Unmanned driving systems for smart trains hui liu - Get the ebook instantly with just one click

Page 1


https://ebookmass.com/product/unmanned-driving-systems-for-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Robot Systems for Rail Transit Applications 1st Edition Hui Liu

https://ebookmass.com/product/robot-systems-for-rail-transitapplications-1st-edition-hui-liu/

ebookmass.com

Wind Forecasting in Railway Engineering Hui Liu

https://ebookmass.com/product/wind-forecasting-in-railway-engineeringhui-liu/

ebookmass.com

Ferroic materials for smart systems from fundamentals to device applications Dai

https://ebookmass.com/product/ferroic-materials-for-smart-systemsfrom-fundamentals-to-device-applications-dai/

ebookmass.com

A Baron's Scandalous Quill: A Historical Regency Romance

https://ebookmass.com/product/a-barons-scandalous-quill-a-historicalregency-romance-novel-henrietta-harding/

ebookmass.com

https://ebookmass.com/product/%e4%bc%8a%e5%b7%9d%e6%84%9b%e6%a2%a8%e5%86%99%e7%9c%9f%e9%9b%86%e3%80%8c%e4%ba%8c%e4%ba%ba%e3%81%a0%e3%81% 91%e3%81%ae%e4%b8%96%e7%95%8c%e3%80%8d-best-shotbooks-%e4%bc%8a%e5%b7%9d%e6%84%9b%e6%a2%a8/ ebookmass.com

Netter Atlas of Human Anatomy: 8th edition A Systems Approach Frank H. Netter Md

https://ebookmass.com/product/netter-atlas-of-human-anatomy-8thedition-a-systems-approach-frank-h-netter-md/

ebookmass.com

Diagnostic Imaging: Musculoskeletal Non-Traumatic Disease 3rd Edition Authors: Kirkland W. Davis

https://ebookmass.com/product/diagnostic-imaging-musculoskeletal-nontraumatic-disease-3rd-edition-authors-kirkland-w-davis/

ebookmass.com

Groundwater Sustainability: Conception, Development, and

Application

Robert E. Mace

https://ebookmass.com/product/groundwater-sustainability-conceptiondevelopment-and-application-robert-e-mace/

ebookmass.com

Present Knowledge in Food Safety : A Risk-Based Approach Through the Food Chain Michael E. Knowles

https://ebookmass.com/product/present-knowledge-in-food-safety-a-riskbased-approach-through-the-food-chain-michael-e-knowles/ ebookmass.com

Ali Hazelwood Complete collection : 9 books : The Love

Hypothesis ; Under One Roof ; Stuck With You ; Below Zero ; Love on the Brain ; Loathe to Love You ; Love,

Theoretically ; Check & Mate; Bride ; Not in Love Ali Hazelwood

https://ebookmass.com/product/ali-hazelwood-completecollection-9-books-the-love-hypothesis-under-one-roof-stuck-with-youbelow-zero-love-on-the-brain-loathe-to-love-you-love-theoreticallycheck-bride/ ebookmass.com

UnmannedDrivingSystemsfor SmartTrains

UnmannedDriving Systemsfor SmartTrains

SchoolofTrafficandTransportationEngineering,CentralSouth University,Changsha,Hunan,China

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021CentralSouthUniversityPress.PublishedbyElsevierLtd.AllRightsReserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-822830-2

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: GlynJones

EditorialProjectManager: NaomiRobertson

ProductionProjectManager: PoulouseJoseph

CoverDesigner: MatthewLimbert

TypesetbyMPSLimited,Chennai,India

1.Introductionofthetrainunmanneddrivingsystem 1

1.1Overviewofthetrainunmanneddrivingsystem 1

1.1.1Historyofunmanneddrivingtechnology3

1.1.2Theoperationlevelsofautomatictrains6

1.1.3Themainfunctionsanddevelopmentofunmanned drivingtrains9

1.1.4Theapplicationfieldsofartificialintelligencein unmanneddrivingtechnology13

1.1.5ThedevelopmentofunmanneddrivinginChina17

1.1.6Achievementsanddevelopingtrendswiththe cooperativeinitiativeofthebeltandroad19

1.2Thekeyissuesoftheunmanneddrivingsystem 21

1.2.1Themaincontrolsystemsofunmanneddrivetechnology22

1.2.2Thescenariodescriptionofunmanneddriving23

1.2.3Theinformationintegrationoftrainscheduling25

1.2.4Importantequipmentofunmanneddriving26

1.2.5Energy-savingmethodsforhigherperformance andlowerconsumption28

1.2.6Detectiontechnology30

1.2.7Systematicreliability31

1.2.8Designofsafetyassessmentsystem32

1.2.9Intelligentmaintenanceandoperation33

1.3Thescopeofthebook 35

1.3.1Thesubsystemsandperformanceevaluation systemofunmanneddriving36

1.3.2Themaintrainingalgorithms36

1.3.3Researchofmaincontrolparameters37

1.3.4Dataminingandprocessing37

1.3.5Researchofenergysaving38

1.3.6Theestablishmentofthesimulationplatform ofalgorithms38

References 39

2.Trainunmanneddrivingsystemandits comprehensiveperformanceevaluationsystem 47

2.1Overviewofautomatictrainoperation/automatic trainprotection/automatictrainsupervisionsystems 47

2.1.1Thedevelopmentoftheautomatictrain controlsystem47

2.1.2Thestructureandfunctionofautomatictraincontrol systems59

2.1.3Theapplicationofautomatictraincontrolsystems69

2.2Theperformanceindicesofthetrainunmanned drivingsystem 78

2.2.1Theperformanceindicesoftheautomatictrain operationsystem78

2.2.2Theperformanceindicesoftheautomatictrain protectionsystem84

2.2.3Theperformanceindicesoftheautomatictrain supervisionsystem87

2.3Thecomprehensiveperformanceevaluationmethods ofthetrainunmanneddrivingsystem 88

2.3.1Comprehensiveevaluationfunction89

2.3.2Analysisofautomatictrainoperation hierarchicalstructure92

2.3.3Comprehensiveweightdeterminationmethod basedonanalytichierarchyprocess-entropy96 References 96

3.Trainunmanneddrivingalgorithmbasedon reasoningandlearningstrategy 101

3.1Thecurrentstatusandtechnicalprogressoftrain unmannedcontrollingalgorithm 101

3.2Theconnotationandcompositionoftrain unmanneddrivingalgorithm 105

3.2.1Researchonthespeedcontrolofrailwayvehicles105

3.2.2Studyonrailwayvehiclenavigationsystem109

3.2.3Studyonrailwayvehiclepathplanning112

3.2.4Studyontargetdetectionofrailwayvehicles116

3.3Calculationprocessandanalysisoftrainunmanned drivingalgorithm 117

3.3.1Positioningandnavigationalgorithm117

3.3.2Pathplanningalgorithm124

3.3.3Objectdetectionalgorithm135

3.4Conclusion 142 References 143

4.Identificationofmaincontrolparametersfortrain unmanneddrivingsystems 153

4.1Commonmethodsfordrivingcontrolofmaincontrol parameteridentification 153

4.1.1Systemidentification153

4.1.2Commonmethodsofparameteridentification159

4.2Trainunmanneddrivingdynamicmodels 169

4.2.1Forceanalysisoftrain170

4.2.2Dynamicmodeloftrain176

4.3Identificationmethodsoftrainintelligenttraction 178

4.3.1Fuzzyidentificationmethod178

4.3.2Simulatedannealingalgorithm182

4.3.3Artificialneuralnetwork184

4.3.4Geneticalgorithm189

4.3.5Swarmintelligencealgorithm193 4.4Conclusion 204 References 205

5.Dataminingandprocessingfortrainunmanned drivingsystems 211

5.1Dataminingandprocessingofmanualdrivingmodes 211

5.1.1Datatypesofmanualdrivingmodes213

5.1.2Traditionaldataminingandprocessingtechnology ofmanualdriving214

5.1.3Dataminingandprocessingtechnologyofmanual drivingbasedonthecombinationofofflineandonline220

5.1.4Dataminingandprocessingtechnologyofmanual drivingconsideringreal-timeschedulinginformation224

5.2Dataminingandprocessingofautomaticdrivingmodes 227

5.2.1Datatypesofautomaticdrivingmodes227

5.2.2Dataminingandprocessingtechnologyofautomatic drivingbasedondeeplearning228

5.2.3Dataminingandprocessingtechnologyofautomatic drivingbasedonadaptivedifferentialevolution algorithm231

5.3Dataminingandprocessingofunmanneddrivingmodes 233

5.3.1Datatypesofunmanneddrivingmodes233

5.3.2Thefunctionofdataminingtechnologyinunmanned drivingmodes233

5.3.3Dataminingandprocessingtechnologyofunmanned drivingmodes236

5.3.4Comparisonandanalysis248

5.4Conclusion 249 References 249

6.Energysavingoptimizationandcontrolfortrain unmanneddrivingsystems 253

6.1Technicalstatusoftrainunmanneddrivingenergy consumptionanalysis 253

6.1.1Analysisoftrainoperationenergyconsumption254

6.1.2Commontrainenergy-savingstrategies255

6.1.3Thedevelopmentandresearchstatusofenergy savingoptimizationfortrainoperation260

6.1.4Significanceofoptimizationfortrainoperation268

6.1.5Energyconsumptionmodelofdriverlesstrain operation269

6.2Single-targettrainenergysavingandmanipulation basedonartificialintelligencealgorithmoptimization 271

6.2.1Optimizationofenergy-savingoperationofdriverless trainbasedonparticleswarmoptimization271

6.2.2Optimizationofenergy-savingoperationofdriverless trainbasedonthegeneticalgorithm278

6.3Multiobjectivetrainenergysavingandcontrolbased ongroupartificialintelligence 282

6.3.1Optimizationofenergy-savingoperationofdriverless trainbasedonthemulti-populationgeneticalgorithm282

6.3.2Optimizationoftheenergysavingoperationofthe driverlesstrainbasedontheMOPSO287

6.4Conclusion 291 References 292

7.Unmanneddrivingintelligentalgorithmsimulation platform 297

7.1IntroductionofMATLAB/SimulinkSimulationPlatform 297

7.1.1Background297

7.1.2Historyoftrainsimulationsoftware298

7.1.3MATLAB301

7.1.4Simulink303

7.2Designmethodoftrainintelligentdrivingalgorithm simulationplatform 305

7.2.1Object-orientedsimulationtechnology305

7.2.2Thedevelopmentprocessofsimulationplatform software306

7.2.3Descriptionofthesoftwarearchitecture306

7.2.4Thestructuredesignofsimulationplatformsoftware309

7.3Trainautomaticoperationcontrolmodelandprogramming 310

7.3.1Inputmodule310

7.3.2Controllermodule311

7.3.3Trainmodelmodule312

7.3.4Outputmodule313

7.3.5Basicresistancemodule313

7.3.6Othermajormodules314

7.4Trainintelligentdrivingalgorithmsimulationgraphicaluser interfacedesignstandard 314

7.4.1Simulationlineselectionmodule315

7.4.2Simulationmodelparametersettingmodule316

7.4.3Algorithmselectionmodule317

7.4.4Simulationoptionmodule317

7.4.5Displaymoduleofsimulationresults318

7.5Applicationsandcaseanalysisofmainstreamtrain unmanneddrivingsystems 319

7.5.1Principleofsimulationsystem319

7.5.2Designoftheautomatictrainoperationalgorithm320

7.5.3Trainsimulationplatformsoftwaretesting329

7.5.4Evaluationandanalysisofsimulationsystem330

7.6Conclusion 332 References 334 Index343

Listoffigures

Figure1.1Theoverallstructureofthischapter.3

Figure1.2TheprocessofautomatictrainoperationatGoA4.8

Figure1.3ProportionofvariousinvestmentprojectsintheBeltandRoad Initiative. 19

Figure1.4Thesignalsystemofanunmanneddrivingsystem.24

Figure1.5Theoverallstructureofanunmannedsystem.28

Figure1.6Thefailureself-handlingprinciple.31

Figure2.1ThestructureofonboardequipmentfortheCTCS2+ATOsystem.79

Figure2.2TheperformanceindicesoftheATCsystem.79

Figure2.3HierarchicalstructureoftheATOsystem.93

Figure3.1Internationalstandardsdefinefourautomationlevels(Gradesof Automation)accordingtothedegreeofautomationofrailtransit lines.

103

Figure3.2Schematicdiagramoftrainunmanneddrivingalgorithms.105

Figure3.3Abriefsummaryofnonevolutionaryandevolutionarypathplanning algorithms. 113

Figure3.4Themodelingprocessoftheantcolonyalgorithm.128

Figure3.5Themodelingprocessofintelligentdropalgorithm.130

Figure4.1Thebasicstepsofidentification.156

Figure4.2Theoutputerrorsystem.165

Figure4.3Theoutputerrorsystemwithauxiliarymodel.166

Figure4.4Theframeworkofthemultiparticlemodel.177

Figure4.5Theradialbasisfunctionneuralnetworkmodel.187

Figure4.6Thestructureofsystemidentificationbasedonneuralnetwork.(A) Parallelstructure(B)Series-parallelstructure. 188

Figure5.1Dataminingandprocessingformanualdriving,automaticdriving, andunmanneddrivingmode. 213

Figure5.2Datatypesofmanualdrivingmodes.214

Figure5.3Calculationprocessingofmanualdrivingmode.217

Figure5.4Optimizationmodelofmanualdrivingteststrategybasedonthe geneticalgorithm. 223

Figure5.5Manualdrivingmodeconsideringreal-timeschedulinginformation.227

Figure5.6Overviewofdataminingtechnology.238

Figure6.1Schematicdiagramofenergyconsumptiondistributionintherail transitsystem. 254

Figure6.2Schematicdiagramofenergy-savingcontrolformulti-train collaborativeoptimization. 257

Figure6.3Optimalallocationdistributionofenergysavingoperationin unmannedtraindrivingsystem.

260

Figure6.4SchematicdiagramoftheevolutionprocessoftheMPGA.284

Figure7.1Therelationshipbetweencomputersimulationsoftware,simulation system,andmodel.

302

Listoffigures

Figure7.2TheSimulinktoolbox.304

Figure7.3Theinputmodel.311

Figure7.4Thecontrollermodule.312

Figure7.5Thetrainmodelmodule.312

Figure7.6Theoutputmodelmodule.313

Figure7.7Thebasicresistancemodel.314

Figure7.8ThegraphicaluserinterfaceoftheATO.316

Figure7.9Thevaluesoffitnessduringtheiterationsofallinvolvedmethods.331

Figure7.10Thesimulationresultsofallinvolvedmethods.331

Listoftables

Table1.1AutomationgradingbyIEC62267:2009.7

Table1.2GeneralrequirementsforSILofcoreproductsinunmannedsystems.34

Table3.1Summaryofadvantagesanddisadvantagesofvarioustraditionalpath planningmethods. 127

Table3.2Asummaryoftheperformancecomparisonforintelligentoptimization algorithms.

131

Table3.3Thenetworkarchitectureofdarknet-19.141

Table6.1Comparisonofsingle-trainandmulti-trainenergysavingoptimization strategies.

267

Preface

Withdevelopmentovertime,railtransithasplayedanincreasinglyimportantroleinthefieldofmasstransportationworldwide.Forshort-distance passengers,railtransitissafe,punctual,comfortable,andenvironmentfriendly.Withthecontinuousdevelopmentoftherailtransitindustry,the demandforrailtransportalsogrows.Theurgentneedsofgovernmentsand societieshavealsoputforwardhigherrequirementsforthesafety,efficiency, andoperatingcostsofrailtransit.Inordertoenhancetransportationsafety guaranteecapabilities,improvethequalityoftransportationservices,and improvetransportationefficiency,theintelligentizationofrailtransitisone ofthecoresofthedevelopmentoftherailtransitindustrynowandinthe future.

Unmannedrailwayvehiclesareanimportantmanifestationandcorerepresentativeoftheintelligentleveloftherailtransportationindustry.Itisthe basicmodeofoperationoffuturerailvehicles.Infact,inthefieldofrail transitresearchershaveaccumulateddecadesofresearch,design,andapplicationexperiencetowardunmannedrailtrainsystems.Atthesametime,a numberofunmannedrailwaylineshavebeenputintooperationorwillsoon beopenedworldwide.Comparedwithroadtraffic,railtransithasthecharacteristicsofrelativelyfixedlines,relativelyfixedstations,andgoodtimecontrollability.Thereforerailtransitismoresuitableforadriverlesssystem. Thecoreofunmannedrailtrainsisahighlyautomatedadvancedrailtrain controlsystem.Intheactualapplicationenvironment,thetraincontrolcenter usesthistypeofsystemtoimplementandmonitorinterstationconnections, signalsystems,trainoperations,vehiclescheduling,andsoforth,ofthe entirerailtransitnetwork.Therailtraincanthusfullyrealizeunmannedand fullyautomatedoperations.

Theunmannedrailwayvehiclesysteminvolvesknowledgeinmultiple fieldssuchascomputers,artificialintelligence,automation,anddataanalysis.Thespecificimplementationofthesystemisamultidisciplinaryand verycomplexsystematicproject.Thisbookdetailsthedevelopmentprocess, systemcomposition,andkeytechnologiesoftheunmannedrailwayvehicle system.Forprofessionalsandresearchersinintelligentmanufacturingand railtransportation,thisbookcanprovidesomehelptotherelatedresearchof unmannedrailwayvehicle.

Thisbookcontainssevenchapters:

Chapter1:Introductionoftrainunmanneddrivingsystem

Thischapterreviewsthedevelopinghistoryoftheunmanneddrivingsystemoftheurbanrailwaytransportandbrieflyintroducestheapplicationof artificialintelligenceintheunmanneddrivingsystem.

Chapter2:Trainunmanneddrivingsystemanditscomprehensiveperformanceevaluationsystem

Thischapterintroducesthetrainunmanneddrivingsystemwhichisalso calledtheautomatictraincontrol(ATC)system.Itfirstexploresthedevelopment,structure,andapplicationoftheATCsystem.Last,itintroducesthe comprehensiveperformanceevaluationsystemforthreedifferent subsystems.

Chapter3:Trainunmanneddrivingalgorithmbasedonreasoningand learningstrategy

Thischapterintroducesthetrainunmanneddrivingalgorithmsbasedon thereasoningandlearningstrategy.Tocomprehensivelyevaluatethe unmannedtrainalgorithm,thepositioningandnavigationphase,pathplanningphase,andobjectdetectionphasearedescribed.

Chapter4:Identificationofmaincontrolparametersfortrainunmanned drivingsystem

Thischapterintroducesthetheoryofsystemidentification,whilesome commonidentificationmethodsfortraindrivingcontrolmodelareintroduced.Accordingtotheforceanalysisofthetrain,thesingle-particle dynamicmodelandmultiparticledynamicmodeloftraindrivingcontrols areestablished.

Chapter5:Dataminingandprocessingfortrainunmanneddriving system

Thischapterintroducesthethreedrivingmodelsoftrainmanualdriving, automaticdriving,andunmanneddriving,andintroducescommonlyused dataminingandprocessingtechnologies.

Chapter6:Energysavingoptimizationandcontrolfortrainunmanned drivingsystem

Thischapterfirstdescribesthecurrentsituationofenergyconsumptionin arailtransitsystem.Thenitsummarizestheprincipleanddevelopmentstatusofthreemaintrainenergy-savingoptimizationmethods.Onthisbasis, twosingle-objective,energy-savingoptimizationmethodsarepresented.

Chapter7:Unmanneddrivingintelligentalgorithmsimulationplatform

Thischaptermainlyusestheskillsofsoftwarejointsimulationtodesign thetraincontrolplatform.Relevantalgorithmsofautomatictraindriving controlsystemareusedtoverifytheplatform.

March2020

Acknowledgments

ThestudiesforthisbookweresupportedbytheNationalNaturalScience FoundationofChina,theNationalkeyR&DProgramofChina,andthe relatedprogramsofCentralSouthUniversity,China.Intheprocessofwritingthebook,HuipengShi,ZhihaoLong,GuangxiYan,ChengqingYu,Rui Yang,YuXia,ZeyuLiu,andotherteammembershavedonealotofmodel verificationandfurtherwork.Theauthorsexpresstheirheartfeltappreciation toallinvolved.

AbbreviationList

ABC Artificialbeecolony

AC Alternatingcurrent

ACO Antcolonyoptimization

AGT Automatedguidedtransit

AHP Analytichierarchyprocess

AI Artificialintelligence

AIIB AsianInfrastructureInvestmentBank

AM-RLS Auxiliarymodel-basedrecursiveleastsquare

AM-SG Auxiliarymodel-basedstochasticgradient

APM Automatedpeoplemover

ART Advancedrapidtransit

ATC Automatictraincontrol

ATO Automatictrainoperation

ATP Automatictrainprotection

ATS Automatictrainsupervision

B&R BeltandRoad

BA Batalgorithm

BHA Blackholealgorithm

BIRCH Balancediterativereducingandclusteringusinghierarchies

BP Backpropagation

BPNN Back-propagationneuralnetworks

BTM Balisetransmissionmodule

CBTC Communicationbasedtraincontrolsystem

CCTV Closedcircuittelevision

CI Computerinterlocking

CLARA Clusteringlargeapplications

CNN Convolutionalneuralnetwork

CRRC ChinaRailwayRollingStockCorporation

CSO Catswarmoptimization

CTCS ChineseTrainControlSystem

CURE ClusteringUsingRepresentatives

D-ATP Digital-automatictrainprotection

DBSCAN Density-basedspatialclusteringofapplicationswithnoise

DC Directcurrent

DCS Digitalcommandsystem

DCU Doorcontrolunit

DENCLUE Densityclustering

DMU Dieselmultipleunit

AbbreviationList

DR Deadreckoning

DSU Databasestorageunit

DTO Driverlesstrainoperation

EC Evolutionarycomputation

ECTS Europeantraincontrolsystem

ELM Extremelearningmachine

EMU Electricmultipleunits

EP Evolutionaryprogramming

ERTMS EuropeanRailTransportManagementSystem

ES Evolutionarystrategy

ESB Emergencystopbutton

FA Fireflyalgorithm

FastRCNN Fastregion-basedconvolutionalneuralnetwork

FIR Finiteimpulsiveresponse

GA Geneticalgorithm

GNSS GlobalNavigationSatelliteSystem

GOA Gradesofautomation

GP Geneticprogramming

GPRS Generalpacketradioservice

GPS Globalpositioningsystem

GUI Graphicaluserinterface

ICA Imperialcompetitionalgorithm

ICP Iterativeclosestpoint

IEC InternationalElectrotechnicalCommission

IMU Inertialmeasurementunit

IN Inertialnavigation

INS Inertialnavigationsystem

ISCS IntegratedSupervisoryControlSystem

ISO InternationalOrganizationforStandardization

IWD Intelligentwaterdrops

KM K-means

KNN K-nearestneighbor

LMS Leastmeansquare

LS Leastsquares

LSTM Long-shorttermmemory

LTE Longtermevolution

LZB Linienzugbeinflussung

MA Movementauthority

MIRLS Multi-innovationrecursiveleastsquare

MLR Multiplelinearregression

MMI Man machineinterface

MSE Meansquareerror

NGTC Nextgenerationtraincontrol

NMS Nonmaximumsuppression

NTO Nonautomatedtrainoperation

OCC Operatingcontrolcenter

OE Outputerror

OET Outputerrortype

OptGrid Optimalgrid-clustering

OPTICS Orderingpointstoidentifytheclusteringstructure

PAM Partitioningaroundmedoid

PCA Principalcomponentanalysis

pid Proportionalintegralderivative

PSO Particleswarmoptimization

PTU Portableterminalunit

PWM Pulsewidthmodulation

RBF Radialbasisfunction

RCNN Region-basedConvolutionalNeuralNetwork

RF Randomforest

R-FCN Region-based,FullyConvolutionalNetworks

RFID Radiofrequencyidentification

RL Reinforcementlearning

RLS Recursiveleastsquare

RNN Recursiveneuralnetwork

ROCK Robustclusteringusinglinks

RRT Rapidlyexploringrandomtree

RTTP Real-timetrafficplan

RTU Remoteterminalunit

SCADA Supervisorycontrolanddataacquisition

SDU Speedanddistanceunit

SG Stochasticgradient

SIL Safetyintegritylevel

SPP-net Spatialpyramidpoolingnetwork

SS Selectivesearch

SSD Singleshotmultiboxdetector

STC Stationcontroller

STING Statisticalinformationgrid-basedmethod

STO Semiautomatictrainoperation

SVM Supportvectormachine

TA Tentaclealgorithm

TCC Traincontrolcenter

TCMS Traincontrolandmanagementsystem

TOS Trainoperationsonsight

TSP Travelingsalesmanproblem

TVM Transmissionvoice-machine

UITP InternationalUnionofPublicTransport

UML Unifiedmodelinglanguage

UTO Unattendedtrainoperation

VAL Ve ´ hiculeautomatiquele ´ ger

VOBC Vehicleon-boardcontroller

WoLF-PHC Winorlearnfast policyhillclimbing

YOLO Youonlylookonce

ZC Zonecontroller

ZELC ZhuzhouLocomotiveCo.,Ltd. AbbreviationList

Chapter1

Introductionofthetrain unmanneddrivingsystem

1.1Overviewofthetrainunmanneddrivingsystem

Atpresent,therailtransitindustryisinthedevelopingprocessofworldwide networkoperations.Railtransitisbecomingmoreimportantinurbanconstructionanddevelopment.Thegovernmentandsocietyhavealsoputforwardmorerequirementsforsafety,efficiency,andcostsofrailtransit.

Thereforerailwaysystemtechnologyalsopresentsanewdevelopment situation.Torealizethenetworkdevelopmentandstructureofurbanrail transit,theoperationandautomationlevelofthedomesticurbanrailtransit systemshouldbefurtherimproved [1],anditalsoneedstoeffectivelyconnectwiththeinternationaladvancedurbanrailtransitsystem,providing goodservicesforthedevelopmentoftheurbantransportationindustry [2]

However,therealityisthattheequipmentleveloftheoldrailwaylinesis inadequate.Althoughthenewrailwaylineshaveimprovedtheircontrol levels,thelevelsofsystemintegrationandintelligencearestillinsufficient. Alargeamountofmanualparticipationisstillrequiredduringoperation.So thereisstillspaceforfurtherimprovement.Fromaglobalperspective, unmanneddrivingsystemshavebeenadoptedtoimprovesafetyandefficiencyandreduceoperationandmaintenancecosts,whetheritisforthenew linesortherenewalofoldlines.

Inthepasttenyearsorso,thedevelopmentofrailwaysinChinahas beenacceleratedsignificantly,especiallyinbigcitieslikeBeijing,Shanghai, Guangzhou,andShenzhen,andtheywillgraduallyformanurbanrailway network,whichcouldeffectivelysolvetheurgentneedsforurbanpublic transport [3,4].Withthedevelopmentofthescienceandtechnologyofautomation,theoperatingmodeofurbanrailtransitsystemsworldwidehasalso changed.Injustdecades,itsdevelopmenthasalreadygonethroughthree stages:

● Manualdrivingmode

Inthismode,thedriverofthetrainoperatesthetrainwithanindependent signalsystemusinganoperationchart,andobtainsover-speedmonitoring andprotectionfromanautomatictrainprotection(ATP)system.

Automaticoperationmodeofmanualdriving

Inthismode,trainsalsoneeddrivers,forwhomthemainoperationtasks aretoopenandclosethedoorsforpassengersandtogivecontrolsignalsto turnthetrainson.Theacceleration,decelerating,braking,andstoppingof thetrainsareautomaticallycompletedwithcoordinationandcooperation throughanautomatictraincontrol(ATC)systemandtheinterfaceofthe controlsystem.Mostofthenewlinesbuiltinpastfewyearshavetheequipmentnecessarytooperateintheautomaticoperationmodewithmanual driving.

● Fullyautonomousdrivingmode

Inautonomousdrivingmode,allthephasesofthetrains,includingthe waking,starting,running,stopping,openingandclosingofdoors,malfunctionanddegradedoperationaswellasenteringandexitingtheparkinglot, andfullyautomatedtrainwashing,donotrequiremanualoperation.

Thecurrentscientific andtechnologicalprogressiscarryingtherevolutionofrailtransittechnologyforw ard.Duringthetraveloftrains,continuouslyupdatedinformationofthe wholetrainandareal-timetraffic plan(RTTP)areessentialforthedrive radvisorysystemandfortraintrafficcontrol [5] .Newdesignconceptsandtechnologies,includingthe applicationofcomputatio nalnetworkcontrol,thereliabilityofintegrated circuits,electronicandelectromech anicalcomponents,theinnovationof manufacturing,andtheapplica tionof5Gtechnologyhavegreatly increasedthereliabilityandsafetyofr ailtransitsystems.Moreover,the increaseintheautomationlevelha sledtolessmanualinterventionand hasgraduallyreachedthelevelthatthefunctionsoftraindriversare completelyreplacedbyautomatic systems.Theurbanrailautomatic unmannedsystemhasbettersystema ticperformanceandflexibilityas wellasalowerenergyconsumptionthanmanualdriving.Atpresent,the fullyautomatedunmannedmanagemen tsystemisstillintheexploration phase.However,inthefuture,itisho pefulthattheintegrationofautomaticunmannedtechnologywill beappliedinrailwaysystems [6] .As partofurbanrailtransitintranspor tationprojects,researchinautonomoustechnologyisaimedatsolvingtheproblemofthehugepassenger flowinmajorcities.Currently,auton omousdrivingtechnologyhasbeen developedworldwide,andtheentirep rocessofautomaticcontrol,operationmaintenance,andmanagementhasbeenintegrated.Unmannedrail trainsadoptahighlyautomatedadv ancedrailtraincontrolsystem. Atrackcontrolcentermonitorstheint er-stationconnections,signalsystems,trainoperations,andvehicles chedulingoftheentirelinenetwork, soastoautomaticallyrunthetrains.

Thisbookisaimedattheresearchofrailwayunmanneddrivingtechnology andintroduces,indetail,thehistoryandmainresearchdirectionsofunmanned

FIGURE1.1 Theoverallstructureofthischapter.

drivingtechnology,thedevelopmentbackground,andtheapplicationofsubsystemsofautonomousdriving.Avariety ofdataminingandoptimizationalgorithmsusedintheprocessofautonomousdrivingareproposedtooptimizethe energyconservationandcontrolprocess.What’smore,basedonthetheoryand simulationplatform,intelligentsimulationresearchofautonomousdrivinghas alsobeencarriedout.Theoverallstructureofthischapterisshownin Fig.1.1

1.1.1Historyofunmanneddrivingtechnology

In1963,adrivingtestofanautonomousdrivingtrainbetweenstationswasconductedinLondon.Afterasuccessfulsafety test,afull-scaleautonomousdriving testbeganin1964.Manualdrivingtrainswereonthesamerailline,andtheautomaticdrivingsystemalsousedtheexistingfixedblockingsignalsystem.Afterall unmanneddrivingtrainswereproventooperatesafely,theVictoriaLine, London’sfirstfullyautomatedmetroline,beganitsoperationsinNovember 1968 [7,8].

Theworld’sfirstautomaticpassengersubwaysystemwasknowntostartin theUnitedStates.TheNewYorkTimesSquaretoCentralStationferrylinewas consideredtobethefirstautomaticsubwaylinetocarrypassengers.Theproject wasstartedin1959andtherelevanttestswerestartedonanisolatedlineatthe beginningof1960.Thereconstructionoffacilitiessuchasplatformswasstarted

in1961tosupportautomatedoperation,andpassenger-freecommissioningand trialoperationwerecarriedoutinlate1961.Passengeroperationsofficiallystarted inJanuary1962.Thecircuitadoptedaring-shapeddesign,includingautomatic platformdeparture,intervalautomaticspeedregulation,automaticplatformstop, andautomaticdoorcontrol,torealizethe automationofthetrain’smainlineoperationprocess [9].Fromatechnicalperspective,thislinewasfullyequippedwithouttheneedforattendantstogetonthetrain,butduetotheinfluenceof traditionalconceptsandthelaborunion,andforthecomfortofpassengers,there werestillcrewmembersonthetrain.Themainmethodadoptedbyautonomous drivingtechnologyduringthisperiodwastoindicatethespeedlimitofthetrain bysendingpulsesofdifferentfrequenciestotherails.Besides,point-command generatorsarearrangedatspeciallocations;forexample,ageneratorisarranged atthebestplacebetweentwostations,whichgeneratesanaudiosignalindication of15kc/s.Thetrainsshouldbeunloadedoridle.Whenatrainentersaplatform, itwillpassaseriesofthesepoint-typecommandgeneratorstorealizethestopping ofthetrainontheplatform.

InGermany,thefirstunmanneddrivingtestwasconductedinBerlinin 1928.NeartheKrummLankestation,anunmannedsystemwassuperimposed ontheexistingsignalblockingsystem.Thegoalwastointerferewiththeoperationofthetrainalongonitsentirerouteinsteadofitsoperationonlyatthe signal.Furthertestsweredonebetween1958and1959inanattempttocontrol thetrainspeedsusingLZB(Linienzugbeeinflussung,inGerman),butinsufficientprogresswasmade.Greatersuccesswasachievedinthe1960s.Night testsbetweentheSpichernStreetandZoologicalGardensstationsonlineU9 beganin1965,andthesystemwasworkingwellby1967.In1969,thetrains begantocarrypassengers.InMay1976,theentireU9linewasupgradedto autonomousdrivingoperations,butitstartedonlyinthetroughperiod.The full-timeautonomousdrivingoperationservicestartedin1977,anditwasrectifiedduetotheagingofthesystemin1993,15yearslater,andwasabandoned in1998.Fromthe1960stothe1970s,theHamburgMetro(U-Bahn)testwas conductedunderagovernmentplan.FromOctober1982toJanuary1985,an automaticpassengercarryingservicewascarriedoutonthe10kmline. Moreover,theRUBIN(automaticU-Bahn)projectinNurembergwasthefirst successfulrealizationofthefirstGermanautomaticunmannedU-Bahn.The U3lineincludestwosuburbanbranchlines,whichopenedinJune2008.After that,theU2linewasupgradedbytrain-by-trainautomaticdriving,andin January2010,itachievedfullyautomaticdriving [10].

ItisspecialthatGermanyhasrelativelycompletedregulationsand industry-standardsystemsatthenationalandindustriallevelsintermsof fullyautomaticdriving.Forexample,Germanyhasaregulationthattrains shouldnotstopinatunnelwhenanemergencyalertisactivatedorifany otherhazardsuchasafireisdetected,butshouldproceedtothenextstation asthiswillfacilitaterescue.Toincreasethesafetyandreducethedangerof passengersasmuchaspossible,thedesignofunmannedtrainsshould

considertheimprovementofsafetyinseveralaspects,including(1)theabilityofpassengerstocommunicatewiththecontrolcenter,(2)camerasshould beconnectedtothestationcentersothatworkerscanmonitortheconditions onthetraininreal-timewithoutinterruption,(3)trainsshouldusefireresistantmaterials,includingfire-resistantcables,and(4)multipletemperatureandsmokedetectorsshouldbesetinthepassengerareaandthemachine spaceunderthefloorfortheearlydetectionoffire.

Francealsocarriedoutanautomaticdrivingtestofpassengersubway trainsinParisfrom1952to1956.Afterthetestingofmultipletrainsinthe 1960s [11],thetraditionalsubwaywasupgradedtoanautomaticdrivingsubwaysystembetween1972and1979.Therewerestillpeopleresponsiblefor traindoorcontrolandplatformdepartures.OnApril25,1983,thefirstfully automaticlightrailsubwaysysteminFrance,LilleLine1,wasopenedwith theVAL(Ve ´ hiculeautomatiquele ´ ger,inFrench)system.VALisnowconsideredtobesynonymouswithautomatedlightrailvehicles,namelyautomated light(weight)vehicles.VALvehiclesare26mlongand2mwide.Theycan carry152passengerspertwounitsandrunwithrubberwheels.TheadvantagesofVALvehiclesaretheirlowconstructioncostsandshortdeparture intervalfromplatformforupto60seconds.Inthisline,platformgatesare usedforthefirsttimetoisolaterailtravelareasfrompassengerstoensurepassengersafety,reducetheprobabilityofplatformintrusions,andgreatly improvesafetyandsystemreliability.Thisautonomousdrivingsystemisrelativelycompleteandhasanimpactonrailwayunmanneddrivingtechnology.

In1998,inParis,Franceopenedthefirstfullyautomaticunmannedsubway, Line14,withplatformdoorsandlargepanoramicglassatbothendsofthetrain forpassengerstohaveaview.Line14usestrainsprovidedbyAlstomanda trainguardsignalsystemfromSiemens.BecauseofthegreatsuccessofLine 14,in2005,theParisMetrodecidedto upgradetheextremelybusyLine1to automaticunmanneddriving.Theupgradeincludedsignalsystemsfrom SiemensandtraincarbodiesfromAlstom.FromNovember2011toDecember 2012,unmannedtrainswereusedandmixedwithmanualcontrolledtrains. AfterDecember15,2012,alltrainswereunmanneddrivingtrains,achieving 100%automation.LyonisanothercityinFrancewithanautomaticmetroline. Thetrainshavepanoramicwindows,allowingpassengerstoenjoythescenery outsidealongtheline.Thetraindoorshavesensorstodetectifclothes,bags,or otherthingsaretrapped,andaninfraredsystemdetectsobstaclesontheedgeof theplatformortrack.

Unmannedrailtrainsrepresentthehighestlevelofautomaticcontrol,and arethebasicmodeofoperationoffuturerailtrains.Domesticandforeignrail trainshaveaccumulateddecadesofresearch,design,andapplicationexperience inthedirectionofunmannedrailtrains,andtherearealreadymanyunmanned raillinesinoperationathomeandabroad.Comparedwithroadtransportation, railtransportationismoresuitablefordriverlessdrivingduetotherelatively fixedlines,relativelyfixedstations,andgoodtimecontrollability.

DevelopedcountriessuchasBritain,France,Germany,Denmark,and Australiahavebuiltunmannedrailtrainsbasedontheirconditionsandtechnology.Althoughtherearealreadydemonstratedcasesofunmannedrail trainsathomeandabroad,ingeneral,unmannedrailtrainsareonlyasmall partoftheentirerailtrainoperationindustry.Generally,manylonglines withmanystationsandmanylineswithcomplicatedcontrolmethodsand manysuddenchangesaremainlyinmanualdriving.Withtherapidinnovationofartificialintelligence(AI)anditsincreasingmaturityinthetransportationindustry,theapplicationofAIinrailtransportationrepresentsabetter wayforthedevelopmentofunmannedrailtransportationinthefuture.

1.1.2Theoperationlevelsofautomatictrains

FollowingthedefinitionoftheInternationalUnionofPublicTransport (UITP),railwaydrivingcontroltechnologycanbedividedintofourdifferent gradesofautomation(GoA),accordingtoIEC62267:2009 [12]:

Level0(GoA0):Trainoperationsonsight(TOS),manualoperationwithoutprotectionfromautomatictrainoperation(ATO).

Level1(GoA1):Nonautomatedtrainoperation(NTO),thedriveris responsibleforcontrollingthetrainanddealingwithemergencies.

Level2(GoA2):Semiautomatictrainoperation(STO),thetraincanautomaticallyrunandstop,butitstillneedsadrivertocontrolthedoorsand dealwithemergencies.Mostautomaticoperationsystemsintrainsbelong tothislevel.

Level3(GoA3):Driverlesstrainoperation(DTO),thetraincanautomaticallyrunandstop,butanassistantisneededtomonitorthewholeprocessortocontrolthedoorsanddepartfromplatforms.

Level4(GoA4):Unattendedtrainoperation(UTO),thetraincanautomaticallyrun,stop,switchdoors,andhandleemergencies,andthereis noassistantonthetrain.

BythedefinitionofIEC62290 [13,14],theDTOandUTOgradesbelong underfullyautomaticunmanneddriving.Normally,automaticequipmentis usedtoreplacethedriver’sself-drivingtrainstorunontheentireline. Besides,thewidelyusedcommunication-basedtraincontrol(CBTC)system couldbedefinedasSTOforATOdrivingunderthesupervisionofthe driver.

Inconclusion,traindrivingcontroltechnologyhaspassedthroughthe processfromNTOandSTOtoUTO.Accordingtothedefinitionofstandard specifications,therailwayATOmodeincludestwolevels,namelythethird level,DTO,andthefourthlevel,UTOasshownin Table1.1.

Comparedwithmanualdriving,allneworenhancedfunctionsof UTOareconcentratedonhowtoreplacedriverfunctionstoinnovateand developanewoperatingsystem.Itstillneedstohavecertaintechnical

TABLE1.1 AutomationgradingbyIEC62267:2009.

Basicfunctionsoftrain operation GoA0GoA1GoA2GoA3GoA4 TOSNTOSTODTOUTO

Guaranteeof trainsafety

Guaranteeof saferoute

Guaranteeof safeseparation

Guaranteeof safespeed

TraindrivingAcceleration andbraking control ûûüüü

Track supervision Avoid collisionswith obstacles ûûûüü Avoid collisionswith people ûûûüü

Supervision ofboarding operations

Controltrain doors ûûûû/üü

Avoidinjuries topersons betweentrains orbetween platformsand trains ûûûû/üü

Ensuresafe starting conditions ûûûû/üü

Train operation Putinortake outoperation

Monitortrain status

Detection and management of emergencies

Performtrain diagnostics, detectfire/ smoke,detect derailment, handle emergency situations

/OCC

characteristics,namelyhighautomation,self-diagnosisandprocessingof faults,highlyredundantdesign,andpowerfulperceptionanddetection [15].

Allfunctionsmustbeautomaticallycompletedbythesystem,whichisthe basicrequirementofUTOtechnology.Trainswillautomaticallywakeupand self-checkbeforegoingoutofthegaragebythereceiveddailyoperationschedule,andthenenterastateofpreparation.Accordingtothestationplanandthe real-timesituationoftheline,tractionbrakinginstructionisautomatically given,thestopofstationsisautomaticallyconductedwhenthedoorsare openedandclosed,andthepassengerwillautomaticallyreturnwhentheterminalisreached [16].Afterfinishingtheoperationtaskfortheday,trainsgoto bewashedorreturntothegarageforinspection,anduploadthevehicledata forthedayaccordingtotheplanoroperatingcontrolcenter(OCC)instructions. TheprocessofautomatictrainoperationatGoA4isshownin Fig.1.2.

GoA4requiresnodriverandnoonboardassistant.Ifafailureoccursand itcannotbehandledintime,itwillharmnormaloperationsandevenhinder thesmoothflowoftheentireline.Thereforeitmusthavestrongfaultcapabilitiesofself-diagnosisandhandling.UTOtrainscollectdiagnosticinformationanddatafromvarioussubsystemsthroughatraincontroland managementsystem(TCMS),evaluatetheacceptedfaults,dividedifferent faultlevels,andtransmitthefaultstothedataprocessingcentertodetermine whethertointerveneorchooseaninterventionmethod.

TheUTOmodeneedstoreducetheimpactofemergencyhandlingof unmannedtrainsthroughredundantdesign.Themaincontrolcircuits,such astractionauthorization,brakingcontrol,andothercircuits,multibranchparallel,heterogeneoussignals,andothermethods,areappliedforredundancy. Thedetectionoftheloopistoavoidunknownfaultproblemscausedbyloss offunction.TheTCMSsystemhasaredundantconfigurationofinputand outputmodules.IfasingleI/Omoduleoranindividualsignalfails,thesystemcanachieverapidswitching.

FIGURE1.2 TheprocessofautomatictrainoperationatGoA4.

Traditionally,thedriveractsasaperceiverofexternalenvironmental informationandisinvolvedintraindrivingcontrol.TheUTOmodeissupportedbyvarioussensorsorcorrespondingsubsystems [15].UTOtrainsare equippedwithanobstacledetectionsystem,whichcandetectusingavariety ofmethodssuchaslaserscanning,infraredcameras,stereocameras,radar, andotherequipmenttointerveneintherunningstatusofatrainbasedonthe detectionresults [16].Alargenumberofcameraarrangementsactasthe detectionsystemforUTOtrains,andthesewirelesslytransmitinternaland externalimagesofthevehicletotheOCConthegroundviavehicle-togroundwirelesstransmission.UTOtrainsnotonlydetectsmokeinpassenger compartmentsandelectricalcabinets,butalsoarrangemeasuringpointsin importantoff-boardequipmentforreal-timemonitoringandcomprehensive warning [17].

ThedevelopmentofUTOtechnologywillshowatrendfromunmanned interventiontounmanneddriving,andthentointelligentandintegrated mode.MostcurrenturbanrailvehicleshavereachedGoA2,inwhichthe ATOinthesectionhasbeenrealized.ThedegreeofautomationofUTO technologyhasbeenfurtherimprovedandautomaticoperationcanbe achievedwithoutmanualinterventiononthemainline.Theimpactfactors suchashighpassengerflowtothedomesticsubway,shortdepartureintervals,andpassengerpsychology,whetherontheUTOlinethathasbeen openedorisabouttoopen,havereservedstaffonthetrain.Withthe increaseofoperationexperienceandfurtherimprovementoftechnology, GoA3modewithhumanvaluemultiplicationandnomanualintervention willinevitablymovetowardthefullyunmannedGoA4mode.

1.1.3Themainfunctionsanddevelopmentofunmanneddriving trains

Automatictrainshavefunctionssuchasautomaticwake-up,garagedeparture,departure,travel,stop,return,andautomaticreturntothegarage,automaticwashing,andautomaticdormancyafteroperation.Fullyautomatic systemsaredesignedtomaketrainsrunmorereliablyandachieveautomatic controloftheentiresceneandprocess.ComparedwiththeATOmode,in whichtheoperatinglineshavebeenopenedinthepast,thedegreeofautomationismuchhigherinUTOmode,inwhichthereliability,applicability, maintenance,andsecuritycanbequantified [15].

Thecontrolcenterofunmanneddrivingtrainscandirectlyconnectwith thetrainsandpassengers,servepassengers,andguidepassengerstohandle emergencymatters.Mostoftheworkdonebytraincontrolisautomatically completedbyacomputer,andthedispatcher’sresponsibilitiesincluderoutinemonitoringandnecessaryinterventionandconfirmation [18].The degradedoperationmodeandtrainrescuemodeofunmanneddrivingsystemsaremuchmorecomplicatedthanthoseoftraditionalmanualdriving

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.