Page 1

72

The floral and faunal succession of "Cueva del Toll", Spain By J . J . D O N N E R a n d B J Ö R N K U R T E N , H e l s i n k i , F i n n l a n d

Mit 7 Abbildungen im Text S u m m a r y . The deposits of "Cueva del Toll" near Moya (province of Barcelona, Spain) have been studied pollen analytically. The sequence shows an oscillation between pine forest (up to 80% pine pollen), representing a humid and temperate climate, and open vegetation (only 30% pine pollen), representing phases of dry and warm climate. The same changes appear in the com­ position of the mammalian fossil fauna, and also in the lithology of the cave deposits. The two temperate and humid phases represented in „Cueva del Toll" are correlated with the Early and Main Würm respectively; the warm and dry oscillations represent the Eem interglacial, the Gött­ weig interstadial, and the end of Würm. This climatic sequence is in agreement with the Würm sequence of Middle Europe. The leading fossil mammal of the Göttweig phase in this cave is the cave bear; it appears to be most closely akin to the Gailenreuth form in Middle Europe, and differs by its larger size from the Early Würm and interglacial populations. R e s u m e n . Los depositos de la "Cueva del Toll" situada en las cercanias de Moya (Provincia de Barcelona, Espana) han sido estudiados con el metodo de los polenes. El corte demuestra una oscilaeiön entre el bosque de pino (las muestras contienen hasta 80% de polenes de pino) representando un clima hümedo y templado y la vegetacion abierta (las muestras contienen unicamente un 30% de polenes de pino) que representa un clima seco y caliente. Las misma? variaciones aparecen tanto en la composicion de los fosiles de la fauna mamffera como tambien en la litologi'a de los depositos de la mentionada cueva. Las faces, templada y humeda, representadas en la Cueva del Toll estan correlacionadas con las epocas principio y medio de Würm. Las oscilaciones calientes y secas representan las epocas del interglacial Eem, la interstadial Göttweig y la parte final de la epoca de Würm. Este lapso climatologico coincide con el de Würm de Europa Central. En esta cueva el fosil predominante de face Göttweig es el del oso de las cavernas, que parece ser el mas proximo forma de Gailenreuth de Europa Central, difiriendose, sin embargo de fauna de la epoca temprana de Würm y de la epoca interglacial, por su gran tamafio. ;

Introduclion T h e cave n a m e d " C u e v a del T o l l " lies a b o u t 50 k m n o r t h of Barcelona a n d some 5 k m east of M o y a (c. 750 m a b o v e sea-level) in t h e province of Barcelona, S p a i n . D u r i n g a short visit there in t h e summer of 1956, samples of t h e c a v e deposits w e r e t a k e n b y D O N N E R in order t o find o u t if they c o n t a i n a n y pollen, a n d , if they d o , w h e t h e r t h e pollen composition reflects a n y vegetational changes in t h e p e r i o d during which t h e cave layers w e r e deposited. T h e faunal succession, as shown b y t h e remains of different m a m ­ m a l i a n species, could then be compared w i t h t h e vegetational succession, a n d t h e results used for d a t i n g t h e deposits. C a v e layers a r e p r o b a b l y t h e most suitable deposits f o r a study of this k i n d , as t h e y contain enough remains of m a m m a l s for statistical purposes. A t t h e same time, some of t h e fossil m a m m a l s w e r e studied b y KURTEN. T h e a u t h o r s wish to express their deeply felt gratitude to t h e l e a d e r of the excavations in the T o l l , D r . J . F . DE V I L L A L T A C O M E L L A , a n d t o his associates, for their g r e a t generosity in p l a c i n g all their resources a n d m a t e r i a l a t o u r disposal, for numerous courtesies extended t o us, a n d for i m p o r t a n t i n f o r m a t i o n supplied d u r i n g t h e subsequent w o r k . . T h e w o r k has been supported b y g r a n t s from t h e Finnish State C o m m i s s i o n of N a t u r a l Science. " C u e v a del T o l l " a n d its remains of m a m m a l i a n species a r e described b y T H O M A S & VILLALTA in t h e guide f o r t h e excursions B 2 — B 3 d u r i n g t h e V I N Q U A Congress in Spain in 1957. N o t e s b y SERRA a n d FUSTE o n t h e archaeological finds a n d h u m a n r e m a i n s respectively a r e also i n c l u d e d in the same guide. T h e present description of t h e c a v e a n d its s t r a t i g r a p h y is based entirely on t h e guide. T h e cave, which is formed in E o c e n e lime­ stone, h a s m a n y galleries, b u t "Galerie S u d " is t h e only o n e in which there is c a v e - e a r t h


Cueva del Toll

73

of some thickness, i. e. up to 9 m . T h e samples f o r pollen analysis w e r e taken from sec­ t i o n B (fig. 1), a b o u t 5 m from t h e entrance of t h e c a v e . T h e layers a n d t h e average thick­ ness of each are s h o w n in fig. 2. T h e stratigraphy of section B is as f o l l o w s : L a y e r a. Thickness 1.1—1.5 m . U n s o r t e d sand w i t h angular stones. T h e layer c o n t a i n s N e o l i t h i c remains. L a y e r b. Thickness 0.2 m. R e d d i s h sandy clay. L a y e r c.

A t h i n intercalated l a y e r .

L a y e r d.

Thickness 0.2 m. S a n d y clay, lighter t h a n in layer b.

L a y e r e.

Thickness 0.2 m. A c l a y sediment, m i x e d w i t h hyena c o p r o l i t h s .

L a y e r f.

Thickness 0.3 m. C o m p a c t reddish clay. Less coproliths t h a n in the layer a b o v e .

L a y e r g. L a y e r h.

Thickness 0.25 m. V a r v e d clay. Thickness 0.35 m. T h e lithology differs v e r y much f r o m t h a t of the o t h e r layers. L a y e r h consists of a loose breccia w i t h bones a n d angular stones in a s a n d y c l a y matrix. Thickness 0.2 m. C o m p a c t reddish c l a y .

I n t h e clay a discontinous intercalation of flat angular stones.

L a y e r i.

L a y e r j . Thickness 0.4 m. C o m p a c t deep-red c l a y , w i t h an intercalation of stones.

angular

N. M.

Fig. 1. Plan of „Cueva del Toll", showing Galeries Est and Sud and the location of Section B


J. J. Donner und Björn Kurten

74

I

1

1 Ho.1

~uo -150 -I.W

-tto

a

O.ZÖ

b

0.20 0X6 030

« /

~W

9

- I I » OM - MO 0.10

hl

-3,M

0,40

j

1.20

k

-«*) - 5.50 - 5.«

0,70

l

ffl -80

n

Fig. 2. Section B of "Cueva del Toll". After THOMAS & VILLALTA. Layer k.

Thickness c. 1.2 m . V e r y sandy loose clay in which big stones, c o m i n g from the ceiling, are f o u n d . L a y e r 1. Thickness c. 0.7 m . Sterile clay. L a y e r m. Thickness c. 0.4 m . S a n d y clay, slightly v a r v e d . L a y e r n. E x c a v a t e d d o w n t o 2 m. Coarse g r a v e l w i t h layers of clay. T h e v e g e t a t i o n a l s u c c e s s i o n ( J . J . DONNER) T h e p a r t of the section which was pollen a n a l y t i c a l l y studied is 185 cm thick. T w e l v e samples w e r e t a k e n from layers b — j , the i n t e r v a l between t h e samples being 1 0 — 2 5 cm (see fig. 3). T h e siliceous m a t t e r of the pollen samples was r e m o v e d b y H F t r e a t m e n t (see FAEGRI & IVERSEN 1950). T h e boiling w i t h H F , followed b y H C l treatment, w a s in most cases d o n e twice. A b o u t 4 — 5 c m m a t e r i a l w a s needed for 1—3 slides, the c o v e r glass being 20 x 40 m m . All the a n a l y s e d samples c o n t a i n e d pollen, b u t some of the slides w e r e extremely p o o r in pollen. T h e r e f o r e the t o t a l a m o u n t of pollen counted in each s a m p l e is only 100. T o get this a m o u n t u p to 280 traverses of 2 cm h a d to be counted f o r one sample. Some of the pollen a n d spores were b a d l y preserved, b u t most of t h e m c o u l d be identified. O n l y 0—4°/o of the total a m o u n t could n o t be identified, and they w e r e not included in t h e counts. T h e deposits in " C u e v a del T o l l " are n o t ideal for pollen analysis. W E L T E N ( 1 9 5 6 ) , however, has, in a w o r k dealing w i t h subrecent changes of the pollen rain in t h e sub3


Cueva del Toll

75

alpine regions of Spain, d e m o n s t r a t e d t h a t e v e n a r i d soils, like deep-red clay, c a n be used for pollen analysis. A n o t h e r f a c t o r which m u s t be considered is the location of the section in the cave, VAN CAMPO & L E R O I - G O U R H A N ( 1 9 5 6 ) studied the pollen rain in the d ' A r c y s u r - C u r caves, a n d they c a m e t o the conclusion t h a t a large a m o u n t of pollen are carried b y the w i n d u p to 1 0 m f r o m the entrance p r o v i d e d it is big enough. If a n air current goes t h r o u g h the cave pollen a r e carried f u r t h e r in, up to 3 0 m from the e n t r a n c e . Sec­ tion B in T o l l is about 5 m from the e n t r a n c e , as m e n t i o n e d above. T h u s one w o u l d expect the section to be n e a r e n o u g h to the e n t r a n c e to h a v e received a pollen rain reflec­ ting the s u r r o u n d i n g vegetation. T h e exposure t o the prevailing w i n d s can also h a v e some influence, as s h o w n by D E R V I L L E 8C F I R T I O N ( 1 9 5 1 ) in their s t u d y of a rock-shelter in C a n t a l . T h e y demonstrated a clear difference in pollen s e d i m e n t a t i o n between different sides of the c a v e . T h e sheltered p a r t had a l m o s t sterile sediments. T h e section from which the samples in " C u e v a del T o l l " were t a k e n lies in the m i d d l e of the cave a n d it has therefore been well exposed t o the wind c u r r e n t s . CUEVA

DEL

TOLL

1956

A CMS

S>mp[«i

(

;

B j

I — I — I — I — I — I — [ — i — p i

TOTAL

1 r

! - 1

C

1

(

i —

1

— i —

1

i

1

, r

-1

r

-1

1

( 1

I i— —I—i—R

i—<~

I

1

I r r

(

r

r

n r

r

-1

-

r —r '

Fig. 3. "Cueva del Toll", pollen diagram, layers j to b. T a k i n g i n t o account the a b o v e - m e n t i o n e d investigations it seems p r o b a b l e t h a t the sediments in section b of „ C u e v a del T o l l " h a v e received a representative pollen rain. T h e sediments are not likely t o contain a n y s e c o n d a r y pollen. I n the pollen d i a g r a m from the Briiggli c a v e near N e u z l i n g e n ( C a n t o n of Bern) W E L T E N ( 1 9 5 4 ) f o u n d secondary pollen in o n e of the two profiles studied. I n the pollen d i a g r a m , starting w i t h the lateglacial Y o u n g e r Dryas p e r i o d , W E L T E N f o u n d some pollen which w e r e f r o m the last interglacial p e r i o d or even o l d e r . T h e y w e r e , according to W E L T E N , i n c o r p o r a t e d in the sediments which h a d been sliding d o w n a slope. I n " C u e v a del T o l l " the c a v e layers are h o r i z o n t a l , so disturbances similar to those described by W E L T E N are n o t likely to occur. I t m a y also be mentioned t h a t W E L T E N did n o t find a n y trace of a sinking d o w n of pollen from the surface. T h e results from " C u e v a del T o l l " can b e seen in the pollen d i a g r a m in fig. 3 . D u r i n g the Bronze A g e there was a land-slide which closed "Galerie S u d " (THOMAS 8C VILLALTA,


76

J. J. Donner und Björn Kurten

1957). T h u s a pollen spectrum reflecting the present vegetation is n o t represented in the d i a g r a m . As seen from the d i a g r a m Pinns is most c o m m o n of all pollen types. Its percen­ tage varies between 3 0 — 8 0 % . N o size measurements of the Pinns pollen w e r e done b u t most of them are of the Pinns silvestris type (see W E L T E N 1956). Betula, Corylns a n d Quercus are all present. T h e y f o r m discontinuous curves of 1—7%. Occasional pollen of Abies, Alnus a n d Ulmus w e r e also found. Of the n o n - t r e e pollen G r a m i n e a e , C y p e r a ceae a n d C o m p o s i t a e are the most c o m m o n , but Artemisia, C a r y o p h y l l a c e a e , C h e n o p o d i a ceae, Leguminosae, Plantago, Rosaceae a n d Rubiaceae are also present. Filicales, which are n o t included in the total, are highest in sample 3 (30°/o) a n d present in all samples except in 6 a n d 7. T h e pollen types w e r e divided into three groups, the relative v a r i a t i o n s of which are shown separately in the d i a g r a m (fig. 3). Pinns (and Abies) forms g r o u p A, Betula, Corylus a n d Quercus g r o u p B, in which also Ulmus a n d Alnus are included, a n d the n o n - t r e e pollen g r o u p C. T h e pollen curves in g r o u p B a n d C a n d the Pin us c u r v e v a r y inversely. T h e curves of the d i a g r a m suggest changes between forest, d o m i n a t e d by Pinus silvestris, a n d a n open vegetation w i t h herbs a n d a few deciduous trees. C l i m a t i c a l l y the curves most p r o b a b l y show changes b e t w e e n temperate h u m i d periods a n d w a r m d r y periods. T h e Pinus values of a b o u t 30°/o in the t w o u p p e r m o s t samples, which represent the N e o ­ lithic time or a s o m e w h a t older p e r i o d , are p r o b a b l y due t o long distance t r a n s p o r t . T h i s can be expected to h a v e a strong influence if the local vegetation is o p e n (and the local pollen p r o d u c t i o n is l o w ) , as suggested by the high n o n - t r e e pollen values. T h e r a t h e r strong influence of Pinus outside the pine forests has been d e m o n s t r a t e d by W E L T E N (1956) in his s t u d y of subrecent pollenspectra from S p a i n , a n d also in a study of the recent pollen rain in S w i t z e r l a n d ( W E L T E N 1950). T h e high Pinus value of c. 80°/o in t h e T o l l d i a g r a m must, on the other h a n d , reflect a strong representation of pine forests in the area. I t is difficult to judge h o w near the pine forests came a n d h o w large a n a r e a t h e y covered, b u t t h e y must h a v e been common well outside (below) their present scat­ tered areas higher u p in the Pyrenees (see GAUSSEN 1956). A t present the Moya. region has no pine, only Quercus lusitanica a n d some Fagus. F r o m the changes in the pollen d i a g r a m we m a y conclude t h a t there were t w o t e m ­ p e r a t e h u m i d periods i n t e r r u p t e d b y a w a r m d r y p e r i o d (layer h) similar to the present one (or a t least to t h a t during the N e o l i t h i c time). L a y e r j also represents a w a r m d r y p e r i o d , b u t p r o b a b l y o n l y its last stage. It is r e m a r k a b l e h o w u n i f o r m the pollen curves are a n d h o w the same v a l u e for pine (30°/o) repeats itself in three different layers. I n layer f, sample 6, there is a small depression in the Pinus curve. T o check if this has a n y significance, a h u n d r e d m o r e pollen w e r e counted. After this count the percentage for Pinus rose a n d the depression in t h e curve disappeared. I t is thus o n l y a result of the small n u m b e r of pollen counted. ( T h e diagram shows the original percentages based on a h u n d r e d pollen.) I t is difficult to get a clear p i c t u r e of the open vegetation w h e n layers j , h a n d b w e r e f o r m e d . I t can be noted t h a t the C y p e r a c e a e curve reacts v e r y clearly, a n d C y p e r a c e a e must in Spain be included in the " s t e p p e " elements. All the o t h e r n o n - t r e e pollen t y p e s also belong to these elements. T h e deciduous trees show the same changes as the n o n - t r e e pollen. T h e y h a v e , h o w e v e r , v e r y l o w values, a n d t h e y w e r e p r o b a b l y o n l y present as scattered trees or in small woods in f a v o u r a b l e areas. As the pollen d i a g r a m from " C u e v a del T o l l " is the o n l y one from this region, no conclusive results a b o u t the vegetational changes can be given. Even if the pollen diagram reflects the m a i n changes, the cave d e p o ­ sits m a y n o t give the n o r m a l percentages for the v a r i o u s pollen types. T h e pollen d i a g r a m can n o t directly be used for d a t i n g the layers in " C u e v a del T o l l " . But in obtaining a succession of w a r m d r y periods a l t e r n a t i n g w i t h temperate h u m i d


Cueva del Toll

77

periods the age of the v a r i o u s layers can be suggested if the f a u n a l succession is also taken into a c c o u n t . As a s u m m a r y of the p o l l e n analysis of t h e layers in " C u e v a del T o l l " the following table of the vegetational a n d climatic changes can be g i v e n : Layers Vegetation Climate b wood-less warm dry d e pine forest temperate humid f g h wood-less w a r m dry i pine forest temperate humid j wood-less w a r m dry The

faunal

succession

(B. K U R T E N )

In a chart given by T H O M A S & VILLALTA (1957) the presence a n d relative a b u n d a n c e of m a m m a l i a n species is t a b u l a t e d , layer b y layer, as r e v e a l e d by the p r e l i m i n a r y exca­ vations in " G a l e r i e S u d " . I n future, w i t h a m o r e complete record at h a n d , a n d w h e n estimates of the absolute n u m b e r of i n d i v i d u a l s a t different levels can be m a d e , more detailed a n d accurate analysis will be possible. A t present o n l y a relatively c r u d e analysis is possible, the main p u r p o s e being to check w h e t h e r the vegetation history is compatible with the f a u n a l succession. Since the pollen d i a g r a m indicates an oscillation between pine forest a n d o p e n coun­ try - or, climatically, b e t w e e n t e m p e r a t e - h u m i d and w a r m - d r y conditions - the p r o p e r w a y of g r o u p i n g the m a m m a l i a n species w o u l d seem to be into (1) sylvan, (2) n o n - s y l v a n , a n d (3) indifferent. This h a s here been a t t e m p t e d as follows. S y l v a n forms. This g r o u p is taken to include Erinaceus, Talpa, bats, Vulpes, Felis silvestris, Meies, Castor, Apodemus, Sus, Capreolus, Cervus, Hippopotamus, a n d Rhino­ ceros mercki. M o s t of these n e e d little c o m m e n t ; Hippopotamus is included as a n indicator of h u m i d climate rather t h a n as a forest f o r m . N o n - s y l v a n forms. T h i s g r o u p includes t h e grazers (Bison, Bos, Equus), a l p i n e species (Capra ibex) ), a n d the species determined as Rhinoceros tichorhinus. T h i s last-mentioned d e t e r m i n a t i o n seems d o u b t f u l , as there is n o other t u n d r a f o r m in the f a u n a , a n d the species occurs a t a level (h) which evidently represents a w a r m a n d d r y phase. It m a y p e r h a p s be suggested t h a t t h e rhinoceros in question is a c t u a l l y a steppe grazer, n o t a tundra grazer. 1

Indifferent or i n d e t e r m i n a t e forms. T h i s g r o u p includes the lagomorphs, a n d all the larger carnivores.

Microtus,

T H O M A S & VILLALTA express the a b u n d a n c e of each species in five grades, from single specimens to p r e d o m i n a n t forms. For t h e present p u r p o s e , these grades w e r e given corresponding scores as f o l l o w s : "Une trace" — 1 "Quelques restes" — 2 "Abondant" — 4 "Tres abondant" — 8 "Espece d o m i n a n t " — 16 Scores for all three g r o u p s were a d d e d u p for each level (but for level a all the domestic f o r m s were left o u t ) a n d percentages calculated on the total score for sylvan 1) The chamois, Rupicapra rupicapra, is mentioned by THOMAS & VILLALTA in the text (p. 1 9 ) but does not occur in the tabulation.


78

J. J. Donner und Björn Kurten

SYLVAN 0

NON-SYLVAN 50

Sylvan R o d e n t s Sylvan

0

INDIFFERENT 50

Rhinoceros

0

50

100

Vole

Carnivores

Bats, Insectivores

Fig. 4. Faunal succession in layers h to a of "Cueva del Toll", based on scorings for abundance as described in the text. plus n o n - s y l v a n forms. T h e levels below layer h w e r e too p o o r to be studied in this w a y , a n d the study was limited to the sequence from l a y e r h t o layer a. T o reduce the chance fluctuations, the levels a b o v e layer h w e r e grouped t w o a n d t w o ( f + g , d + e, a n d a + b ) , a p r o c e d u r e which seems w a r r a n t e d b y the stability of the pollen facies for each g r o u p . T h e results are i n d i c a t e d d i a g r a m m a t i c a l l y in fig. 4. F r o m a m i n i m u m in layer h, the sylvan elements increase r a p i d l y a n d stay p r e d o m i n a n t u p to layers d — e , b u t decrease again in the u p p e r m o s t layers. T h e agreement with the vegetation history is patent a n d will be discussed b e l o w , together w i t h its implications. As to the zones n o t included in the d i a g r a m , it m a y be noted t h a t l a y e r i, t e m p e r a t e h u m i d w i t h pine forest according to the pollen d a t a , contains the forest f o r m Rhinoceros mercki a n d such a diagnostic " h u m i d " f o r m as Hippopotamus. Before proceeding t o a discussion, it m a y p e r h a p s once more be e m p h a s i z e d t h a t the percentages are n o t based on precise estimates of the n u m b e r s of individuals, b u t only on a conventional scoring from very r a r e (1) to p r e d o m i n a n t (16), a n d hence are subject t o revision w h e n the t o t a l fossil content of the cave is k n o w n a n d more a c c u r a t e estimates h a v e been m a d e . Discussion T h e region in which " C u e v a del T o l l " is situated w a s evidently outside the periglacial zone of the Pleistocene glaciations. T h e t y p e of climatic oscillation f o u n d here is a n a ­ logous to t h a t f o u n d in the Carmel caves (BATE 1937). T h e h u m i d a n d - t e m p e r a t e oscilla­ tions represent glaciations, the w a r m a n d d r y episodes interglacials or interstadials. T h e vegetation h i s t o r y depicts a twofold cool oscillation. I n the m a m m a l i a n fossil record, only the second oscillation c a n be statistically confirmed at present, since the lower layers are p o o r in bones. T h e agreement b e t w e e n t h e t w o sequences is clear, h o w e ­ ver (see fig. 5), a n d , as previously mentioned, there is a clear suggestion of an earlier forest fauna episode in the presence (in layer j) of Merck's rhinoceros a n d the h i p p o p o ­ tamus. T h e faunas of these Iberian cool oscillations are, in fact, reminiscent of the inter­ glacial faunas in M i d d l e E u r o p e . T h i s appears quite n a t u r a l ; during glaciations, t h e t e m p e r a t e f a u n a of M i d d l e E u r o p e w a s forced s o u t h w a r d into refuge areas, of which t h e Iberian peninsula a p p a r e n t l y is one example. T h u s w e m a y expect a f a u n a of " i n t e r ­ glacial" t y p e , by M i d d l e E u r o p e a n s t a n d a r d s , to characterize the glacial epochs in Spain. T h e same also holds for the flora. T h e lithology also reflects the climatic changes. I t m a y be noted t h a t THOMAS & VILLALTA (op. cit.) m e n t i o n the presence of w i n d - b l o w n q u a r t z grains in t h e material of layer h, which s u p p o r t s the conclusion t h a t this layer w a s formed during a period w i t h a


Cueva del Toll

50 CMS

79

100 _l

150—1

200MAIN WURM

250 —

GÖTTWEIG •TO.'-

INTERSTADIAL

300EARLY WÜRM END

OF

EEM

INTERGLACIAL

350-

a 0 •

I

I

50

100

Pine pollen • Sylvan m a m m a l s

Fig. 5. Profile showing lithology, pine pollen curve (from fig. 3), curve for sylvan mammals (from fig. 4), and suggested dating of the cave sediments in "Cueva del Toll". d r y climate a n d an open v e g e t a t i o n . I t is, h o w e v e r , the a l t e r n a t i o n of s a n d y a n d clayey deposits which gives especially valuable e v i d e n c e . T h e m o s t c o m p a c t a n d " v a r v e d " clays d a t e from the phases of m a x i m u m h u m i d i t y , t h e s a n d y deposits from t h e w a r m a n d dry phases. T h e s e lithological features are in precise agreement t h r o u g h o u t w i t h t h e inferen­ ces based on flora a n d f a u n a , b u t it is interesting t o n o t e t h a t the earlier cold (humid) oscillation seems to h a v e b e g u n well before deposition of l a y e r j ; the m a i n lithological change is between k a n d j . W e correlate the t w o c o l d oscillations w i t h the E a r l y a n d M a i n W ü r m respectively, t h e w a r m episode i n t e r v e n i n g between t h e m w i t h the G ö t t w e i g i n t e r s t a d i a l , a n d the layers j a n d k are considered to have been deposited d u r i n g t h e relatively w a r m a n d dry conditions a t the end of t h e E e m interglacial. A second i n t e r p r e t a t i o n which might be suggested w o u l d be to c o r r e l a t e the steppe h o r i z o n h w i t h t h e Eem, a n d the forest peak of i w i t h t h e late Riss, b u t this appears r a t h e r i m p r o b a b l e for several reasons. T h e G ö t t ­ weig is well k n o w n to h a v e been a relatively long episode w i t h a m a r k e d climatic amelio­ r a t i o n v e r y much farther t o t h e n o r t h , a n d it is almost inconceivable t h a t it w o u l d have h a d no effect on the sequence f r o m g to d. T h e fauna seems also to agree b e t t e r w i t h this i n t e r p r e t a t i o n t h a n w i t h a n y o t h e r ; the c a v e b e a r mass o c c u r r e n c e is in layer h, a n d it is k n o w n in o t h e r regions t o be v e r y common in t h e G ö t t w e i g ( G R O S S 1957 b).


J. J. Donner und Björn Kurten

80

T h e record from " C u e v a del T o l l " is thus found to be in v e r y good agreement w i t h the outlines of the W ü r m glaciation, as t h e y heve n o w emerged elsewhere (EMILIANI 1 9 5 6 , G R O S S 1 9 5 7 a, 1 9 5 7 b , a n d literature t h e r e cited). T h e glaciation is dichotomous, w i t h a shorter a n d p e r h a p s less intense E a r l y W ü r m a n d a long M a i n W ü r m , separated b y a v e r y well-defined interstadial. O n the o t h e r h a n d , the m i n o r interstadials of the M a i n W ü r m a r e n o t clearly depicted in this r e c o r d . If t h e climatic history found here is in excellent agreement w i t h t h a t of the periglacial zone, it is, o n the other h a n d , definitely a t v a r i a n c e w i t h the sequence of the C a r m e l caves. T h e C a r m e l record indicates three cold episodes, the t w o earlier of a b o u t equal strength a n d the t h i r d considerably weaker. T h i s t h i r d episode w o u l d seem some­ w h a t too w e a k to represent the M a i n W ü r m , and its significance remains obscure. T h e results from " C u e v a del T o l l " also suggest a reconsideration of, for instance, the s t r a t i g r a p h y of the G o r h a m C a v e , G i b r a l t a r (see Z E U N E R 1 9 5 3 ) , w h e r e it w o u l d seem t h a t t h e s a n d y layers w o u l d represent interstadials or interglacials, n o t glaciations. The

cave

bear

of

"Cueva

del T o l l "

(B. K U R T E N )

T h e cave bear m a t e r i a l from " C u e v a del T o l l " is of considerable interest. I t is one of the few large samples of this species which are exactly d a t a b l e . T h e v e r y g r e a t majority of t h e specimens seen b y me are from l a y e r h and are thus interstadial in age. T h e species, h o w e v e r , continues u p to layer d. W h e n the excavations are concluded, it m a y be w o r t h ­ w h i l e to s t u d y the m i c r o e v o l u t i o n a r y t r e n d s of Ursus spelaeus in this sequence, a n d the m a t e r i a l of " C u e v a del T o l l " m a y well become a s t a n d a r d of c o m p a r i s o n for the p o p u ­ lation history of this species in w e s t e r n Europe. A t the present stage some elementary statistical comparison w i t h other samples will serve to indicate the possibilities. T h e present investigation is limited to univariate analysis of the lengths of the cheek 88

90

t

1

D

P E R C E N T A G E SCALE 92 94 96 98 100 102 104 106 108 1

1

1

T

C

1

"

SG

1

1

1

1

1

r

MO

Fig. 6. Ratio diagram, comparing mean lengths of cheek teeth in samples of Ursus spelaeus; means expressed as percentages (on a log scale) of the selected standard sample of "Cueva del Toll" (100%). D = Dachstein (Schreiberwandhöhle); T = Trosketa Cave; C = Cotencher, S = Slouperhöhle; G = Gailenreuth; M = Mixnitz (Drachenhöhle); O = Odessa caves.


Cueva del Toll

or LU I

o

o

• • • • • DACHSTEIN

• O O I MIXNITZ

0

0 »

• ODESSA

0

0 © •

9

0 * •

0

0

0 0

©

0

0

0 0

0

0

SLOUP

TROSKETA

0

© • o • o 0 © 0 o o • • o 0

0

0 0

0

0

0

0

COTENCHER

• •

0

GAILENREUTH

e • • • • •

• O O • O

0

3 LU

Lil

u

_1 - J

• o o o o • 0 © • 9 • e © • s • © o o o o 0 o o O © o o o o

81

Q. D

<

o

LU Q O

in

• • • • • •

x

• • • • • • •

0

• • • •

O

0

0 « 0

0

• 0

0

•O

0

©

O

0

0

0

• © 0

0

0 0

©

• • o

• O

0

• ©

0

o • • o

0 0 P

M

4

M,

M

2

3

m

O

P >

0.01

P <

0.01

P<

0.001

Fig. 7. Significance of differences in means between samples compared in fig. 6. Measurement key in inserted square. Symbols indicate probability values (P) according to key: P ) 0.01 not signi­ ficant, P (0.01 probably a n d P (0.001 highly significant. (Example: Significance of difference between mean lengths of M in Toll and Sloup samples: upper right symbol in the square showing comparison Toll/Sloup indicates P )0.01; the difference is not significant.) 2

teeth. Sexable remains (jaws, skulls, a n d isolated canines: see K U R T E N 1 9 5 5 , 1 9 5 8 ) indi­ cate e q u a l representation of both sexes, a n d thus there should be n o i m p o r t a n t bias in the m e a n values, resulting from sex d i m o r p h i s m . T h e m e a n s (table 1) h a v e been c o m p a r e d w i t h those for seven o t h e r samples: a s m a l l sample from a n o t h e r I b e r i a n c a v e (the T r o s k e t a C a v e in G u i p u z c o a ) , t h e p r o b a b l y interglacial small form from t h e Schreiberwand­ höhle of Dachstein in A u s t r i a , the E a r l y W ü r m p o p u l a t i o n from Cotencher in Switzer­ land, a n d the classical p o p u l a t i o n s of G a i l e n r e u t h ( t y p e locality), M i x n i t z , Sloup, and Odessa. A t Mixnitz, b u t seemingly n o t in a n y other of these sites, the males o u t n u m b e r the females, and the m e a n s m a y be slightly higher t h a n t r u e p o p u l a t i o n m e a n s . All data used a r e original. T h e m e a n lengths of t h e teeth are c o m p a r e d in fig. 6 b y means of SIMPSON'S (1941) w e l l - k n o w n ratio d i a g r a m method. T h e differences b e t w e e n sample means w e r e evaluated by m e a n s of t-tests, p r o b a b i l i t y values b e l o w 0.01 being considered as p r o b a b l y signifi­ cant, a n d below 0.001 as highly significant. Test results a r e summarized in fig. 7. T h e y suggest a division into t h r e e more or less well-defined size g r o u p s : (1) S m a l l forms (Dachstein and T r o s k e t a ) . (2) M e d i u m - l a r g e ( T o l l , Gailenreuth, Sloup). T h e Cotencher sample is somewhav. i n t e r m e d i a t e between (1) a n d (2). (3) V e r y large ( M i x n i t z and Odessa, b u t the Mixnitz values m a y be spuriously high). S o m e of these differences probably a r i s e from spatial raciation, b u t some are almost surely d u e t o chronological differentiation. T h e r e is some suggestion of an e v o l u t i o n a r y t r e n d f r o m the small f o r m s , like t h a t f r o m Dachstein, t h r o u g h the t y p e of Cotencher into the m e d i u m - large forms of group (2). T h e c a v e bear a p p e a r s t o have a t t a i n e d m a x i m u m size in some m a r g i n a l areas of its range, as exemplified b y t h e Odessa f o r m a n d p a r t i c u l a r l y b y the v e r y f e w specimens 6 Eiszelt und Gegenwart


S2

J . J . Donner und Björn Kurten

of Ursus spelaeus k n o w n from British deposits. Some of these reach dimensions rarely or never a t t a i n e d in C o n t i n e n t a l p o p u l a t i o n s . Studies along t h e i n d i c a t e d lines, including also b i v a r i a t e analysis (see K U R T E N 1 9 5 4 ) , of these a n d other c a v e b e a r samples m a y become useful b o t h in t h e e v a l u a t i o n of t h e e v o l u t i o n a r y trends of Ursus spelaeus a n d as a chronological tool. T h e field w o r k in bear caves should then b e u p t o t h e highest s t a n d a r d . M a n y of t h e classical c a v e samples, u n f o r t u n a t e l y , n o w h a v e a v e r y dubious scientific v a l u e ; t h e y h a v e f r e q u e n t l y been dispersed a n d b r o k e n u p . P r e d a t o r y exploitation of b e a r caves is, h o w e v e r , t h e darkest chapter. Table 1 M S. D . V. S. R. N 6.8 16.11--25.23 33 20.67±0.25 1.41±0.17 1.46±0.14 4.9 24.90--34.58 Mi 54 29.64±0.20 M2 37.16--53.12 2.45±0.26 5.4 44 45.19±0.37 1.75±0.16 6.4 21.54--32.86 62 27.20±0.22 M3 1.52±0.12 5.0 25.76--35.62 78 30.69±0.17 M2 1.46±0.12 4.7 26.25--35.71 Ml 71 30.98+0.17 1.28±0.19 8.1 11.10--19.88 23 15.74±0.27 P* number of specimens; M = mean; S. D . = standard deviation; V = coefficient of variation; S. R. = standard range of variation (estimate of variation in a population of 1,000 individuals).

BATE, D. M. A.: Palaeontology. - The Stone Age of Mount Carmel, I, pp. 137-240, Oxford 1937. VAN CAMPO, Madeleine, & A. LEROI-GOURHAN: Note preliminaire a l'etude des pollens fossiles de differents niveaux des grottes d'Arcy-sur-Cure. - Bull. Mus. natl. Hist. N a t . 28 (2), pp. 326-330, 1956. DERVILLE, H., & F. FIRTION: Sur la palynologie du depot de comblement d'un abri-sous-rodie de Haute-Auvergne. - C. R. Acad. Sei. 233, pp. 423-424, Paris 1951. EMILIANI, Cesare: Note on absolute chronology of human evolution. - Science 123, 924-926, 1956. FAEGRI, K. & Johs. IVERSEN: Text-book of modern pollen analysis. - Copenhagen 1950. GAUSSEN, H . : La vegetation des Pyrenees espagnoles. - Veröff. Geobot. Inst. Rubel 31, pp. 90-123, Zürich 1956. GROSS, Hugo (1957 a): Die Fortschritte der Radiokarbon-Methode 1952-1956. - Eisz. u. Geg. 8, pp. 141-180, 1957. - - (1957 b): Die geologische Gliederung und Chronologie des Jungpleistozäns in Mitteleuropa und den angrenzenden Gebieten. - Quartär 9, 3-39, Bonn 1957. KURTEN, Björn: Observations on allometry in mammalian dentitions; its interpretation and evo­ lutionary significance. - Acta Zool. Fennica 85, pp. 1-13, Helsinki 1954. - - Sex dimor­ phism and size trends in the cave bear, Ursus spelaeus ROSENMÜLLER & HEINROTH. Ibid. 90, p p . 1-48, 1955. - - Life and death of the Pleistocene cave bear, a study in paleoecology. - Ibid. 95, p p . 1-60, 1958. SIMPSON, George G.: Large Pleistocene felines of North America. - Amer. Mus. Novitates 1136, pp. 1-27, 1941. THOMAS CASAJUANA. J. M- & J. F. DE VILLÄLTÄ: Le Ruisseau souterrain du "Toll". - I N Q U A V Congr. Int., Livret-Guide des excursions B2-B3, pp. 11-25, Madrid-Barcelone 1957. WELTEN, M.: Beobachtungen über den rezenten Pollenniederschlag in alpiner Vegetation. - Bericht Geobot. Inst. Rubel, Zürich, 1949, p p . 48-57. - - Pollenanalytische Untersuchungen an Höhlensedimenten verschiedener Entstehungsweise in der Brügglihöhle (in: BANDI, LÜDIN, MAMBER, SCHAUB, SCHMID SC WELTEN: Die Brügglihöhle an der Kohlholzhalde

bei Neuzlingen (Kt. Bern), eine neue Fundstelle des Spätmagdalenien im untern Birstal). - Jahrb. Bern. Hist. Mus. 32/33, pp. 66-70, Bern 1954. - - Pollenniederschlagstypen aus höheren Lagen Spaniens und ihre subrezenten Veränderungen. - Veröff. Geobot. Inst. Rubel 31, pp. 199-216, Zürich 1956. ZEUNER, F. E.: The chronology of the Mousterian at Gorham's Cave, Gibraltar. - Proc. Prehist. Soc. 19, p p . 180-223, 1953. Manuskr. eingeg. 22. 2. 1958. Anschrift der Verf.: D r . J. J. Donner und Dr. B Kurten, Geolog, u. Paläontolog. Institut der Universität Helsinki, Snellmanink. 5.

E&G – Quaternary Science Journal - The floral and faunal succession of „Cueva del Toll", Spain  

Mit 7 Abbildungen im Text By J . J . D O N N E R a n d B J Ö R N K U R T E N , H e l s i n k i , F i n n l a n d 72 Fig. 1. Plan of „Cueva d...

Read more
Read more
Similar to
Popular now
Just for you