.

o 5%. Se incluye, con propósitos comparativos, la respuesta a la vibración libre del mismo sistema que se presentó anteriormente en la figura 2.1.1, pero sin amortiguamiento. La vibración libre de ambos sistemas inicia por el mismo desplazamiento inicial u(0) y la misma y, por lo tanto, ambas gráficas de desplazamiento en el tiempo inician velocidad inicial u(0) ˙ en el instante t = 0 con las mismas ordenada y pendiente. La ecuación (2.2.4) y la figura 2.2.2 indican que la frecuencia natural de vibración amortiguada es ωD y que se relaciona mediante la ecuación (2.2.5) con la frecuencia natural ωn del sistema sin amortiguamiento. El periodo natural de vibración amortiguada, TD = 2π/ωD, se relaciona con el periodo natural Tn sin amortiguamiento mediante

TD =

Tn

(2.2.6)

1 – ζ2

La amplitud de desplazamiento del sistema no amortiguado es la misma en todos los ciclos de vibración, pero el sistema amortiguado oscila con amplitud decreciente en cada ciclo de vibración. La ecuación (2.2.4) indica que la amplitud de desplazamiento disminuye exponencialmente con el tiempo, como se muestra en la figura 2.2.2. Las curvas envolventes ±ρe−ζ ωn t , donde

ρ=

[u(0)]2 +

u(0) ˙ + ζ ωn u(0) ωD

2

(2.2.7)

tocan la curva de desplazamiento en el tiempo en los puntos que están ligeramente a la derecha de sus valores pico. El amortiguamiento tiene el efecto de reducir la frecuencia natural de ωn a ωD y alargar el periodo natural de Tn a TD. Estos efectos son insignificantes para fracciones de amortiguamiento por debajo de 20%, un rango que incluye a la mayoría de las estructuras, como se muestra en la figura 2.2.3, donde la relación ωD/ωn = Tn/TD se grafica contra el valor de ζ. Para la mayoría de las estructuras, las propiedades amortiguadas ωD y TD son aproximadamente iguales a las propiedades no amortiguadas ωn y Tn, respectivamente. Para los sistemas con amortiguamiento crítico, ωD = 0 y TD = q. Ésta es otra forma de decir que el sistema no oscila, como se muestra en la figura 2.2.1.

M02_Chopra.indd 50

23/07/13 11:21


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.