Waste biorefinery: integrating biorefineries for waste valorisation thallada bhaskar (editor) - Down

Page 1


https://ebookmass.com/product/waste-biorefinery-integrating-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Waste Valorisation: Waste Streams in a Circular Economy

Carol Sze Ki Lin

https://ebookmass.com/product/waste-valorisation-waste-streams-in-acircular-economy-carol-sze-ki-lin/

ebookmass.com

Advanced Materials from Recycled Waste Sarika Verma

https://ebookmass.com/product/advanced-materials-from-recycled-wastesarika-verma/

ebookmass.com

Zero Waste Cooking For Dummies 1st Edition Rosanne Rust

https://ebookmass.com/product/zero-waste-cooking-for-dummies-1stedition-rosanne-rust/

ebookmass.com

Unheard Voices: Women, Work and Political Economy of Global Production 1st ed. Edition Farah Naz

https://ebookmass.com/product/unheard-voices-women-work-and-politicaleconomy-of-global-production-1st-ed-edition-farah-naz/

ebookmass.com

Anti-Proverbs in Five Languages: Structural Features and Verbal Humor Devices Anna T. Litovkina

https://ebookmass.com/product/anti-proverbs-in-five-languagesstructural-features-and-verbal-humor-devices-anna-t-litovkina/

ebookmass.com

The Honorable Warrior: Navy SEAL Romance Krey

https://ebookmass.com/product/the-honorable-warrior-navy-seal-romancekrey/

ebookmass.com

Halloween is Coming! Cal Everett

https://ebookmass.com/product/halloween-is-coming-cal-everett/

ebookmass.com

Pharis' Pickle in Seagull Bay: A heartwarming & uplifting new coastal town series Hill

https://ebookmass.com/product/pharis-pickle-in-seagull-bay-aheartwarming-uplifting-new-coastal-town-series-hill/

ebookmass.com

Islands and the British Empire in the Age of Sail Douglas Hamilton (Editor)

https://ebookmass.com/product/islands-and-the-british-empire-in-theage-of-sail-douglas-hamilton-editor/

ebookmass.com

https://ebookmass.com/product/shrm-cp-shrm-scp-certification-all-inone-exam-guide-2nd-edition-beverly-dance/

ebookmass.com

Editedby ThalladaBhaskar BiomassConversionArea, MaterialResourceEfficiencyDivision,

CSIR-IndianInstituteofPetroleum,Dehradun,India

AshokPandey CentreforInnovationandTranslationalResearch,

CSIR-IndianInstituteofToxicologyResearch,Lucknow,India

EldonR.Rene

IHEDelftInstituteforWaterEducation,Delft,TheNetherlands

DanielC.W.Tsang DepartmentofCivilandEnvironmentalEngineering, TheHongKongPolytechnicUniversity,HongKong

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2020ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomthey haveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-818228-4

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: KostasKIMarinakis

EditorialProjectManager: EmeraldLi

ProductionProjectManager: SelvarajRaviraj

CoverDesigner: MilesHitchen

TypesetbyTNQTechnologies

Contributors

RabiaAbad SchoolofAppliedSciences,TheUniversityofHuddersfield,Huddersfield,United Kingdom

AbdelrahimAbusafa ChemicalEngineeringDepartment,An-NajahNationalUniversity,Nablus, Palestine

MortazaAghbashlo DepartmentofMechanicalEngineeringofAgriculturalMachinery,Faculty ofAgriculturalEngineeringandTechnology,CollegeofAgricultureandNaturalResources, UniversityofTehran,Karaj,Alborz,Iran

AsamAhmed DivisionofSystems,Power&Energy,JamesWattSchoolofEngineering, UniversityofGlasgow,Glasgow,UnitedKingdom

MaherAl-Jabari RenewableEnergyandEnvironmentResearchUnit,MechanicalEngineering Department,PalestinePolytechnicUniversity,Hebron,Palestine

MariaAlexandri LeibnizInstituteforAgriculturalEngineeringandBioeconomyPotsdam, Potsdam,Germany

A.K.M.KaziAurnob DepartmentofChemicalEngineering,BangladeshUniversityofEngineeringandTechnology,Dhaka,Bangladesh

AyanBanerjee MaterialResourceEfficiencyDivision,CSIR-IndianInstituteofPetroleum, Dehradun,Uttarakhand,India;AcademyofScientificandInnovativeResearch(AcSIR),New Delhi,India

ShishirKumarBehera IndustrialEcologyResearchGroup,SchoolofChemicalEngineering, VelloreInstituteofTechnology,Vellore,TamilNadu,India

LaurentBelard NaturePlast,Ifs,France

StellaBezergianni ChemicalProcess&EnergyResourcesInstitute-CPERI,CentreforResearch &TechnologyHellasCERTH,Thessaloniki,Greece

ThalladaBhaskar MaterialResourceEfficiencyDivision,CSIR-IndianInstituteofPetroleum, Dehradun,Uttarakhand,India;AcademyofScientificandInnovativeResearch(AcSIR),New Delhi,India

NilutpalBhuyan DepartmentofEnergy,TezpurUniversity,Tezpur,Assam,India

HanifA.Choudhury DepartmentofChemicalEngineering,TexasA&MUniversityatQatar, Doha,Qatar

LoukiaP.Chrysikou ChemicalProcess&EnergyResourcesInstitute-CPERI,Centrefor Research&TechnologyHellasCERTH,Thessaloniki,Greece

CaterinaCollLozano ImecalS.A.,La ´ lcudia,Valencia,Spain

SutapaDas DepartmentofChemicalEngineering,IndianInstituteofTechnologyGuwahati, Guwahati,Assam,India

AntonioDavid-Moreno CIEMAT,Madrid,Spain

FrancescaDemichelis DIATI,PolitecnicodiTorino,Torino,Italy

ChenyuDu SchoolofAppliedSciences,TheUniversityofHuddersfield,Huddersfield,United Kingdom

CapucineDupont DepartmentofEnvironmentalEngineeringandWaterTechnology,IHEDelft InstituteforWaterEducation,Delft,TheNetherlands

AmerElhamouz ChemicalEngineeringDepartment,An-NajahNationalUniversity,Nablus, Palestine

SilviaFiore DIATI,PolitecnicodiTorino,Torino,Italy

Marı´aGarcı´aTorreiro AINIA-Centrotecnolo ´ gico,Paterna,Valencia,Spain

DebashishGhosh MaterialResourceEfficiencyDivision,CSIR-IndianInstituteofPetroleum, Dehradun,Uttarakhand,India;AcademyofScientificandInnovativeResearch(AcSIR),New Delhi,India

InmaculadaGonza ´ lezGranados BiomasaPeninsularS.A.,Madrid,Spain

VaibhavV.Goud DepartmentofChemicalEngineering,IndianInstituteofTechnologyGuwahati, Guwahati,Assam,India

JasneetGrewal EnzymeandMicrobialBiochemistryLaboratory,DepartmentofChemistry, IndianInstituteofTechnologyDelhi,HauzKhas,NewDelhi,India

NataliaHerreroGarcı ´ a BiomasaPeninsularS.A.,Madrid,Spain

HomaHosseinzadeh-Bandbafha DepartmentofMechanicalEngineeringofAgriculturalMachinery,FacultyofAgriculturalEngineeringandTechnology,CollegeofAgricultureandNaturalResources,UniversityofTehran,Karaj,Alborz,Iran

Shu-ChienHsu DepartmentofCivilandEnvironmentalEngineering,TheHongKongPolytechnicUniversity,Kowloon,HongKong,China

KaziBayzidKabir DepartmentofChemicalEngineering,BangladeshUniversityofEngineering andTechnology,Dhaka,Bangladesh

RupamKataki DepartmentofEnergy,TezpurUniversity,Tezpur,Assam,India

RavneetKaur Dr.B.R.AmbedkarNationalInstituteofTechnology,Jalandhar,Punjab, India;MaterialResourceEfficiencyDivision,CSIR-IndianInstituteofPetroleum,Dehradun,Uttarakhand,India

S.K.Khare EnzymeandMicrobialBiochemistryLaboratory,DepartmentofChemistry,Indian InstituteofTechnologyDelhi,HauzKhas,NewDelhi,India

KawnishKirtania DepartmentofChemicalEngineering,BangladeshUniversityofEngineering andTechnology,Dhaka,Bangladesh

Chor-ManLam DepartmentofCivilandEnvironmentalEngineering,TheHongKong PolytechnicUniversity,Kowloon,HongKong,China

MarcosLatorre-Sa ´ nchez ImecalS.A.,L’alcudia,Valencia,Spain

RaquelLebrero InstituteofSustainableProcesses,UniversityofValladolid,Valladolid, Spain;DepartmentofChemicalandEnvironmentalEngineering,UniversityofValladolid, Valladolid,Spain

YizeLi DivisionofSystems,Power&Energy,JamesWattSchoolofEngineering,Universityof Glasgow,Glasgow,UnitedKingdom

DiannanLu DepartmentofChemicalEngineering,TsinghuaUniversity,Beijing,China

MetteLu ¨ beck DepartmentofChemistryandBioscience-SectionforSustainableBiotechnology, Denmark

TiffanyM.W.Mak DepartmentofCivilandEnvironmentalEngineering,TheHongKong PolytechnicUniversity,Kowloon,HongKong,China

RiteshS.Malani CentreforEnergy,IndianInstituteofTechnology,Guwahati,Guwahati,Assam, India

N.ArulManikandan DepartmentofChemicalEngineering,IndianInstituteofTechnology Guwahati,Guwahati,Assam,India

VijayanandS.Moholkar CentreforEnergy,IndianInstituteofTechnology,Guwahati,Guwahati, Assam,India;DepartmentofChemicalEngineering,IndianInstituteofTechnology,Guwahati, Guwahati,Assam,India

HamidrezaMojab DepartmentofWaterResourceManagement,FacultyofCivilEngineeringand Geoscience,TechnicalUniversityofDelft,Delft,TheNetherlands

JoseL.MoltoMarin ExergyLtd.,Coventry,UnitedKingdom

SidraMunir SchoolofAppliedSciences,TheUniversityofHuddersfield,Huddersfield,United Kingdom

RaulMun ˜ oz InstituteofSustainableProcesses,UniversityofValladolid,Valladolid, Spain;DepartmentofChemicalandEnvironmentalEngineering,UniversityofValladolid, Valladolid,Spain

HanaMusinovic NATRUE,Brussels,Belgium

AhaduzzamanNahid DepartmentofChemicalEngineering,BangladeshUniversityofEngineeringandTechnology,Dhaka,Bangladesh

M.M.TejasNamboodiri DepartmentofBiosciencesandBioengineering,IndianInstituteTechnologyGuwahati,Guwahati,Assam,India

Abdul-SattarNizami CenterofExcellenceinEnvironmentalStudies(CEES),KingAbdulaziz University,Jeddah,MakkahProvince,SaudiArabia

JoseMiguelOliva-Dominguez CIEMAT,Madrid,Spain

DavidOvejero-Roncero ExergyLtd.,Coventry,UnitedKingdom

SantiagoPacheco-Ruiz VeoliaWaterTechnologiesTechnoCenterNetherlandsB.V./Biothane, Delft,TheNetherlands

KannanPakshirajan DepartmentofBiosciencesandBioengineering,IndianInstituteofTechnologyGuwahati,Guwahati,Assam,India

Hung-SuckPark DepartmentofCivilandEnvironmentalEngineering,UniversityofUlsan, Ulsan,RepublicofKorea

CeliaPascual InstituteofSustainableProcesses,UniversityofValladolid,Valladolid, Spain;DepartmentofChemicalandEnvironmentalEngineering,UniversityofValladolid, Valladolid,Spain

Andre ´ sPascual AINIA-Centrotecnolo ´ gico,Paterna,Valencia,Spain

Vı´ctorPe ´ rez InstituteofSustainableProcesses,UniversityofValladolid,Valladolid, Spain;DepartmentofChemicalandEnvironmentalEngineering,UniversityofValladolid, Valladolid,Spain

GregPerkins MartinParryTechnology,Brisbane,QLD,Australia;SchoolofChemical Engineering,UniversityofQueensland,Brisbane,QLD,Australia

DanielPleissner SustainableChemistry(ResourceEfficiency),InstituteofSustainableand EnvironmentalChemistry,LeuphanaUniversityofLu ¨ neburg,Lu ¨ neburg,Germany

G.Pugazhenthi DepartmentofChemicalEngineering,IndianInstituteofTechnologyGuwahati, Guwahati,Assam,India

Ame ´ lieRaingue ´ UrbaserS.A.,R&DandInnovationDepartment,Madrid,Spain

EldonRaj DepartmentofEnvironmentalandWaterTechnology,IHEDelftInstituteforWater Education,Delft,TheNetherlands

MohammadRehan CenterofExcellenceinEnvironmentalStudies(CEES),KingAbdulaziz University,Jeddah,MakkahProvince,SaudiArabia

EldonR.Rene DepartmentofEnvironmentalEngineeringandWaterTechnology,IHEDelftInstituteforWaterEducation,Delft,TheNetherlands

AliS.Reshad DepartmentofChemicalEngineering,IndianInstituteofTechnologyGuwahati, Guwahati,Assam,India

AlfredoRodrigo AINIA-Centrotecnolo ´ gico,Paterna,Valencia,Spain

RocioRoldan-Aguayo ExergyLtd.,Coventry,UnitedKingdom

AyeshaSadaf EnzymeandMicrobialBiochemistryLaboratory,DepartmentofChemistry,Indian InstituteofTechnologyDelhi,HauzKhas,NewDelhi,India

MeghaSailwal MaterialResourceEfficiencyDivision,CSIR-IndianInstituteofPetroleum, Dehradun,Uttarakhand,India;AcademyofScientificandInnovativeResearch(AcSIR),New Delhi,India

HassanSawalha RenewableEnergyandEnvironmentResearchUnit,MechanicalEngineering Department,PalestinePolytechnicUniversity,Hebron,Palestine AlbaSerna-Maza UrbaserS.A.,R&DandInnovationDepartment,Madrid,Spain

IzharHussainShah DepartmentofCivilandEnvironmentalEngineering,UniversityofUlsan, Ulsan,RepublicofKorea;InstituteofEnvironmentalSciencesandEngineering,SchoolofCivil andEnvironmentalEngineering,NationalUniversityofSciencesandTechnology,Islamabad, Pakistan

ShailendraKumarShukla CentreforEnergyandResourcesDevelopment,Departmentof MechanicalEngineering,IndianInstituteofTechnology(BHU),Varanasi,UttarPradesh,India

PushpendraKumarSinghRathore CentreforEnergyandResourcesDevelopment,Department ofMechanicalEngineering,IndianInstituteofTechnology(BHU),Varanasi,UttarPradesh,India

MarkSmith NATRUE,Brussels,Belgium

DebashisSut DepartmentofEnergy,TezpurUniversity,Tezpur,Assam,India

MeisamTabatabaei FacultyofPlantationandAgrotechnology,UniversitiTeknologiMARA (UiTM),ShahAlam,Selangor,Malaysia;MicrobialBiotechnologyDepartment,Agricultural BiotechnologyResearchInstituteofIran(ABRII),AgriculturalResearch,Education,andExtension Organization(AREEO),Karaj,Alborz,Iran;BiofuelResearchTeam(BRTeam),Karaj,Alborz, Iran;FacultyofMechanicalEngineering,HoChiMinhCityUniversityofTransport,HoChiMinh City,Vietnam

PankajTiwari DepartmentofChemicalEngineering,IndianInstituteofTechnologyGuwahati, Guwahati,Assam,India

Khanh-QuangTran Departmentofenergyandprocessengineering,NorwegianUniversityof ScienceandTechnology,Trondheim,Norway

DanielC.W.Tsang DepartmentofCivilandEnvironmentalEngineering,TheHongKongPolytechnicUniversity,Kowloon,HongKong,China

JackVandeVossenberg DepartmentofEnvironmentalEngineeringandWaterTechnology,IHE DelftInstituteforWaterEducation,Delft,TheNetherlands

EricD.vanHullebusch DepartmentofEnvironmentalEngineeringandWaterTechnology, IHEDelftInstituteforWaterEducation,Delft,TheNetherlands

CarolW.Wambugu DepartmentofEnvironmentalEngineeringandWaterTechnology,IHEDelft InstituteforWaterEducation,Delft,TheNetherlands

LeiWang DepartmentofCivilandEnvironmentalEngineering,TheHongKongPolytechnic University,Kowloon,HongKong,China;DepartmentofMaterialsScienceandEngineering,The UniversityofSheffield,Sheffield,UnitedKingdom

IanWatson DivisionofSystems,Power&Energy,JamesWattSchoolofEngineering,University ofGlasgow,Glasgow,UnitedKingdom

NeerjaYadav EnzymeandMicrobialBiochemistryLaboratory,DepartmentofChemistry,Indian InstituteofTechnologyDelhi,HauzKhas,NewDelhi,India

SimingYou DivisionofSystems,Power&Energy,JamesWattSchoolofEngineering,University ofGlasgow,Glasgow,UnitedKingdom

IrisK.M.Yu DepartmentofCivilandEnvironmentalEngineering,TheHongKongPolytechnic University,Kowloon,HongKong,China;GreenChemistryCentreofExcellence,Departmentof Chemistry,UniversityofYork,York,UnitedKingdom

Preface

Wherethereisrighteousnessintheheart,thereisbeautyinthecharacter.Whenthereis beautyinthecharacter,thereisharmonyinthehome.Whenthereisharmonyinthe home,thereisorderinthenation.Whenthereisorderinthenation,thereispeacein theworld.

A.P.J.AbdulKalam(1931 2015,AerospaceScientistandthe11thPresidentofIndia)

Rapidindustrialization,populationgrowth,unplannedexpansionofurbanzonesandinfrastructures,andinadequatepolicieshaveledtothemismanagementofsolidwasteindevelopednationsaswellaspoorercountriesinthedevelopingworld.Solidandliquidwaste,both thegenerationanddisposal,isatopicofmajorpublichealthandenvironmentalconcern. Moreoften,theseissuesareengenderedduetopoorwastecollectionsystems,lackofgovernmentalormunicipalservices,limitedbudget,weakmanagementpolicies,andlackofanefficientorganizationalinfrastructure,amongothers.Therefore,solidwastepilesupinstreets, backyards,alleys,andillegaldumpsites;peoplescavengethemtoearnaliving.Inmany countries,thesenonsanitarylandfillshavecausedaustereproblems,includingair,water,and soilpollution,andhasinducedthespreadofdisease-causingvectors.However,froma resourcerecoveryviewpoint,solidwastecanbeconsideredatreasurehouseofenormous wealth,whereinelectricitycanbeproducedbycombustion/incinerationofthesolidwaste foundinlandfills.Withtheadventofadvancedequipment,newprocesses,andbetterunderstandingofthemechanismsinvolvedinbiologicalandengineeringsciences,solidwastecan beefficientlytransformedintoenergy,fuels,andvalue-addedproducts.Thesolidwastes includeamixtureofbiological,combustible,andnoncombustiblematerialssuchasbiomass, grassclippings,wood,leaves,foodwaste,paper,cardboard,leatherproducts,plastics, beddingmaterials,resins,metals,glass,etc.

Byapplyingtheconceptsofpollutionprevention,resourcerecovery,andcleanerproduction, abiorefinerycanbedefinedasafacilitythatintegratesdifferentbiomassconversionprocess andequipmenttoproduceawiderangeofbiobasedproductssuchasbiofuels,power,heat, andplatformchemicals.Abiorefinerycanalsobeusedtorepresentastand-aloneprocess,a plantoragroupofsynergisticallylinkedfacilities,e.g.,ecoindustrialparks.Themainaimof

allthesefacilitiesaretointegrateandapplythebestengineering,biological,andmanagementpracticestominimizetheimpactonsolid,liquid,andgaseouswastesonhumanhealth andtheenvironment,convertwasteintoseveralvalue-addedproductstreams,andsustainably managetheexistingresources.Thus,theconceptofabiorefineryhasbeenconstantly evolving,andasystematictransformationofthefacilitieshasbeenenvisionedinrecent years.Forexample,theconventionalbiorefinery(first-gen)usesagriculturalbiomasstoproducebioethanolorbiodiesel,whereasthesecondandthirdGenbiorefineriesusesadvanced processesusinglignocellulosicbiomass,cereals,forestrybiomass,algalbiomass,waste gases,industrialsludges,oilresidues,foodwaste,andhigh-strengthwastewaterstreamsto producechemicalsandenergy.Dependingonthesourceandcharacteristicsoftherawmaterials,theprocessescanbeeitherchemical,biological,thermochemical,andmechanical,ora combinationoftheseprocesses.

Therefore,ascitizens,wehavetochangeourperspectivetoseehowwastecanbeusedasa secondaryresourcefortheproductionofenergyandothermaterials.Inordertomeetthe growingdemandoffuels,biofuelsareemergingasanalternativecleanfueltoreplacethe conventionalfossilfuels.AccordingtotheEuropeanUnion(EU)EnergyCommission,by theyear2020,theEUaimstohave10%ofthetransportfuelofeveryEUcountrycomefrom renewablesourcessuchasbiofuels.ThefuelsuppliersarealsorequiredtoreducethegreenhousegasintensityoftheEUfuelmixby6%by2020incomparisonto2010.Anew,dueto therisingenergydemandinthemarket,novelresearchareashavestartedtofocuson resourcerecovery,andagalaxyofnewtechnologieshavebeensuccessfullytested,bothat thelabandpilot-scale.Althoughallbiorefinery-basedprocessesareexpectedtoproduce feweremissionsandsupportsustainablelocalbioeconomy,theoverallenvironmentalimplicationsandlife-cycleimpactanalysisarestillbeingstudied.Inthislineofprogressive research,thereisstillalottobedone,andinterestingly,standardizationofprotocolsand methodsshouldbedocumentedclearly.Althoughregulationsarewell-establishedandimplementedforbiomethaneandnaturalgas,thefuels,lubricants,andhydraulicfluidsproduced frommineraloilorbiomassoriginstilldoesnothavestandardizedmethodsofsampling, analysis,andtesting,terminology,andspecificationsforapplicationinthetransportation,industrial,anddomesticsectors.

Toaddresssomeofthepracticalissuesdiscussedaboveandtoprovideageneralperspective ofthedifferenttypesofbiorefineries,thefirstvolumeofthebookentitled“Wastebiorefinery: Potentialandperspectives”waspublishedintheyear2018.Thebookexploredsomeofthe recentdevelopmentsinbiochemicalandthermochemicalmethodsofwaste-to-energyconversionandthepotentialgeneratedbydifferentkindsofbiomassinmoredecentralized biorefineries.Toaddressthemostrecentadvancementsmadeinthefieldofbiorefineries,the secondvolumeofthisbookseriesentitled Wastebiorefinery:Integratingbiorefineryforwaste valorization hasbeencompiled.Thisvolumepresentsrecentupdatesonthedifferenttypesof biorefineries(e.g.,solidwaste,ligninresidue,agroindustrialwaste,lignocellulosicwastes, foodwaste,andnonedibleoils),theapplicationofmultiscalemodelingstrategies,systems

approach,life-cycleanalysis(LCA),andcarbonfootprintestimationtools,anditpresents differentcasestudiesrelatedtotheintegrationofbiorefineriesforwaste-to-energyandfuels production.Thevolumecomprisesoftwenty-fivechapters,dividedamongthefollowingeight thematicsections:

SessionA:Municipalsolidwaste basedbiorefineries

SectionB:Lignocellulosicbiomass-basedbiorefinery

SectionC:Foodwasteandchitin-basedbiorefinery

SectionD:Nonedibleoils basedbiorefineryandapplications

SectionE:Sewagesludgebiorefinery

SectionF:Modelingandlife-cycleanalysisstudies

SectionG:Systemdynamicsandcarbonfootprints

SectionH:Country-specificcasestudies

InSectionA,thechallengesandopportunitiesofapplyinggasificationtomunicipalsolid waste,itsperformancefortheproductionofelectricityandchemicals,economicconsiderations,andopportunitiesforthefuturedevelopmentispresentedinChapter1.The URBIOFINdemo-scaleprojectpresentedinChapter2exploresthepotentialoftheorganic fractionofmunicipalsolidwaste(OFMSW)toproducebioblocks(bioethanol,volatilefatty acids(VFA),andbiogas),biopolymers(shortchain[scl-PHA]),mediumchainpolyhydroxyalkanoates(mcl-PHA),andadditives(bioethyleneandbiofertilizers)usingabattery ofinnovativeandintegratedphysical,chemical,andbiologicalprocesses.

InSectionB,Chapter3highlightstheworkingprincipleandconceptofanozzlereactorwith countercurrentmixingfortheupscalingoffasthydrothermalliquefaction(HTL)ofsolid biomassresiduesandwastes.Chapter4presentstheadvantages,limitations,andpracticalapplicationsofanup-flowanaerobicsludgeblanket(UASB)andexpandedgranularsludgebed (EGSB)forenhancedresourcerecovery(mainlybiomethane)duringwastewatertreatment. TwocasestudiesrelatedtotheapplicationofUASBandEGSBsystemsinoliveoilandthe pulpandpaperindustrieshavealsobeendiscussedinthischapter.Thevalorizationof agroindustrialwastesintoplatformchemicals(e.g.lacticacid,C3)anditsderivativesforapplicationsinpharmaceutical,food,animalfeed,dairy,detergent,andcosmeticindustriesis coveredinChapter5.Asimilarapproachhasbeendemonstratedtoconvertlignocellulosic biomassforpolyhydroxybutyrate(PHB)productioninChapter6.Laboratory-scaleandpilotscalestudiespertainingtothebioconversionoffoodwaste,municipalsolidwaste,food processingwaste,andagricultureresiduestobiofertilizers,includingthepracticalfieldapplications,hasbeenreviewedinChapter7.InChapter8,theimportantroleoftraceelements (e.g.,Fe,Ni,Co)inthemethanogenesisstepofanaerobicdigestionhasbeendiscussedfrom amechanismandmetabolicengineeringviewpoint.Theapplicationofbiocharforenhanced biogasproductionfromtheanaerobicdigestionoffoodwastehasbeenpresentedinthis chapterasacasestudy.

Chapter9ofSectionCintroducesthetheoryofplannedbehavior(TPB)thatprovidesatheoreticalframeworktoassistinourunderstandingofthefactorsinfluencingbehavioralchoices. Inthischapter,thecurrentimplementationofTPBtopredictfoodconsumptionpatternandto promotesafefoodhandlingandfood-wasterecyclinginhouseholdandcommercialsectors arediscussed.InChapter10,anoverviewofchitin,chitosan,itspropertiesandapplications, metabolicpathwayofchitinandchitosan,sourcesofchitinsuchascrustaceans,insects,and fungi,extractionmethodsandbioreactorconfigurationsforchitosanproductionhasbeen reviewed.

InSectionD,thesignificantapplicationsofcastorplant(Ricinuscommunis)fortheproductionofbiofuels(bioethanol,biomethanol)andbiochemicals(biophenolics)aswellastheproductionofderivativessuchassebacicacidandricinoleicacidfromcastoroilhasbeen demonstratedinChapter11.InChapter12,thefeasibilityofbiofuelproductionfromnonediblerubberseedoilhasbeenexplainedindetail.Theusefulpropertiesoftherubberseed oilmakeitsimilartowell-knownlinseedandsoybeanoil.Asthedemandforbiodieselis increasing,thebiorefineryapproachinthefieldfromrubberseedwouldbeofaddedadvantage.Inanotherapproach,thedifferentwastecarbonsourcesandrelatedcasestudiesforbiodieselproductionhasbeenpresentedinChapter13.Meanwhile,inChapter14,the productionandtheapplicationofbiodieselobtainedfromvariousplantspeciestoruntheengineandtheeffectofdifferentbiodieselblendsontheperformanceoftheenginehasbeen discussed.Additionally,thechapteralsocoversaspectsrelatedtothelifecycleandcostbenefitanalysisofbiodiesel.

InSectionE,Chapter15exploresthepossibleapplicationofsewagesludgeformaterialand energyrecoverythroughintegratedthermochemicalandbiochemicalconversionprocessesin asewagesludgebiorefinery.SectionFcoverschaptersrelatedtomodelingandLCA.Inthis section,Chapter16highlightstheapplicationofmultiscalemodelsthatrangefrom molecular-levelunderstandingofthebiorefinerytoasystem-scaleoptimizationofprocesses andproductdistribution.Anoverviewofthedifferentmodelingapproachesthatshapedthe currentstateofbiorefineries,theprocedureinvolvedinselectinganappropriatemodelthatis specifictotheapplication,andagenericguidelinehasbeenpresentedinthischapter.In Chapters17,18,and19,theapplicationofLCAasapracticalandmethodologicaltoolfor theenvironmentalcharacterizationofabiorefineryhasbeenpresented.Accordingly,biorefineriespresentafavorableenvironmentalprofileincomparisonwithfossil-basedreference systems,eventhoughtheresultsshowgreatvariabilityattributedmainlytothebiorefineries configurationandcomplexity.Specifically,Chapter18alsohighlightstheapplicationof LCA,conventionalmacroscalemanagementstrategies,andlaboratory-scalevalorizationtechniquesforafood-wastebiorefinery.InChapter19,asummaryofstudiesfocusingonthe LCAofwastebiorefineriesispresented.

InSectionG,Chapter20providesinformationontheapplicationofasystemsdynamics approachtounderstandtherelationshipbetweenthebehaviorofasystemovertimeandits underlyingstructure.Thechapteralsoaddressesthevariousenvironmentalissuesandpresentsacomprehensiveliteraturereviewonwoodandyardwastemanagementandtheimplementationofasystemsdynamicsapproachinthestreamofmunicipalsolidwasteand constructionanddemolitionwaste.InChapter21,theapplicationofLCAinevaluatingthe carbonfootprintsofwaste-to-biofuelsystemshasbeenexplainedindetail.Thegreenhouse gasemissionsassociatedwiththeprocessesarealsopresentedinthischapterwiththeidentificationofthecarbonemissionhotspots.

SectionHdealswithdifferentcasestudiesrelatedtobiorefineries.Chapter22presentscase studiesfromGermanythatarerelatedtothesimultaneousproductionoffoodandfeed,materials,andenergyinaccordancetoacascadinguseofbiogenicfeedstocksasrecommendedby theGermanBioeconomySociety.Apulp-andpaper-industrycasestudyfromIndiahasbeen discussedinChapter23,andthefeasibilityofintegratingbiochemicalandthermochemical processesinapaperandpulpwastebiorefinerytoproducevalue-addedchemicals,fuel,and energyhasbeendemonstrated.InChapter24,severalsuccessfulcasestudiessuchaslandfill gasrecoveryfromtheretrofittedlandfills,conversionoffoodwasteandsewagesludgeto biogas,andindustrialsymbiosisbetweenapapermillandzincsmelterhavebeendemonstratedaspathwaystowardintegratedbiorefineries.Finally,inChapter25,thecasestudyofa tanneryispresented,andthemostrecenttechnologiestotreatthewastewaterdischarged fromtanneriesisdiscussed.Optionsforresourcerecovery(e.g.,bycompostingofsolid wastes)andsubstitutionofchromiumandsodiumsulfidearealsopresentedascleanerproductionoptionsfortanneries.

Theindividualchaptersofthisbookfocusontheapplicationofdifferentbiorefineryconcepts inpractice(i.e.,atthelab,pilot,semiindustrial,andindustrialscales),provideoptionsfor enhancedresourcerecoveryfromwastes(solid,liquid,andgaseousforms),andanalyzethe supportingtoolsandtechniquesformonitoringtheperformanceofbiorefineries.Thisbook willserveasausefulresourceforchemicalengineers,environmentalengineers,biotechnologists,researchers,andstudentsstudyingbiomass,biorefineries,andbiofuels/products/processes,aswellaschemists,biochemicalengineers,andmicrobiologistsworkingin industriesandgovernmentagencies.Westronglyhopethatreadersenjoyreadingthisbook andfinditofimmenseuse.

Wewishtothankandexpressourappreciationtothemultidisciplinaryteamofauthorsfor discussionandcommunication aboveall,fortheirscientificcontributiontothisbook.We alsothankreviewerswhosesuggestionsgreatlyhelpedtoimprovethequalityofchapters. OursincerethanksareduetoElsevierteamcomprisingofDr.KostasMarinakis,Senior AcquisitionEditor;EmeraldLi,EditorialProjectManager;Mr.SelvarajRaviraj,Project Manager;andtheirproductionandtypesettingteamsforsupportingusconstantlyduringthe editorialprocess.Wefirmlybelievethattheinformationcontainedinthisbookwillenhance theinterdisciplinaryscientificskillsofreaderswhilealsodeepeningtheirfundamentalknowledgeonwastebiorefinery.

Editors

ThalladaBhaskar

CSIR-IndianInstituteofPetroleum,India

E-mail:thalladab@yahoo.com

AshokPandey

CSIR-IndianInstituteofToxicologyResearch,India

E-mail:ashokpandey1956@gmail.com

EldonR.Rene

IHEDelftInstituteforWaterEducation,Netherlands

E-mail:e.raj@un-ihe.org

DanielTsang

HongKongPolytechnicUniversity,HongKong

E-mail:dan.tsang@polyu.edu.hk

Productionofelectricityandchemicals usinggasificationofmunicipalsolidwastes

GregPerkins1, 2

1MartinParryTechnology,Brisbane,QLD,Australia; 2SchoolofChemicalEngineering,Universityof Queensland,Brisbane,QLD,Australia

1.1Introduction

Theworldcurrentlygenerates2.0billiontonnesofmunicipalsolidwaste(MSW)each yearandthisvalueisexpectedtoincreaseto3.4billiontonnesannuallyby2050 [1].On average0.75kgofwasteisproducedpercapitaperday,withnationalvaluesvaryingfrom 0.11to4.54kgpercapitaperday.Recyclablessuchaspaper,cardboard,plastic,glass,and metalsconstituteasubstantialfractionofthewastegenerated,rangingfrom16%inlowincomecountriestoabout50%inhigh-incomecountries.About w30%ofthewasteis organicandcanpotentiallybecomposted.Inaccordancewiththewastehierarchyitis desirabletofirstreduce,reuseorrecyclewastestreams.Thedegreeandsophisticationof reuseandrecyclingprogramsvarieswidelyaroundtheworld,drivenbygovernment policy,availableinfrastructure,localattitudesandincomes.Mostrecyclingtechnologies requirethewastetobesorted,whichcanbelaborintensiveandexpensive,though automatedsystemshaveimprovedsignificantlyoverthepast15years.Asaresult, recyclingsystemsarenotalwaysavailableandlargevolumesofwastearecurrently disposedofinlandfill.Mostlandfillwastecontainsaconsiderablefractionofcombustible residualsthatmaybeconvertedintoelectricity,heatandchemicalsusingthermo-chemical processes.Evenwhenadvancedwasteschemesthatseparatetherecyclablesandorganics fromMSWareapplied,thereisstillaresidualportionof w30%,suchascontaminated paperandplastics,thatcannotberecycled,andarepreferablyconvertedintoenergyor chemicalsratherthanbecominglandfill.

Fig.1.1 showsthedistributionofwastedisposalandtreatmenttechnologiesutilizedin eachregionoftheworldandinJapanandSweden.Inlow-incomeareas,opendumpsare notuncommon,whileinsomedevelopedcountrieslikeUnitedStates,Canada,and Australialandfillscantakeover50%ofthewastethatisdisposedof.ManyWestern

WasteBiorefinery. https://doi.org/10.1016/B978-0-12-818228-4.00001-0 Copyright © 2020ElsevierB.V.Allrightsreserved.

Figure1.1

Distributionofwastedisposalandtreatmentforselectedregionsandcountries. DatafromKazaS, YaoL,Bhada-TataP,VanWoerdenF.Whatawaste2.0:aglobalsnapshotofsolidwastemanagementto 2050.Washington,DC,USA:InternationalBankforReconstructionandDevelopment,TheWorldBank;2018.

EuropeancountrieslikeSwedenhavehighratesofrecyclingandcompostingandsend almostalltheresidualcombustiblematerialforincineration.Japanhasahighrelianceon waste-to-energytechnologiessuchasincinerationandgasification.Inmostjurisdictions thereremainsasignificantopportunitytoincreaserecyclingrates,organiccompostingand deploymentofwaste-to-energyfacilitiesasanintegratedsystemtodivertwastefrom landfill.Ideally,waste-to-energyfacilitiesareusedonlytoderivevaluefromthewaste componentsthatcannotberecycledorusedforcomposting(suchasfoodorganics).This includesthecombustibleresidualsfromMSWandalsovariouscommercialandindustrial wastestreamsthatareroutinelysenttolandfill.Forexample,fiberboardfromhousingand automotiveshredderresidualsfromusedcars.

Themostwidelyadoptedwaste-to-energytechnologyisincineration(combustionormass burn),inwhichthewasteiscombustedinaboilertogeneratesteamwhichturnsaturbine andelectricalgeneratortomakeelectricity.Theprinciplesofwasteincinerationarethe sameasconventionalcoalfiredpowerplants,howeverthecombustionmethods,boiler configurationandfluegastreatingsystemsareadaptedforthepropertiesofwaste,namely itsheterogeneousnatureandthepresenceofawiderangeofcontaminants.

Whilewasteincinerationismatureandmanytechnologieshavebeencommercially proven,theprocesshassomedownsides.Theseincludelowpowergenerationefficiencyin comparisonwithconventionalcoalandbiomasspowerplants,residualmineralmatterand asheswhichmaynotbesuitableforlandfill(dependinguponenvironmentalpolicies)and therequirementforlargescaletoachievelowoperatingcosts.Wasteincinerationisonly

viablewhenplantcapacitiesaresignificantlygreaterthan w150ktpa,whichrequireslarge volumesofwastestobetransportedtoacentralfacility,sometimescreatinglogisticand contractualchallenges.

Gasificationisathermochemicalprocesslikecombustionundertakenathightemperatures, typically800 1200 C.However,ingasificationtheamountofoxygeniscontrolledtobe belowthestoichiometricamountrequiredforcompletecombustionofthefuel,thereby producingasynthesisgas(syngas)whichcontainsupto80%oftheenergyinthe feedstockaschemicalenergy.ThesyngasbeingpredominatelyCOandH2 canbeusedin arangeofapplicationsincludingsteamboilers,gasenginesandgasturbinesforelectricity generationandforsynthesisofchemicals,suchasmethanol,ethanolandjetfuelsin catalyticreactors.Gasificationisnotanewtechnologyandhasbeensuccessfullydeployed toproducesyngasfromcoal,heavyoil,petroleumcoke,naturalgasandbiomassfor makingelectricity,hydrogen,fuelsandchemicalsasfinalproducts.Whileitisnotwell known,gasificationofwasteshasalsobeencommerciallyproven,mostlyinJapanand SouthKoreawherediversionfromlandfillandgenerationofaninertvitrifiedslagfrom thewastearethemainincentivesforapplyingthetechnology.Inthewastemanagement literature,gasificationisoftenclassifiedasanadvancedthermaltechnology(ATT).

Tomitigatetheimpactsofclimatechangeandreducetheimpactsofwastedisposalitis desirabletoachieveacirculareconomyasshownin Fig.1.2,inwhichproductsare preferentiallyreused,remanufacturedandrecycledandendoflifematerialsareconverted

Figure1.2

Schematicofthecirculareconomy. FromKorhonenJ,HonkasaloA,Seppala J.Circulareconomy:the conceptanditslimitations.EcologicalEconomics2018;143:37 46.doi:10.1016/j.ecolecon.2017.06.041

backintovaluableproductswithaminimalreleaseofwastetotheenvironment.Inthe circulareconomy,gasificationprovidesaflexibleplatformforrecyclingcarbonand hydrogenmoleculesbackintoproducts,suchaschemicalsandplastics,therecoveryof metalsforreuse,andthetransformationofinorganicsintoinertproductsforusein constructionapplications.Thischapterprovidesanoverviewofgasificationtoproduce electricityandchemicalsfrommunicipalsolidwaste(MSW),whichcanbeconsideredthe firststepstowardthegoalofusinggasificationtocompletelyrecyclewasteatomswithin thecirculareconomy.Firstly,thefundamentalsaresummarizedalongwithareviewof wastegasificationtechnologies.Commercialsystemsaredescribedalongwiththematerial balances,economicsandenvironmentalimpactsofseveraltechnologies.Finally, opportunitiesforusinggasificationtoimprovewastemanagementarebrieflydescribed.

1.2FundamentalsofMSWgasification

Themainmotivationsforapplyinggasificationfortheconversionofwastesinclude generationofahigh-qualityenergycarrier,abilitytocleansyngaspriortoutilization, limitingdioxin/furanformationbyoperatingunderreducingconditionsandflexibilityto utilizesyngastoproduceelectricity,hydrogenandchemicals.Themajorchallengeswith wastegasificationhavetraditionallybeenassociatedwithfeedingmaterialsofvariablesize andheterogeneity,achievingreliablegascleanupandovercomingthepooreconomicsof projectsatsmallscale(<100ktpaofwasteprocessed).

1.2.1CharacterizationofMSW

ThepropertiesofMSWaresignificantlydifferentfromcoalandbiomassduetoMSW beingamixtureofvariouswastecomponents. Fig.1.3AandB showsthemainconstituents ofMSWwhichincludespaperandcardboard,plastics,wood,rubber,foodandgreenwaste, glass,metalsandothercommodityitemsfromhouseholdgarbage.Thecompositionof MSWvariesfromoneplacetoanother,reflectinglocalconsumptionpreferences,waste managementpoliciesandsocioeconomicconditions.AccordingtotheWorldBank,MSW fromhighersocio-economicareashashigherlevelsofpaper,cardboard,plastics,metaland glassandloweramountsoffoodorganics,thanMSWfromlowersocioeconomicareas [1] Forexample,inNorthAmerica,EuropeandJapan,mostofthefoodconsumedissupplied inpackaging,whereasinSouthAsiaandSub-SaharanAfrica,asmallerproportionofthe foodconsumedcomespackaged [1].Thepercapitaconsumptionofelectronicappliancesis anotherfactorwhichimpactsonthecompositionofwaste.Wasteregulationsandcollection servicesalsoimpactonwherewasteissentandwhatthecompositionofeachstreamis.For example,Swedenhasimplementedaschemethatrequiresresidentstoseparatetheirwaste bytype,whichmaximizesreuseandrecycling,withonlyresidualwasteslikediapers, nonpackagingmaterialsandwoodsenttoenergyfromwastefacilities.

Figure1.3

TypicalcompositionofMSWbyconstituentfor:(A)highand(B)lowincomes. FromKazaS,YaoL, Bhada-TataP,VanWoerdenF.Whatawaste2.0:aglobalsnapshotofsolidwastemanagementto 2050.Washington,DC,USA:InternationalBankforReconstructionandDevelopment,TheWorld Bank;2018.

Table1.1 showstheultimateanalysisofatypicalMSWanditsmainconstituents.The presenceofPVCmeansthatMSWhasamuchhigherchlorinecontentthanbio-derived materials,suchaspaperandfoodwastes.TheamountsofsulfurinMSWcanalsobe

Table1.1: Ultimateanalysisandmainconstituentsofmunicipalsolidwaste(wt%).

ComponentPaperPlasticOtherFoodandgreenwastesMSW Carbon27.4063.5724.9227.0029.60

Hydrogen3.7612.003.144.004.64

Oxygen25.609.0215.0625.0018.94

Nitrogen0.160.900.731.000.67

Chlorine0.273.380.410.400.78

Sulfur0.160.340.180.020.12

Moisture36.804.233.4030.0025.07

Mineralmatter5.856.5922.1612.5810.19

FromMastelloneML.Wastemanagementandcleanenergyproductionfrommunicipalsolidwaste.NewYork,NY,USA:NovaPublishers; 2015.

significant,varyingfromabout0.1to0.5wt%.Themineralmatterfromfoodandgreen wastescanhavesubstantialamountsofalkalis.ThemoisturecontentofMSWisgenerally highcomparedtocoalandcanbedifficulttoreduce [4].MSWmaycontainupto40% 50%ofbiodegradablesand30% 40%ofinertmaterials,butthisdependsonlocation.

1.2.2Feedstockpretreatment

AvarietyoffeedstockpretreatmentstepsmaybeappliedtoMSWtoseparatematerials suchasmetalsandglassforrecyclingandtoproduceresidualfuelsthathaveproperties suitableforwaste-to-energytechnologies.Thetwomostcommonapproachesare(1)a materialrecoveryfacility(MRF)and(2)mechanicalbiologicaltreatment(MBT).Inboth approaches,mechanicalseparationisusedtoremovemetal,glass,paperandother recyclablesandthecarbonaceousresidualsareshredded.Typically,itrequires80 100kWh toprocesseachtonneofMSWandafurther100 130kWhtodrythewaste [5].InMBTs, theorganicfractionisfurtherprocessedbybiologicalmicroorganismsviacomposting, anaerobicdigestionand/orbiodrying.Twofuelproductscanbederivedfromwastes-RDF (refusederivedfuel)andSRF(solidderivedfuel).ThemaindifferencebetweenRDFand SRF,isthatSRFmustmeetstrictercriteriaonheatingvalue(17 22MJ/kg),moisture content(<15wt%)andcontaminantlevels(chlorine < 0.9wt%,sulfur < 0.5wt%).

MostgasificationtechnologiesrequireRDF/SRFasfuelwithwell-definedproperties, includingsize,morphology,compositionandcalorificheatingvalue,thoughsomecan handlerawMSWwithoutanypretreatment.

1.2.3Gasificationreactions

Wastegasificationisusuallyundertakenauto-thermally,thatis,oxygenisusedinthe gasificationagenttogenerateexothermicheatreleaseinordertoreachtemperatures sufficientlyhigh(>800 C)thatthegasificationreactionsconvertthefeedstockintoCO

andH2.Theamountofoxygeninjectedislimitedtoabout20% 40%ofstoichiometric amountrequiredtocompletelycombustthefeedstock,i.e.,theequivalenceratiois w0.2 0.4.Themainreactionsoccurringingasificationareshownin Table1.2.

Uponenteringthegasificationprocessthefeedstockisdriedbyreaction(R1).Ifthe feedstockhasveryhighmoistureitmaybereducedinaseparatedryingstagepriortothe gasificationstep.However,whatevermoistureremainsinthefeedstockisdrivenoffas thematerialisheateduponenteringthegasificationreactor.

Athighertemperatures(300 800 C)thefeedstockisthermallydecomposedbypyrolysis reactions(R2),wherebysomeofthelongchainmoleculesarebrokentoformsmaller molecules,suchasCO,H2,CH4,C2H6,alongwithoxygenatedandnonoxygenated hydrocarbonscalledtars.ForMSW,whichisamixtureofpaper,plastics,biomassand foodorganics,averywiderangeofmoleculesaregeneratedduringthepyrolysisphaseby aseriesofcomplexreactions.Generally,pyrolysiscanbemodeledsimplywithatwo-step process wherethefirststepisthedecompositiontoformchar,lightgasesandtars,and thesecondstepistheconversionoftarsintolightgasesandsmallertarmolecules [8].

Thetarsplayanimportantroleinthedesignandoperationofallpracticalgasification systemsandmaybecharacterizedbyavarietyofmethods,includingbytheirdewpoint. Tarconcentrationcanvaryfrom w1 180g/Nm3 [9].Formationoftarsisundesirable

Table1.2: Mainreactionsinvolvedincombustionandgasificationreactions.

ReactionStoichiometry

R1DryingFeedstock

R5SteamgasificationC

R6BoudouardreactionC

R7HydrogasificationC

R8CombustionH2

R16Tarreforming/crackingTar

AdaptedfromPerkinsG.Undergroundcoalgasification partII:fundamentalphenomenaandmodeling.ProgressinEnergyandCombustionScience2018;67:234 74.doi:10.1016/j.pecs.2018.03.002.PerkinsG.Mathematicalmodellingofinsitucombustionandgasification.ProceedingsoftheInstitutionofMechanicalEngineers,PartA:JournalofPowerandEnergy2017.doi:10.1177/ 0957650917721595.pii:095765091772159.

sinceuponcoolingtheycanseverelyfoulupequipmentandmustberemovedbeforethe syngascanbeutilizedinengines,turbinesortosynthesizeotherchemicalsusingcatalysts. Athightemperaturesandsufficientresidencetimes,thetarscanbecrackedandreformed intosmallermoleculeswhichdonotcauseproblems.Eachgasificationsystemhandlestars differently.Insomedesigns,thesyngasisproducedatveryhightemperaturestoavoidtar formation,whilelowertemperatureprocesseswillincludespecificunitoperationstoreact orremovetarsfromthesyngas.Inmanyplants,thesyngasissimplycombustedina boiler,whichavoidstheneedtoremovetarsfromthesyngas.However,eachofthese “solutions”hasprosandcons,whichwillbediscussedthroughoutthischapter.

Theoxygeninjectedintothegasifierreactsexothermicallywithcharaccordingtothe reactions(R3andR4):

Atlowtemperatures(<1100 C),CO2 istheprimaryproduct,whileathightemperatures (>1600 C)COistheprimaryproduct.Atlowpressurestypicalofwastegasification,the reactionisfirstorderwithrespecttoO2.Thesteamgasificationreaction(R5)isan importantendothermicreaction:

andisalsofirstorderwithrespecttoH2Oatlowpressures,whereinthepartialpressureof H2OandH2 arelow.TheBoudouardreaction(R6)isalsoendothermic:

Themethanationreaction(R7)involvesthereactionofcharwithH2 toformCH4.Athigh pressures(>w30bar),suchasincoalgasification,themethanationreactioncanbecome significant,howeverinwasteandbiomassgasificationwherethepartialpressureofH2 is low,theoverallreactionrateisnegligible.ThemajorityofCH4 presentinthesyngas generatedfromwasteandbiomassgasificationisgeneratedfromthepyrolysisandthermal decompositionofthefeedstockatlowertemperaturesbyreaction(R2).

TheproductsfromthechargasificationreactionsmaybecombustedtoformCO2 andH2O viareactions(R8) (R11).Theliteratureonthecombustionofgaseousfuelsisextensive (seeforexampleWestbrooketal. [10,11],JonesandLindstedt [12] andRanzietal. [13]). Agenericone-stepmodelofgaseousfuelcombustionis:

wherecoefficient n isdeterminedbythechoiceoffuel.Thewatergasshiftreaction(R12) isimportantsinceitcancontroltheratioofCOandH2 inthesyngasproduct:

ThermodynamicsfavorstheproductionofCOathightemperatures(>1000 C)andCO2 at lowtemperatures(<1000 C).Thereformingreactions(R13,R14,R15)breakdownlarger moleculesintoCOandH2 andaregenerallyoflessimportanceinwasteandbiomass gasification.

Completeconversionofthecharformedfromthepyrolysisofthefeedstockintosyngasis desiredinthegasifier.ThecharreactionswithH2O(R5)andCO2 (R6)aresubstantially slowerthanthecombustionreactionsandhencecontroltheoverallconversion.Thus,the chemicalreactivityofthecharformedfrompyrolysisisanimportantparameterforthe designofthegasificationreactor.Themostsignificantfactorswhichcontroltheoverall reactivityofcarbonaceoussolidstoH2O,CO2 andH2 areknowntobe:(1)concentration ofactivesites,(2)presenceofinorganicimpuritieswhichactascatalysts,and(3) diffusionlimitationswhichcontroltherateatwhichreactivegasescanreachtheactive sites [14].Thesteamgasification(R5)andtheBoudouard(R6)reactionsareofsimilar magnitude,withsteamgasificationbeingapproximatelythreetimesfasterthanthe Boudouardreactionunderthesameconditions.Wasteandbiomassfeedstockscontain mineralmattercomponentsthatcatalyzethegasificationreactions.Mostmetals,metal oxidesandsaltsactascatalysts,withthemajorcatalystsbeingcompoundsofiron, magnesium,calciumandpotassium.

1.3Wastegasificationtechnologies

1.3.1Typesofgasificationreactors

Gasificationhaslongbeenusedforconvertingcoalandbiomassintosynthesisgasand maturetechnologiesexistforcontactingthefeedwiththegasificationagentusingmoving beds,fluidizedbedsandentrainedflowreactors [15,16]. Fig.1.4 showsschematicsofthe majortypesofconventionalgasificationreactorsinusetoday,whichcanbeclassified basedonhowthesolidfeedstockmovesthroughthereactor.Inupdraftanddowndraft gasifiersadenseporousbedisformedbythefeedstock,whileinfluidized-bedgasifiers, thefeedstockispartiallyentrainedbythegasificationagent(e.g.,air)creatingaturbulent bedofmaterial.Inentrainedflowgasifiersthefeedstockmustbepulverizedtoasmall sizesothatitcanbeconveyedintothereactorwiththegasificationagent.

Wastefeedstocks,andMSWinparticular,areverydifferenttocoalandbiomass,being heterogeneousinsizeandco mposition,withgenerallyhighermineralmattercontent, relativelylowcalorificvalueandawiderang eofcontaminantmoleculessuchassulfur, chlorineandheavymetals.Theheterogeneousnatureofwastefeedstocksposesoneof

Figure1.4

Majortypesofgasificationsystemsforcoalandbiomassfeedstocks:(A)downdraftmovingbed, (B)updraftmovingbed,(C)bubblingfluidized-bed,(D)circulatingfluidized-bedand (E)entrainedflow. FromPangS.Fuelflexiblegasproduction.In:Fuelflexibleenergygeneration.Elsevier; 2016.p.241 69.doi:10.1016/B978-1-78242-378-2.00009-2

themostdifficultchallengesforconven tionalgasificationreactorswhichwere originallydevelopedforawell-definedpa rticlesizeandonlysmallvariationsin chemicalcomposition.SinceMSWisamixture ofdifferentmaterials,includingglass andmetals,entrainedflowreactorsarenotfavored,becausethewastecannotbeeasily milledtoachievetheverysmallparticlesizesrequiredforentrainmentinagas.While somefluidized-bedtechnologieshavebe endevelopedandadaptedforprocessing wastes,apretreatmentstepisinvariablyrequiredtotransformtherawMSWintoRDF orSRF.Conventionalmovingbedreactors inwhichtheashisremovedasasolidfrom arotatinggratehavenotbeencommercializedforrawMSW.However,some conventionalmovingbedreactordesignshavebeenadaptedtoprocessRDFandSRF. MovingbedgasifierswhichmeltthemineralmattercanconvertrawMSWwithoutany significantpretreatmentstepatall.Thegrategasifierisavariantofthemovingbed, adaptedfromcombustionexperience,whichmayalsobeusedfortheconversionof MSW.

Anotherimportantdifferencebetweenwasteandbiomassgasificationandthegasification ofcoal,petroleumcokeandoil,istheoperatingpressure.Duetoprocessingscaleandthe requirementforsyngasatelevatedpressureforchemicalssynthesis,gasificationoffossil fuelsisusuallyundertakenatmoderatetohighpressures(20 80bar).However,waste gasificationisgenerallyperformedatlowpressure(1 5bar)sincefeedingheterogeneous feedstocksatpressurehasnotbeencommerciallyproven.

1.3.1.1Movingbedreactors

InthemovingbedvariantsdesignedforMSW,thefeedisinjectedfromthetoporside andisgasifiedbyairoroxygeninjectedviatuyeresatthesideofthevessel.Syngas leavesfromthetopofthereactorattemperaturesbetweenabout900and1200 C.The bottomofthereactorisoftenfurtherheatedwellabovetheashfusiontemperaturetoform amoltenliquidfromthemineralmatter.Temperaturesareabove800 Candtheliquidslag isremovedperiodicallyfromthereactorviatapholes.Themovingbedwastegasifiersare thereforemoresimilartometallurgicalreactorssuchastheblastfurnacethantothe traditionalupdraftfixedbedcoalgasifiers,liketheLurgigasifier [18].Toreachthehigh temperaturesandachieveconsistentoperationwithvariablequalityfeedstocks,thewaste maybecomplementedwithafossilfuelsuchascokeornaturalgas.Thisofcourseaids processstability,butalsoincursadditionaloperationalcosts.

Fig.1.5 showstheNippondirectmeltingsystemmovingbedgasifierforMSW.Inthis designoxygen-enrichedair(36%O 2 )isinjectedatthebottomofthegasifiervia tuyeresandthewastefeedstockslowlydescendsthroughthemainzonesofthereactor, beingdryingandpreheatingzone,thermaldecompositionzone,combustionand meltingzone.Thecombustiblewasteisgas ifiedinthethermalde compositionzoneand thesyngasleavesfromthetopofthereactor.Inthecombustionzoneaddedcokeburns

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.