Vapor generation techniques for trace element analysis: fundamental aspects 1st edition alessandro d

Page 1


https://ebookmass.com/product/vapor-generation-techniques-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Flow Analysis for Hydrocarbon Pipeline Engineering

https://ebookmass.com/product/flow-analysis-for-hydrocarbon-pipelineengineering-alessandro-terenzi/

ebookmass.com

Islamic Ethics: Fundamental Aspects of Human Conduct

https://ebookmass.com/product/islamic-ethics-fundamental-aspects-ofhuman-conduct-abdulaziz-sachedina/

ebookmass.com

Structured Analytic Techniques for Intelligence Analysis

https://ebookmass.com/product/structured-analytic-techniques-forintelligence-analysis/

ebookmass.com

When Love Breaks Us Monica Arya

https://ebookmass.com/product/when-love-breaks-us-monica-arya/

ebookmass.com

Entre el deber y el deseo: Saga: Amores Tormentosos (Spanish Edition) Melanie Pearson

https://ebookmass.com/product/entre-el-deber-y-el-deseo-saga-amorestormentosos-spanish-edition-melanie-pearson/

ebookmass.com

Metal Oxides and Related Solids for Electrocatalytic Water Splitting Qi Junlei (Ed.)

https://ebookmass.com/product/metal-oxides-and-related-solids-forelectrocatalytic-water-splitting-qi-junlei-ed/

ebookmass.com

Communicating National Image through Development and Diplomacy 1st ed. Edition James Pamment

https://ebookmass.com/product/communicating-national-image-throughdevelopment-and-diplomacy-1st-ed-edition-james-pamment/

ebookmass.com

Wildlife Trafficking: A Deconstruction of the Crime, Victims and Offenders 2nd Edition Tanya Wyatt

https://ebookmass.com/product/wildlife-trafficking-a-deconstructionof-the-crime-victims-and-offenders-2nd-edition-tanya-wyatt/

ebookmass.com

Medieval Eastern Europe, 500-1300 Florin Curta

https://ebookmass.com/product/medieval-eastern-europe-500-1300-florincurta/

ebookmass.com

https://ebookmass.com/product/the-palgrave-handbook-of-mediamisinformation-karen-fowler-watt/

ebookmass.com

VAPORGENERATION TECHNIQUESFORTRACE ELEMENTANALYSIS

VAPOR GENERATION TECHNIQUESFOR TRACEELEMENT ANALYSIS

FUNDAMENTALASPECTS

ALESSANDRO D’ULIVO

CNR,InstituteofChemistryofOrganometallicCompounds,Pisa,Italy

RALPH E.STURGEON

InorganicChemistryGroup,Metrology,NationalResearchCouncilCanada, Ottawa,ON,Canada

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.In usingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-85834-2

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: KathrynEryilmaz

EditorialProjectManager: IvyDawnTorre

ProductionProjectManager: R.VijayBharath

CoverDesigner: MarkRogers

TypesetbyMPSLimited,Chennai,India

Listofcontributors

EduardoBolea GroupofAnalyticalSpectroscopyandSensors(GEAS), InstituteofEnvironmentalSciences(IUCA),UniversityofZaragoza, Zaragoza,Spain

SebastianBurhenn ExperimentalPhysicsII,Ruhr-UniversityBochum, Bochum,Germany

AlessandroD’Ulivo CNR,InstituteofChemistryofOrganometallic Compounds,Pisa,Italy

Jir ˇ ı ´ De ˇ dina InstituteofAnalyticalChemistryoftheCzechAcademyof Sciences,Brno,CzechRepublic

AlessandroD’Ulivo CNR,InstituteofChemistryofOrganometallic Compounds,Pisa,Italy

ZuzanaGajdosechova NationalResearchCouncilCanada,Ottawa,ON, Canada

XiandengHou Analytical&TestingCenter,S ichuanUniversity,Chengdu, P.R.China;KeyLabofGreenC hem&TechofMOEatCollegeof Chemistry,SichuanUniversity,Chengdu,P.R.China

JanKratzer CzechAcademyofSciences,InstituteofAnalyticalChemistry, Brno,CzechRepublic

FranciscoLaborda GroupofAnalyticalSpectroscopyandSensors(GEAS), InstituteofEnvironmentalSciences(IUCA),UniversityofZaragoza, Zaragoza,Spain

XingLiu StateKeyLaboratoryofBiogeologyandEnvironmentalGeology, ChinaUniversityofGeosciences(Wuhan),Wuhan,P.R.China

YueLiu CollegeofChemistry,TianjinNormalUniversity,Tianjin,P.R.China

Toma ´ s ˇ Matous ˇ ek InstituteofAnalyticalChemistryoftheCzechAcademyof Sciences,Brno,CzechRepublic

StanislavMusil InstituteofAnalyticalChemistryoftheCzechAcademyof Sciences,Brno,CzechRepublic

EneaPagliano NationalResearchCouncilCanada,Ottawa,ON,Canada

RalphE.Sturgeon InorganicChemistryGroup,NationalResearchCouncil Canada,Metrology,Ottawa,ON,Canada

XiaodongWen CollegeofPharmacy,DaliUniversity,Dali,P.R.China

YafeiZhen Analytical&TestingCenter,SichuanUniversity,Chengdu, P.R.China

ChengbinZheng KeyLabofGreenChem&TechofMOEatCollegeof Chemistry,SichuanUniversity,Chengdu,P.R.China

ZhenliZhu StateKeyLaboratoryofBiogeologyandEnvironmentalGeology, ChinaUniversityofGeosciences(Wuhan),Wuhan,P.R.China

ZhirongZou CollegeofChemistryandMaterialScience,SichuanNormal University,Chengdu,P.R.China;Analytical&TestingCenter,Sichuan University,Chengdu,P.R.China

Listofcontributorsix Prefacexi

1. Introductiontovaporgenerationtechniques1

1.1Introduction1

1.2Limitationsofcurrentsampleintroductionandatomizationtechniques2

1.3Vaporgenerationtechniques5

1.4FavorablefeaturesandshortcomingsofVGTs8

1.5Overviewofbookstructureandcontent10 References12

PartIChemicalVaporGeneration17

2. Chemicalvaporgenerationbyaqueousboranes19

AlessandroD’Ulivo

2.1Introductionandhistoricalbackground19

2.2Boranereagents,reactionproducts,andapparatus21

2.3Processesandmechanismsofchemicalvaporgeneration32

2.4Factorscontrollingreactivityinchemicalvaporgeneration51

2.5Interferences63

2.6Finalremarks,openquestions,andfuturetrends73 References74

3. Chemicalvaporgenerationoftransitionandnoblemetals91

3.1Introductionandbackground91

3.2Experimentalimplementationsofchemicalvaporgeneration92

3.3Efficiencyofchemicalvaporgeneration104

3.4Detaileddiscussionofmechanismsandfundamentalprocessesin chemicalvaporgeneration108

3.5Shortcomingswiththeory,remainingproblems,andlimitations119

3.6Conclusionsandfuturedevelopments120 Acknowledgements122 References122

4. Chemicalvaporgenerationbyaqueousphasealkylation129 ZuzanaGajdosechovaandEneaPagliano

4.1Introduction129

4.2CVGwithtetraalkylborates130

4.3CVGwithtrialkyloxoniumsalts136

4.4MetalspeciationwithGrignardreagents143

4.5Futuretrendsandperspectives144 References145

5. Otherchemicalvaporgenerationtechniques153

5.1Introduction153

5.2Chelateformation154

5.3Thermalchemicalvaporgeneration163

5.4Generationofvolatileoxides165

5.5Chemicalvaporgenerationofvolatilechlorides169

5.6Chemicalvaporgenerationofvolatilefluorides172

5.7Chemicalvaporgenerationofvolatilebromides173

5.8Chemicalvaporgenerationofvolatilecarbonyls173

5.9Chemicalvaporgenerationofboronesters176

5.10ChemicalvaporgenerationusingSnCl2 179

5.11Concludingremarks179 References180

6. Chemicalvaporgenerationinnonaqueousmedia191 XiaodongWen

6.1Introductionandbackground191

6.2Earlystudiesonchemicalvaporgenerationinnonaqueousmedia193

6.3Experimentalimplementationofthetechnique194

6.4Fundamentalprocesses;theoryandmechanisms200

6.5Remainingproblems,limitations,andshortcomings205

6.6Futuredevelopments205

6.7Conclusions206 References207

PartIINon-ChemicalVaporGeneration211

7. Photo-sono-thermo-chemicalvaporgenerationtechniques213 RalphE.Sturgeon

7.1Generalintroduction213

7.2Photochemicalvaporgeneration214

7.3Sonochemicalvaporgeneration249

7.4Thermochemicalvaporgeneration252

7.5Concludingremarks252 References252

8. Catalystsinphotochemicalvaporgeneration265 ZhirongZou,YafeiZhen,ChengbinZhengandXiandengHou

8.1Introduction265 8.2Heterogeneouscatalysis267 8.3Homogeneouscatalysis271

8.4Conclusions275 Acknowledgments276 References276

9. Plasma-mediatedvaporgenerationtechniques283 XingLiuandZhenliZhu

9.1Generalintroduction283

9.2Sourcesforplasma-mediatedvaporgeneration284

9.3InfluenceofcoexistingionsonPMVG301

9.4AnalyticalperformanceandapplicationsofPMVG305

9.5PossiblemechanismsofPMVG307

9.6Concludingremarksandfuturetrends310 References311

10. Electrochemicalvaporgeneration317 EduardoBoleaandFranciscoLaborda

10.1Introductionandbackgroundtoelectrochemicalvaporgeneration317 10.2FundamentalsandexperimentalimplementationofECVG318 10.3MechanismsofECVG328

10.4Shortcomingsandlimitations:interferencesinECVG330 10.5Finalremarksandfuturedevelopments338 References339

PartIIIAtomizationDevices347

11. Nonplasmadevicesforatomizationanddetectionof volatilemetalspeciesbyatomicabsorptionandfluorescence349 Jiˇrı´ Dedina

11.1Introduction349 11.2Processestakingplaceinonlineatomizers351 11.3Onlineatomization—preliminaryconsiderations352 11.4Onlineatomizers354

11.5In-atomizercollection—preliminaryconsiderations380 11.6Experimentalapproachestoin-atomizercollection382 11.7Conclusionsandfutureperspectives391 Acknowledgments392 Dedication392 References392

12. Dielectricbarrierdischargedevices403 JanKratzerandSebastianBurhenn

12.1Introduction403

12.2DBDconceptanddesigns404

12.3Plasmachemistry:processesandspecies406

12.4Analyticalapplications407

12.5DBDatomizersforAAS409

12.6DBDatomizersforAFS417

12.7DBDexcitationforOES419

12.8Analytepreconcentration427

12.9Speciationanalysis432

12.10Futureperspectives435 Acknowledgment437 References437

Abbreviationsandsymbols443 Index447

Preface

Vaporgenerationtechniques(VGTs)coupledwithopticalatomicand massspectrometricdetectionplatformshavebeenemployedforover50 yearstoaugmentanalyticalperformanceforthedeterminationandspeciationofmanyelementsattraceandultratracelevels.Sincetheirintroduction,thepopularityofchemicalVGTshasdramaticallyincreased, andmanyanalyticalprotocolsandregulatedmethodologiesemploy thesederivatizationtechniquesastheysimultaneouslyachieveefficient analyte-matrixseparation.Moreover,despitesignificantrecentadvances inanalyticalatomicspectrometry,mostnotablythoseintheinorganic massspectrometrysector,thepursuitofthebenefitsaccruedbyinterfacingVGtechniquesascomplementaryapproachestoconventional sampleintroductiontoyieldfurtherenhancementsinmeasurement specificity,detectionpower,andminimizationofspectralinterferences undoubtedlypersists.

Some25yearshavepassedsincethemonographbyD ˇ edinaand Tsalev [1] devotedtoVG(primarilyhydridegeneration)fortraceelementanalysiswaspublished,comprehensivelyaddressingtheoretical andexperimentalaspectsinacriticalandin-depthmanner.Inthe interim,newfactsandtheorieshaveemergedsince1995whichcomplement/expandthosetargetedinthattreatise,includingintroductionof severalpromisingnewandrevolutionaryapproachestoVG.Only recently,beginningin2003,dedicatedstudiesofthemechanismsof chemicalVGhaveshednewlightonthisfieldwiththeaimofremoving olderempiricalideasassociatedwiththeiruse.Almostsimultaneously, theintroductionofalternativeVGTs(photochemical,electrochemical, thermochemical,andsonochemical,chelate,andplasmamediated)providedafurtherimpulsetorenewinterestanduseofthesetechniques.

Inspiteofnumerousapplications,veryfeweffortshavefocusedon understandingthefundamentalprocessesgoverningthederivatization reactionsassociatedwiththevariousVGTs.Sourcesofinformation, unfortunately,remainmostlyfragmentedinmanypaperspublished acrossaspectrumofscientificjournals.Thisbook, VaporGeneration TechniquesforTraceElementAnalysis:FundamentalAspects,isdevotedto comprehensivecoverageofthefundamentalaspectsofVGTs,encompassingmethodologiesrangingfromtheclassicalchemicalapproaches tothemostrecentfrontiers.Athoroughoverviewandcriticaldiscussion ofthestate-of-the-artofknowledgeofthemechanismsthatcontrolthe

generationofvolatilederivativesandtheiratomization/detectionby atomicspectrometryaswellasvariousmechanismsaccountingfor interferenceeffectsispresentedinsufficientdetailtoencompassathoroughlyexpandedcoverageofthecurrentliteratureinasingle-source collectionofmaterial.Whileservingasanexpertsourceofadvicefor informationrelevanttotheinterpretationofexperimentalresultsand guidanceforimplementationofVGTsinthelaboratory,itisnot intendedtopresentacomprehensivereviewofapplications,withthe exceptionofthosecontributingfurtherbasicknowledgeviaadoptionof leading-edgetechnologyorsheddinglightonsomeessentialattribute(s) ofthechemistryoftheprocessesinvolved.

Withthisobjectiveinmind,theEditorshavejudiciouslyidentified internationallyrenownedexpertsattheforefrontoftheirindividual fieldsofVGandsecuredcontributionswhichservetoachievetheobjectivesofthistreatise.Ahomogeneous,coherentapproachisfollowedin eachchapterwithIUPACterminologybeingusedthroughout,along withaconsistentsetofdefinitionsandrelatedsymbols/abbreviations. Followingabriefintroductiontogenerallyassessthestateofeachtechniquefromabalancedperspectiveofadvantagesandshortcomings,a comprehensivediscussionoffundamentalprocesses,includinginterferencesandopenproblems,ispresented.Relevantconclusionsaresupportedwithprospectsforfuturedirections.Thebookisdividedinto threesections.Part1dealswithchemicalVG(CVG),encompassing CVGbyaqueousboranesandaqueousphasealkylation,CVGin nonaqueousmediaandthatoftransitionandnoblemetals,andother classicalchemicalVGTs.Part2coversnonchemicalVG,highlighting photo-sono-thermo-chemicalprocessesandtheroleplayedbycatalysts insuchprocesses,plasma-mediatedVGandelectrochemicalVG.Part3 isdevotedtoanin-depthdiscussionofavarietyofdedicatednonplasmaatomizationdevicesutilizedforthedetectionofVGspeciesby atomicabsorptionandfluorescenceaswellasdielectricbarrierdischarge(DBD)devices.AlthoughpowerfulICP-basedopticalemission andmassspectrometricinstrumentationarefrequentlycoupledwith VGTstoenhancedetectionpowerormitigatespectralinterferences, thesesources,aswellasclassicalflames,arenottreatedinthisvolume astheyarenotspecificallydedicatedtothedetectionofvolatileVGspeciesinthemannerthatminiaturediffusionflames,quartztubeatomizersandDBDdeviceshaveevolvedandareused.

TheEditorsaregratefulnotonlytothecontributingauthorsforsharingtheirexpertise,amicablediscussions,hardwork,andmaintenance ofadeliveryscheduleduringaperiodofCOVID-19challengesbutalso tothestaffofElsevierfortheirunwaveringsupportofthisprojectand theproductionofthisvolume.

Neophytesaswellasexpertpractitionersshouldfindinterestinthis bookasitservesasacomprehensive,single-sourceoverviewofrecent developments,providingreaderswithanunderstandingofthecorrect implementationandlimitationsunderlyingtheapplicationofVGTsto everydayanalyticalproblemsfacingthetraceelementanalyst.Assuch, thecontentwillappealtothoseinresearchandacademicinstitutions, aswellasprivatesectorlaboratoriesandtheanalyticalinstrumentation industry.

AlessandroD’Ulivo1 andRalphE.Sturgeon2 1CNR,InstituteofChemistryofOrganometallicCompounds,Pisa,Italy, 2InorganicChemistryGroup,Metrology,NationalResearchCouncilCanada, Ottawa,ON,Canada

Reference

[1] J.D ˇ edina,D.L.Tsalev,HydrideGenerationAtomicAbsorptionSpectrometry,John Wiley&Sons,Inc.,Chichester,1995.

Abbreviationsandsymbols

AAS atomicabsorptionspectrometry

AB ammoniaborane[BH3NH3]

ABC analyte-boranecomplexintermediates

ac-SEGD alternatingcurrent-drivensolutionelectrodeglowdischarge

AFS atomicfluorescencespectrometry

APDC ammoniumpyrrolidinedithiocarbamate(pyrrolidine-1-carbodithioate) at_sensit sensitivityregisteredbyaparticularatomizer/spectrometersystem(s/g)

BH hydridoboronspecies

BTC 1,3,5-benzenetricarboxylicacid

CAU ChristianAlbrechtsUniversity

cb (CB) conductionband

CBH sodiumcyanotrihydridoborate[NaBH3CN]

CCP capacitivelycoupledplasma

CE capillaryelectrophoresis

CF continuousflow

Che-CVG chelatechemicalvaporgeneration

CPE cloudpointextraction(rapidandtraditional)

CTAB cetyltrimethylammoniumbromide

Cys L-cysteine

CQDs carbonquantumdots

CQTA conventionalquartztubeatomizer

CT cryogenictrap

CTTS chargetransfer-to-solvent

CVG chemicalvaporgeneration

DART directanalysisinrealtime

DBD dielectricbarrierdischarge

DBDTP dibutyldithiophosphate

DCP directcurrentplasma

DDAB didodecyldimethylammoniumbromide

DDTC diethyldithiocarbamate(N,N-diethylcarbamodithioate)

DEDTP O,O0 -diethyldithiophosphate

DLLME dispersiveliquid liquidmicroextraction

DMA dimethylarsenicacid

DMAB dimethylamineborane[BH3NH(Me)2]

DMDTC dimethyldithiocarbamate

DMF dimethylformamide

DF diffusionflame

ECD electroncapturedetector

ECVG electrochemicalvaporgeneration

EKE electrokineticextraction

ELCAD electrolytecathodeatmosphericglowdischarge

ESI electrosprayionization

ESR/EPR electronspin/paramagneticresonance

ETAAS electrothermalatomizationatomicabsorptionspectrometry

EtHg ethylmercury[CH3CH2Hg1]

ETV electrothermalvaporization

FES flameemissionspectroscopy

FEP fluorinatedethylenepropylene

FI flowinjection

FIF flame-in-flame(atomizer)

FIGS flamein-gas-shield(atomizer)

FLA-APGD flowingliquidanodeatmosphericpressureglowdischarge

FTIR Fouriertransforminfraredspectroscopy

GC-MS gaschromatography massspectrometry

GD glowdischarge

GF(A) graphitefurnace(atomizer)

GFAAS graphitefurnaceatomicabsorption

HAC acetylacetone(pentane-2,4-dione)

HFA hexafluoroacetylacetone(1,1,1,5,5,5-hexafluoropentane-2,4-dione)

HG hydridegeneration

HMC hydrido-metal(loid)complex

HPLC highperformanceliquidchromatography

HR highresolution

HRMS high-resolutionmassspectrometry

HTFA trifluoroacetylacetone(1,1,1-trifluoropentane-2,4-dione)

HTHB hydroxytrihydridoborate[BH3OH ]

IAT integratedatomtrap

IC ionchromatography

ICP inductivelycoupledplasma

ICPOES inductivelycoupledplasmaopticalemissionspectrometry

ICPMS inductivelycoupledplasmamassspectrometry

ICP-ToF-MS inductivelycoupledplasmatime-of-flightmassspectrometry

IEP isoelectricpoint

ITEX in-tubeextraction

LC liquidchromatography

LDLS laser-drivenlightsource

LE-DBD liquidelectrodedielectricbarrierdischarge

LEGD liquidelectrodeglowdischarge

LMTC ligand-to-metalchargetransfer

LIF laser-inducedfluorescence

LLE liquid liquidextraction

LMWCA low-molecular-weightcarboxylicacid

LOD limitofdetection

LPME liquid-phasemicroextraction

LSDBD liquidsprayDBD

MC multicollector

MDF miniaturediffusionflame(atomizer)

MECA molecularemissioncavityanalysis

MeHg methylmercury[CH3Hg1]

MIBK methylisobutylketone

MIL MaterialsofInstituteLavoisier

MIP microwave-inducedplasma

MMA monomethylarsonicacid

MMQTA multiplemicroflamequartzT-tube(atomizer)

MWCNT multiwalledcarbonnanotube

MSPD matrix-assistedsolid-phasedispersion

MS massspectrometry

NACVG chemicalvaporgenerationinnonaqueoussolvents

NCI negativechemicalionization

NDAFS nondispersiveatomicfluorescencespectrometry

NFDBD nebulizedfilmDBD

NMR nuclearmagneticresonance

OES opticalemissionspectroscopy

OH observationheight

PCARD photocatalyst-assistedreductiondevice(microfluidic-based)

PCVG photochemicalvaporgeneration

PCN porouscoordinationnetwork

PEVG plasmaelectrochemicalvaporgeneration

PFA perfluoroalkoxy

PN pneumaticnebulization

PMVG plasma-mediatedvaporgeneration

PTFE polytetrafluoroethylene

Py-CVG pyrolysischemicalvaporgeneration

QA quartzatomizer

QTA quartzT-tubeatomizer

RCPE rapidcloudpointextraction

REE rare-earthelement

RNS reactivenitrogenspecies

ROS reactiveoxygenspecies

RTIL roomtemperatureionicliquid

RVC reticulatedvitreouscarbon

SA-DLLME surfactant-assisteddispersiveliquid liquidmicroextraction

SAGD solutionanodeglowdischarge

SC semiconductor

SCGD solutioncathodeglowdischarge

SCVG sonochemicalvaporgeneration

SDBS sodiumdodecylbenzenesulfonate

SD-SEGD single-dropsolutionelectrodeglowdischarge

SeMet selenomethionine

SHE standardhydrogenelectrode

SIFTMS selectedionflowtubemassspectrometry

SN solutionnebulization

spICPMS singleparticlemodeinductivelycoupledplasmamassspectrometry

SPME solid-phasemicroextraction

SPE solidpolymerelectrolytecellwithNafionmembrane supply(t) massofVSanalytedeliveredtoanatomizerperunittime(g/s)

TALIF two-photonabsorptionlaser-inducedfluorescence

TBAB tertbutylamineborane[BH3NH2C(Me)3]

TBT tributyltin(chloride)

TCVG thermochemicalvaporgeneration

TEM transmissionelectronmicroscopy

TFDBD thin-filmDBD

TFDDTC bis-(trifluoroethyl)-dithiocarbamate[bis(2,2,2-trifluoroethyl)carbamodithioate]

THB tetrahydridoborate,[BH4]

TMB trimethylborate

TMAB trimethylamineborane[BH3N(Me)3]

TOC totalorganiccarbon

ToFMS time-of-flightmassspectrometry

UA-DLLME ultrasound-assisteddispersiveliquid liquidmicroextraction

UARS-CPE ultrasound-assistedrapidsynergisticcloudpointextraction

UiO UniversityofOslo

UV VIS ultraviolet visiblespectroscopy

vb (VB) valenceband

VG vaporgeneration

VGT vaporgenerationtechnique

VS volatilespecies

XAT radicalhalogenatomtransfer

XPS X-rayphotoelectronspectroscopy

Symbols

αT globalefficiencyoffreeatomproduction(dimensionless)

αi degreeofionization

εext extractionefficiency(inliquid liquidorliquid solidextraction)

εin nebulizationefficiencyinnebulizationsystem(dimensionless)

εd derivatizationefficiencyofaVGprocess(dimensionless)

εs efficiencyoftransferofderivatizedanalytefromtheliquid-to-gasphase (dimensionless)

εt efficiencyoftransferofvolatilederivatizedanalytetothedetector (dimensionless)

εc or βtrap efficiencyofcollectionortrappingaVGspecies(dimensionless)

εr efficiencyofreleaseoftrappedorpreconcentratedVGspecies (dimensionless)

βv vaporizationefficiencyinflamesandplasmas(dimensionless)

βa atomizationefficiency(dimensionless)

βi atomionizationefficiency(dimensionless)

βgen overallstagegenerationefficiency[β gen 5 εd εs εt](dimensionless)

βvol thefractionoftrappedanalytewhichisvolatilized(andtransportedto theobservationvolumeofthedetector,dimensionless)

Na numberoffreeatoms(dimensionless)

Ni numberofions(dimensionless)

Nm numberofmolecules(dimensionless)

NT totalnumberofatoms(dimensionless)

R(t) temporalvalueofameasuredsignal(dimensionless)

Rarea integratedvalueof R(t)(s)

1

Introductiontovaporgeneration techniques

AlessandroD’Ulivo1 andRalphE.Sturgeon2

1CNR,InstituteofChemistryofOrganometallicCompounds,Pisa,Italy, 2InorganicChemistryGroup,NationalResearchCouncilCanada, Metrology,Ottawa,ON,Canada

1.1Introduction

Analyticalchemistryincreasinglyplaysanimportantroleinthestudy andprotectionofhealthandtheenvironment,qualitycontrolofmaterials, forensicscience,andmanyotherfieldsinwhichelementalanalysisand speciationareneeded,frequentlyachievedwithatomicandmolecular spectroscopicprocedures.Vaporgenerationtechniques(VGTs),coupled withsuchdetectionsystems,wereintroducedmorethan50yearsago [1,2] byinterfacingearlyatomicabsorptioninstrumentationwithwellknownVGchemicalreactions[chemicalvaporgeneration(CVG)],suchas thegenerationofmercuryvaporbyreductionofmercuricionswith SnCl2,andthatofAsH3 frominorganicarsenicusingtheclassic1836 Marshtest [3].SubsequenttothesefirstchemicalapproachestoVG,many otherchemicalreactionsfollowedfortheproductionofvolatilederivatives ofelementalspecies [4],includingintroductionofnovelderivatization methodsbasedonchemicalandphysicalprinciplesdifferentfromCVG.

TheincreaseinpopularityofthedifferentVGTsexpandedoverthe yearsduetotheirfavorableanalyticalcharacteristics,amongthemease ofautomationcombinedwiththepossibilityofachievingunmatched analyticalfiguresofmeritusingsimpleandinexpensiveinstrumentation.Basedontheirapplicationandvalidation,thousandsofresearch papersandmanyregulatedanalyticalmethodsarose.Unfortunately, muchlessattentionhasbeendevotedtotheelucidationoffundamental

aspectsofthemechanismsofgenerationofthevaporspeciesandtheir atomizationprocessesindedicateddevices,aswellasinterference effectstakingplaceatvariousstagesoftheanalyticalprocedures.

ThisbookisdevotedtoacomprehensivecoverageofthefundamentalaspectsofVGTs,presentingthemostrecentVGapproachesthat havebeenaddedtothisfield,anddiscussingthestate-of-the-artof knowledgeonthemechanismsthatcontrolthegenerationofvolatile derivativesandtheiratomization,aswellasvariousmechanisms accountingforinterferenceeffects.

1.2Limitationsofcurrentsampleintroductionandatomization techniques

Problemsrelatingtosampleintroductiontechniquesremainamajorconcernfortraceelementdeterminationandspeciationbyanalyticalatomic spectrometry.Nearly30yearsaftertheinventionofatomicabsorptionspectroscopy(AAS)bySirAlanWalsh [5,6] anditscommercialacceptanceasan analyticaltechnique,BrownerandBoornstillconsideredsampleintroductiontobethe Achilles’Heel ofatomicspectroscopy [7].

Anidealsampleintroductiontechniqueshouldprovideanefficient andeconomicalmeansofreproduciblyintroducinganalyteintothe atomization/excitation/ionizationsystem(i.e.,detectiondevice)while simultaneouslypreventing/minimizingpossibleinterferencefromother componentsofthesamplematrix.Nebulizers,predominantlyemployed forliquidsampleintroductionintoflamesandplasmas,possesspoor sampleutilizationefficienciesbecausethevolumefractionofsample successfullyintroducedintotheatomizationdevice, εin,isoftenlower than B5%(εin , B0.05) [7 10] whenoperatingatsampleuptake ratesinexcessoftypically100 μLmin 1.Mostoftheanalytesthat shouldhavebeentransferredtothedetectiondeviceareinsteadlostto thewastestream. Fig.1.1 showstheimpactofsampleuptakerateon theefficiencywithwhichtheanalytereachesthedetectiondevice(typicallyaflameorplasma).

Inthecaseofplasmas,deploymentofexpensivelow-flownebulizers operatingbelow10 μLmin 1 canachievesome60%sampleutilization efficiency.OperationofconventionalnebulizersatmLmin 1 uptake ratesresultsingenerationofhighprimarydropletdensitiesinspray chambersandtheirrapidcoalescencetoyieldquitelowtertiaryaerosol outputsontheorderofafewpercent [8].Thetertiarydropletsample fraction,capableofbeingtransportedtotheatomizer,isthendesolvated tosubmicron-sizeddryparticleswhich,iftypicallysmallerthan200nm indiameter,arevaporizedwithhighefficiency(β v B1)inhightemperatureplasmas [10 12].Thisisnotalwaysthecaseinflamesas

1.2Limitationsofcurrentsampleintroductionandatomizationtechniques

FIGURE1.1 Analyteintroduction(transport)efficiency, εin,asafunctionofsample uptakeratewhencoupledtoanunheateddouble-passspraychamber:(1)concentric (MeinhardTR-30-A3);(2)concentric(MeinhardHEN);(3)enhancedparallelpath (BurgenerResearchMiraMist).Source:ReproducedwithpermissionfromJ.W.Olesik, Inductivelycoupledplasmamassspectrometers,in:H.Holland,K.Turekian(Eds.),Treatiseon Geochemistry,vol.15,seconded.,Elsevier,2014,pp.309 336,withpermissionfromElsevier [10].

FIGURE1.2 Atomizationefficiency, β a,forsomeselectedelementsinpremixedairacetyleneflames.Source:CompiledfromB.W.Smith,G.E.Parsons,G.E.Bentley,Handbookof FlameSpectroscopy,SpringerScience,NewYork,1975 [13].

theirtemperaturesarenothighenoughforthecompletevaporization oftheresultantdryresiduesofmanyrefractoryspecies(Fig.1.2). Ultimately,chemicaland/orthermalprocessesbringaboutdissociation ofvaporizedmoleculestoyieldgaseousfreeatoms,(thedesiredtarget

forAASandatomicfluorescencespectrometricdetection[AFS]),excited stateatomsandions[forinductivelycoupledplasmaopticalemission spectrometricdetection(ICPOES)]andions(formassspectrometric [MS]detection).Itshouldbenotedthatthesequentialprocessesofliquiddroplettransferanddesolvationfollowedbyvaporizationofthe solidresidueanditsatomization,excitation,andionizationarekineticallycontrolled.Alloccurwithinaflowingstreamofgases(combustion productsinflamesandinertsupportgaswithplasmas)havingstructuredtemperaturefieldssuchthatthereisafinitetimeavailablewithin whichthepopulationofeachspeciesattainsasteadystate.Thisgives risetotheoccurrenceofoptimaldetectionregionswithintheatomizer wherelocalmaximaoccurforfreeatoms,excitedstatespecies,and ionizedanalyte.Withintheatomizer,thetotalatompopulation, NT,is distributedamongmolecularspecies, Nm,freeatoms(ingroundand excitedstates), Na,andionizedspecies, Ni.Thus NT 5 Nm 1 Na 1 Ni [14]. Theefficiencyoftheatomizationprocessisdefinedas β a 5 Na/NT [14], andstronglydependsontheelement [9,11,14,15],asdemonstratedby thedatashownin Fig.1.2,wherein Na 1 Ni 5 totalatomicspecies.

Formostnonmetallicelements,theefficiencyofatomizationislower thanmanyofthemetallicelements,sometimesbyordersofmagnitude. Thecombinedeffectsof εin, β v,and β a provideanindicationofthe globalefficiencyoffreeatomproduction, αT 5 εin β v β a.Itisselfevidentthat αT cannotbegreaterthantheintroductionefficiency (αT # εin).Insomecases,particularlynonmetals,evenassuming β v 5 1, the αT valuesareverylow,andinthepartpermillionrange [11,13].

Graphitefurnaceatomizers(GF),mostlyemployedincombination withAAS(GFAAS),possessmuchhigheratomizationefficiencies thanflames [16 18] aswellasmorefavorablesamplevaporization characteristics,thatis, β v approachesunity(duetogreatereffectivetemperaturesandtypically103-foldlongerresidencetimesduringwhichall processescanproceed).Notethatinthiscase,theeffective εin 5 1for discretesampleintroduction.Itfollowsthat αT valuesarealsomuch higherthaninflames,typically0.01 # αT # 1.Asaresult,despitethe smallsamplevolumesused,graphitefurnacesyieldbetterdetection limitsthancomparableAASmeasurementsinflamesandopticalemissionfromplasmas,makingthemsometimescompetitivewithICPMS systems [19,20]

Forgraphitefurnaces,the Achilles’Heel manifestsitselfintheform ofinterferences,whichcanbemuchmoreseriousthanwithflame andplasma-basedtechniques.Manystudieshavebeendevotedto thistopicanditscontrolbysuchmeansasuseofmatrixmodifiers [19],graphitetubesurfacemodifiers [19,21],Zeemanbackgroundcorrection [19,21],andcontinuumsourcehigh-resolutionAASspectrometers [20].

1.3Vaporgenerationtechniques

Anumberofthelimitationsandshortcomingsnotedaboveforliquid sampleintroductionintoflames,plasmas,andgraphiteatomizerscan largelybeovercomebytheadoptionofVGTsand,notsurprisingly, Bingsetal.concludedthattheidealsample,evenforanICP,wouldbe gaseous [22].Ingeneral,VGisaprocesswhereinnonvolatile(usually ionic,metallic,ororganometallic)compoundsformvolatileorsemivolatilespeciesthroughchemical,physical,orbiologicalprocessesthat mayresultintheirtransferfromthecondensedphasetothegasphase [23].Inanalyticalchemistry,VGTsarisefromderivatizationofthe analyticalspeciesofinterest[solvatedatomicions,oxyanions,oxycations,andsimpleorganometal(-semimetal)species]tocreatenonpolar orlow-polarvolatilespecies,asforexamplehydrides,alkylatedcompounds,variouscomplexeswithinorganicandorganicligandsand othervolatilespecies,whichremaintobeidentified [23].

VGTscanmostgenerallybecharacterizedbytwoindependentmajor stages:the generation ofvolatileformsoftargetedspecies(performed inageneratororreactor)and atomization/detection ofsuchspecies (achievedinanatomizerintegratedwithanatomicspectrometer). Whereasthesecondstageisspecificforthegivenspectroscopicmethod, thefirstiscommontoallVGapproaches.

Duringthe generation stage,theliquidsample(slurrieshavealsobeen processed [24])canbeintroducedintothereactorviaseveralmeans, includingfromacontinuousorflowinjectionsystem,aseffluentfroma chromatographicdevice(highperformanceliquidchromatography,ion chromatography,capillaryelectrophoresis,gaschromatography[GC], etc.)orbydiscreteinjection.Clearly,theefficiencyofthisprocessis unity(equivalentto εin 5 1)andrequiresnofurtherconsideration.

Asillustratedin Fig.1.3,itisoftendesirabletofurtherconsiderthis overallgenerationstageintermsoftwofundamentalprocesses:chemical derivatization/transformationoccurringinthereactor,characterizedby anefficiency εd,andthephasetransferofthevolatilespecieswithina gas liquidseparation(GLS)unitwhichoccurswhentheliquidreaction mixtureisspargedbya(typically)inertgas,characterizedbyaphase separationefficiency εs,anditsconcurrenttransferforpossiblepostprocessingcharacterizedbyanefficiency εt.Anumberofapproachescan beusedfortheconversionofanalytestovolatilespecies,includingchemicalderivatizationbysuitablechemicalreagents(CVGandvolatile chelategeneration)andradical-mediatedderivatizationusingdifferent physicalprinciplesforradicalproduction[photochemicalVG(PCVG), sonochemicalVG(SCVG),andthermochemicalVG(TCVG)],plasmamediatedderivatizationVG(PMVG),andelectrochemicalderivatization VG(ECVG).Asnotedearlier,studiesdevotedtoelucidationofthe

FIGURE1.3 Schematicrepresentationofagenericvaporgenerationtechniquecoupled toanatomicabsorptionspectrometerillustratingtheefficienciescharacterizingallmajor steps,including:derivatization,whereinanalyticalspeciesareconvertedtovolatilederivativeswithagenerationefficiency εd,theirtransferduringspargingfromthesolutionphase intothegasphasewithanefficiency εs,andtransporttothedetectionsystemwithatransfer efficiency εt,eitherdirectlyorafteraconcentration(trapping)step.Ifconcentration/trappingofthevolatilespeciesisconductedfollowedbytheirrapidrelease,theseprocessesare accomplishedwithacollectionefficiency εtrap andsubsequentrelease(volatilization)efficiency εvol.Thevolatilederivativesareeitherconvertedtofreeatoms,withanatomization efficiency β a,orremainasmolecularspecies,beingdetectedwithasuitablespectroscopic technique.Foratomiciondetection,ionizationefficiency β i 5 Ni/NT isconsidered.

mechanismsgoverningthegenerationofvolatilespeciesusingdifferent VGTsarerelativelyscarcecomparedtothosededicatedtotheirapplication.Themechanismsofgenerationarespecificallyhighlightedinthis book.Thus,generallywiththeexceptionofPMVG,theoverallgeneration stageisachievedwiththecombineduseoftwoseparatedevices.

Itremainstonotethatthegenerationstagemaybeoperatedineither oftwomodes:(1)directtransferofthegeneratedspeciestothedetectionsystemand(2)analytecollectionpriortotransporttothedetection system.Thesearebrieflyconsideredbelow.

1. Inthedirecttransfermode,thevolatilespeciesreleasedfromthe reactor-GLSsystemhasanoverallefficiencyof β r 5 εd εs.Asthe volatilespeciesleavingtheGLSisconveyeddirectlytotheatomizer/ detectionsystemwithanefficiency εt,theoverallgenerationstage efficiencyisthentheproduct β gen 5 εd εs εt,representingthe fractionofanalyteintroducedintothegeneratorwhichis successfullyderivatized,releasedfromtheliquidreactionmedium,

andtransportedtoanatomizerfordetection,thelatterhavinga characteristicatomizationefficiency β a.

2. Inthecollectionmode,thereleasedvolatilespeciesisfirsttransferred (withanefficiency β gen)toadevicewhichmaybeanintegralpartof thegeneratorortheatomizer/detectorunit.Traditionally,balloons, cryogenicdevices,orredoxsystemscontainingaliquidreagentwere usedtocollecteitherthegaseouscomponentsordecomposethe speciestoconcentrateitintoasmallvolumeofliquidforsubsequent processing.Moremodernapproachesnowtrapthevolatilespeciesby directingitto,andsubsequentlyimmobilizingiton,asolidsupport [25],suchasbyformationofamercuryamalgamonagoldsubstrate [26] orviathermaldecompositiononaheatedgraphitesurfaceorthin filmofreducednoblemetal [27],aswellasbyinducingdeposition, typicallyasareducedmetaloroxide,onvarioussubstratesby manipulatingthechemistryinthetransportgas [28].Suchapproaches enabletheintegrationofthegeneratedfluxofspecies,permittingthe processingoflargervolumesofsamplesuchastoeffectasignificant enhancementinrelativelimitsofdetectionsince,oncetrapped,the analytecanbesubsequentlyrapidlydesorbedandtransportedto asuitableatomizerinashorttimeinterval(asforexampleinatandem systemsuchasagraphitefurnacelinkedtoanICPMS)toenhance signal-to-noiseratios [29],orthetrappingdevicemaybeanintegral partoftheatomizeritself [28,30].Theseprocessescanbecharacterized byanexperimentallydeterminedefficiencyrepresentingboththatfor thetrappingstep, εtrap,oritsconvolutionwiththesubsequentrelease (volatilization)step(εtrap εvol).

The atomization/detection stageistypicallybasedonuseofatomic spectrometricmethods.ThemostpopularincludeAASandAFS [31 35],butavarietyofplasmasourcesas(ICPOES,ICPMS,microwaveinducedplasma [36 38],capacitivelycoupledplasma [39,40], directcurrentplasma [41,42],glowdischarge [43 46] anddielectric barrierdischarge[DBD]devices [34,35])havebeenused.Interfacing withmassspectrometrictechniqueshasprimarilybeenlimitedtoICP MS,whereasconventionalGCMS(andotherMStechniques)have essentiallybeenusedforspeciesidentificationanddiagnosticstudies. Interestingly,molecularspectroscopy,suchasfouriertranforminfrared spectroscopy [47 49] andmolecularemissioncavityanalysis [50 52] havealsobeenemployed,forwhichnoanalyteatomizationisrequired. Plasmasourcemethodsinherentlyentailgeneral-purposeatomizers optimalforefficientatomizationofgeneratedvolatilespecies.Bycontrast,thoseforAAS(andpartiallyalsoforAFS)areusuallynotidealfor theatomizationofvolatilespecies.Assuch,dedicatedatomizers,such asquartztubeatomizers(QTA) [33],graphiteandmetalatomizers [33],

miniatureflames [33] andDBDdevices [34,35],havemostcommonly beenemployedincombinationwithAASorAFSdetection.

Asevidentfromearlierdiscussion,theatomization/detectionstage maycompriseeitheroftwomodes(Fig.1.3):(1)directatomizationand (2)in-atomizercollection.

1. Withdirectatomization,thevolatilespeciesareimmediately introducedintothedetectionvolumeofthespectrometerwherein atomizationoccurs.Alloftheabove-mentionedatomizers/detectors arecapableofoperationinthismode.Clearly,theatomization efficiency, β a,isthefractionofanalytetransportedintotheatomizer whichisconvertedtodetectablespecies(freeatoms).Itisevident thatthiswouldbethemostsignificantconsiderationifAAS detectionisused,butotherspectroscopiesnecessitatethe considerationofadditionalsubsequentexcitationandionization efficiencies.

2. Within-atomizercollection,thevolatilespeciesaretrappedinthe atomizer(withanefficiency εtrap)concurrentwithitsgeneration, phaseseparation,andtransfer.Itisthenvolatilized(withan efficiency εvol)andatomized(withanefficiency β a).Thismodecan beperformedonlywithsomededicatedatomizersemployedfor AASorAFSdetection,namelyQTA,graphiteandmetalatomizers, aswellasDBDs,orwithtandemsystemssuchasanelectrothermal vaporizercoupledwithaplasmasourceforOESorMSdetection.

1.4FavorablefeaturesandshortcomingsofVGTs

ThereisafundamentaldesiretoutilizeVGTsastheygenerallyconfer severalsignificantadvantagesforanalyses,including:(1)efficientmatrix separation,whichoftenleadstoareductionofinterferencesandbetter detectionlimits;(2)hightransport(introduction)efficiencyofanalyteinto theatomicspectroscopicdetectors;(3)highselectivity(insomecases)to permitdifferentiationofchemicalspeciesofaparticularelement;and(4) enablingtheuseofgasphaseseparationmethods(i.e.,GC)forspeciation ofinorganicaswellasorganometal(-semimetal)speciesofsomeelements. Noteworthyisthatthereisthepossibilityforfurtherpostmanipulationof thegaseousproductsofderivatization,subjectingthemeithertopreconcentrationinacoldtrap,chemicaltrap,chromatographiccolumn,orto in-atomizercollection,asnotedabove.Thismethodologyleadstofavorablyenhancedrelativedetectioncapabilities.

Asconcernsimprovementsinsensitivityanddetectionpowerthat canbeachievedwithrespecttoconventionalspectroscopicmethods employingliquidnebulizationordirectsamplingwithaGF,thesewill 8 1.Introductiontovaporgenerationtechniques

bedependentonthespecificVGTemployedandontheanalyte.Inthis case,thecriticalstepentailsderivatization,forwhichtheconversion efficiencyoftheanalytetoavolatilespeciesmaybemuchlessthat quantitative,despite β v and β a remainingquantitative.Inprinciple, β v doesnothavetobespecificallyaccountedforwithVGTssinceitisfrequentlyagaseousmolecularcompoundthatisintroducedtothedetector(atomizationcell)intheabsenceofanysolvent,thusconsumingno “vaporization”energyfromtheatomizationdevice.Moreover, β a may beenhancedwithVGTssincesimplemoleculesaretypicallyformed havinglowatomizationenergies.Suchconditionsmaygeneratemore favorablevaluesof αT comparedtoconventionalsampleintroduction techniquesusingflames,plasmas,andGFatomizers.

Generally,allVGTspresentsimilarfavorablefeaturesandpotential shortcomings.Theircommonlimitationsremaininterferenceeffects causedbyconcomitantspeciespresentinsamplesolutions.Interferences typicallymanifestthemselvesbyperturbing εd, εs,or β a parameters.A classificationschemeforinterferenceswasfirstpostulatedbyD ˇ edina [53] forhydridegeneration.Ingeneral,suchastrategystillmaintains somevalidityandcanthusalsobeofrelevancetootherVGTs.

Liquidphaseinterferencesaffecttheapparentderivatizationefficiency(εd)ofthevolatilespeciesinthatitmayinitiallybeformedinthe reactionmixturewithlowerefficiency(comparedtothecalibratorsample),orgeneratedmoreslowly(kineticeffect),orquantitativelyformed inthereactionmixturebutthegas liquidphasetransfer(εs)occurs withreducedefficiency.

Gasphaseinterferencesmayalsooccurandcanbefurtherclassified astransportinterferences,collectioninterferences,andatomization interferences.

Transportinterferenceeffectsmayariseduetoalossof(unstable) volatileanalytespeciesalongconduitlinesortoaperturbationoftheir transportkinetics.Collectioninterferencescantakeplaceeitherinthe collectionmodeofgenerationand/orduringin-atomizertrapping modeoftheatomization/detectionstagethroughalterationoftrapping(εtrap )andvolatilization(εvol )efficienciescharacteristicofvarious devices(i.e.,trappinginaGCcolumn,cryogeniccollectiondevice, QTA,graphiteatomizer,DBD).

Atomizationinterferencesaffecting β a encompassthosetypically presentinspecificatomizersdedicatedtotheatomizationofvolatile species(QTA,miniatureflames,andbarrierdischargedevices).Such interferencesarenotproblematicwhenusingplasmasourceatomic spectrometricmethods.

Ingeneral,alltypesofinterferencescanmanifesttheireffectsdirectly duringtheanalyticalrun(directinterferences)aswellasduringsuccessiveruns(memoryeffectinterferences).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.