Wide bandgap semiconductor power devices_ materials, physics, design, and applications b. jayant bal

Page 1


https://ebookmass.com/product/wide-bandgap-semiconductorpower-devices_-materials-physics-design-and-applications-b-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor 2nd Edition B. Jayant Baliga

https://ebookmass.com/product/the-igbt-device-physics-design-andapplications-of-the-insulated-gate-bipolar-transistor-2nd-edition-bjayant-baliga/ ebookmass.com

Quantum Physics of Semiconductor Materials and Devices Debdeep Jena

https://ebookmass.com/product/quantum-physics-of-semiconductormaterials-and-devices-debdeep-jena/

ebookmass.com

Pyroelectric Materials : Physics and Applications Ashim Kumar Bain

https://ebookmass.com/product/pyroelectric-materials-physics-andapplications-ashim-kumar-bain/

ebookmass.com

Orpheus: A Greek Mythology Gay Retelling (Book 3 of the Mythologay Series) B.J. Irons

https://ebookmass.com/product/orpheus-a-greek-mythology-gay-retellingbook-3-of-the-mythologay-series-b-j-irons/

ebookmass.com

Experimental Film and Photochemical Practices Kim Knowles

https://ebookmass.com/product/experimental-film-and-photochemicalpractices-kim-knowles/

ebookmass.com

Train Me Daddy: An Age Play Mafia Daddy Romance (Mafia Daddies NYC Book 1) Zack Wish

https://ebookmass.com/product/train-me-daddy-an-age-play-mafia-daddyromance-mafia-daddies-nyc-book-1-zack-wish/

ebookmass.com

Where Did the Universe Come From? And Other Cosmic Questions Ferrie Chris

https://ebookmass.com/product/where-did-the-universe-come-from-andother-cosmic-questions-ferrie-chris/

ebookmass.com

Essential C# 12.0, 8th Edition Mark Michaelis

https://ebookmass.com/product/essential-c-12-0-8th-edition-markmichaelis/

ebookmass.com

Sustainable Alternatives for Aviation Fuels Abu Yousuf

https://ebookmass.com/product/sustainable-alternatives-for-aviationfuels-abu-yousuf/

ebookmass.com

Enhancing Student Support in Higher Education: A SubjectFocused Approach 1st Edition Nick Pilcher

https://ebookmass.com/product/enhancing-student-support-in-highereducation-a-subject-focused-approach-1st-edition-nick-pilcher/

ebookmass.com

WideBandgapSemiconductorPowerDevices

RelatedTitles

TheIGBTDevice:Physics,DesignandApplicationsoftheInsulatedGateBipolarTransistor (ISBN978-1-4557-3143-5)

PowerElectronicsHandbook,ThirdEdition (ISBN978-0-12-382036-5)

WideBandgapPowerSemiconductorPackaging:Materials,Components,andReliability (ISBN978-0-08-102094-4)

WideBandgap SemiconductorPower Devices

Materials,Physics,Design, andApplications

WoodheadPublishingisanimprintofElsevier

TheOfficers’MessBusinessCentre,RoystonRoad,Duxford,CB224QH,UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom

Copyright © 2019ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-08-102306-8(print)

ISBN:978-0-08-102307-5(online)

ForinformationonallWoodheadPublishingpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionEditor: KaylaDosSantos

EditorialProjectManager: ThomasVanDerPloeg

ProductionProjectManager: DebasishGhosh

CoverDesigner: GregHarris

TypesetbyMPSLimited,Chennai,India

ListofContributors

CorneliusArmbruster FraunhoferInstituteforSolarEnergySystemsISE, Freiburg,Germany

B.JayantBaliga NorthCarolinaStateUniversity,Raleigh,NC,UnitedStates

IshwaraBhat ElectricalComputerandSystemsEngineeringDepartment, RensselaerPolytechnicInstitute,Troy,NY,UnitedStates

SubhashishBhattacharya NorthCarolinaStateUniversity,Raleigh,NC, UnitedStates

T.PaulChow RensselaerPolytechnicInstitute,Troy,NY,UnitedStates

SrabantiChowdhury ElectricalandComputerEngineering,UCDavis,Davis, California,UnitedStates

ChaoFei CenterforPowerElectronicsSystems,VirginiaTech,Blacksburg,VA, UnitedStates

ZhiboGuo RensselaerPolytechnicInstitute,Troy,NY,UnitedStates

AndreasHensel FraunhoferInstituteforSolarEnergySystemsISE,Freiburg, Germany

PatrickHercegfi FraunhoferInstituteforSolarEnergySystemsISE,Freiburg, Germany

NoriyukiIwamuro UniversityofTsukuba,FacultyofPureandAppliedSciences, Tsukuba,Ibaraki,Japan

TsunenobuKimoto KyotoUniversity,Kyoto,Japan

DirkKranzer FraunhoferInstituteforSolarEnergySystemsISE,Freiburg, Germany

FredC.Lee CenterforPowerElectronicsSystems,VirginiaTech,Blacksburg, VA,UnitedStates

QiangLi CenterforPowerElectronicsSystems,VirginiaTech,Blacksburg,VA, UnitedStates

StefanScho ¨ nberger FraunhoferInstituteforSolarEnergySystemsISE,Freiburg, Germany

Ju ¨ rgenThoma FraunhoferInstituteforSolarEnergySystemsISE,Freiburg, Germany

YuchenYang CenterforPowerElectronicsSystems,VirginiaTech,Blacksburg, VA,UnitedStates

Preface

In1979,Iderivedatheoreticalrelationshipbetweenthespecificon-resistanceof unipolarsemiconductorpowerdevicesandthebasicpropertiesofthesemiconductormaterialwhileemployedbytheGeneralElectricCompany.Mytheoryproduced theBaliga’sfigure-of-merit(BFOM)forpowerdevicesthatcanbeusedtopredict theperformanceenhancementproducedbyreplacingsiliconwithwidebandgap semiconductors.Themosttechnologicallymaturesemiconductoraftersiliconwas galliumarsenide(GaAs)atthattimeduetoitsapplicationsforinfraredlasersand lightemittingdiodes.TheBFOMpredicteda13.6-foldreductioninthespecificonresistanceofunipolarpowerdevicesbyreplacingsiliconwithGaAsextendingtheir applicationstohighervoltagesandpowerlevels.TheexistingmanufacturinginfrastructureatGEforGaAsdevicesprompteditsmanagementtoassignateamof10 scientistsandtechnicianstoworkundermyguidancetocreateaGaAs-basedpower devicetechnologyintheearly1980s.IorganizedafocusedefforttocreateGaAs epitaxiallayerswithlowerdopinglevelstomakehighvoltagedevices,createaprocessplatformtomakehighperformanceohmicandSchottkycontacts,andinnovate noveldevicestructurestoexploitthematerial.Thiseffortculminatedinthefirst widebandgapsemiconductorpowerdevices—Schottkyrectifiersandvertical metal semiconductorfield-effecttransistors—inthe1980sthatvalidatedthetheoreticalpredictions.

Myequationpredictedareductioninresistancebyafactorof200-timeswhen replacingsiliconwithsiliconcarbideusingtheknowpropertiesinthe1980s.By theearly1990s,siliconcarbidewafersbecamecommerciallyavailableallowingthe demonstrationofthefirsthighvoltageSchottkydiodesatthePowerSemiconductor ResearchCenterundermyleadershipin1992.Wewereabletodemonstrateahigh performanceSiCpowermetal-oxide-field-effecttransistor(MOSFET)usingavailable6H-SiCmaterialin1997.Measurementsoftheimpactionizationcoefficients forsiliconcarbideundermydirectionprovideddatathatincreasedtheBFOMto 1000forsiliconcarbide.Thesebreak-throughsencouragedmajorinvestmentsin developmentofbettermaterialanddevicesintheUnitedStates,Europe,andJapan. ThefirstcommercialSiCproduct,ahighvoltageJunctionBarrierSchottky(JBS) diode,becameavailableintheearly2000s.Themarketforthesedeviceshasnow growntoover$200millionduetotheirapplicationsasantiparalleldiodesforsiliconinsulatedgatebipolartransistors(IGBTs)innumerousapplications.

Aftermanyyearsofefforttoimprovetheinterfacepropertiesbetween4H-SiC andthermallygrownoxide,itbecamefeasibletointroducethefirstSiCpower MOSFETsintothemarketin2011.Theinitialconcernsofapplicationengineers regardingthereliabilityofthesedeviceshavebeenovercomebyrigoroustestingby

theindustry.ThedevicesarenowfindingacceptanceinapplicationssuchasPV invertersandpowersupplies.Thedevicesmustcompeteagainstmaturesilicon powerdevices—theIGBTandthesuperjunctionFETs.Themainimpedimentto marketgrowthhasbeenthemuchhighercostofSiCpowerdevices.Considerable effortisunderwayaroundtheworldtodrivedownthecostofSiCpowerdevices whichportendsahealthymarketprojectionintothefuture.

TheevolutionofGaNpowerdevicestookanunusualpathwiththegrowthof GaNlayersonsiliconsubstratesbyusingatransitionlayertoaccommodatethelatticemismatch.ThisbreakthroughhasmadetheGaNhighelectronmobilitytransistor(HEMT)structurepossiblewithahighlyconductivetwo-dimensionalelectron gaslayer.Theselateraldevicesoffermuchsuperiordriftregionresistance. However,ithasbeenachallengetocreatenormally-offdevicesandeventhe normally-onstructuresstillsufferfromdynamicon-resistanceissues.Somecompanieshavetakentheapproachofbuildingnormally-onGaNHEMTproductsusing theBaliga-PairorCascodeconfiguration.Othershaveemployedstructuralmodificationstoobtainapositivethresholdvoltage.Thesedeviceshavebeenshownto enablepowercircuitstooperateatmulti-MHzswitchingfrequenciestomakevery compactelectronicspossible.Theabilitytointegratemultipledevicesonasingle chipcreatesopportunitiestomakepowerICproductsaswell.

Thisbookonwidebandgapsemiconductorpowerdeviceswasmotivatedbythe successofmybook“TheIGBTDevice”publishedbyElsevierin2015,whichwon theprestigiousPROSEawardforthebestbookpublishedthatyearinengineering andtechnology.TheIGBTbookprovidedanextensivedescriptionoftheapplicationsoftheIGBTinallsectorsofoursocietyanditssocialimpactduringthelast 25years.

Forthisbookonwidebandgapsemiconductorpowerdevices,Iwantedtocover theentirespectrumfrommaterialpropertiestodevicestructurestotheirapplications.IwaspleasedthatallthepeopleIapproachedtomakecontributionstothe bookenthusiasticallyacceptedmyproposal.Unfortunately,someoftheauthors failedtofulfilltheirpromisesduetocommitmentstotheiremployers.Despitethis, thecontentsofthisbookprovideacomprehensivediscussionofthestateoftheart forwidebandgapsemiconductorpowerdevicesthatisbeneficialtothepowerelectronicscommunity.

ThebookbeginswithanintroductorychapterwhereIhaveprovidedanoverviewofthebenefitsofwidebandgapsemiconductormaterialsforpowerdevices. Varioustypesofpowerdevicestructuresaredescribedinthechaptertofamiliarize thereaderwiththetechnologydiscussedinmoredepthintherestofthebook.

Chapter2,SiCmaterialproperties,preparedbyProfessorKimotofromKyoto University,providesinformationonthebasicpropertiesofsiliconcarbidematerial thatisrelevanttopowerdevicedesignandanalysis.Theemphasisisonthe4H-SiC polytypebecauseofitsdominanceformanufacturingSiCpowerdevices.ThediscussionincludesdefectsthatinfluencetheminoritycarrierlifetimeduetoitsrelevanceforbipolarSiCpowerdevicessuchasveryhighvoltageIGBTs.

Chapter3,PhysicalpropertiesofgalliumnitrideandrelatedIII Vnitrides,preparedbyProfessorBhatfromRensselaerPolytechnicInstitute,providesinformation

onthebasicpropertiesofgalliumnitridematerial.Theelectricalpropertiesofthe two-dimensionalelectrongasintheAlGaN/GaNheterojunctionstructureare includedbecauseofitsimportancetothelateralGaNHEMTdevicesthathave beencommercialized.AdiscussionofdefectsproducedduringthegrowthofGaN layersonsiliconsubstratesisincludedhereduetoitsrelevancetothereliabilityof thesedevices.

Chapter4,SiCpowerdevicedesignandfabrication,preparedbyProfessor IwamurofromtheUniversityofTsukuba,providesacomprehensivediscussionof siliconcarbidepowerdiodesandtransistors.ThephysicsofoperationofSiC P i NdiodesandJBSrectifiersisdescribedandtheirperformanceisquantified forvariousblockingvoltages.Thedesignofarobustedgeterminationiscriticalto maximizingtheirperformance.AnextensivediscussionoftheSiCpowerMOSFET structurewitheithertheplanarortrenchgateapproachisprovided.Goodshortcircuitcapabilityforthesedevicesisessentialtotheiracceptanceinapplications. ThepotentialtodevelopveryhighvoltageSiCIGBTsisanalyzedhereaswell.

Chapter5,GaNsmartpowerdevicesandICs,preparedbyProfessorChowfrom RensselaerPolytechnicInstitute,providesathoroughdiscussionofgalliumnitride powerdevices.LateralpowerdevicesbaseduponGaN-on-Sitechnologywiththe HEMTstructurearecoveredindetailhere.ProspectsformakingGaN-basedpower ICsareincludedinthechapter.

Chapter6,GaN-on-GaNpowerdevicedesignandfabrication,preparedby ProfessorChowdhuryfromUniversityofCaliforniaDavis,describesrecentprogresswithdesignandfabricationofverticalGaNdevicesusingbulkGaNsubstrates. ThechallengesofmakingtheCAVETstructurewithenhancement-modeoperation aredescribedhere.

Chapter7,Gatedriversforwidebandgappowerdevices,preparedbyProfessor BhattacharyafromNorthCarolinaStateUniversity,highlightstheimportanceof providingadequategatedrivecapabilityforwidebandgapsemiconductorpower devices.Thechallengesandsolutionsfordrivingthesedevicestoachievehigher operatingfrequenciesaredescribedhere.TheoperationofSiCandGaNdevicesat higherfrequenciesoffsetsthehighercostofthedevicesduetoreductionofsize, weight,andcostofpassiveelements.ThechapteralsoprovidesinsightintodesigningdriversforveryhighblockingvoltageIGBTswithextremelyhighdV/dttransientsinpowercircuits.

Chapter8,ApplicationsofGaNpowerdevices,preparedbyagroupofprofessorsfromVirginiaPolytechnicInstitute,describespotentialapplicationsforGaN powerdevices.Anumberofconverterdesignsimplementedbytheauthorsfor powersupplyapplicationsaredescribedhere.Theimprovementinefficiencyby replacingsiliconwithGaNdevicesisquantifiedhere.

Chapter9,ApplicationsofSiCdevices,preparedbyauthorsfromtheFranhaufer Institute,providesafocusedperspectiveofthebenefitsofsiliconcarbidepower devicesonsolar(PV)inverters.ThebenefitsofreplacingsilicondeviceswithSiC devicesforinverterefficiencyarequantifiedhere.

Inthefinalchapter,Ihaveprovidedaperspectiveonthehistoryofwidebandgapsemiconductorpowerdevicedevelopmentsince1980.Sometechnologytrends

thatareanticipatedareprovidedhere.Thegrowthintheapplicationsforsilicon carbideandgalliumnitridepowerdevicesisprognosticatedwithsystemrequirementsdefinedtomakethishappen.Theprojectedmarketsizethathasmotivated theinvestmentsinthistechnologyisprovidedintothefutureuntil2025.Inaddition,pricetargetsforsiliconcarbidepowerdeviceswithvariousblockingvoltage ratingsaredefinedfollowedbyamanufacturingstrategytoachievethem.

Ithasbeenmyprivilegetohaveinitiatedtheworldwideinterestincreatinga quantumleapinpowerdeviceperformancebyreplacingsiliconwithwidebandgap semiconductors.Althoughthemeritsofachievingthisgoalwereimmediatelyrecognized,ithastaken35yearsofefforttodevelopthewafermaterialtechnology andreengineerthedevicestructurestomakecommerciallyviableproducts.

B.JayantBaliga

NorthCarolinaStateUniversity,Raleigh,NC,UnitedStates

June2018

Introduction

NorthCarolinaStateUniversity,Raleigh,NC,UnitedStates

1.1Siliconpowerdevices

1

Efficientelectricalpowergeneration,distribution,andmanagementhasbecome essentialinmodernsociety.Thesefunctionswerefirstservedbythedevelopment ofbipolarsiliconpowerdevicestodisplacevacuumtubesinthe1950s.Theratings ofsiliconbipolartransistorsandthyristorsgrewrapidlytoserveaneverbroader systemneed.However,theirfundamentallimitationsintermsofthecumbersome controlandprotectioncircuitryledtobulkyandcostlysolutions.Anewclassof devicesevolvedinthe1970sforpowerswitchingapplicationswiththeadventof metaloxidesemiconductor(MOS)technologyfordigitalcircuits.Thesesilicon powermetaloxidesemiconductorfieldeffecttransistors(MOSFETs)havefound extensiveuseinhighfrequencyapplicationswithrelativelylowoperatingvoltages (under100V).ThemergerofMOSandbipolarphysicsenabledcreationofyet anotherclassofsilicondevicesinthe1980s.Themostsuccessfulinnovationinthis classofdeviceshasbeentheinsulatedgatebipolartransistor(IGBT) [1].Thehigh powerdensity,simpleinterface,andruggednessoftheIGBThavemadeitthetechnologyofchoiceforallmediumandhighpowerapplications.

Inthe1990s,theconceptoftwo-dimensionalchargecouplingwasintroduced usingtwobasicapproachestosignificantlyreducetheon-stateresistanceofsilicon powerdevices.Thefirstapproachutilizedasourceconnectedelectrodeembedded insideadeepverticaltrench.Thismethodenabledanewgenerationofsilicon powerdevicesthathavebeencommercializedwithvoltageratingsof30 200V. ThesecondapproachutilizedalternatingverticalcolumnsofP-andN-typesilicon regions.Productswithblockingvoltagearound600Vhavebeencommercialized usingthismethod.Anywidebandgapsemiconductorpowerdevicesmustoutperformtheseadvancedsiliconpowerdevicesnowavailableinthemarket.

1.2Siliconpowerdeviceapplications

Powerdevicesareusedinallsectorsoftheeconomywithsystemsthatoperateover abroadspectrumofpowerlevelsandfrequencies.Theapplicationsforpower devicesareshownasafunctionofoperatingfrequencyin

Fig.1.1.Highvoltage directcurrent(HVDC)powerdistributionandlocomotivedrivesthatrequirethe

controlofmegawattsofpoweroperateatrelativelylowfrequencies.Thepowerratingsdecreaseforthedeviceswhentheoperatingfrequencyincreaseswithtypical microwavedeviceshandlingabout100W.Alloftheseapplicationsareservedby silicondevicestoday.PowerMOSFETsarepreferredforthehighfrequencyapplicationsoperatingfromlowpowersourcevoltages.Theseapplicationsinclude powersuppliesforcomputersandlaptops,powermanagementinsmartphones,and automotiveelectronics.Untilrecently,thyristorsweretheonlydevicesavailable withsufficientvoltageandcurrentratingsfavoredfortheHVDCpowerdistribution applications.TheratingsofIGBTshavenowgrowntolevelswheretheyarenow preferredoverthyristorsforvoltagesourceconvertersandflexiblealternatingcurrenttransmission(FACTs)designs.Themediumfrequencyandpowerapplications suchaselectrictrains,hybrid-electriccars,homeappliances,compactfluorescent lamps,medicalequipment,andindustrialmotordrivesalsoutilizetheIGBT. Siliconpowerdevicescanalsobeclassifiedbasedontheircurrentand voltage-handlingrequirementsasshownin Fig.1.2 .Thyristorsareavailablethat canindividuallyhandleover6000Vand2000Aenablingthecontrolofover

Figure1.1 Applicationsforpowerdevicesoverabroadrangeoffrequencies.

Applicationsforsiliconpowerdevicesusingsystemvoltageandcurrentratings.

10MWofpowerbyasinglemonolithicdevice.Thesedevicesaresuitablefor theHVDCpowertransmissionapplications.Duringlast10years,siliconIGBT moduleshavebeendevelopedwithblockingvoltagesofupto6500Vandcurrenthandlingcapabilityabove1000A.ThishasallowedthesiliconIGBTto replacethyristorsinHVDC.ThesiliconIGBTistheoptimumsolutionfora broadrangeofsystemsthatrequireoperatingvoltagesbetween300Vand 3000Vwithsignificantcurre nthandlingcapability.These applicationsspanall sectorsoftheeconomyincludingconsumer,industrial,transportation,lighting, medical,defense,andrenewableenergygeneration [1] .Itisfeasibletointegrate multiplesilicondevicesonasinglemonol ithicchipwhenthecurrentrequirementsfallbelow1Atoprovidegreaterfunctionalityforsystemssuchastelecommunicationsanddisplaydrives.However,whenthecurrentexceedsafew amperes,itismorecosteffectivetousediscretepowerMOSFETswithappropriatecontrolICstoserveapplicationssuchasautomotiveelectronicsand switchmodepowersupplies.

1.3Siliconcarbideidealspecificon-resistance

Theidealspecificon-resistanceforthedriftregioninaverticalunipolarpower devicesisgivenby [2]:

Figure1.2

Figure1.3 Idealspecificon-resistanceforsiliconcarbidepowerdevices.

where εS isthedielectricconstantofthesemiconductor, μn istheelectronmobility, and EC isthecriticalelectricfieldforbreakdowninthesemiconductor.ThedenominatoriscalledBaliga’sfigure-of-merit(BFOM) [3,4]:

Itisameasureofthepower-handlingcapability(W/cm2)ofapowerdevice. Unipolarsiliconcarbidepowerdeviceshavelowon-statevoltagedropduetoits largeBFOM.Thisismainlyduetotheapproximatelytenfoldincreaseincritical electricfieldforbreakdownforSiCcomparedwithsilicon.

Theidealspecificon-resistanceforthedriftregionin4H-SiCdevicesiscomparedwiththatforsiliconin Fig.1.3 forbreakdownvoltagesfrom100to 100,000V.Asignificantreductioninthespecificon-resistanceofdriftregionsis predictedbyreplacingsiliconwith4H-SiC.Theratioofthespecificon-resistance forsilicontothatfor4H-SiCincreasesfrom527atabreakdownvoltageof100V to1280forbreakdownvoltagesabove40,000V.

1.4Siliconcarbidepowerrectifiers

SiliconbipolarpowerP i Ndiodesoperatewiththeinjectionofminoritycarriers duringon-statecurrentflow [2].Thesecarriersmustberemovedwhenswitching thedevicefromtheon-statetotheoff-state.Thisisaccomplishedbythereverse recoveryprocessthatproducesalargereversecurrentduringturnoff.Thiscurrent producessignificantpowerlossesinthediodeandtheswitchesinthecircuits.

SCHOTTKY CONTACT METAL (ANODE) OHMIC CONTACT METAL (CATHODE)

Itisthereforepreferabletoutilizeunipolarcurrentconductioninapowerdiode. ThecommonlyusedunipolarpowerdiodestructureistheSchottkyrectifierthatutilizesametal-semiconductorbarriertoproducecurrentrectification.ThehighvoltageSchottkyrectifierstructurecontainsadriftregion,asshowin Fig.1.4,whichis designedtosupportthereverseblockingvoltage.Theresistanceofthedriftregion increasesrapidlywithincreasingblockingvoltagecapability.SiliconSchottkyrectifiersarecommerciallyavailablewithblockingvoltagesofupto150V.Beyondthis value,theon-statevoltagedropofsiliconSchottkyrectifiersbecomestoolargefor practicalapplications.SiliconP i Nrectifiersarefavoredfordesignswithlarger breakdownvoltagesduetotheirloweron-statevoltagedropdespitetheirslower switchingproperties.

SiliconcarbideSchottkyrectifiershavemuchlowerdriftregionresistance enablingdesignofveryhighvoltagedeviceswithlowon-statevoltagedrop.These devicesareexcellentreplacementsforsiliconP i Nrectifiersusedasfly-backor free-wheelingdiodeswithIGBTsininverters.However,amajorproblemobserved inSiCSchottkyrectifiersisthelargeincreaseinthereverseleakagecurrentwith increasingreversebiasvoltage.Anincreaseinreverseleakagecurrentbyfive ordersofmagnitudeoccursduetoSchottkybarrierloweringandtunneling.Thisis aseriousproblemforhightemperatureoperationandstabilityfortheserectifiers.

TherapidincreaseinleakagecurrentforSchottkyrectifierswithincreasing reversebiasvoltagecanbemitigatedbyusingthejunction-barriercontrolled

Figure1.4 ThebasicSchottkyrectifierstructure.

Figure1.5 ThesiliconJBSrectifierstructure.

Schottky(JBS)structure [5,6] shownin Fig.1.5.ThisstructurecontainsP1 regions surroundingtheSchottkycontacts.Adepletionregionextendsfromthejunction andformsapotentialbarrierundertheSchottkycontact.ThissuppressestheelectricfieldattheSchottkycontact.ThelowerelectricfieldattheSchottkycontact reducestheSchottkybarrierloweringandtunnelingatthecontact [7]

1.5SiliconpowerMOSFETs

ThecommerciallyavailablesiliconpowerMOSFEThasbeenwidelyusedforlower powerapplicationswherethesupplyvoltagesarebelow200V.Thecommercially availablesiliconpowerMOSFETproductsarebaseduponthestructuresshownin Fig.1.6.IntheD-MOSFETstructure,theP-baseregionandtheN1 sourceregions areself-alignedtotheedgeofthepolysilicongateelectrodebyusingionimplantationofboronandphosphoruswiththeirrespectivedrive-inthermalcycles. TheN-typechannelisdefinedbythedifferenceinthelateralextensionofthejunctionsunderthegateelectrode.Thedevicesupportspositivevoltageappliedtothe drainacrosstheP-base/N-driftregionjunction.Thevoltageblockingcapabilityis determinedbythedopingandthicknessofthedriftregion.Althoughlowvoltage ( , 100V)siliconpowerMOSFEThavelowon-resistances,thedriftregionresistanceincreasesrapidlywithincreasingblockingvoltagelimitingtheperformance ofsiliconpowerMOSFETstobelow200V.ThesiliconU-MOSFETstructurehas agatestructureembeddedwithinatrenchetchedintothesiliconsurface.The N-typechannelisformedontheside-wallofthetrenchatthesurfaceoftheP-base region.Thechannellengthisdeterminedbythedifferenceinverticalextensionof

theP-baseandN1 sourceregionsascontrolledbytheion-implantenergiesand drivetimesforthedopants.ThesiliconU-MOSFETstructurewasdevelopedto reducetheon-stateresistancebyeliminationoftheJFETcomponentwithinthe D-MOSFETstructure [2].

Thechargecouplingconceptwasanimportantinnovationforsiliconpower MOSFETs.Italterstheelectricfielddistributioninthedriftregionandallowssupportinghighvoltageswithlargedopingconcentrationsinthedriftregion [8].The firstchargecoupledverticalsiliconpowerMOSFETwastheGD-MOSFETstructureshownin Fig.1.7 ontheleft-handside [9,10].Thedevicecontainsadeep trenchregionwithasourceconnectedelectrode.Auniformelectricfieldcanbe generatedinthedriftregionbyusingagradeddopingprofileinthedriftregion withhighdopingconcentrations [11].Breakdownvoltageswellabovetheparallelplanebreakdownvoltagecanbeachievedusingthisidea.Thespecificonresistanceofthesedeviceshasbeenshowntobewellbelow(5to25times)that fortheconventionalsilicondevicesforblockingvoltagesrangingfrom50to 1000V [6].Manycompanieshavereleasedproductsusingthisapproach.

Analternatecharge-coupledsiliconpowerMOSFETistheCOOLMOSstructure shownin Fig.1.7 ontheright-handside.Here,thechargecouplingisaccomplished acrosstheverticalP NjunctionformedbetweencolumnsofPandNdriftregions [12].Manystudieshavebeenperformedtooptimizethisdevicestructureforblockingvoltagesof500 1000V [6].IthasbeendemonstratedthattheCOOLMOS structurehasabout3to10timeslowerspecificon-resistancethantheconventional

Figure1.6 ThesiliconpowerMOSFETstructures.

Thesiliconcharge-coupledpowerMOSFETstructures.

siliconpowerMOSFETsatabreakdownvoltageof600V.Manycompanieshave commercializedthisdevicestructureundervariousnames.

AnyproposedGaNorSiCpowerswitchtechnologymustcompetewithnotonly theconventionalsiliconpowerMOSFETstructuresbutalsothenewchargecoupled siliconpowerMOSFETs.Thechargecoupledsilicondevicesoffermuchbetterperformancebutrequireamoreexpensivefabricationprocess.Thisdifferencemust alsobetakenintoaccount.

1.6SiliconcarbidepowerMOSFETs

ThesiliconD-MOSFETstructurecannotbereplicatedinsiliconcarbideforseveral reasons.First,thedopantsinsiliconcarbidedonotdiffuseevenatveryhightemperatures.Consequently,thechannelinsiliconcarbideplanarpowerMOSFETsis createdbystaggeringtheP-baseandN1 sourceionimplants [13].Thishasbeen calledthedouble-implantedorDI-MOSFETstructure [14].Second,alargeamount ofdepletionoccursintheP-baseregionofsiliconcarbidedevicesduetothelarge electricfieldattheblockingjunction [15].Thisleadstoverylargechannellength resultinginpooron-resistanceofdevices.Thisproblemcanbesolvedbyusingthe shieldedSiCplanarpowerMOSFETstructures [16] shownin Fig.1.8 witheither aninversionlayeroranaccumulationlayerchannel.AdeepP1 shieldingregion hasbeenincorporatedintothestructurestopreventthedepletionofthebase regions.Inthecaseofthestructurewiththeinversionlayerchannel,theP1 shieldingregionextendsunderboththeN1 sourceregionaswellasundertheP-base region.Inthecaseofthestructurewiththeaccumulationlayerchannel,theP1 shieldingregionextendsundertheN1 sourceregionandtheN-baseregionlocated underthegate.ThisN-baseregioncanbeformedusinganuncompensatedportion

Figure1.7

Figure1.8 TheshieldedSiCpowerMOSFETstructures.

oftheN-typedriftregionoritcanbecreatedbyaddingN-typedopantsnearthe uppersurfacewithionimplantationorepitaxialgrowthtoindependentlycontrolits thicknessanddopingconcentration.

Anotherimportantproblemforsilic oncarbidepowerMOSFETsisthelarge electricfieldgeneratedinthegateoxideduetothelargeelectricfieldinthe semiconductorwhenblockinghighvoltages.Thisproblemcanbeovercomeby usingtheshieldedstructuresshownin Fig.1.8 .ThegapbetweentheP 1 shieldingregionsisoptimizedtoobtainalowspecificon-resistancewhilesimultaneouslyshieldingthegateoxideinterfacefromthehighelectricfieldinthedrift region.

Ithasbeendemonstratedthatsignificantlylargermobilityforelectronsis observedinthechannelforaccumulation-modeSiCpowerMOSFETswhencomparedwithinversion-modeSiCpowerMOSFETs [17].Thisallowsreducingthe specificon-resistanceofSiCpowerMOSFETswithblockingvoltagesbelow3kV. Fordeviceswithlargerblockingvoltages,thedriftregionresistancebecomesdominant [18].Atpresent,mostoftheSiCpowerMOSFETcommercializationeffortis focusedondeviceswithblockingvoltagesof1.2and1.7kV.

1.7SiliconcarbidepowerjunctionbarrierSchottkyfield effecttransistors(JBSFETs)

Mostapplicationsforpowerdevicesrequirecurrentflowinnotonlythefirst quadrantbutalsointhethirdquadrant.Onecommonsuchapplicationisthe

H-bridgecircuitusedformotorcontrol.Thepresenceofthebodydiodeinthe powerMOSFETstructureprovidesaconvenientpathforcurrentflowinthe thirdquadrant.Alternately,thegatecanbeturnedonevenwhenthedrainvoltagehasanegativepotentialallo wingcurrentflowviathechannel. Unfortunately,theperfectsynchroni zationofthegatesignalwiththeswitching ofthedrainvoltageintothethirdquadrantisnotpossibleproducingcurrent flowviathebodydiode.ForSiCpowerMO SFETs,theon-statevoltagedropfor thebodydiodeexceeds4Vproducinghigh conductionlosses.Inaddition,the bodydiodeconductionintroducesminoritycarrierinjectionandstoredchargein thedriftlayer.Theremovalofthestoredchargeisaccompaniedbyareverse recoverycurrentthatproducesenhancedturn-onswitchinglossesinthe MOSFETs.Ithasalsobeenfoundthat powerMOSFETcharacteristicscanbe degradedwhenthebodydiodeisturned-onduetothegenerationofstacking faultsatbasalplanedislocations.

TheaboveproblemshavebeenovercomebycreatingtheSiCjunctionbarrier controlledSchottkyfieldeffecttransistor(JBSFET)structurewhereaJBSdiode isintegratedintothepowerMOSFETstructure [19,20] asillustratedin Fig.1.9 IthasbeendemonstratedthattheJBSdiodeinsidetheJBSFETcanbefabricated usingasinglemetaltomaketheohmiccontactstotheN 1 sourceregionandthe P-baseregionwhileproducingaSchottkycontacttotheN-drainregion.TheJBS diodehasavoltagedropofonly2Vwhenconductingcurrentinthethirdquadrantwhichpreventsturn-onoftheMOSFETP Njunctionbodydiode.

Figure1.9 TheSiCpowerJBSFETstructure.

1.8SiliconcarbidepowerMOSFETswithimprovedhigh frequencyperformance

InordertomaximizethebenefitsofreplacingthesiliconIGBTwithSiCpower MOSFETs,itisnecessarytoincreasethecircuitoperatingfrequencytoreduce thesizeandcostofpassiveelements.SiCpowerMOSFETsmustbeoptimizedto reducetheirswitchinglosses.Thiscanbeachievedbyreducingthereversetransfer capacitance(CGD)withinnovationsinthegatestructure.Twodevicestructuresthat produceasignificantlyimproved(smaller)high-frequencyfigures-of-merit (HFFOM),definedby[Ron CGD]and[Ron QGD],areshownin Fig.1.10

Thesplit-gate(SG)-MOSFETstructurehasapolysilicongatewithan openinginthemiddleofthegateelectrode whereitoverlapsthedriftregion.This structurecanbefabricatedusingthesameprocessusedtomaketheconventional SiCplanar-gatepowerMOSFET.ThemeasuredHFFOM[Ron CGD ]forthe SG-MOSFEThasbeenfoundtobe1.3times smallerthanfortheconventional MOSFETwhileitsHFFOM[R on QGD]is2.4timessmallerthanfortheconventionalMOSFET [21]

Thebuffered-gate(BG)-MOSFETstructurehasapolysilicongatewithanopeninginthemiddleofthegateelectrodewhereitoverlapsthedriftregion.Inaddition,theP1 shieldingregionisextendedbeyondtheedgeofthegateelectrodeto completelyscreenitfromthedrain.TopreventcompletedepletionoftheN-type regionabovetheP1 shieldingregion,itisnecessarytoaddasecondjunctionfield effecttransistor(JFET)2regionwithhigherdopingconcentrationthanintheJFET 1region.ThemeasuredHFFOM[Ron CGD]fortheBG-MOSFEThasbeenfound

tobe3.6timessmallerthanfortheconventionalMOSFETwhileitsHFFOM [Ron QGD]is4.0timessmallerthanfortheconventionalMOSFET [22].

1.9Siliconcarbidebidirectionalfieldeffecttransistor

Matrixconvertersrequirepowerdevicesthatcanblockhighvoltageinthefirstand thirdquadrantsandcarrygatecontrolledcurrentinbothquadrants [23].Thedevelopmentandcommercializationofthesetypesofconvertershasbeenhinderedby thelackofavailabilityofacost-effectivebidirectionalswitchwithlowon-state voltagedropandswitchinglosses.Manyapproachestocreatingabidirectional switchhavebeenproposedusingsiliconIGBTsandSiCpowerMOSFETs.They requiremultipleindependentlypackageddeviceswithahighneton-statevoltage drop.

TheSiCbidirectionalfieldeffecttransistor(BiDFET)wasproposedtoaddress thisapplication [24].ItconsistsoftwoSiCJBSFETsconnectedinseriesasshown in Fig.1.11.Thesedevicescanalsobemonolithicallyintegratedbybuildingthem adjacenttoeachotheronthesameSiCwafer.TerminalT1servesasthereference terminaloftheBiDFETwithhighACvoltagesappliedtoterminalT2.Bothgates G1andG2areusedtocontroltheoperationofthedeviceinthefirstandthird quadrant.Itisworthemphasizingthat,unlikeconventionalpowerMOSFETs,no externalelectricalconnectionisperformedtotheN1 substrate(drain)intheproposedBiDFET.

HighblockingvoltagecapabilityinthefirstquadrantisachievedintheBiDFET withzerobiasappliedtogateG1withrespecttoterminalT1.Underthese

conditions,thebodydiodeofpowerJBSFET2isforwardbiasedandthehighvoltageissupportedacrosspowerJBSFET-1anditsedgetermination.Highblocking voltagecapabilityinthethirdquadrantisachievedwithzerobiasappliedtogate G2withrespecttoterminalT2.Undertheseconditions,thebodydiodeofpower JBSFET1isforwardbiasedandthehighvoltageissupportedacrosspower JBSFET-2anditsedgetermination.

CurrentconductioninthefirstquadrantisachievedintheBiDFETbytheapplicationofapositivegatedrivevoltagetobothgatesG1andG2withreferenceto thecorrespondingterminalsT1andT2.Thisturns-onthechannelforbothSiC powerJBSFETs.Theon-resistanceoftheBiDFETisthenthesumoftheonresistanceofbothSiCpowerJBSFETs1and2.Itcanbereducedasdesiredby scalingtheareaofbothpowerJBSFETstoachievealowon-statevoltagedrop.

Gatevoltage-controlledcurrentsaturationwithexcellentoutputcharacteristicsis achievedintheBiDFETaspreviouslydemonstratedforSiCpowerMOSFETs.The BiDFETalsohasfastswitchingcapabilityaspreviouslydemonstratedforSiC powerMOSFETs.Thesefeaturesmakeitwellsuitedformatrixconvertersoperatingathighfrequenciestoachievehighpowerdensity.

Oneoftheproblemsthatcanbeencounteredinbidirectionalswitchesusedin matrixconvertersoccursduringthedead-timeorcommutation-time.Thiscanlead tocurrentconductionviathebodydiodeintheMOSFETs.Ithasbeendocumented thatcurrentflowviathebodydiodeofSiCpowerMOSFETscanleadtobipolar degradationofthedevices.ThisproblemiscircumventedintheBiDFETbyimplementingitusingSiCJBSFETs.Inthiscase,thecurrentflowoccursviatheintegratedJBSdiodeswithintheJBSFETstructurepreventingcurrentfollowviathe P Nbodydiodetocompletelysuppressthebipolardegradationphenomenon.

TheBiDFEThasbeenexperimentallydemonstratedwith1.2kVratedJBSFETs [25].Thedeviceswereshowntoexhibitgatevoltage-controlledoutputcharacteristicsinthefirstandthirdquadrantwithblockingvoltagesofupto1650V.Theonresistanceofthedevicesinbothquadrantsisthesumoftheresistanceofeachof theJBSFETswiththeon-stategatebiasof20V.Theon-statecharacteristicsexhibit akneeofabout1Vifthegatevoltageisnotappliedtothedevicewiththeforward biasedJBSdiode.TheBiDFETrequiresonlyasinglepackageincontrasttopreviousbidirectionalswitchesthatneed4 6separatelypackageddevices.Itson-state voltagedropcanbereducedtoonly0.5Vbyscalingtheon-resistanceofthe JBSFETscomparedwithmorethan1.25Vforthepriordevices.

1.10Siliconcarbidepowerdeviceapplications

Inprinciple,siliconcarbidepowerMOSFETsareexcellentcandidatestoreplace siliconIGBTsinalltheirapplicationsbecauseoftheirlowon-resistanceand reducedswitchinglosses.However,thecostoftheSiCpowerMOSFETsissubstantiallylargerthanthatofthesiliconIGBT.Asaconsequence,SiCpower MOSFETshavebeensuccessfullyusedinselectedapplicationsasshownin

ApplicationsforSiCpowerMOSFETstructures.

Fig.1.12.Oneoftheseapplicationsisinvertersforsolarpowergeneration.The replacementofsiliconIGBTswithSiCpowerMOSFETshasbeenshownto increasetheefficiencyby1% 2%.Thismodestgaininenergygenerationoffsets thelargerinitialcostoftheSiCdevices.

AnotherpromisingapplicationforSiCpowerMOSFETsisininvertersforelectricandhybrid-electricvehicles.Theimprovedinverterefficiencyallowsextending therangeofthevehicles.Inaddition,theSiCinverterscanbeoperatedathigher frequenciesthanthosebasedonsiliconIGBTs.Thisallowsreductionofpassive componentsizeandweight,animportantbenefitforinelectricvehicles.

AsthecostofSiCpowerMOSFETisreducedinthefuture,itisanticipatedthat theirapplicationswillexpandasindicatedbythearrowsin Fig.1.12.ThepenetrationofSiCpowerMOSFETsintoapplicationsservedbytheSiIGBTwillbeacceleratedbymakingproductswithsuperiorHF-FOMs,suchastheSG-MOSFETand BG-MOSFET.

1.11Galliumnitridepowerdevices

Thecommercializationofgallium nitridedeviceswasacceleratedbythesuccessful growthofhighqualitygalliumnitridelayersonsiliconsubstratesbyusingatransitionlayerasillustratedin Fig.1.13 toamelioratethelatticemismatchbetweenthe materials.ThecostofthewafersisgreatlyreducedincomparisonwithSiCorGaN

Figure1.12

SOURCE DRAIN

substratesbytheuseoflargediametersiliconsubstrates.Athinaluminum gallium nitridelayerisformedontopofthegalliumnitridelayertoproducethetwodimensionalelectrongasinthegalliumnitride.Theelectronsinthetwo-dimensional electrongashaveahighmobility(B2000cm2/Vs)andcharge(B1013 cm 2).This createsahighconductivitycurrentpaththroughtheGaNdriftregionwithlowspecificon-resistancedespitethelateraldevicestructure.Thisallowscreatinglateral deviceswithhigh-blockingvoltagesandlow-specificon-resistance.

GaNHEMTstructureshavebeendemonstratedwithveryhighblockingvoltages.However,commercialdeviceshaveblockingvoltagesintherangeof 600 900V.TheinterdigitatedcellstructureforthelateralGaNHEMTdeviceis difficulttoscaletohighercurrentlevels.Thisisrestrictedthecurrentratings between50Aand100A.Furthermore,ithasbeendifficulttoachievean enhancement-modelateralGaNHEMTdevice.Unfortunately,normally-ondevices areunacceptableforpowerelectronicsapplications.Normally-offGaNdevices havebeenrealizedbyusingtheBaliga-Pairorcascodeconfiguration.IntheBaligaPair [26],anormally-onsiliconcarbidehighvoltageJFET/MESFETdeviceora GaNHEMTdeviceisusedtogetherwithalowvoltagesiliconMOSFETtocreatea configurationwiththedesiredfeaturesforahigh-qualitypowerswitch.Thebasic ideaisillustratedin Fig.1.14.ItconsistsofahighvoltagesiliconcarbideJFETor MESFETstructurewithitssourceelectrodeconnectedtothedrainelectrodeofa lowvoltagesiliconpowerMOSFET.Animportantfeatureofconfigurationisthat thegateofthesiliconcarbidedeviceisconnectedtothesourceofthesiliconpower MOSFETwhichservesasthegroundorreferenceterminalincircuits.Gatesignals areexclusivelyappliedtothegateofthesiliconpowerMOSFET.Thedrainofthe siliconcarbidedeviceisconnectedtotheloadinpowercircuitsaswouldbedone withthedrainofsiliconpowerMOSFETs.TheBaliga-PairconfigurationisathreeterminalpowerswitchwithanMOS-inputinterfaceprovidedbythesiliconpower

SILICON SUBSTRATE
Figure1.13 TheGaNHEMTstructureformedonasiliconsubstrate.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.