Voids in materials: from unavoidable defects to designed cellular materials 2nd edition gary m. glad

Page 1


https://ebookmass.com/product/voids-in-materials-fromunavoidable-defects-to-designed-cellular-materials-2nd-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Defects in Two-Dimensional Materials Rafik Addou

https://ebookmass.com/product/defects-in-two-dimensional-materialsrafik-addou/

ebookmass.com

Elements of Structures and Defects of Crystalline Materials Tsang-Tse Fang

https://ebookmass.com/product/elements-of-structures-and-defects-ofcrystalline-materials-tsang-tse-fang-2/

ebookmass.com

Optical Thin Films and Coatings 2e : From Materials to Applications. 2nd ed. Edition Flory

https://ebookmass.com/product/optical-thin-films-and-coatings-2e-frommaterials-to-applications-2nd-ed-edition-flory/

ebookmass.com

Networking All-in-One For Dummies 8th Edition Doug Lowe

https://ebookmass.com/product/networking-all-in-one-for-dummies-8thedition-doug-lowe/

ebookmass.com

The Moral of the Story: An Introduction to Ethics 8th Edition Nina Rosenstand

https://ebookmass.com/product/the-moral-of-the-story-an-introductionto-ethics-8th-edition-nina-rosenstand/

ebookmass.com

Eoin's Forbidden Mate: MM Wolf Shifter Romance (Ombra Pack Chronicles Book 4) Blake R. Wolfe

https://ebookmass.com/product/eoins-forbidden-mate-mm-wolf-shifterromance-ombra-pack-chronicles-book-4-blake-r-wolfe/

ebookmass.com

PHP: 3 books in 1 : PHP Basics for Beginners + PHP security and session management + Advanced PHP functions Andy Vickler

https://ebookmass.com/product/php-3-books-in-1-php-basics-forbeginners-php-security-and-session-management-advanced-php-functionsandy-vickler/ ebookmass.com

Fierce Cowboy Wolf Kait Ballenger

https://ebookmass.com/product/fierce-cowboy-wolf-kait-ballenger/

ebookmass.com

The Strategist's Handbook: Tools, Templates, and Best Practices Across the Strategy Process Timothy Galpin

https://ebookmass.com/product/the-strategists-handbook-toolstemplates-and-best-practices-across-the-strategy-process-timothygalpin/ ebookmass.com

https://ebookmass.com/product/the-learning-and-teaching-of-calculusideas-insights-and-activities-1st-edition-john-monaghan/

ebookmass.com

VoidsinMaterials

GaryM.Gladysz

DepartmentofMaterialsScienceandEngineering, UniversityofAlabamaatBirmingham,Birmingham, AL,UnitedStates

KrishanK.Chawla

DepartmentofMaterialsScienceandEngineering, UniversityofAlabamaatBirmingham,Birmingham, AL,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhom theyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-819282-5

ForInformationonallElsevierpublications

visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: KostasKIMarinakis

EditorialProjectManager: SaraValentino

ProductionProjectManager: JoyChristelNeumarinHonestThangiah

CoverDesigner: AlanStudholme

TypesetbyMPSLimited,Chennai,India

Dedication

GaryM.Gladyszwouldliketodedicatethistohisparents,EdwardandKathy;andhiswife anddaughtersApril,Amelia,andClairefortheirconstantencouragement!

KrishanK.Chawlawouldliketodedicatethistohiswife,Nivi,foralwaysbeingthere!

Abouttheauthorsxiii

Prefacetothefirsteditionxv

Prefacetothesecondeditionxvii

1.Introduction1

1.1Overview1

1.2Descriptions2

1.2.1Intrinsicandintentionalvoids2

1.2.2Closedandopencellporosity3

1.2.3Unreinforcedandreinforcedvoids5

1.2.4Porosityinnaturalandsyntheticmaterials7

1.2.5Stochastic,nonstochastic,andVoronoifoams9

1.2.6Materialversusdigitaldesignofvoids12

1.3Voidsthroughthelengthscale13 References15

2.Intrinsicvoidsincrystallinematerials:Idealmaterials andrealmaterials17

2.1Introduction17

2.2Crystallinematerials18

2.2.1Idealmaterialsandproperties18

2.2.2Defectsandrealproperties21

2.2.3Density25

2.3Mechanicalproperties25

2.3.1Modulus25

2.3.2Effectofvoidsonstrength28

2.3.3Griffiththeoryofbrittlefracture29

2.4Processingandservice-inducedvoids30

2.4.1Casting30

2.4.2Powderprocessingofmaterials31

2.4.3Voidsinsolders31

2.5Time-dependentproperties31

2.5.1Diffusionofvacanciesandvoids32

2.5.2Clusteringandfailure34

2.5.3Kirkendallvoidsincrystallinematerials35 References37

3.Intrinsicvoidsinpolymericnetworks41

3.1Polymerstructure41

3.2Freevolumeandthermomechanicalbehavior44

3.3Kinetictheoryofpolymerstrength46

3.4Thermalconductivity48

3.5Roleofvoidsinphysicalaginginpolymers49

3.6Measurementoffreevolume49 References50

4.Nanometerscaleporousstructures53

4.1Introduction53

4.2Nanotubes54

4.3Zeolites59

4.4Nanoporouspolymers61

4.5Nanoporousorganicnetworks64

4.5.1Covalentorganicframeworks65

4.5.2Covalenttriazineframeworks67

4.5.3Polymersofintrinsicmicroporosity(PIM)67

4.5.4Conjugatedmicroporouspolymers68

4.6Nanoporousnoblemetals71 References73

5.Hollowandporousstructuresutilizingthe Kirkendalleffect77

5.1Introduction77

5.2GeneralizedKirkendallmechanismforformation ofhollowparticles78

5.2.1Symmetrichollowparticles80

5.2.2Asymmetrichollowparticles81

5.3Tubes82

5.4Porousandhollowstructures85 References91

6.Techniquesforintroducingintentional voidsintomaterials95

6.1Introduction95

6.2Commonalitiesoffoamformationprocesses96

6.3Introductionofagas97

6.3.1Mixing97

6.3.2Physicalblowingagent99

6.3.3Chemicalblowingagent101

6.4Templatingorsacrificialporeformer105

6.4.1Aerogels106

6.5Bondingtogetherofspheres,fibers,powders,orparticles107

6.6Additivemanufacturingofcellularstructures109

6.7Mechanicalstretching123

6.8Exploitingchemicallyselectiveweaknessinsolids124

6.9Hierarchicaldesignwithvoids129 References132 Furtherreading137

7.Techniquesofintroducingintentionalvoidsinto particlesandfibers139

7.1Introduction139

7.2Hollowandporousparticles139

7.2.1Introduction139

7.2.2Processingofporousparticles140

7.2.3Hollowparticles143

7.2.4Hollow,porousparticles147

7.2.5Porousandhollowmacrometerscaleparticles150

7.3Hollowandporousfibers154

7.3.1Carbonnanotubes158

7.4Nonsphericalhollowparticles160 References162

8.Voidcharacterizationtechniques167

8.1Introduction167

8.2Microscopy167

8.2.1Opticalmicroscopy167

8.2.2Electronmicroscopy168

8.3Positronannihilationlifetimespectroscopy(PALS)172

8.4Three-dimensionalimaging174

8.5Gasadsorption178

8.6Chromatographicporosimetry180

8.6.1Introduction180

8.6.2Inversegaschromatography(IGC)181

8.6.3Inversesizeexclusionchromatography183 References186

9.Characteristicsandpropertiesofporousmaterials189

9.1Introduction189

9.2Generalcharacterization190

9.2.1Cellsize190

9.2.2Openversusclosedcell191

9.2.3Reinforcedversusunreinforcedvoids193

9.2.4Density195

9.2.5Relativedensity196

9.2.6Energyabsorption197

9.2.7Cellsizedistributionandregularity199

9.3Conventionalfoams202

9.3.1Stress strainbehaviorincompression202

9.3.2Elasticconstants203

9.3.3Dielectricconstant206

9.4Syntacticfoams208

9.4.1Growthandperformance208

9.4.2Compressivestress strainrelationship210

9.5Thermalproperties212

9.6Finiteelementanalysis(FEA)217

9.7Geopolymerfoams220

9.8Metallicfoams222 References226 10.Applications231 10.1Introduction231 10.2Syntacticfoams233

10.2.1Deep-seabuoyancy233

10.2.2Hollowcompositemacrospheresandcomposite syntacticfoams238

10.2.3Deep-seathermalinsulation239

10.2.4Syntacticfoamsandexplosiveformulations240

10.2.5Otherapplication242 10.3Aerospace243

10.3.1Carbonnanotubes(CNT)243

10.3.2Honeycombs245

10.3.3Thermalprotectionsystemsandheatshields246

10.3.4Silicaaerogelforacometdustcollector249

10.3.5Thermalbarriercoatings(TBCs)254

10.4Energy257

10.4.1Lithium-ionbattery257

10.4.2Electrochemicalenergystoragewithporousmetals259

10.4.3Guest hostcomplexes261

10.4.4Solarpower263 10.5Titaniaandphotocatalysis263 10.6Biomaterialsandhealthcare265

10.6.1Introduction265

10.6.2Biomaterialsscaffold267

10.6.3Nerveregeneration268

10.6.4Drugdelivery272

10.7Mengersponges272 References275

Glossary281

Authorindex285 Subjectindex297

Abouttheauthors

GaryGladysz isanadjunctassociateprofessorofmaterials scienceandengineeringattheUniversityofAlabamaat Birmingham,UnitedStatesandfounderatX-Link3Dat Youngstown,OH,UnitedStates.HereceivedhisPhDfromthe NewMexicoInstituteofMiningandTechnology,wherehe participatedintheNATOCollaborativeProgramwiththe GermanAerospaceInstitute(DLR).SincereceivinghisPhD, hehasledresearcheffortsinuniversity,government,and industrialsettings.Hehasextensiveresearchexperience designingandcharacterizingthermosetcompositematerialsfor3Dprinting,fibrous composites,ceramiccomposites,polymers,compositefoams,andthinfilms.Asa technicalstaffmemberatLosAlamosNationalLaboratory(LANL),hewastechnical leadforrigidcompositesandthermosetmaterials.In2005hewasawardedthe LANLDistinguishedPerformanceGroupAwardforhisworkleadingmaterialsdevelopmentontheReliableReplacementWarheadFeasibilityProject.Additionally,while theUSArmy,hedevelopedcompositematerialsandtestprotocolsforballistichead protection.HehasservedonfundingreviewboardsforLANL,NationalScience Foundation,ACS,andtheLindberghFoundation.Hehasbeenguesteditoronmany issuesofleadingmaterialssciencejournals,including JournalofMaterialsScience and MaterialsScience&Engineering.Hehasorganizedmanyinternationalconferences/symposiaonsyntacticfoams,compositematerials,andinnovativematerials foradditivemanufacturing.HestartedandchairstheECIinternationalconference seriesonSyntacticandCompositesFoams.HecurrentlylivesinBoston, Massachusetts,UnitedStates.

Professor KrishanChawla obtainedhisBSfromBanaras HinduUniversityandhisMSandPhDdegreesfromthe UniversityofIllinois at Urbana-Champaign,UnitedStates.He hastaughtand/ordoneresearchat(inalphabeticalorder) ArizonaStateUniversity,Tempe,AZ(UnitedStates);Ecole PolytechniqueFederaledeLausanne(Switzerland);Federal InstituteforMaterialsResearchandTesting(BAM),Berlin (Germany);GermanAerospaceResearchInstitute(DLR), Cologne(Germany);InstitutoMilitardeEngenharia(Brazil); LavalUniversity(Canada);LosAlamosNationalLab(United States);NewMexicoTech(UnitedStates);NorthwesternUniversity(UnitedStates); UniversityofAlabamaatBirmingham(UnitedStates);andUniversityofIllinois at Urbana-Champaign(UnitedStates).

Hehaspublishedextensivelyintheareasofprocessing,microstructure,and mechanicalbehaviorofmaterials,ingeneral,andcompositematerialsandfibers,in particular.Besidesbeingamemberofvariousprofessionalsocieties,heisEditorof InternationalMaterialsReview (publishedjointlybyASMInternational,United StatesandtheInstituteofMaterials,London)andamemberoftheEditorialBoard ofvariousjournals.During1989-1990,heservedasaProgramDirectorformetals andceramicsintheDivisionofMaterialsResearch,NationalScienceFoundation, Washington,DC,UnitedStates.Heservesasaconsultanttotheindustry,US nationallaboratories,andvariousUSfederalgovernmentagencies.In1992hewas therecipientofthe EshbachSocietyDistinguishedVisitingScholarAward from NorthwesternUniversity.DuringtheperiodofJune,1994throughJune,1995he heldthe USDept.ofEnergyFacultyFellowship atOakRidgeNationalLab.In1996 hewasgiventhe DistinguishedResearcherAward bytheNewMexicoTech.In1997 hewasmadea FellowofASMinternational.In2000hewasawardedthe DistinguishedAlumnus awardbyBanarasHinduUniversity.Hereceivedthe President’sAwardforExcellenceinTeaching,UniversityofAlabamaatBirmingham in2006.In2018hewasawardedthe AlbertNelsonMarquisLifetimeAchievement Award.

Prefacetothefirstedition

Thetitleofthisbook, VoidsinMaterials:FromUnavoidableDefectstoDesignedCellular Materialssayseverything.Allmaterialshavevoidsatsomescale.Sometimesthevoidsare ignored,sometimestheyaretakenintoaccount,andothertimestheyarethefocalpointofthe research.Inthisbook,however,wetakeduenoticeofalloftheseoccurrencesofvoids,whether designedorunavoidabledefects,wedefinethesevoids(oremptyspacesinmaterials),categorizethem,characterizethem,anddescribetheeffecttheyhaveonmaterialproperties.

Afteranintroductorychapter,wedevoteachaptereachonintrinsicvoidsincrystalline materials(suchasmetalsandceramics)andinpolymers.Weexplainthedifferences betweenidealandrealmaterialsasrootedinthevoidsanddefects.Wediscusstheorigins, diffusion,andcoalescenceofvoids/defectsandtherelationtophenomenasuchascreep, physicalaging,diffusion,glasstransitiontemperature,thermalexpansion,howmaterial propertieschangewithsize,distribution,andamountofvoids,andtheimplicationsthat voidshaveonproductdesign.Thisisfollowedbyachapteronintentionalvoidsinmaterials. Oftentimes,themethodsandthevocabularyrelatedtofoamsarematerial-specific.Similar methodscanbecalledbydifferentnameswhenworkingwithametalorceramic.Wepoint outthecommonalitiesinthewaythevoidsareintroducedindifferentmaterials,highlight thesimilarities,andpointoutthedifferenttermsusedtodescribethem.Inadditiontoa chapteronintentionalvoidsinbulkmaterials,wedevoteachapterontheintroductionof voidsintodispersedphasessuchasparticlesandfibers.Structuressuchasnanotubes,hollowandporousspheres,membranes,andnonsphericalparticlesaretechnologicallyimportantinfieldsasdiverseascatalysis,biomaterials,ablation,compositematerials,and pharmaceuticals/medicine.Achapterisdevotedtocellularmaterialsorfoams,whereinwe highlightthecommonalitiesinmaterialpropertiesofvoidsinpolymers,metals,andceramics.Finallybroadapplicationsofsuchcellularmaterialsaredescribedalongwithtechniquesusedtocharacterizevoids.

Throughoutthebookwehavetakentheapproachofhighlightingthephysicsandchemistryofthesubjectmatterunderconsiderationwhileminimizingthemathematicalpart. Extensiveuseismadeoflinedrawingsandmicrographstobringhometothereaderthe importanceofvoidsasunavoidablestructuraldefectsaswellasvoidsbeinganelementof designtoobtainthedesiredpropertiesinamaterial.Theintendedaudienceforthisbook arestudents,researchers,practicingengineersinthefieldsofmaterialsscienceandengineering,physics,chemistry,andmechanicalengineering.

Finally,wewouldliketoacknowledgeourcolleagueswithoutwhosehelpwewouldnot havebeenabletodothisproject.GaryM.GladyszwouldliketothankA.Boccaccini,K. Carlisle,W.Congdon,L.Dai,S.Emets,N.Godfrey,M.Koopman,M.Lewis,J.Lula,U.Mann, G.McEachen,D.Mendoza,B.Perry,W.Ricci,S.Rutherford,C.Sandoval,andV.Shabde.

KrishanK.ChawlawouldliketothankA.Boccaccini,N.Chawla,K.Carlisle,M.Koopman, M.Lewis,andA.Mortensen.ThanksareduetoKanikaChawlaandA.Woodmanforhelp withthefigures.

GaryM.Gladysz1,2,KrishanK.Chawla1

1 DEPARTMENTOFMATERIALSSCIENCEANDENGINEERING,UNIVERSITYOFALABAMA ATBIRMINGHAM,BIRMINGHAM,AL,UNITEDSTATES 2 X-LINK3D,YOUNGSTOWN, OH,UNITEDSTATES

Prefacetothesecondedition

Rightfromthestageofconceptionofthisbook, VoidsinMaterials:FromUnavoidable DefectstoDesignedCellularMaterials,ourgoalwastocreateabookfocusingonvoids,independentofthematerialcontainingthevoids.Webelievethisiswhatdistinguishesourbook fromotherbooksonfoamsordefects,etc.Sincethefirsteditionin2014therehasbeensignificantprogressinthisfield.Theexpansionisdrivenbythemaximizingfunctionalitywhile minimizingmassofthepartandthetimetoneededtomakethepart.Wehaveexpandedon thesethemesinthesecondedition,addingnewcontentthatincludesthelatesttopicsand applicationsofcuttingedgeresearchanddevelopment.Wehopethatthestudents,scientists, researchers,andengineerswillfindthenewcontentandorganizationofthebookcompellingandinaccordwiththeoverallconcept.Anotherpositiveaspectofthisbookisthewealth ofreferencesandfurtherreadingsuggestionsthatweprovideattheendofeachchapter. Thiswilldirectreaderswhowishtoexploretopicsinmoredepthtotherelevantliterature.

Thecoverdesignofthiseditionvisuallyencapsulatesmanyofthekeyconceptsdiscussed. Thoughthereisnoscalemarker,onecanimmediatelyrecognizethebottomgraphicasa carbonnanotube.Thatfactthatthehollowportionisanintentionalvoidonthesinglenanometerlengthscaleisatestamenttotheprecisionwenowhaveonthedesignofmaterials. Evenonasmallerlengthscaleisthearrangementoftheatomscreatingthegrapheneshell ofthecarbonnanotubecreatingahoneycomblikepatternwithnonstochasticintrinsicvoids. Thetopimageshowsablownstochasticfoamwithagradientcellstructuremadeof micrometerscaleintentionalvoids.Incontrast,theinterfaceregionscontainintrinsicvoids; intrinsicsincethelevelofcontrolovertheprocessmakethesedefectsunintentionalyetinevitable.Thespanoflengthscaleofvoidsjustdiscussed,subnanometer,nanometer,and micrometersuggestthatabilityforhierarchicaldesignofporosity.

Atopicthathasthatbeenexpandedwithnewcontentinmultiplechaptersisadditive manufacturing(AM)or3Dprinting.Thisreflectstherapid,worldwideexpansionofAMin researchanddevelopment,manufacturing,andapplications.Wediscussthesevendistinct technologieswithinAMandhighlightinterestingporousstructuresforeach.Wediscussthe newconceptofthedigitaldesignofvoidsandtheroleithasinmasscustomization;tailoring adidasshoesandbiomaterialscaffoldstosuitanindividual ’sneed.Digitaldesignofporosity hasmadeitpossibletotailorregularity(R)fromcompletelystochasticandrandom(R 5 0) tononstochasticandordered(R 5 1)andeverythinginbetween.Wediscussregularityasit relatestoVoronoistructures,designingandtailoringvoidswithinastructuretoachievecertainfunctionalities.Needlesstosay,thisisonlypossiblewithAM.

InthefirsteditionwehadasectionortwodiscussingtheKirkendalleffect.TheKirkendall effectwheninitiallyidentifiedinthe1940swasthoughtofasdetrimentalinmetals.However,in theearly2000s,methodsandproceduresweredevelopedtoconstructivelyusethis “detrimental”

effecttodesignandcreatehollowstructures.Sincebecomingaprocessforcreatingintentional porosity,theresearchhasdramaticallyincreased.WenowdevoteanentireChapter5,Hollow andporousstructuresutilizing theKirkendalleffect,tocoverthetopicindetail.Wecoverhollow particleandtubeformationonthenanometerandmicrometerscaleandwellasporousparticles andfibers.Wediscuss symmetric and asymmetric Kirkendallmechanismsforcreatinghollowparticleandfibersandexplaintheunderlyingphenomenathatleadtoeach.

AnotherentirelynewchapterisChapter4,Nanometer-scaleporousstructures. Nanotechnologyhasalreadymadeitswayintoourdailylivesintheoptics,chemicalfiltration,desalinization,andsensorstonameafew.Wediscussmanytypesofcuttingedge researchonnanocellularfoams,nanoporousnoblemetals,zeolitesaswellasthevarious nanoporousorganicnetworks(covalentorganicframeworks,covalenttriazineframeworks, polymersofintrinsicmicroporosity,andconjugatedmicroporouspolymers).

Wehaveexpandedthe Applications chaptertoincludeawidevarietyofnewapplications fromusingaerogeltocollectcometdust,electrochemicalenergystorage,tothermalbarrier coatingofjetengines.

Finally,wewouldliketoacknowledgeourcolleagueswhosecontributionstothissecond editionhavebeeninvaluable.GaryM.GladyszwouldliketothankA.Boccaccini,K.Carlisle, A.Campanella,J.J.Castellón,W.Congdon,M.Gromacki,N.Gupta,C.Hershey,M. Koopman,M.Lewis,J.Lindahl,O.Manoukian,D.Mendoza,V.Mishra,B.Pillay,D.Schmidt, C.Sandoval,andK.Shah.KrishanK.ChawlawouldliketothankA.Boccaccini,K.Carlisle,N. Chawla,M.Koopman,M.Lewis,andA.Mortensen.ThanksareduetoKanikaChawlaandM. Armstrongforhelpwithfigures.

GaryM.Gladysz1,2,KrishanK.Chawla1

1 DEPARTMENTOFMATERIALSSCIENCEANDENGINEERING,UNIVERSITYOFALABAMA ATBIRMINGHAM,BIRMINGHAM,AL,UNITEDSTATES 2 X-LINK3D,YOUNGSTOWN,OH, UNITEDSTATES September1,2020

Introduction

1.1Overview

Sowhywriteabookjustonvoidsinmaterialsasthetopic?Theanswerissimpleand twofold first,thejuxtapositionof “emptyspace” adjacenttosolidmaterialseemed,to us,aninterestingdichotomy.Second,dependingonone’sperspectiveordesiredoutcome,voidscanlimitorenhancetheperformanceofmaterials.Isthetargetaconsolidatedmaterialorafoam?Ifthetargetisafoam,howdomaterialpropertieschange withthetypeandamountofvoids;opencellversusclosedcell,themeansize,size distribution,volumefractionofvoids,etc.?Ifthetargetisaconsolidatedmaterial, someimportantquestionsmightbehowdopropertieschangewiththevolumepercent,location,geometry,andsizeofunwantedvoids?Anotherinterestingquestionis howdothosevoids,onthesubnanometerandnanometerscales,whicharetypically notcharacterizedbyfoamresearchers,playintothefinalproperties.

Voidsarealsoveryimportanttounderstandfromapracticalengineeringstandpoint.Eveninthemosthighlyengineereddensifiedmaterials,defects,suchasvoids, willlimitthedesignofrealstructures.Soalongwiththetheoreticalexplorationof voidsinmaterials,inthisbook,weprovideexamplesofreal-worldapplications whereinvoidsareprevalentinstructuresandaffecttheirproperties.

Inthisbookweexploresuchdichotomies;solidversusemptyanddesiredversus undesiredaspectsofvoidsinmaterials.Furthermore,wewouldliketoshedlighton a “middleground” ofthesmartuseofvoidstohelpintheoptimizationofperformanceofapart.Bymiddlegroundwemeananeutrallookattheimpactvoidshave onmaterial/partsanduseofvoidsasadesignparameterforoptimizingperformance inmultifunctionalmaterials.Thereismuchpublishedworkavailableonfoams (Gibson&Ashby,1997;Shutov,2004).Evenmorenumerousarethosethatprovide apassingmentionofvoidswhentheyareincidental/unwantedduringthefabricationofnominallydensematerials.Thisbook,however,isnotjustaboutfoamsor residualporosityinmaterials,importantthoughthesecontributionsare;insteadit focusesonthe void itself.Thefactisthatallmaterialshavevoids,thatis,theyare pervasiveinallmaterialsatsomelengthscale.So,inadditiontovoidsinfoams,this bookbringsininformationfromanumberofdifferentfieldsofstudysuchasmaterialscienceandengineering,physicsandchemistryofmaterials,andmechanicsof materials.Thisbooktreatsallofthese “different” typesofvoidsequallyand

highlightstheircommonalitiesinallaspects fromprocessing,formation,and characterizationtotheresultingmaterialproperties.

Forthepurposeofthisbook,avoidhastwoessentialproperties,itmustbe(1)a volumemeasuredincubeofsomeunitoflengthand(2)occupiedbyavacuumor gas(i.e.,solid/liquidmaterialsareabsent).Ingeneral,thereisnosizeorshape requirementonavoid;soitrangesfromsubnanometerstomillimeters,sometimes evenlarger,inequivalentdiameter.Weshouldmakeitclearthatvoidsinaliquid andgaseousmediumwillnotbecoveredinthisbook.Wedevotetherestofthis chaptertoageneraldiscussiononvoids.

1.2Descriptions

1.2.1Intrinsicandintentionalvoids

Intrinsicvoids appearinmaterialsbecauseofinherentstructure,naturalprocesses, processinglimitations,and/oraginginserviceenvironments.Atsomelengthscale,all realmaterialshaveintrinsicvoids.Attheatomiclevel,ifweexaminetheBohratomic model,weseethatmostofthevolumeoccupiedbyanatomisemptyspace.Wewill notbegoingintodetailsoftheBohrmodelinthisbook,butitisimportanttomention.Ageneralchemistrytextissufficienttoreviewthegeneralstructureofatoms.

Whenvoidsarethoughtofasdefects,theyareviewedashavingadetrimentaleffect onmaterialproperties.However,sometimes defectscanbebeneficialandessentialto specificmaterialbehavior,suchascolorcentersandsemiconductingproperties.The intrinsicvoidsgenerallyrangefrom10 15 to10 3 m;examplesincludeatomicvacancies,freevolume,latticeholes,andprocessinducedporosity.

Intentionalvoids areincorporatedbydesignintoasolidmaterial.Suchmaterialsare usually,butnotalways,referredtoasfoams.Thisisespeciallytruewhenthevoidsareon amicrometerscale.Intheearly21stcentury,technologyhasevolvedtoanextentthatwe cancontrolvoidsinthesinglenanometersizerange.Materialswithintentionalvoidscan beclassifiedinmanyways.Someimportantexamplesare single-phasefoams, composite and syntacticfoams (Gladysz&Chawla,2002).Therearemanywaystointroduceanintentionalvoidintoamaterial,themethodofintroducingthesevoidsishighlydependenton thetypeofmaterialtheyareintroducedintoaswellasthedesiredpropertiesneededin thefinishedmaterial.Detailsofthese processeswillbecoveredinChapters5 7.

Whenwediscussintentionalvoidsinamaterial,itisimportanttorememberthat theintrinsicvoidsontheatomicand/ornanometerlengthscalemaystillbepresent. Fig.1 1 isanexampleofanintrinsicvoidinthewallofahollow(intentionalvoid) glassmicrospheresformedduringthespraydryingformationprocess.Thehollow coreofthesphereisinthemicrometerrangeandtheunintentionalvoidsinthe

FIGURE1–1 Ahollowglasssphereillustratingnanometer-scaleintrinsicvoidscausedbyprocessing andtheintentionalvoid,thehollowcoreofthesphere.

FIGURE1–2 Anidealizedstructureofacellconsistingofstrutsandfaces.

shellareinnanometer/submicrometerrange.Thisintrinsicvoidweakenstheshell ofthesphereandcanbethecauseoffailureduringservice.

Independentofthematerial,voidscanbecategorizedas reinforced or unreinforced and open or closedcell.Wewilldiscusstheconceptsofopencellversusclosed cellandreinforcedversusunreinforcedin Sections1.2.2and1.2.3,respectively.

1.2.2Closedandopencellporosity

Whetherdiscussingcellsinfoamorjustgeneralporosity,theyaresimplyvoidsdispersed inasolidphase.Cellsaremadeupofstrutsandfaces,asshownschematicallyin Fig.1 2,thatsurroundthevoidspace.Inaclosedcell,thefaceofthecellwallconsistsof acontinuoussolidphase.Inanopencellmaterial,apartofthatwallismissing.

Inaflexibleopencellfoam,see Fig.1 3A and B,gascanfreelyflowinoroutof thecellswhenthestructureisextendedorcompressed.Becausethecellfacesare

FIGURE1–3 Examplesofthestructure:(A)lowmagnificationand(B)highermagnificationofopen cellreticulatedfoam(C)aclosedcellsiliconefoam. Source:Lepage,G.,Albernaz,F.O.,Perrier,G.,& Merlin,G.(2012).Characterizationofamicrobialfuelcellwithreticulatedcarbonfoamelectrodes. BioresourceTechnology,124,199 207.

discontinuous,materialscontainingopencellstypicallyhavealowermodulusand strengththanthosecontainingclosedcells.Thereticulated(meaningweblike)foam in Fig.1 3 isanextremeexampleofanopencellfoamasitiscomposedentirelyof strutswithoutfaces.Thismaterialisacandidateforanelectrodeinmicrobialfuel cell(Lepage,Albernaz,Perrier,&Merlin,2012).Therearesomegeneralconditions neededforamaterialtobeopencell.Accordingto Shutov(2004),thefollowingtwo criteriamustbemetforapredominantlyopencellstructure:

• Eachpolygonalcellmusthaveatleasttwodiscontinuousorbrokenfaces.

• Anoverwhelmingmajorityofthecellstrutsmustbesharedbyatleastthreecells. Fromtheabovecriteria,itisclearthatthephysicalstructureofopencellfoamsand resultingpropertiescanvarywidely.Wediscussthesestructure propertyrelationshipsin moredetailinChapter9,CharacteristicsandpropertiesofPorousMaterials.Ingeneral, opencellfoamsexhibitgoodabsorptioncapacityforwaterandgoodacousticdamping properties(Zhang,Li,Hu,Zhu,&Huang,2012)comparedtoclosedcellfoams.

Inclosedcellfoams(Fig.1 3C)thefacesarecontinuous,whichleavesgasesinside individualcellsisolatedfromthesurrounding cells.Becausethefacesareintact,closed cellfoamstypicallyhavehigherstrengthandmodulusthanopencellfoams.Inaddition tosuperiormechanicalproperties,theyareusedextensivelyfortheirinsulatingproperties(Jelle,2011),becausetheairtrappedinthecellsreducethermalconductivity.

1.2.3Unreinforcedandreinforcedvoids

Unreinforcedvoids arepresentinmostmaterialsthatwedealwithonaday-to-day basis.Conventional,single-phasefoamsarethemostrecognizablematerialsthat haveunreinforcedvoids.Acommonexampleofasingle-phasefoamcontainingan unreinforcedvoidphaseisthepolyurethanefoamused,forexample,forcushioning infurnitureandexpandedpolystyrene(PS)usedforinsulation.Examplesofunreinforcedvoidsareshownin Fig.1 3A C.

Foamscontainingunreinforcedvoids,aswementionedabove,makeaverylarge classofmaterialsandfindwideapplications.Therearemanybooksandjournals dedicatedtothebehaviorofsuchfoams,sowhatwepresentinthisbookonthis topicwillbeofageneralnatureandthereaderwillbedirectedtothesuggested readinglistedformoredetails.

Reinforcedvoids aremostlyencounteredinaclassofmaterialscalled syntactic foams or compositefoams (Gladysz&Chawla,2002).Theyoccurwhenoneofthe reinforcingphasesisholloworporous.Examplesofhollowreinforcingphasesare glassmicroballoonsandhollowfibers,suchascarbonnanotubes.

Theneedtodistinguishbetweenreinforcedandunreinforcedvoidsbecameevidentwiththedevelopmentofsyntacticfoamsinthe1960sand1970s.Thefirstwidespreaduseofsyntacticfoamswasforuseindeep-seabuoyancyandinsulation applications.Voidsareintroducedinasyntacticfoambybondingtogetherofahollowmaterial,typicallyintheformofmicroballoons,withabinderphase.Thehollow particleormicroballoonisthereinforcedvoidphase;theshelliscommonlymadeof glass;however,theshellcanbemadeofphenolic,carbon,ceramic,ormetalalso. Thebinderphasecanbeapolymer,metal,orceramic.

Syntacticfoamscanbefurthercategorizedastwo-orthree-phasesyntacticfoams. Athree-phasesyntacticfoamismadefrommicroballoons,abinderphase,andinterstitialvoids.Thisinterstitialvoidisanunreinforcedvoid;itcanbeeitheropenor closedcellandcanbeengineeredintothesyntacticmaterialinordertominimize density.Althoughnotreferredtoassuch,hollowfibers,suchasnanotubeswhen embeddedinamatrix,canbeviewedasreinforcedvoidandasyntacticfoam. Syntacticfoamsareusedwherehighspecificstrengthandmodulusmaterialsare needed.

FIGURE1–4 (A)Aschematicofathree-phasesyntacticfoamwhereinterstitialvoidisengineeredinto thematerialand(B)atwo-phasesyntacticfoamwherethereissufficientbindertofilltheinterstices. (C)Scanningelectronmicrographofacrosssectionofasyntacticfoam,illustratingunreinforced (matrixnanoporosity)andreinforced(glassmicroballoon)voidontwodifferentlengthscales, micrometerandnanometer.

Fig.1 4 comparestwo-andthree-phasesyntactic foams.Three-phasesyntacticfoams (Fig.1 4A)aredesignedsuchthatthemicroballoonandbinderphasevolumefractionis lessthanone;theremainderbeingtheunreinforced,interstitialvoid.Two-phasesyntactic foams(Fig.1 4B)aredesignedsothatthevolumefractionsofthebinderphaseand microballoonsadduptounity,thatis,thereisenoughbindertofilltheinterstices betweenthemicroballoons.Typically,thedimensionsoftheunreinforcedvoidsinasyntacticfoamareonamicrometerscale. Fig.1 4C showsthemicrostructureofathreephasesyntacticfoam,madeofglassmicroballoonsandporouspolymerbinder.

Thereareseveralexamplesofhollowmicrospheres(micrometerscaleindiameter)availablecommercially.Glass,phenolic,andceramicparticlesarethemostcommonones.Inlargescalemanufacturing,hollowparticleformationprocessesrelyon a blowingagent.Theinternalgasexpandstheskinofthehollowparticlewhichthen coolsandhardensintoaparticlewithacentralvoid.

FIGURE1–5 Silicananospheresdemonstratethecontrolofvoidsdownto50nmrange.Theinsetsshow highermagnificationofthenanospheres(SEMandTEM). Source:Huang,S.,Yu,X.,Dong,Y.,Li,L.,& Guo,X.(2012).Sphericalpolyelectrolytebrushes:IdealtemplatesforpreparingpH-sensitivecoreshell andhollowsilicananoparticles.ColloidsandSurfacesA:PhysicochemicalandEngineeringAspects, 415,22 30.

Itispossibletomakereinforcedvoidsonnanometer,micrometer,andmacrometer scales.Onananometerscale,hollowsphericalshellshavebeenmadebytemplating nanoparticlesonasacrificialcorematerial(Minami,Kobayashi,&Okubo,2005)orbubble (Hadiko,Han,Fuji,&Takahashi,2005).Anothertechniquethatcanbeusedisplasma polymerization(Cao&Matsoukas,2004). Fig.1 4C showsathree-phasesyntacticfoam; thebinderphasehavingnanometer-scaleunreinforcedporosity,withaglassmicroballoon reinforcedvoid. Fig.1 5 showsanexampleofhollowparticlefabricatedatthesubmicrometerrangeandnanometerrange(Huang,Yu,Dong,Li,&Guo,2012).Thesearesilica hollowparticlesproducedviathetemplatingmethod.ThesacrificialcorewasPSwith polyacrylicacid(PAA)attachedtothesurface.ThefunctionalityofthePAAwastodirect andcontrolthecoatingofsilica.ThePS/PAA corewasdissolvedusingchloroformleaving behindahollowparticle.

1.2.4Porosityinnaturalandsyntheticmaterials

Therearemanynaturallyoccurringmaterialsthatareusedtoday,forexample,graniteandmarblecountertopsandlumberandstoneusedinconstruction.Infact,from asupplychainandrawmaterialsstandpointallofouradvancedmaterialscome fromnature.Asthestoneandlumberindustryillustrates, “[I]fitisnotgrown,thenit ismined.” Forexample,polymerscanbemadefromfossilfuelorplant-basedfeed stocks.Naturalmaterialsarethebuildingblocksofallengineeredmaterials.There arenumerousexamplesofporousmaterialsthatarefoundinnature.Sometimes thesematerialsareminedanddirectlyusedasfunctionalmaterials,whereasatother timesanaturalmaterialisstudied,anditsmicrostructureisreplicatedinthe

laboratory.Thereplicationinthelabisgenerallyanattempttonarrowthe inevitablevariabilityseeninanaturalmaterial.Wedothisbyimplementingprocess andrawmaterialcontrolstoreducevariability;thuscreatinganengineeredproduct.

WewouldliketouseCastelladeSanMarcus,locatedinFlorida,UnitedStatesas anexample.Itsconstructiondatesbackto1672,centuriesbeforetheemergenceof modernmaterialsscienceandengineering.Since1672thestructurehassurvivedwars andhurricanes,atleastpartly,becauseofthedurabilityofthewalls(Fig.1 6).The porouswallsofthisstructureareknownfortheabilitytoabsorbtheenergyofprojectiles,likebulletsandcannonballs,withoutlargecrackemanatingfromthepointof impactthatwouldleadtocatastrophicfailure(Subhash,Jannotti,&Subhash,2016). Interestingly,becauseofthematerialsselectionandconstructionofthewalls,thisfort wasnevertakenbyforce.Thenaturalmaterialofwallconstructionisaporousrock formationcallcoquina.Theabilitytoabsorbtheenergyofprojectileshastodowith theuniquemicrostructure).Coquinaisclassifiedasasedimentaryrock,thatis,itis madeupoffragmentsofotherpreexistingrocks.Itisacompositeoffragmented

FIGURE1–6 AphotographoftheCastelladeSanMarcuslocatedinSt.Augustine,FL,UnitedStates. Theoriginalconstructionstartedin1672.Thechoiceofmaterialfortheexteriorfacingwallsis coquina,aporoussedimentaryrockwithanotedabilitytoabsorbtheenergyfrombulletsand cannonballsofthattimewithoutexperiencingbrittlefracture.

marineshells,fossilsandcoral,limestone,sand,mineralsandclay,withsignificant voidspacebetweenthesesolidcomponents.Thevoidsarelocatedattheinterstitial positionsbetweentheshellfragments.Followingisasummaryofthenaturalprocess thatresultsincoquinaandsedimentaryrocks,ingeneral:

• Weatheringofexistingrock,marineshells,

• transportationoftheweatheredshells,

• depositionofshellsinlayers,

• compaction,and

• cementation.

Thelasttwoitemsintheabovelistarecalled lithification,meaning “convertinto solidrock.” Sincethereareinterstitialvoidspresent,thistypeofrockisconsidered partiallylithified.Thisnaturalprocessofintroducingvoidsinsedimentaryrockhas analogousprocessingstepsinengineeredsyntheticmaterials.However,tomakecomparableengineeredmaterial,thetimescaleneedstobesignificantlycompressed.We discusstheseprocessesindetailinChapter6,TechniquesforIntroducingVoidsinto BulkMaterials,TechniquesofIntroducingIntentionalVoidsintoParticlesandFibers. Asyntheticmaterialthathasmicrostructuralandprocessingsimilaritiestocoquina isfritmaterial;frithasanetworkofparticlesconnectedatcontactpointswithinterstitialporosity.Forexample, ChoandKim(2016) usedzincaluminumborosilicateglass ceramictoinvestigatethedependenceofparticlesizeonthedensificationand mechanicalbehaviorofthefinalfritmaterial.Theprocesshassimilaritieswiththe partiallylithifiedsedimentaryrockformation,theprocessdonebyChoandKimisas follows,withtheanalogoussedimentaryrockformationstepsgiveninparentheses:

• Jetmillandballmilltocrushglassintodesiredparticlesize(Weathering).

• Sedimentationtosize-separateparticles(Transportation/deposition).

• Centrifugetopacktheparticles(Compaction).

• Hightemperaturesintering(Cementation).

Fig.1 7 isanSEMmicrographofthematerialsmadeupofdifferentparticlesizes afterthecentrifugestep.Atthispointtheloosepowderisconsolidatedbutthereis nobondingbetweenthediscreteparticles.Thesematerialswereprocessedfurther at900 Ctofusetheparticlestogether(Fig.1 8).Justasthecoquinahasinterstitial porositysodoesthisglassfritmaterial,rangingfrom4%to14%byvolume.

1.2.5Stochastic,nonstochastic,andVoronoifoams

Beforetheadventofadditivemanufacturing(AM)itwasvirtuallyimpossibletofabricate,inareproduciblemanner,theexactmicrostructureofachemicallyblownfoam. Studieswouldnormalizedatarelatedto foamsbasedondensitywiththeimplicit

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Voids in materials: from unavoidable defects to designed cellular materials 2nd edition gary m. glad by Education Libraries - Issuu