Model matematika dari setiap permasalahan program linear secara umum terdiri atas 2 komponen, yaitu: 1. Fungsi tujuan z = f(x, y) = ax + by dan 2. Fungsi kendala (berupa pertidaksamaan linear)
Contoh Soal 1.8 Suatu lahan parkir memiliki luas 800 m2 dan hanya mampu menampung 64 bus dan mobil. Sebuah mobil menghabiskan tempat 6 m2 dan bus 24 m2. Biaya parkir Rp1.500,00/mobil dan Rp2.500,00/bus. Pemilik lahan parkir mengharapkan penghasilan yang maksimum. Tentukan model matematika dari permasalahan tersebut. Jawab: Permasalahan tersebut dapat disusun dalam bentuk tabel seperti berikut. Mobil
Bus
Maksimum
Banyaknya kendaraan
x
y
64
Lahan yang dipakai
6
24
800
1.500
2.500
–
Penghasilan
Cobalah Untuk membuat barang A diperlukan 6 jam pada mesin I dan 4 jam pada mesin II. Adapun untuk membuat barang jenis B, memerlukan 2 jam pada mesin I dan 8 jam pada mesin II. Kedua mesin tersebut dioperasikan setiap harinya masing-masing tidak lebih dari 18 jam. Setiap hari dibuat x buah barang A dan y buah barang B. Tentukan model matematika dari masalah tersebut. Sumber: Sipenmaru, 1985
•
Keuntungan yang diharapkan, dipenuhi oleh fungsi tujuan berikut. z = f(x, y) = 1.500x + 2.500y • Banyaknya mobil dan bus yang dapat ditampung di lahan parkir tersebut memenuhi pertidaksamaan x + y ≤ 64 • Luas lahan yang dapat dipakai untuk menampung mobil dan bus memenuhi pertidaksamaan 6x + 24y ≤ 800 • Oleh karena x dan y berturut-turut menyatakan banyaknya mobil dan bus, maka x ≥ 0 dan y ≥ 0. Jadi, model matematika dari permasalahan tersebut adalah fungsi tujuan z = f(x, y) = 1.500x + 2.500y dengan fungsi kendala x + y ≤ 64 6x + 24y ≤ 800 x≥0 y≥0
Contoh Soal 1.9 Seorang pedagang menjual 2 jenis buah, yaitu semangka dan melon. Tempatnya hanya mampu menampung buah sebanyak 60 kg. Pedagang itu mempunyai modal Rp140.000,00. Harga beli semangka Rp2.500,00/kg dan harga beli melon Rp2.000/kg. Keuntungan yang diperoleh dari penjual semangka Rp 1.500,00/kg dan melon Rp1.250,00/kg. Tentukan model matematika dari permasalahan ini. Jawab: Permasalahan tersebut dapat disusun dalam bentuk tabel seperti berikut. Semangka
Melon Maksimum
x
y
60
Pembelian
2.500
2.000
140.000
Keuntungan
1.500
1.250
-
Banyaknya buah (kg)
Sumber: www.balipost.com
Gambar 1.7 Penjual semangka dan melon
Program Linear
13