B. Persamaan Garis Singgung Lingkaran 1. Persamaan Garis Singgung Melalui Suatu Titik pada Lingkaran y P(x1, y1) r
y
O x Q
g
x
Gambar 4.7
Titik P(x ( 1, y1) terletak pada garis g dan lingkaran x2 + y2 = r2, seperti diperlihatkan pada Gambar 4.7. Gradien garis yang menghubungkan titik O dan titik P y adalah mOP= 1 . Garis g menyinggung lingkaran di P, jelas x1 1 OP > g sehingga mOP·mg = –1 atau mg = . Akibatnya, mop x 1 gradien garis g adalah mg = = 1. y1 mop Jadi, persamaan garis singgung g adalah x y – y1 = mg(xx – x1) y – y1 = 1 (xx – x1) y1 y1(y – y1) = – –x1(xx – x1) x1x + y1y = x12 + y12 .... (i) Titik P(x1, y1) terletak pada lingkaran x2 + y2 = r2 sehingga x12 + y12 = r2 ....(ii) Apabila persamaan (ii) disubstitusikan ke persamaan (i) diperoleh g: x1x + y1y = r2 Persamaan tersebut adalah persamaan garis singgung yang melalui titik P(x1, y1) dan terletak pada lingkaran L : x2 + y2 = r2. Anda pun dapat menentukan persamaan garis singung g melalui titik P (x1, y1) yang terletak pada lingkaran L : (x – a)2 + ((y – b) = r2 dengan pusat di M( M a, b) dan jari-jari r, yaitu g: (x x – a) (x1 – a) + ((y – b) ((y1 – b) = r2
Bersama teman sebangku, buktikan persamaan tersebut. Kemudian, kemukakan hasilnya di depan kelas (beberapa orang saja). Diketahui titik P(x 1, y 1) terletak pada garis g dan lingkaran L: x2 + y2 + Axx + By + C = 0 seperti diperlihatkan pada Gambar 4.8. Gradien garis yang menghubungkan titik T dan titik P adalah 104
Mahir Mengembangkan Kemampuan Matematika untuk Kelas XI Program Ilmu Pengetahuan Alam