Xenes 2d synthetic materials beyond graphene alessandro molle - Instantly access the complete ebook

Page 1


https://ebookmass.com/product/xenes-2d-synthetic-materials-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

2D Nanomaterials for Energy Applications: Graphene and Beyond Spyridon Zafeiratos (Editor)

https://ebookmass.com/product/2d-nanomaterials-for-energyapplications-graphene-and-beyond-spyridon-zafeiratos-editor/

ebookmass.com

2D Materials for Nanophotonics Young Min Jhon

https://ebookmass.com/product/2d-materials-for-nanophotonics-youngmin-jhon/

ebookmass.com

Spintronic 2D Materials: Fundamentals and Applications (Materials Today) Wenqing Liu (Editor)

https://ebookmass.com/product/spintronic-2d-materials-fundamentalsand-applications-materials-today-wenqing-liu-editor/

ebookmass.com

Aristotle and the earlier Peripatetics : being a translation from Zeller's Philosophy of the Greeks Zeller

https://ebookmass.com/product/aristotle-and-the-earlier-peripateticsbeing-a-translation-from-zellers-philosophy-of-the-greeks-zeller/ ebookmass.com

The Outsider: the Life and Work of Lafcadio Hearn Steve Kemme

https://ebookmass.com/product/the-outsider-the-life-and-work-oflafcadio-hearn-steve-kemme/

ebookmass.com

The Trouble with Happiness and Other Stories Tove Ditlevsen

https://ebookmass.com/product/the-trouble-with-happiness-and-otherstories-tove-ditlevsen/

ebookmass.com

Edexcel International A Level Mathematics Mechanics 1 Student Book: Student Book 1st Edition Joe Skrakowski

https://ebookmass.com/product/edexcel-international-a-levelmathematics-mechanics-1-student-book-student-book-1st-edition-joeskrakowski/

ebookmass.com

The Other World's Books Depend on the Bean Counter, Vol. 2 1st Edition Yatsuki Wakatsu

https://ebookmass.com/product/the-other-worlds-books-depend-on-thebean-counter-vol-2-1st-edition-yatsuki-wakatsu/

ebookmass.com

The Golden Garza (Red Cage Book 4) S. Ann Cole

https://ebookmass.com/product/the-golden-garza-red-cage-book-4-s-anncole/

ebookmass.com

GATE

https://ebookmass.com/product/gate-electronics-and-communicationengineering-topic-wise-practice-tests-trishna-knowledge-systems/

ebookmass.com

Xenes

Xenes

2DSyntheticMaterialsBeyond Graphene

EricSalomon,ThierryAngot,LokLewYanVoonandGuyLeLay

1.1Introduction1

1.2Historicalbackground:theSchottkyproblem2

1.3Silicene:theconcept2

1.4Exoticphasesofsiliceneandtheirtopologicalelectronic properties—theory3

1.5Discoveryofone-dimensionalsiliconnanoribbons6

1.6Thebirthoftwo-dimensionalsilicene6

1.7Hydrogenationofthecanonical3 3 3/4 3 4silicenephaseon Ag(111)8

1.8OtherallotropicphasesofsiliceneonAg(111)andmultilayer silicene9

1.9Reactivityandadsorptiononsilicene,siliceneonothersubstrates, andsilicenebywetchemistry11

1.10Exoticvariantsofsilicene:

1.11Properties,applications,andperspectives18 1.12Conclusion19 Note20 References20 2Germanene27

HaroldJ.W.Zandvliet

2.1Introductiontwo-dimensionalDiracmaterials27 2.2Synthesisofgermanene30

2.2.1Introduction30

2.2.2Synthesisofgermanene31

2.3Structuralandelectronicpropertiesofgermanene37

2.4AnomalousquantumHalleffectandquantumspinHalleffect40

2.4.1AnomalousquantumHalleffect40

2.4.2QuantumspinHalleffect41

2.5Bandgapopeningingermanene43

2.5.1Electric-field-inducedbandgapopening43

2.5.2Bandgapopeningbycouplingtoasubstrateandadsorption orintercalationofatomsormolecules44

2.6Bilayergermaneneandtwistedbilayergermanene44

2.7Summary46 References46

3StaneneandPlumbene49

AidiZhao

3.1Introduction:tinandstanene,leadandplumbene49

3.2Thetheoreticalpredictionofstaneneandplumbene49

3.3Theoreticalpredictionforstanenetobeatwo-dimensional topologicalinsulator51

3.3.1StaneneasquantumspinHallinsulatordescribedby Kane Melemodel52

3.3.2DecoratedstaneneasquantumspinHallinsulator describedbyBernevig Hughes Zhangmodel52

3.3.3ModifiedstaneneasquantumanomalousHallinsulator55

3.3.4Theoreticalpredictionforstanenetobeatwo-dimensional Isingsuperconductor56

3.4Thesynthesisandcharacterizationofstanene58

3.4.1Epitaxialgrowthofstanene58

3.4.2Topologicalbandinversioninultraflatstanene59

3.4.3Two-dimensionalIsingsuperconductivityinfewlayer stanene61

3.5Thesynthesisandcharacterizationofplumbene62

3.6Perspectivesontheapplicationsofstaneneandplumbene66 References69

4Borophene73

BaojieFeng,LanChenandKehuiWu

4.1Introduction73

4.2Theoreticalaspectsofborophene75

4.3Synthesisofborophene78

4.3.1BorophenesonAg(111),(110),and(100)78

4.3.2BoropheneonCu(111)82

4.3.3BoropheneonAl(111)84

4.3.4BoropheneonIr(111)86

4.3.5Liquid-phaseexfoliation87

4.3.6Hydrogenatedborophene(borophane)88

4.4Physicalpropertiesofborophene91

4.4.1Mechanicalproperties91

4.4.2Metallicity92

4.4.3DiracconesandDiracnodallines95

4.4.4Superconductivity99

4.4.5Opticalproperties100

4.5Perspective100 References101

5Gallenene107

NicolaGaston

5.1Evidenceoftwo-dimensionalityinbulkgallium108

5.2Evidenceoftwo-dimensionalityingalliumnanostructures109

5.3Experimentaldiscovery111

5.4Electronicproperties111

5.5Thermalstability112

5.6Howuniqueisgallenene?115

5.7Propertiesandapplicationsofgallenene116 Acknowledgments118 References118

6Phosphorene121

YueZheng,JingGao,YuliHuang,TianchaoNiuandWeiChen

6.1Introduction121

6.2Propertiesoftwo-dimensionalblackphosphorus122

6.2.1Crystalandbandstructure122

6.2.2Opticalproperties124

6.2.3Thermoelectricproperties124

6.3Applications126

6.3.1Electronicdevices126

6.3.2Optoelectronicdevices127

6.3.3Bioapplications129

6.4Fabrication130

6.4.1Bulkcrystals130

6.4.2Few-/single-layerBlackphosphorus131

6.4.3Bluephosphorene132

6.5Functionalization135

6.5.1Surfacefunctionalization135

6.5.2Bandgapengineering136

6.5.3Defectsengineering138

6.6Oxidationandsurfaceprotection139

6.6.1Oxidationmechanism139

6.6.2Surfaceprotection141

6.7Conclusionandoutlook143 Acknowledgments144 References144

Contents

7ArseneneandAntimonene149

NikolasAntonatos,EvgeniyaKovalskaandZden ˇ ekSofer

7.1Introduction149

7.2Arsenicandantimonyallotropes150

7.2.1Arsenic150

7.2.2Antimony152

7.3Two-dimensionalarseneneandantimonene154

7.3.1Fundamentals154

7.3.2“Top-down”methods155

7.3.3“Bottom-up”methods157

7.4Dopingofarseneneandantimonene159

7.5Applicationsandfutureprospectsofarseneneandantimonene159

7.6Conclusion165 Acknowledgement166 References166

8Bismuthene173

HanliuZhao,ShiyingGuo,WenZhong,ShengliZhang, LiTaoandHaiboZeng

8.1Introduction173

8.2Structureandpropertiesoftwo-dimensionalbismuth174

8.2.1Atomicstructure174

8.2.2Bandstructure174

8.2.3Fundamentalproperties176

8.3Preparationoftwo-dimensionalbismuth178

8.3.1Physicalvapordeposition178

8.3.2Wetchemicalmethods181

8.3.3Exfoliationmethods182

8.4Characterizationoftwo-dimensionalbismuth183

8.4.1Structurecharacterization183

8.4.2Morphologycharacterization184

8.4.3Electricalproperties184

8.5Applicationsoftwo-dimensionalbismuth187

8.5.1Field-effecttransistors187

8.5.2Thermoelectrics188

8.5.3Photodetectors188

8.5.4Batteries190

8.6Summary191 References192

9SeleneneandTellurene197

Pai-YingLiao,Jing-KaiQin,GangQiu,YixiuWang, WenzhuoWuandPeideD.Ye

9.1Introduction197

9.2Selenene199

9.2.1Synthesismethods199

9.2.2Physicalproperties201 9.2.3Applications204 9.3Tellurene206

9.3.1Synthesismethods206

9.3.2Physicalproperties211

9.3.3Electronicapplications214 9.4Conclusions219 References219

10TechnicalevolutionfortheidentificationofXenes: frommicroscopytospectroscopy225 MengtingZhao,HaifengFengandYiDu 10.1Introduction225

10.2Workingprinciplesofscanningtunnelingmicroscopyand angular-resolvedphotoemissionspectroscopy226

10.2.1Scanningtunnelingmicroscopy226

10.2.2Angular-resolvedphotoemissionspectroscopy229

10.3Applicationsofscanningtunnelingmicroscopyand angular-resolvedphotoemissionspectroscopyinXenes230

10.3.1Siliceneandgermanene230

10.3.2Borophene233

10.3.3Stanene236

10.3.4Bismuthene238

10.3.5Phosphorene240

10.3.6Antimonene,arsenene,andtellurene241 10.4EmergingtechniquesusedinXenes243

10.4.1RamanspectroscopystudiesonXenes243

10.4.2Atomicforcemicroscopy246

10.4.3Transmissionelectronmicroscopy246

10.4.4X-rayphotoemissionspectroscopy246

10.4.5Spin-resolvedangular-resolvedphotoemission spectroscopy247

10.4.6Augerelectronspectroscopyandlow-energyelectron diffractionandreflectionhigh-energyelectrondiffraction247 References248

11ChemicalmethodsforXenes255 WarrenL.B.HueyandJoshuaE.Goldberger 11.1Introduction255

11.2Surfacefunctionalizationmetrology256

11.3AnalogyofSi(111)andGe(111)surfacefunctionalization257 11.4ChemicaltreatmentsandreactivityofSi,Ge,SnXenes261 11.5TopotactictransformationsofZintlphasesinthesynthesisof functionalizedXenes262

11.5.1Functionalizedsiliceneanalogsfromtopotactic transformationsofCaSi2

262

11.5.2Functionalizedgermanenefromtopotactic transformationsofCaGe2 264

11.5.3FunctionalizedSnXenesfromthetopotactic transformationsofSn-containingZintlphases267

11.5.4Organic-functionalizedXenesviatopotactic functionalizationofZintlphaseswithhaloalkanes268

11.6LigandsubstitutionreactionsoffunctionalizedSiandGeXenes272

11.6.1SiHtoSiRviahydrosilylation274

11.6.2GeHtoGeRviahydrogermylation275

11.6.3SiHtoSiNRviaamination276

11.6.4SiHtoSiH4PhviaGrignardchemistry276

11.7CovalentmodificationofotherXenes278

11.8Functionalization-inducedchangesinthermalandelectronic propertiesofgroup14Xenes280

11.8.1Functionalization-inducedchangesinelectronicstructure280

11.8.2Functionalization-inducedchangesincarriermobilities286

11.8.3Signaturesofamorphizationandfunctionalization-induced changesinconductivityandthermalstability286

11.8.4Functionalization-inducedchangesinwaterabsorption288

11.9Conclusion289 References289

12TopologicalphysicsofXenes295

YangLi,ZhimingXu,ZetaoZhang,JiahengLiandYongXu

12.1Two-dimensionaltopologicalinsulators295

12.1.1TwotypicalmodelsforquantumspinHallinsulators295

12.1.2TopologicalZ2 invariant298

12.1.3QuantumspinHallinsulatorsinXenes299

12.2QuantumanomalousHalleffectinXene302

12.2.1IntroductiontothequantumanomalousHalleffect302

12.2.2Theoreticalmodelsofquantumanomalous HallstatesinXene303

12.2.3RealizationofthequantumanomalousHall statesinXenes305

12.3TopologicalsuperconductivityandIsingsuperconductivity307

12.3.1Generalintroduction307

12.3.2Type-IIIsingsuperconductivity307

12.3.3Topologicalsuperconductivity309

12.3.4Otherresearchprogresses310

12.4ThermoelectricpropertiesinXenes311

12.5Summaryandoutlook313 References313

13OpticalpropertiesofXenes319 PaolaGori,FriedhelmBechstedtandOliviaPulci Abbreviations319 13.1Introduction319 13.2Theoreticalmethods320

13.2.1Reflectance,transmittance,andabsorbance320

13.2.2Opticalconductivityandthesuperlatticemethod321 13.2.3 Abinitio approaches:fromsingleparticlesto quasiparticles322 13.3Results326

13.3.1FreestandingXenes327 13.3.2HydrogenatedXenes:theXanes336 13.3.3Beyondthefreestandingcase:substrateeffects339 13.4Summaryandconclusions345 Acknowledgments346 References346

14Two-dimensionalmagnetisminXenes353 AndreyM.Tokmachev,DmitryV.Averyanov,IvanS.Sokolov, AlexanderN.Taldenkov,OlegE.Parfenov,IgorA.Karateevand VyacheslavG.Storchak

14.1Introduction353 14.2TheoreticalpredictionsofmagnetisminXenes354 14.3IntrinsicmagnetisminXenemultilayerthree-dimensional compounds357

14.4Two-dimensionalferromagnetisminsilicenematerials361 14.5Two-dimensionalferromagnetismingermanenematerials363 14.6Electrontransportintwo-dimensionalmagneticXenecompounds364 14.7Extensionoftwo-dimensionalferromagnetismtographene366 14.8Conclusion368 Acknowledgments369 References369

15Xeneheterostructures377 CarloGrazianettiandAlessandroMolle 15.1Introduction377 15.2Xenehomostructures381 15.3Xeneheterostructures385 15.4Challenges,bottlenecks,potentialandperspectives396 Acknowledgement399 References399

16IntegrationpathsforXenes405 GabrieleFaraone,Md.HasibulAlam,XiaoXu,ZhaoyingDang, LiTao,DejiAkinwandeandDeepyantiTaneja

16.1Introduction405

16.1.1Majorplayersfromadeviceperspective405

16.1.2GrowthtechniquesandfunctionalizationofXenes406

16.1.3ApplicationofXenedevices407

16.1.4Challengesindevicefabrication408

16.2Reviewofexistingelectronicdevices409

16.2.1Group14devices409

16.2.2Group15(pnictogens)devices418

16.2.3Group16(chalcogens)devices420

16.3CurrentandfutureapplicationsofXenes421

16.3.1Photonicsdevices421

16.3.2Biomedicaldevices422

16.3.3Topology-basedelectronicdevices423

16.3.4Memorydevices425

16.3.5Xene-basedjunctions426

16.4PerspectivesonintegrationofXeneswithsilicon428

16.5Concludingremarks429 References430 Furtherreading438 Index439

WoodheadPublishingisanimprintofElsevier 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom

Copyright©2022ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions . Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-823824-0(print)

ISBN:978-0-12-823838-7(online)

ForinformationonallWoodheadPublishingpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: KaylaDosSantos

EditorialProjectManager: IsabellaC.Silva

ProductionProjectManager: SuryaNarayananJayachandran

CoverDesigner: GregHarris

TypesetbyMPSLimited,Chennai,India

Introduction

CarloGrazianettiandAlessandroMolle

Two-dimensionalmaterialsbeyondgraphene:therise oftheXenes

Thediscoveriesabouttheone-dimensional(1D)andthetwo-dimensional(2D)allotropesofcarboncanbeprobablyconsideredasthebeginningoftheeraofthelowdimensionalmaterials.Althoughtheconceptoflow-dimensionalmatterwasalready presentinsolid-statephysics,forexample,afterthediscoveryofscanningtunneling microscopy(STM)thatenabledthesurveyofmatterattheatomicscale,thesynthesisofthe1Dcarbonnanotubesandtheisolationofasingle-layer2Dgraphenein 1991and2004,respectively,pavedthewaytoaneweraincondensedmatterphysics [1,2].Inparticular,withintheframeworkof2Dmaterials,graphenejuststarted arevolution.Thenumberofscientificmanuscriptsandbooksthetopicsistoday incalculable.Ofcourse,theexistenceofgraphenewaswell-knownevenbeforeits isolationbecausemanygraphenelayersputtogetheraregraphite.Thereforeitis veryintriguingtoconsiderthatsomeonethoughtwhethersiliconandgermanium mayalsohavelow-dimensionalallotropes,beingsiliconandgermaniumplaced directlybelowcarboninthecolumnIVAoftheperiodictable.Althoughthisquestionsoundsacademic,andactuallyitwas,itsimportanceisrelatedtotheubiquitous useofsiliconandgermaniuminelectronicssincethedawnoftheelectronicsera (considerthattheinterfacebetweensiliconanditsoxideisprobablythemoststudiedinterfaceever).Therefore,inthisscenario,theeffortstofindthe2Dhoneycomb latticesmadeofsiliconandgermanium,thatis,siliceneandgermanene,were mainlydrivenbytheurgentrequestofultrascaledsemiconductorsforextendingthe so-calledMoorelawtrend [3,4].TakedaandShiraishiwonderedifthesiliconand germaniumatomsarrangedintographene-likelatticeswerestableandsurprisingly theanswerisaffirmativealthoughinapeculiarway,namelywhatwemayterma pseudo-planarlattice [5].Inshort,thisexcitingtheoreticalfindingsuggeststhat freestandingsiliceneandgermanenecanbestabilizedbypuckeringthegraphene latticewithsomesilicon(orgermanium)atomsoutofthebasalplane(see Fig.1).

Thesiliceneandgermanenecrystalsthereforeincludeanadditionallattice parameter(tothein-planelatticevectors)termedbuckling,namelytheverticaldistancebetweenthetopandbottomsatoms,andtheirrelatedcrystalsarereferredto asbuckled(whilegrapheneisplanarornon-buckled).Evenifthetheoryprovesthe

Figure1 Sideandtopviewsoftheplanarhexagonalringofgraphene(left)andbuckled hexagonalringtypicaloffreestandingXeneslikesilicene(right).Althoughthebucklingisa keyparameterforthepostgrapheneXenes,so-calledultraflatconfigurations(e.g.,for stanene)canbeobservedevenforatomsheavierthancarbon.

existenceofsiliceneandgermanene,theirrealizationdoesnotcomewithout practicalconsequences.Thefirstdifferencewithgrapheneistheabsenceofasolid three-dimensional(3D)graphite-likeparentcrystalofsilicon(germanium)madeof silicene(germanene)layersstackedbyvanderWaals(vdW)forces.Afterall,this conditioniscommontomostofthechemicalelementssurroundingcarboninthe periodictable.Hence,thesubsequentquestioniswhetherthesecrystalscanbesynthesizedinalternativewaystomechanicalexfoliation(themethodoriginallyused byGeimandNovoselovtoderivegraphenesheets).Theseconddistinguishingfeatureofsilicene(andgermanene)withrespecttographeneisthechemicalbond. Unlikecarbon,whichiswell-knowntohybridize sp 2 ingraphite(and sp 3 indiamond),siliconandgermaniumprefertohybridizetheirthree p orbitalswith s orbitalstomakeonly sp 3 tetrahedralconfiguration.Typically,ionicradiilargerthan carbonpromote sp 3 hybridization,whereas sp 2 hybridizationisenergeticallymore favorableincarbon.Siliceneandgermanenethusshowamixed sp 2 sp 3 hybridizationthat,consideringtheirlatticesasbigmolecules,canberelatedtoapseudoJahn-Tellerdistortionoriginatingtheircharacteristicbuckling [6].Despitethese difficultiesandafteralong-debatedsurvey,thecompellingexperimentalevidence ofsilicenesynthesiswaseventuallyreportedin2012 [7].Soonafterthegroundbreakingsilicenediscovery,inparticular,themethodologyusedtoaccomplishits growth,aplethoraof2Dartificiallatticesflourishedincludinggermanene,stanene, plumbene,borophene,gallenene,phosphorene,antimonene,arsenene,bismuthene, selenene,andtellurene.Indeed,quitesurprisingly,theXenesincludeelementsnot onlybelowcarbonbutevenintheneighborcolumnsoftheperiodictable(see Fig.2).

Interestinglyafterthegrapheneboom,elementsoftheperiodictablecloseto carbonhavebeenmade2Dflatinlessthan10yearsandanewpanoramaof2D materialsshowedup.Althoughthechallengeofachievingnewmonoelemental2D

Figure2 TheXenesperiodictableoftheelements.TheelementsfromcolumnIIIA VIA areschematicallydividedintothreegroupsdependingontheir(theoreticallyexpected) bandstructure:metal/semimetal(blue),semiconductorwithagap(yellow),andtopological insulator(green).Althoughgraphene,silicene,andgermaneneareQSHIs,theirspin orbit coupling-inducedbandgapsarenegligiblewhencomparedtothoseofheavierelementslike tinorbismuth.Thisclassificationshouldbeintendedasflexibleasthekeyfeatureofthe Xenesisthepossibilitytotunetheirproperties.

materialsisofparamountimportancefornewhiddenphysicstocomeout,additionaleffortsintheXenesresearcharedevotedtoexpandingtheclassof2Dmaterialswithawealthofnewelectronicproperties.Theweaknessrelatedtotheir metastablenature(e.g.,makingthempronetoenvironmentaldegradationinsome cases)canbeturnedintoapositiveopportunityopeningaflexibleandversatile playgroundwhereengineeringtheirpropertieswithanatomiccontrol.Plentyof roomformaterialsscientistswhendealingwithmetallicXeneslikeborophene (withDiracfermions)andgallenene,orDiracsemimetalfromsilicenetostanene withtheincreasingatomicnumber(andthenthespin orbitcouplingeffects)that convertsahoneycomblatticeintoaquantumspinHallinsulator(QSHI),or—last butnotleast—semiconductorslikephosphoreneandtellurenechallengingthetransitionmetaldichalcogenides(TMDs)forapplicationsneedinganopticaland/or indirectgaptowardelectronicand/orphotonicfunctionalities.Hence,manyelectronicflavorsarenowavailablewithintheXenes,andprobably,manymoreareyet tocome.Here,wewillbrieflyintroduceXeneswiththeirmainelectronicproperties eveniftodaytermslike“metal,”“semimetal,”or“semiconductor”areonlyahasty descriptionoftheirelectronicbehavior.Indeed,theimportanceoftopologyinthe descriptionofsolidmatteriswell-recognized,andtherecentfindingsoftopology ofmatterareimprovingthesedefinitionswithmoreprecision.Forinstance,the

semimetaldefinitionbelongstoa“bufferzone”betweensemiconductorsand metals,andischaracterizedbyasmalloverlapbetweenconductionandvalence bands,buttheamountofthisoverlapisroughlydefinedbecausethemomentumis nottypicallyincludedinthegeneralclassification.Inthenextsections,wewill illustratebrieflythemainpropertiesofeachindividualXenethatwillbethesubject ofadedicatedchapterinthefirstpartofthepresentbook.Afterward,theXenesare scrutinizedintermsoftheirpotentialforapplicationstonanotechnologies.

AbriefoverviewoftheXenesfromtheperiodictable

Afterthedebutofsilicenein2012,furtherstepsonmaterialsresearchhaveraised thebaroveranincreasingnumberofelementsrecastingasXenecrystals.Currently availableXenesarelistedbelowfollowingthecolumnarsequenceoftheperiodic tableoftheelements.

Boropheneandgallenene

Ontheleftsideofthecarboncolumn,boropheneandgallenenerepresentthelightestXenes.Theirbehaviorismetallic(withDiracfermionsinborophene)andmakes themsuitableforplasmonics,flexibleandtransparentelectronics,electrodes,displays,hydrogenstorage,andbatteryapplications.Boropheneandgalleneneare reportedinChapters4and5,respectively.

Silicene,germanene,stanene,andplumbene

Theelementsbelowcarbonattractedmaininterestafterthesilicenesynthesis,and subsequentlygermanene,stanene,andfinallyplumbeneappearedonthestagein thischronologicalorder.TheyaretheXenesthatmorecloselyresemblegraphene althoughtheirstructureisdifferent.Theincreasingatomicmassmakesthem QSHIs,andtheirmagnetic,optical,andtopologicalpropertiesarestillbeingstudied thussuggestingmanyintriguingapplicationsforthemspanningfromlow-power andtopologicalelectronics,photonicsandoptoelectronics,spintronics,thermoelectricity,andquantumcomputing.ColumnIVAXenesaredescribedindetailin Chapters1 3.

Phosphorene,arsenene,antimonene,andbismuthene

Ontherightsideofthecarboncolumn,thepnictogensreducedtothe2Dlevel, namelyphosphorene,arsenene,antimonene,andbismuthene,representthe“semiconductive”alternativetoboropheneandgallenene.Phosphorenecanbeobtained byexfoliationofblackphosphorussimilarlytographeneandMoS2,andrecently, manyeffortsaimatitsepitaxialsynthesis.Evenarseneneandantimoneneshowa thickness-dependentbandstructure,andwithphosphorenetheymightbeusefulfor

electronics,optoelectronics,ionstorage,andgassensors.Conversely,bismuthene showsexcitingtopologicalpropertiesandmorecloselyresemblesstaneneasalarge gapQSHIthuslookingpromisingforelectronicandspintronicapplications(operatingatroomtemperature).Chapters6 8willsummarizethepropertiesofcolumn VAXenes.

Seleneneandtellurene

Furtherontherightsideofthecarboncolumn,withinthechalcogensgroup,seleneneandtellurenearealsotwosemiconductingXenesofpotentialinterestfora broadrangeofapplicationsincludingelectronics,optoelectronics,thermoelectricity, sensors,anddetectors.Intheirbulkform,theyarestructuredas1Dspiralchains thataremutuallykepttogetherbyvdWforces.Seleneneandtellurenearediscussed inChapter9.

Throughoutthisoverview,theroleoftheXenesinmoreextensiveunderstanding thephysicsof2Dsystemswillbeelucidated,andemphasiswillalsobegiventothe morerecentpathstointegratetheXenesinnanotechnologyaimingattheexploitation oftheirpeculiarpropertiesineverydaylifedevicesorapplications.

Xenestowardnanotechnologies

Followingupgrapheneinthe2Dmaterialsscenario,Xenesinitiallyattractedattentionascandidatesforchannelmaterialsintransistorswheregrapheneitselfirremediablyfailsforitslackofasizeablegap,namelyamandatoryconditionforgate modulationoftheFermilevel.Inthisview,siliceneappearednotonlyasthefrontrunneramidtheXenesbutalsoasthebridgetothecontinuousscalingtrendin digitalnanoelectronics [8].Thelatteraspectreliesonthetechnologyevolutionof high-performancefield-effecttransistors(FETs)inthecomplementarymetal-oxide semiconductortechnologyinordinarilyusedhigh-performancemicrochips.While thesiliconbodyinaFETstructurehasgotprogressivelyshrunkdowntoanultrathinbodywiththicknessbelow3nmintheso-calledFinFETarchitecturesand beyond,thephysicallimitofasilicon-madetransistorchannelisnexttobereached withdetrimentalimplicationsinthecarrierconduction(e.g.,mobilitydegradation withdecreasingthickness).Inthisrespect,theclassoftheXenesappearedasone ofthepossibleadvancedmaterialsfrontierswheretodrivetheFETtechnology towardanultimatelyscaledfully2Dprototype.Benefitsinthissensewerenotonly restrictedtotheatomicthicknessbuttheyalsocomprisemobilitypreservationasan intrinsicfeatureoftheXenestructure(nolongerexplainableasbarethickness reductionofthe3Dbulk).Nonetheless,Xenes,asmuchasmostoftheotherplayers inthe2Dmaterialsplayground,arestillfarawayfromalab-to-fabtransitionin termsofintegrabilityandreliability.Takethecaseofsilicene.Ifreducingsilicon atomstoahexagonalmonolayerwasasensationalachievementintermsofnanomaterialsynthesis,inpracticesilicenecanbeepitaxiallyproducedonlyviaasubstrate

selectivescheme,anditultimatelyturnsouttobehighlyunstableinenvironmental conditionsthereinneedingan adhoc stabilization.Theseaspectslimitbyfarthe optionsforsilicenedeploymentinatechnologyframework.Chapter16takesthis matterintoaccountbyreportingonthelatestadvancesintheXenesprocessing towardatechnologytransferplatforminnanoelectronics.Similartographene,two approachescanbepursuedtothisend:the“directgrowth”onasubstrateandthe “growth&transfer” [9].TheformerapproachimpliesXenestobegrownonasubstratethatisreadilyexploitableinatargetapplication.Thenumberofconfigurations inthisrespectisquitelimitedbythefactthatXenesarebasicallygrownonmetal substrateswhichinturnarenotreadilycompliantwithatechnologyflow.AnexceptionforthisfashionisthecaseofXenesonsapphire,wherehoweverthestructureof theXenesisnottriviallyobservablewithusualsurfacesciencetechniques [10,11]. SomepromisingadvancesinthisframeworkmaycomefromXenes-liketellurene whosegrowthwasprovenonamorphousSiO2 substratesbycondensationalthoughit isnotcleartodatewhatisthereachableinferiorlimitofthegrownfilmthickness [12].The“growth&transfer”approachmostlyreferstoXenesasepitaxialfilmona commensuratetemplate(seethecaseofsiliceneonsilver)andthesubsequentdisassemblyfromthenativesubstratetoendupinatransferablemembrane [13].This approachissolidlybasedonthestructuralvalidationofXenesbyatomically resolvedprobesliketheSTM(seeChapter10asareviewofthetechnicalmethodologiesfortheXenesidentification),butitsuffersfromthesevereinstabilityofmost oftheXenesinvokingstabilizationschemeslikeencapsulationwithaprotective layer.Inmanycases,Al2O3 wasproventohaveastabilizingeffectontheXenes underanenvironmentalconditionwithnoconsequencesontheunderlyingXene structure [14].AnalternativeapproachtomanipulatingXenesreliesonthechemical synthesisfromtopotacticde-intercalationfromareferenceZintlphaseasdetailedin Chapter11.ThisisthecaseofsiliceneandgermaneneextractedfromlayeredCaSi2 andCaGe2 compounds,respectively,andeventuallyresultinginH-functionalized Xenes(silicaneandgermanane)readilyintegrableinopticaldevices [15].

InChapter13,Xenesarealsodeemedintermsoftheiropticalpropertiesasthey maybearpotentialasphotonicmaterials,anotherfieldwheregrapheneandTMDs havebeenlongstudied [16 18].Inthisrespect,epitaxialsilicenewasobservedto retainasurfaceplasmonfeatureaccordingtoelectronenergylossspectroscopythat distinctlydiffersfromthemainplasmonicsignalfromthemetalsubstrate [19] Thisisapromisingscenarioforsilicenetobeexploitedasanopticallyactivematerialinaplasmonresonancegratingeitherasastand-alonelayerorinterplaywith thenativemetalsubstrate.WhileinthelattercaseXeneswouldbecoupledwith theirsubstrate,intheformercasegraphene-likeXeneswithlinearlydispersed energybandsareexpectedtodisplayaTHzplasmonicresponsethatmakesthem particularlyinterestingfortheemergingfieldofTHztechnologies [20].

MakingXenesfullyexploitablefortechnologytransferwouldpavethewaytoa richergroundforapplicationsthatmayreadilybenefitfromthecharacteristicsof eachspecificXene.Nanoelectronicsisonlyonepossibleoutcomeoutofthisscenario, butXenesmaymeettherequirementsofothernanotechnologiestoo.InChapter14, therealizationofsilicenebyintercalationofrareearthelementsintobulksilicon(e.g.,

GdSi2)isshowntodiscloseanunprecedentedscenarioofaXene-basedmagnetism encompassingathickness-dependentantiferromagnetic ferromagnetictransitionand colossalmagnetoresistanceatthe2Dlevel.InChapter12,specificXenesareshown tobearanontrivialtopologyasaresultoftheirintrinsicallyhighspin orbitinteraction.TheyaredescribedasQSHIsaslongastheyareexpectedtodisplayaconductancequantizationwithnoexternalmagneticfieldappliedowingtotheirnontrivial topologicaltexture.InaXenenanoribbonlayout,theQSHstateisqualifiedbytopologicallyprotected1Dedgesinavirtuallyinsulating2Dbodythusreflectingadimensionalreductionofwhatisknowntotakeplaceinaconventional3Dtopological insulator(thisisthereasonwhytheQSHmaterialsareoftendenotedas2Dtopologicalinsulators).AlthoughthetopologicalphysicsofXeneshasreceivedscarceexperimentalconfirmationssofar,topologicalpropertiesmaypavethewaytooutstanding implicationsintermsofquantumelectronics,spintronics,andthermoelectrics [21]. Indeed,theXenesarepreparatorytoconceptualizeatopologicaltransistorwherethe binarystatecanbeswitchedonandoffbychangingthephysicalstatefromatopologicaltoatrivialinsulatorandviceversa [22].Thenontrivialtopologyoftheheavy Xenes-likestaneneinitsmultilayered α-phaseisalsoshowntoeffectivelycouple withantiferromagneticlayertogiverisetoanewfashionofspintronicdevicesbased ontheso-calledspin-orbitronicsparadigm [23].Moreover,topologicalfeaturesmay boosttheinherentpotentialofXenesasthermoelectricmaterialsaslongastheycould leadtoextremelyhighedgeconductivityagainstarelativelylowthermalconductivity throughthebodytherebyincreasingthethermoelectriczTfactorwellbeyondthestate oftheart [24 26]

Xene-relatedenergytechnologiesarenotbarelylimitedtothermoelectricityas longasXenesinthemultilayerform(whenallowed)mayaddressrequirementsfor postgraphiteelectrodesinLi(orbeyondLi)ionbatteries [27,28].Anincreasing effortiscurrentlyintheplaceofdevelopinghigh-powerandenergydensityLi-ion batteriestotackletheever-increasingenergydemandsofconsumerelectronicgoods likeportableelectronicdevicesorelectricvehicles(tonameafew),andprospects towardtheInternet-of-Thingsconceptposeevenmorestringentchallenges.Inparticular,multilayersilicenecanfalldownintotheongoingquestforsilicon-based anodes [29].Inthisrespect,silicenemayalleviatecurrentdrawbacksofconventionalsiliconliketheintercalation-inducedstructuralexpansionorthechemical reactivitywiththealkalimetalspecies,bothofthemdramaticallydegradingthe batterycellsperformance.

Finally,theemergingtopicregardingthecreationof adhoc assembledhomo andheterostructuresmadeofXeneswillbeexploredinChapter15.Onceagain inspirationpartiallycomesfromtheoutstandingfindingsrelatedtobilayerandtrilayergraphenewheretheadjacentlayersaremanuallytwistedatsome“magic” anglestomodifytheelectronicbandstructureandthereforerangeoverdifferent phasesofmatter [30,31].Althoughsuchastraightforwardsurveycanbehardly extendedtoXenes,becauseoftheirmetastablecharacter,thechanceofgrowing newmaterialsbyassemblingdifferentXenesispossiblebymakinguseofepitaxial methodsthatareconventionallyadoptedintheXenesynthesis [32].Thispathpaves thewaytoanunexploredfieldofmaterialsengineeringattheatomiclevelwhere

Figure3 TheXeneswheelsummarizingthefourmainareaswheretheXenescontributionis expectedtoprovidesubstantialimprovementinnanotechnology.

Xenesofdifferentkindscanbeaccommodatedtogetherinordertodesignand boostpropertiesondemand(considerforinstancethepossiblefabricationofatomicallythinelementaljunctionortheisolationoftopologicalXeneoutofthesubstrateproximity).FuturechallengesontheXeneheterostructuresshouldthenface thestabilityaswellasthewholeelectronicbehavioroftheso-createdsystem.

Thenanotechnologyareasdiscussedsofar,wheretheroleoftheXenesis expectedtopushforwardourknowledge,aresketchedin Fig.3,eventhoughwe willbenotsurprisedifnewareaswillcomeupshortly.

Conclusions

ThequicklyexpandingXenesfamilyismatureenoughforatwofoldpurpose.On theonehand,arichphysicsisworthoffurtherstudydevotedtounravelandcontrol propertiesarisingfromchemicalelements“forced”intoallotropicphasesnotexistinginnature.Ontheotherhand,thesepropertiesmaymeetsomekeyrequirements

fromcurrenttechnologicalandsocietalchallengeslikeminiaturizationandenergysavingissuesinelectronicdevices.ExpandingtheknowledgeoftheXenesasa materialscategoryrepresentsthestartingsteptoassesstheXenepotentialinthis direction.Withthispurposeinmind,therecentfindingsontheXenesandtheir propertiesarepresentedanddiscussedinthesubsequentchapters.

References

[1] S.Iijima,Nature354(6348)(1991)56 58.

[2] K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y.Zhang,S.V.Dubonos,etal., Science306(5696)(2004)666 669.

[3] S.Salahuddin,K.Ni,S.Datta,Nat.Electron.1(8)(2018)442 450.

[4] H.N.Khan,D.A.Hounshell,E.R.H.Fuchs,Nat.Electron.1(1)(2018)14 21.

[5] K.Takeda,K.Shiraishi,Phys.Rev.B50(20)(1994)14916 14922.

[6] A.Molle,C.Grazianetti,L.Tao,D.Taneja,M.H.Alam,D.Akinwande,Chem.Soc. Rev.47(16)(2018)6370 6387.

[7] P.Vogt,P.DePadova,C.Quaresima,J.Avila,E.Frantzeskakis,M.C.Asensio,etal., Phys.Rev.Lett.108(15)(2012)155501.

[8] Y.Liu,X.Duan,H.-J.Shin,S.Park,Y.Huang,X.Duan,Nature591(7848)(2021) 43 53.

[9] H.C.Lee,W.-W.Liu,S.-P.Chai,A.R.Mohamed,A.Aziz,C.-S.Khe,etal.,RSCAdv. 7(26)(2017)15644 15693.

[10] C.Grazianetti,S.DeRosa,C.Martella,P.Targa,D.Codegoni,P.Gori,etal.,Nano Lett.18(11)(2018)7124 7132.

[11] C.Grazianetti,E.Bonaventura,C.Martella,A.Molle,S.Lupi,ACSAppl.Nano Mater.(2021)0c03221.acsanm.

[12] A.Apte,E.Bianco,A.Krishnamoorthy,S.Yazdi,R.Rao,N.Glavin,etal.,2DMater. 6(1)(2018)015013.

[13] C.Martella,G.Faraone,M.H.Alam,D.Taneja,L.Tao,G.Scavia,etal.,Adv.Funct. Mater.30(42)(2020)2004546.

[14] A.Molle,G.Faraone,A.Lamperti,D.Chiappe,E.Cinquanta,C.Martella,etal., FaradayDiscuss.227(2021)171 183.

[15] W.Amamou,P.M.Odenthal,E.J.Bushong,D.J.O’Hara,Y.KellyLuo,J.vanBaren, etal.,2DMater.2(3)(2015)035012.

[16] C.Grazianetti,C.Martella,E.Cinquanta,Opt.Mater.X12(2021)100088.

[17] L.Matthes,P.Gori,O.Pulci,F.Bechstedt,Phys.Rev.B87(3)(2013)035438.

[18] L.Su,X.Fan,C.Wang,Q.Wu,Y.Li,H.Zhang,etal.,Nanophotonics9(7)(2020) 1621 1649.

[19] C.VacacelaGomez,M.Pisarra,M.Gravina,P.Riccardi,A.Sindona,Phys.Rev.B95 (8)(2017)085419.

[20] S.Lupi,A.Molle,Appl.Mater.Today20(2020)100732.

[21] A.Zhao,B.Wang,APLMater.8(3)(2020)030701.

[22] A.Molle,J.Goldberger,M.Houssa,Y.Xu,S.C.Zhang,D.Akinwande,Nat.Mater.16 (2017)163 169.

[23] A.Manchon,H.C.Koo,J.Nitta,S.M.Frolov,R.A.Duine,Nat.Mater.14(9)(2015) 871 882.

[24] B.Zhu,Q.Chen,S.Jiang,M.Holt,W.Zhu,D.Akinwande,etal.,InfoMat3(3) (2021)271 292.

[25] S.K.Sahoo,K.Wei,Adv.Mater.Interfaces6(18)(2019)1900752.

[26] S.Sharma,N.Singh,U.Schwingenschlogl,ACSAppl.EnergyMater.1(5)(2018) 1950 1954.

[27] J.Zhuang,X.Xu,G.Peleckis,W.Hao,S.X.Dou,Y.Du,Adv.Mater.29(48)(2017) 1606716.

[28] X.Zhang,X.Qiu,D.Kong,L.Zhou,Z.Li,X.Li,etal.,ACSNano11(7)(2017) 7476 7484.

[29] X.Zuo,J.Zhu,P.Muller-Buschbaum,Y.-J.Cheng,NanoEnergy31(2017)113 143.

[30] Y.Cao,V.Fatemi,S.Fang,K.Watanabe,T.Taniguchi,E.Kaxiras,etal.,Nature556 (7699)(2018)43 50.

[31] A.Yazdani,Science80,371(6534)(2021)1098 1099.

[32] D.S.Dhungana,C.Grazianetti,C.Martella,S.Achilli,G.Fratesi,A.Molle,Adv. Funct.Mater.31(30)(2021)2102797. xxx Introduction

Listofcontributors

DejiAkinwande MicroelectronicsandEngineeringResearchCenter,Department ofElectricalandComputerEngineering,TheUniversityofTexasatAustin,Austin, TX,UnitedStates

Md.HasibulAlam MicroelectronicsandEngineeringResearchCenter, DepartmentofElectricalandComputerEngineering,TheUniversityofTexasat Austin,Austin,TX,UnitedStates

ThierryAngot Aix-MarseilleUniversity,CNRS,PIIM,Marseille,France

NikolasAntonatos DepartmentofInorganicChemistry,UniversityofChemistry andTechnology,Prague,CzechRepublic

DmitryV.Averyanov NationalResearchCenter“KurchatovInstitute”,Moscow, Russia

FriedhelmBechstedt IFTO,FriedrichSchillerUniversity,Jena,Germany

LanChen InstituteofPhysics,ChineseAcademyofSciences,Beijing,P.R.China; SongshanLakeMaterialsLaboratory,Dongguan,P.R.China

WeiChen DepartmentofPhysics,NationalUniversityofSingapore,Singapore; DepartmentofChemistry,NationalUniversityofSingapore,Singapore;National UniversityofSingapore(Suzhou)ResearchInstitute,Jiangsu,P.R.China

ZhaoyingDang SchoolofMaterialsScienceandEngineering,Southeast University,Nanjing,P.R.China;Centerfor2DMaterials,SoutheastUniversity, Nanjing,P.R.China

YiDu SchoolofPhysicsandBUAA-UOWJointResearchCentre,Beihang University,Beijing,P.R.China;InstituteforSuperconductingandElectronic Materials,UniversityofWollongong,Wollongong,NSW,Australia

GabrieleFaraone LNESSandDipartimentodiScienzadeiMateriali,Universita ` degliStudidiMilanoBicocca,Milano,Italy

BaojieFeng InstituteofPhysics,ChineseAcademyofSciences,Beijing,P.R.China

HaifengFeng SchoolofPhysicsandBUAA-UOWJointResearchCentre,Beihang University,Beijing,P.R.China

JingGao DepartmentofPhysics,NationalUniversityofSingapore,Singapore

NicolaGaston TheMacDiarmidInstituteforAdvancedMaterialsand Nanotechnology,DepartmentofPhysics,TheUniversityofAuckland,New Zealand

JoshuaE.Goldberger DepartmentofChemistryandBiochemistry,TheOhio StateUniversity,Columbus,OH,UnitedStates

PaolaGori DepartmentofIndustrial,ElectronicandMechanicalEngineering, Rome,Italy

CarloGrazianetti ConsiglioNazionaledelleRicerche-Istitutoperla MicroelettronicaeMicrosistemi(CNR-IMM),UnitofAgrateBrianza,Agrate Brianza,Italy

ShiyingGuo KeyLaboratoryofAdvancedDisplayMaterialsandDevices, MinistryofIndustryandInformationTechnology,SchoolofMaterialScienceand Engineering,NanjingUniversityofScienceandTechnology,Nanjing,P.R.China

YuliHuang DepartmentofPhysics,NationalUniversityofSingapore,Singapore

WarrenL.B.Huey DepartmentofChemistryandBiochemistry,TheOhioState University,Columbus,OH,UnitedStates

IgorA.Karateev NationalResearchCenter“KurchatovInstitute”,Moscow, Russia

EvgeniyaKovalska DepartmentofInorganicChemistry,UniversityofChemistry andTechnology,Prague,CzechRepublic

GuyLeLay Aix-MarseilleUniversity,CNRS,PIIM,Marseille,France

LokLewYanVoon UniversityofWestGeorgia,Carrollton,GA,UnitedStates

JiahengLi StateKeyLaboratoryofLowDimensionalQuantumPhysics, DepartmentofPhysics,TsinghuaUniversity,Beijing,P.R.China;FrontierScience CenterforQuantumInformation,Beijing,P.R.China

YangLi StateKeyLaboratoryofLowDimensionalQuantumPhysics,Department ofPhysics,TsinghuaUniversity,Beijing,P.R.China;FrontierScienceCenterfor QuantumInformation,Beijing,P.R.China

Pai-YingLiao SchoolofElectricalandComputerEngineering,PurdueUniversity, WestLafayette,IN,UnitedStates

AlessandroMolle ConsiglioNazionaledelleRicerche-Istitutoperla MicroelettronicaeMicrosistemi(CNR-IMM),UnitofAgrateBrianza,Agrate Brianza,Italy

TianchaoNiu BeihangHangzhouInnovationInstituteYuhang,Hangzhou,P.R.China

OlegE.Parfenov NationalResearchCenter“KurchatovInstitute”,Moscow,Russia

OliviaPulci DepartmentofPhysics,andINFN,UniversityofRomeTorVergata, ViadellaRicercaScientifica1,Rome,Italy

Jing-KaiQin SchoolofElectricalandComputerEngineering,PurdueUniversity, WestLafayette,IN,UnitedStates;SchoolofMaterialsScienceandEngineering, HarbinInstituteofTechnology(Shenzhen),Shenzhen,P.R.China

GangQiu SchoolofElectricalandComputerEngineering,PurdueUniversity, WestLafayette,IN,UnitedStates

EricSalomon Aix-MarseilleUniversity,CNRS,PIIM,Marseille,France

Zdene ˇ kSofer DepartmentofInorganicChemistry,UniversityofChemistryand Technology,Prague,CzechRepublic

IvanS.Sokolov NationalResearchCenter“KurchatovInstitute”,Moscow,Russia

VyacheslavG.Storchak NationalResearchCenter“KurchatovInstitute”, Moscow,Russia

AlexanderN.Taldenkov NationalResearchCenter“KurchatovInstitute”, Moscow,Russia

DeepyantiTaneja MicroelectronicsandEngineeringResearchCenter,Department ofElectricalandComputerEngineering,TheUniversityofTexasatAustin,Austin, TX,UnitedStates

LiTao SchoolofMaterialsScienceandEngineering,SoutheastUniversity, Nanjing,P.R.China;Centerfor2DMaterials,SoutheastUniversity,Nanjing, P.R.China;SchoolofMaterialsScienceandEngineering,JiangsuKeyLaboratory ofAdvancedMetallicMaterials,SoutheastUniversity,Nanjing,P.R.China

AndreyM.Tokmachev NationalResearchCenter“KurchatovInstitute”,Moscow, Russia

YixiuWang SchoolofIndustrialEngineering,PurdueUniversity,WestLafayette, IN,UnitedStates

KehuiWu InstituteofPhysics,ChineseAcademyofSciences,Beijing,P.R.China; SongshanLakeMaterialsLaboratory,Dongguan,P.R.China

WenzhuoWu SchoolofIndustrialEngineering,PurdueUniversity,West Lafayette,IN,UnitedStates

XiaoXu SchoolofMaterialsScienceandEngineering,SoutheastUniversity, Nanjing,P.R.China;Centerfor2DMaterials,SoutheastUniversity,Nanjing, P.R.China

YongXu StateKeyLaboratoryofLowDimensionalQuantumPhysics, DepartmentofPhysics,TsinghuaUniversity,Beijing,P.R.China;FrontierScience CenterforQuantumInformation,Beijing,P.R.China;RIKENCenterforEmergent MatterScience(CEMS),Saitama,Japan

ZhimingXu StateKeyLaboratoryofLowDimensionalQuantumPhysics, DepartmentofPhysics,TsinghuaUniversity,Beijing,P.R.China;FrontierScience CenterforQuantumInformation,Beijing,P.R.China

PeideD.Ye SchoolofElectricalandComputerEngineering,PurdueUniversity, WestLafayette,IN,UnitedStates

HaroldJ.W.Zandvliet PhysicsofInterfacesandNanomaterials,MESA+ Institute forNanotechnology,UniversityofTwente,Enschede,TheNetherlands

HaiboZeng KeyLaboratoryofAdvancedDisplayMaterialsandDevices,Ministry ofIndustryandInformationTechnology,SchoolofMaterialScienceand Engineering,NanjingUniversityofScienceandTechnology,Nanjing,P.R.China

ShengliZhang KeyLaboratoryofAdvancedDisplayMaterialsandDevices, MinistryofIndustryandInformationTechnology,SchoolofMaterialScienceand Engineering,NanjingUniversityofScienceandTechnology,Nanjing,P.R.China

ZetaoZhang StateKeyLaboratoryofLowDimensionalQuantumPhysics, DepartmentofPhysics,TsinghuaUniversity,Beijing,P.R.China;FrontierScience CenterforQuantumInformation,Beijing,P.R.China

AidiZhao SchoolofPhysicalScienceandTechnology,ShanghaiTechUniversity, Shanghai,P.R.China

HanliuZhao SchoolofMaterialsScienceandEngineering,JiangsuKeyLaboratory ofAdvancedMetallicMaterials,SoutheastUniversity,Nanjing,P.R.China

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.