OCE 496 CVE498 Spring 2021 Final Presentation

Page 1


AssessingtheVulnerabilityofaFreshWater ReservoirinNewport,RItotheEffectsof StormSurgeand

SeaLevelRise

OCE496/CVE498:SeniorDesignProject2020-2021

May7,2021

CraigBarry

JordanBeason

ShawnChambers

CaitlinDaly

Agnella Dougal

AlbertGesualdi

MontanaLigman

IsaacParraMartinez

RebeccaMeyers

AnthonySaucier

DrewSierra

RoseShayer

DeclanTierney

JamesTraglia

Acknowledgments

Dr.ChristopherBaxter,OceanEngineering,URI

Dr.JosephGoodwill,CivilEngineering,URI

Dr.RezaHashemi,OceanEngineering,URI

Dr.StephenLicht,OceanEngineering,URI

Dr.MalcolmSpaulding,OceanEngineering,URI

Dr.MingxiZhou,OceanEngineering/GSO,URI

Dr.CraigSwanson,SwansonEnvironmental,LLC

RobinFreeland,OceanEngineering,URI

TeresaCrean,CoastalResourceCenter,URI

JanelleSkaden,M.S.Student,OceanEngineering,URI

ArtGold,Professor,NaturalResourceSciences,URI

JuliaForgue,PE,DirectorofUtilities,CityofNewport

DavidReis,SupervisingEnvironmentalScientist,RICoastal ResourcesManagementCouncil

RichardLucia,SupervisingCivilEngineer,RICoastalResources ManagementCouncil

JosephDwyer,RiskandHazardsPlanner,RIEmergency ManagementAgency

GraceClancy,AdministrativeOfficer,RIDepartmentof Health

KellyAddyLowder,ResearchAssociate,NaturalResource Sciences,URI

ProblemStatement

Background

StudyObjectives

AdvancedTopobathymetryMapping

CoastalModelingforStormSurge,Waves,andErosion

EvaluationofEmbankmentStabilityandOvertopping

AnalysisofDrinkingWaterQualityandDisinfectionByproducts

SummaryandConclusions

Google Maps, 2020

ProblemStatement

● The City of Newport’s Water Division relies on nine surface water reservoirs

Treatmentfacility

● Proximity of freshwater reservoirs to the Atlantic Ocean lie within FEMA designated Coastal High Hazard Areas

https://trailsandwalksri.wordpress.com/2017/04/12/easton-pond-newport/

Walking path follows most of the western edge and part of the northern edge of Easton pond

StudyArea

InthepastEastonpondhasbeen subjecttomanyhighwaterlevel stormsi.e.(Hurricaneof1938, Bob,Carol,Sandy).

● Giventheriskofsea levelrise,thepondmay becomemoresusceptible toovertoppingandsea spray.

Damage from Hurricane of 1938: (Rhode Island Collection, Providence Public Library)

Google Maps, 2020
GoogleMaps,2021

StudyArea

North Easton Pond
South Easton Pond
South Easton Pond
Easton Beach
Easton Beach
South Easton Pond
Easton Beach
Spillway
Images sourced from Google Earth

FEMAFloodZoneIndex

NOAA Sea Level Rise Predictions

HistoricalStorms

● NewEnglandHurricaneof1938→windgustsreacheda category5,thestormkilledover600peopleandwastheworst stormwithinmoderntimes.

● HurricaneCarolof1954causedextremedamageinSouthernRI andatleast68peopledied.

● HurricaneBobin1991,andHurricaneSandyin2012,whose surgesandfloodingaffectedmany.

←Wreckage nearEaston’s beachafter Hurricaneof 1938 (Newport HistoricalSociety)

←EastonBeach, Newport,RIafter theGreatHurricane of1938 (ProvidencePublic Library)

11 Hurricane Sandy,2012 (NOAA,2013)

EastonPond SeaSpray/Overtoppingfromocean =PossibleHealthRisk

“BuildingaResilientNewport.” Rhode Island Sea Grant,16July2020,seagrant.gso.uri.edu/building-resilient-newport/.

OrganicCarbon+Chlorine+Bromide(ocean) ChlorinatedandBrominatedDBP’sindrinkingwater

OrganicCarbon+Chlorine ChlorinatedDBP’sindrinkingwater

DisinfectionByproducts(DBP’s)

Evan C. Ged, Treavor H. Boyer, Effects of Seawater intrusion on formation of bromine-containing trihalomethane and haloacetic acids during chlorination.

THMs-Trihalomethanes(typeofDBP)

● Chlorinated

○ Chloroform(CF)-CHCl3

● Brominated(moretoxic)

○ Bromodichloromethane(BDCM)-CHCl2Br

○ Dibromochloromethane(DBCM)-CHClBr2

○ Bromoform(BF)-CHBr3

Hua, Guanghui, and DavidA. Reckhow. “Evaluation of Bromine Substitution Factors of DBPs during Chlorination and Chloramination.” Water Research, vol. 46, no. 13, 2012, pp. 4208–16. Crossref, doi:10.1016/j.watres.2012.05.031.

https://web.uri.edu/lar/files/Building-a-Resilient-Newport.pdf

FocusareashowingEastonBeach,Memorial Boulevard(RI138A),andSouthEastonPond; totalarea:approx.190acres

OverallObjective

Assessthevulnerabilityofthedrinking waterreservoirnorthofEastonBeachin Newport,RItotheeffectsofstormsurge andsealevelrise,andtodevelopmitigation measuresforprotectingthewatersupply.

Toapproachthisproblem,thegroupbrokedowninto smallersubgroups.

● Datacollectionandinstrumentation

● Coastalmodeling

● Geotechnical/coastalengineering

● Environmentalengineering

Baxter2020

SubgroupDynamic:FlowChart

Data Collection & Instrumentation

Transect Lines of the Embankment

Geotechnical Engineering for Embankment

Design and Seepage Analysis

TopoBathy Data

Coastal Modeling

Characterization of Physical Environment/ Environmental Data

KEY:

Blue Text: Information is provided by data collection group

Green Text: Information is provided by coastal modeling group

Environmental Engineering: Analysis of Drinking Water Quality

DataCollection& Instrumentation

Improvethequalityoftopo-bathymetricdatabyusingcustom builtorexistinginstrumentationtechnologies

Topography,BathymetryandSalinity

Survey Locations

Topography

Bathymetry

Salinity

Datawascollectedfor comparisonwithexisting publisheddataandto demonstratethecapabilitiesof newcost-effectiveand autonomoustechnologies

Embankment& BeachSurvey

SurveyPoints

locations

● Elevationdatawascomparedwithexisting USGSelevationmapstoverifydata

EastonBeachandPond survey

TopographySurveyResults

EastonBeachmodelgivento CoastalModelinggroup

TopographySurveyResults

Transect

Surf-ZoneBathymetryMethodology

● InflatablePaddleboard withsonardevice ● LowranceSonar System ● 2-3persondeployment

SurfZoneBathymetry SystemtestingatEaston Beach

LowranceTransducer

BeachBathymetry

Transectlineslopes=0.05

SalinitySurveyofPondandMoat

Overthecourseofamonth 85Datapointsonmoat conductivityweretakenand 2datapointsweretakenon pondconductivity

Pondcond. 1:485and2:496μS/cm

W.Moatcond. 545-559μS/cm

S.Moatcond. 504-567μS/cm

Inletcond. 729μS/cmandover

2018-2020 SouthPondaverage406μS/cm

MoatdatashownwascollectedonApril 12thPondmeasurementsweretakenon

Assesspresenceofseasprayaerosols.

Freshwater < 1,500μS/cm

Seawater ~50,000μS/cm.

ValuesfromHRWC: Mostfreshdrinkingwater >=100μS/cm

Lakeandriverwater 50-1500μS/cm

PondBathymetry

Mostrecentbathymetric surveyofEastonPond,Apex Environmental,Fuss& O’Neill,2004

Left:PayloadmountedtoUSV LEO,courtesyDr.MingxiZhou

Top:Cornerswathdatabeing collected

USVSurveyMethods

Payload testing with added IMU and updated microcontroller with higher flash memory

ComparedFuss&O’Neill2004survey,elevationin feetNGVD29,conversionofunitsfromSIDand NGVD29toNAVD88showslessthan.2merror

FutureProjects:AutomatedSurvey

CoastalModeling

Usenumericalmodelstoassesscoastalerosion

Provideinformationtoassistinpossiblemitigationmeasures inthestudyarea

Dougal,MontanaLigman,andDrewSierra,

DeterminingSurgeLevelsNACCSvsNOAA

NACCS

○ Databaseofprojectionsforfuture climatescenarios.

○ Includecatalogofstormsurge,wave heights,andextremalstatistics

○ provideariskmanagement framework

NOAA

○ Stormsurgeinformationisprovided tofederal,state,andlocalpartnersto

○ Assistsinarangeofplanning processes,riskassessmentstudies, andoperationaldecision-making.

DeterminingBoundary ConditionsforStormModeling

TransectLocations

SWANModelMethodology

Domain

Largescale modelofRhode IslandSound

Resolution= 70m.

ChildDomain

Smallscale modelof Easton Beach,Newport

Resolution= 10m.

XBeachModelMethodology

● A numericalmodelwhichallowsthe simulationofhydrodynamicand morphodynamicprocessesalongsandy coasts.

● Basedonwave-actionequation

● Utilizestheadvection-diffusion equationaswellforsedimenttransport.

● Calculatesswash,collision,overwash, andinundationregimes

XBeachgrid.Replaceschildgrid inSWAN

SWANResults:50-YearNOAASurge

XBeach,50-YearStorms

w/NOAASurgew/oSLR

Inputsat

Boundary:

SetSurge:2.8m (9.19 ft)

WaveHeightat Boundary:8.38m (27.49 ft)

Period:16s

XBeach:50-YearStorms

ValuesatEmbankment

Inputs

SetSurge:2.8m (9.19 ft) WaveHeightat Boundary:8.38m (27.49 ft)

Period:16s

Summaryof XBeachResults

RedText:Erodiblelayer

BlackText:Non-erodible layerimposed

ExampleofStormtoolsFloodmap

RainfallLeadingtotheRunoffofSaltfromtheWatershed

Redx’sarethechosenrainfallevents

(Frazaretal.,2019)

TopRainfallEventsandtheEstimatedRunoffthatOccurred During

andPostEvent

Showswhatthe dischargelookslike, withthetailofthedata captured.

BaileyBrookwatershedareaaccordingtoFrazaretal.,onurban watershedanalysiswasabout6.6kilometerssquared.

BaileyBrook MonitorStation
RIGIS(2011)

SoilConservationServiceCurve

IndirectSaltDepositionFromDischarge:EstimatedSaltFlux(kg)

Peak most likely measurement error

GeotechnicalEngineering

Designmitigationmeasurestopreventovertoppingand/or breachingoftheembankments.

FailureMechanismsConsidered

● Overtoppingduetoextremestormevents

● Scouronthedownstreamfaceduetostormsurgeandwaves

25yr+2’SLR

● Seepageinducedfailurefromextremeprecipitationevents

BFEsForStormReturnPeriodandSLR

100Year Overtopping Protection

Red:Contourline

Yellow:Proposedwall location,17.6ft(5.4m) elevation

ProvidenceHurricaneBarrier(GoogleMaps)

I-Wall

ftNAVD88for25yearw/2ftSLR 2ftaboveembankmentcrest 10.5ftNAVD88for50yearstorm 0.3ftaboveembankmentcrest 15.4ftNAVD88for50yearw/3ftSLR

5.2ftaboveembankmentcrest

TransectGeometry

HorizontalDistance(m)

withsomegravel
GlacialTill Deposits:silty, gravellysandwith cobbles
Moat
Pond
Upstream
Downstream

I-WallStabilityAnalysis

Extending theDune

Red=9.5ft(2.9m)

contourline

Blue=Dunelocation

HeightofDune:

10.5ftNAVD88for25yearw/2ftSLR 1.6ftabovewestparkinglot

3ftaboveeastparkinglot

9.5ftNAVD88for50yearstorm

0.7ftabovewestparkinglot

2ftaboveeastparkinglot

3.9ftabovewestparkinglot 5.2ftaboveeastparkinglot

ScourFailureMechanism

Theremovalofunderwatermaterialbywavesand currents,especiallyatthebaseortoeofashore structure.(CEM)

Anycoastalstructurerestingon,driveninto,or otherwisefoundedonsoilorsandissusceptibleto scourandpossibletoefailurewhenexposedto wavesandcurrents.(CEM)

Fornormallyincidentbreakingwaves,a slopingseawallistreatedasavertical seawall.

S=equilibriumscourdepth

H0=deepwaterwaveheight

h w=waterdepthatseawall

L0=deepwaterwavelength

Source: The Mechanics of Scour in the Marine Environment By Sumer and Fredsoe

TransectSlopeStabilityAnalysis

EvidenceofSeepageonDownstreamSlope

(2019)

● Seepswereobservedonthedownstreamfaceof thesouthembankmentaroundApril13,2021.

● Thelocationoftheseepsisconsistentwith reportsof“moistground”citedinaDam InspectionReportbythePareCorporationin 2019

Pare
Turtle

MitigationofSeepage:GravelBerm

12cm(6in)GravelFilterBermaddedtoslopestabilitymodel

Monitoring:DistributedTemperatureSensing(DTS)

Fiber Optic DTS

ExampleofTemperatureChanges AlongtheToeofaDam

Quinnetal.(2019)

● Monitoringofseepscanbe accomplishedusingfiber-optic cablesasaDTSinstalledalongthe toeoftheembankment

● Backscatteredlightwithinthefiberis sensitivetochangesintemperature (warmwater)

● DTSisacosteffectivemonitoring toolforunderdocumenteddams

EnvironmentalEngineering:

AnalysisofDrinkingWater

Assesstheriskofelevatedsalinitylevelswithinthereservoir toconsumerhealthanddesignmitigationmeasures

THMSpeciation

Bothtreatment facilitiesupdated in2014

Maximum Contaminant Level(MCL) changedin2002 from100to80 ug/LforTTHM

YearlysystemwideaverageofTHMspeciation,providedbytheRhodeIslandDepartmentofHealthandNewportWater

BromideIncorporationFactor(BIF)

● BromideIncorporationFactoratvariouspointsinthe distributionsystem.

● BromideIncorporationFactoratvariousdistribution pointsforStation1andLawtonValley

Hua, Guanghui, and DavidA. Reckhow. “Evaluation of Bromine Substitution Factors of DBPs during Chlorination and Chloramination.” Water Research, vol. 46, no. 13, 2012, pp. 4208–16. Crossref, doi:10.1016/j.watres.2012.05.031.

ConductivityasanIndicatorofBIF

Maintenance in South Pond

Conductivitydataofthe9reservoirsforAquidneckIslandfrom2018-2020,providedby NewportWater

Station 1
Lawton Valley

Moat data by Data Collection and Instrumentation group

Conductivityoftributariesandreservoirswithinthe Newportdrinkingwatersystemasafunctionofdistanceto surfzone.Sizeofdatapointindicatessizeofwatershed.

ConductivityoftributariesandreservoirswithintheNewportdrinkingwatersystemasafunctionof distancetosurfzonecomparedtotheoreticalvaluesforaerosolconcentrationsbyDeLeeuwetal.,2000

ConductivityoftributariesonAquidneckIslandand reservoirswithintheNewportdrinkingwatersystemasa functionofPercentofWatershedDevelopment (Residential/Commercial/Transportationlanduse)per RIDEMwatershedmodeling(2018).Sizeofdatapoint indicatessizeofwatershed.

FutureTreatmentDesignConsiderations

WillBIF increase?

Designfor Regulations Financial Considerations Health Considerations

Designformost prevalent(CHCl3)

Hotspotbasedonriskcalculation. GoogleMaps

THMMitigation-Post-treatmentAeration

ExampleofAerationtreatmentdeviceknownasa PackedTower.

● Packingmaterialwithhighsurfacearea.

● Waterflowthroughthepackingmaterialwith induceddraftupwardairflow.

● Liquid-Gasequilibrium.

● MassTransferofTHMsbasedonHenry’s Law.

● NotallTHM’shavethesametoxicity

● Air-to-WaterRatio RemovalRate

Resultsofbench-scalediffusedaerationof TTHMsasafunctionofair-to-waterratio.

Butterworth-Heinemann, 2017
Brook, Ethan, Posttreatment Aeration to Reduce THMs, 2011.

RecommendedDesign Specifications

Assumptions:

- 9MGDNewportwaterflow.

- Henry’sConstant=5.35x10-4

- MassTransferCoefficient(KLa)=0.39

ResultingDesign:

- ResultingVolume= 600,000Gallons(75,000ft3) - Polypropyleneaspackingmaterial(4ftdepth) - Totalcostestimate=3.2milliondollars.

Differentdimensionstomeetthedesignedvolume.

Costestimatesassociatedwithvariousaerationtankvolumes.

Costcurvefrom1979adjustedto2021dollar(inflation) “EstimatingWaterTreatmentCosts”,Volume 2 Curve Applicable to 1-200 mgd treatment plant” page452-467

RisktoHumanHealth

- FourStepprocess

- DataCollectionandEvaluation

- ToxicityAssessment

- ExposureAssessment

- RiskCharacterization

- ToxicityAssessment-Defines relationshipbetweenexposureand effects(bothoccurrenceandseverity)

- Animalstudiesareused

- Highdosesadministeredtoanimals

- Humanlowdoseresponseextrapolatedbasedonconservativeassumptionoflinear correlationbetweendoseandlifetimecancer probability Slope Factor

Waddell,WilliamJ.“Dose-responsecurvesinchemical carcinogenesis.” Nonlinearity in biology, toxicology, medicine vol.2,1 (2004):11-20.doi:10.1080/15401420490426954

Davis,M.L.,andMasten,S.J.(2013).

Risk

Acceptableriskof6in 60,000(EPA Risk Assessment)

RiskEstimatesbyyearfromTHMdata: Imageshowstheestimatedadditional incrementalcancerrisktoindividualsingestingdrinkingwaterfromtheNewport Drinkingwatersystem.EstimatesfromsystemwideaveragesobtainedfromDOHdata.

StepstoCalculateRisk

● ObtainthevaluesfromEPA recommendedvaluesfor estimatingintake.

● CDI=(CW)(IR)(EF)(ED)/(BW)( AT)

● RISK=CDI*SF

CW:Chemicalconcentrationinwater (mg/L)

IR:Ingestionrate(L/day)

EF:Exposurefrequency(day/year)

ED:Exposureduration(years)

BW:Bodyweight(Kg)

AT:Averagingtime(days)

CDI:ChronicDailyIntake

SF:Slopefactor

Risk

Acceptableriskof6in 60,000(EPA Risk Assessment) EastonPond“Worst-Case”

Estimatedincrementalcancerriskfromingestingdrinkingwater. Estimatesbasedonassumedlinearextrapolationofstudieson laboratoryrodents.Note:ForfutureriskcalculationsBIFincreased from2019-20levelsof0.3to0.7.PopulationofNewporttaken takenas60,000(2019U.S.CensusBureau).2019-20THM

speciationfromNewportWaterData.

SummaryandConclusion

https://web.uri.edu/lar/files/Building-a-Resilient-Newport.pdf

EastonBeachfacingSouth

SummaryandConclusions

● TherearenosetdesignstandardsfortheEaston Pondreservoirduetoitsagedespiteitsproximity totheocean

● Advancedmodeltoolswereusedtoassessthe vulnerabilityofthereservoirtovariousstorm eventswithandwithoutsealevelrise.

● Itisestimatedthatanystormgreaterthanreturn periodof25yearsand2ftofsealevelrisewill resultinovertoppingofthereservoirembankment.

● Severaldifferentmitigationstrategieswere evaluatedtopreventovertopping,includingalarge hurricanebarrier,I-wallsonthecrestofthe embankment,andacontinuousdunealongthe beach

SummaryandConclusions

● Cost-effectiveandautonomoustoolsformeasuring bathymetryweredevelopedandtestedto demonstratetheirfeasibilityforcoastalresilience projects.

● Saltsprayandsubsequentrunoffintoreservoirs wasidentifiedasapotentiallysignificant contributortodisinfectionby-products

● Waterconductivitywasusedasanindicatorof BrominatedTrihalomethanes(BTHMs)throughout AquidneckIsland

● Aconceptualaerationtreatmentdevice(Packed Tower)wasdesignedtomitigatepotentialfuture increasesinBTHMsduetoincreasedsealevelrise andstormactivity

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.