Undergraduate analysis: a working textbook aisling mccluskey - Download the ebook and explore the mo

Page 1


https://ebookmass.com/product/undergraduate-analysis-aworking-textbook-aisling-mccluskey/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Integration with Complex Numbers : A Primer on Complex Analysis Aisling Mccluskey

https://ebookmass.com/product/integration-with-complex-numbers-aprimer-on-complex-analysis-aisling-mccluskey/

ebookmass.com

Undergraduate Introduction to Financial Mathematics, an (Third Edition ) 3rd

https://ebookmass.com/product/undergraduate-introduction-to-financialmathematics-an-third-edition-3rd/

ebookmass.com

Mathematics and Its History (Undergraduate Texts in Mathematics) 3rd ed .

https://ebookmass.com/product/mathematics-and-its-historyundergraduate-texts-in-mathematics-3rd-ed/

ebookmass.com

Sociologia generale. Teorie, metodo, concetti 3/ED 3rd Edition David Croteau

https://ebookmass.com/product/sociologia-generale-teorie-metodoconcetti-3-ed-3rd-edition-david-croteau/

ebookmass.com

https://ebookmass.com/product/international-relations-11th-editionebook-pdf-version/

ebookmass.com

Introduction to Datafication : Implement Datafication Using AI and ML Algorithms Shivakumar R. Goniwada

https://ebookmass.com/product/introduction-to-datafication-implementdatafication-using-ai-and-ml-algorithms-shivakumar-r-goniwada-2/

ebookmass.com

HVAC Water Chillers and Cooling Towers: Fundamentals, Application,

https://ebookmass.com/product/hvac-water-chillers-and-cooling-towersfundamentals-application/

ebookmass.com

Carpetbagger of Conscience: A Biography of John Emory Bryant Ruth Currie

https://ebookmass.com/product/carpetbagger-of-conscience-a-biographyof-john-emory-bryant-ruth-currie/

ebookmass.com

Fairy Hill Marita Conlon-Mckenna

https://ebookmass.com/product/fairy-hill-marita-conlon-mckenna/

ebookmass.com

Critical Care Emergency Medicine 2nd Edition

https://ebookmass.com/product/critical-care-emergency-medicine-2ndedition-william-chiu/

ebookmass.com

UndergraduateAnalysis

Undergraduate Analysis AWorkingTextbook

AislingMcCluskey

SeniorLecturerinMathematics NationalUniversityofIreland,Galway

BrianMcMaster

HonorarySeniorLecturer Queen’sUniversityBelfast

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©AislingMcCluskeyandBrianMcMaster2018

Themoralrightsoftheauthorshavebeenasserted

FirstEditionpublishedin2018

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData

Dataavailable

LibraryofCongressControlNumber:2017963197

ISBN978–0–19–881756–7(hbk.)

ISBN978–0–19–881757–4(pbk.)

Printedandboundby

CPIGroup(UK)Ltd,Croydon,CR04YY

Wededicatethisbooktoallthosepractitionersofthecraftofanalysiswhose apprenticeswehavebeenintimeslongpast,andtothecolleagueswhoinmore recentyearshavesharedwithustheirinsightsandtheirenthusiasm.

Inparticular,wesalutewithgratitudeandaffection:

SamuelVerblunsky

DerekBurgess

RalphCooper

JamesMcGrotty

DavidArmitage

TonyWickstead

ArielBlanco

RayRyan

JohnMcDermott

AMcC,BMcM,October2017

Preface

Mathematicalanalysisunderpinscalculus:itisthereasonwhycalculusworks,and itprovidesatoolkitforhandlingsituationsinwhichalgorithmiccalculusdoesn’t work.Sincecalculusinitsturnunderpinsvirtuallythewholeofthemathematical sciences,analyticideaslierightattheheartofscientificendeavour,sothata confidentunderstandingoftheresultsandtechniquesthattheyinformisvaluable forawiderangeofdisciplines,bothwithinmathematicsitselfandbeyondits traditionalboundaries.

Thishasachallengingconsequenceforthosewhoparticipateinthird-level mathematicseducation:largenumbersofstudents,manyofwhomdonotregard themselvesprimarilyasmathematicians,needtostudyanalysistosomeextent;and inmanycasestheirprogrammesdonotallowthemenoughtimeandexposureto growconfidentinitsideasandtechniques.Thisprogramme-timepovertyisone ofthecircumstancesthathavegivenanalysistheunfortunatereputationofbeing strikinglymoredifficultthanothercognatedisciplines.

Aspectsofthisperceptionofdifficultyincludethe lackofintroductorygradualness generallyobservedintheliterature,andthe withoutlossofgenerality factor: experiencedanalystsarecontinuallysimplifyingtheirargumentsbysummoning upabatteryofshortcuts,estimationsandreductions-to-special-casesthatare partofthediscipline’sfolklore,butwhichthereisseldomclasstimetoteachin anyformalsense:instead,studentsareexpectedtopickuptheseideasthrough experienceofworkingonexamples.Yetthestudytimeallocatedtoanalysisin earlyundergraduateprogrammesisofteninsufficientforthiskindoflearning byosmosis.Theironicconsequenceisthatbasicanalyticexercisesarenotonly substantiallyharderforthebeginnerthanfortheprofessional,butsubstantially harderthantheyneedtobe.

Thistext,throughitscarefuldesign,emphasisandpacing,setsouttodevelop understandingandconfidenceinanalysisforfirst-yearandsecond-yearundergraduatesembarkeduponmathematicsandmathematicallyrelatedprogrammes. Keenlyawareofcontemporarystudents’diversityofmotivation,background knowledgeandtimepressures,itconsistentlystrivestoblendbeneficialaspects oftheworkbook,theformalteachingtextandtheinformalandintuitivetutorial discussion.Inparticular:

1.Itdevotesamplespaceandtimefordevelopmentofinsightandconfidencein handlingthefundamentalideasthat–ifimperfectlygrasped–canmake analysisseemmoredifficultthanitactuallyis.

2.Itfocusesonlearningthroughdoing,presentingacomprehensiveintegrated rangeofexamplesandexercises,someworkedthroughinfulldetail,some supportedbysketchsolutionsandhints,someleftopentothereader’s initiative(andsomewithonlinesolutionsaccessiblethroughthepublishers).

3.Withoutundervaluingtheabsolutenecessityofsecurelogicalargument,it legitimisestheuseofinformal,heuristic,evenimpreciseinitialexplorationsof problemsaimedatdecidinghowtotacklethem.Inthisrespectitcreatesan atmospherelikethatofanapprenticeship,inwhichthetraineeanalystcan lookovertheshoulderoftheexperiencedpractitioner,lookunderthebonnet oftheproblemandwatchtheroughworkdevelop,notingtheoccasional failuresofopeninggambitsandthetricksofthetradethatcanbemobilisedin ordertocircumventthem.

Thepricethathastobepaidforsuchanapproachisthatthebookismore verbose,sometimespositivelylong-winded,andcertainlylongerthanonethat wouldconcentratesolelyonfinalisedversionsofstandardproofsandslickmodel answers.Yetitappearstousthatsuchapriceiswellworthpaying:foronething, itisourexperiencethatatextprincipallyconsistingofstreamlined,finalised demonstrationsandsolutionscreatesinthemindofmanybeginnersamisleading anddemoralisingimpressionthatthisishowtheyareexpectedtocreatesolutions atthefirstattempt;foranother,theextramaterial–farfrombeingjustdigressional –summariseswhatwefinditnecessarytosay,timeandtimeagain,tostudentswho askuseminentlyreasonablequestionssuchas:‘HowdoIstartthis?’‘Howcanwe beexpectedtothinkofthat?’‘Whyisthatsteptrue,andwhydidyouthinkoftaking it?’Anadditionalbenefitisthatthetextwillbeeasierandquickertoread,since thethoughtfulreaderwilloftenfindanswerspromptlysuppliedtothequestions thatwouldotherwisehaveimpededprogresstothenextstep.

Especiallybecauseless-specialisedlearnerswilloftenneedtodealwithonly someofthematerialcoveredhere,wehavestreamedthepresentationintobasic andmoreadvancedchaptersand,withinthese,wehaveflaggeduprelatively specialisedtopicsandsophisticatedargumentsthatcanreasonablybeomitted withoutcompromisingoverallcomprehension.Analysisismorewelcomingtothe learnerwhohasthoroughlygraspedamodestamountofmaterialthantoonewho hasanimpreciseunderstandingofalargerbodyofknowledge.

Itiscentraltoourteachingphilosophyandtoourclassroomexperiencethat studentslearnatadeeperlevelthroughdoingthantheyevercouldthrough readingalone:despiteourintentiontopresenthereasfullanaccountofbasic analyticconcepts,resultsandtechniquesasisreasonabletosetbeforelearners whohavemanyothercompetingdemandsontheirtimeandenergy,itisonlyby activestudy,engaginginabroadrangeofexercises,thattheywillgainconfidence andempowermentinacquiringuseable,performableknowledgeandtheinsight thatdirectsit.Ouraccountisthereforeintendedasaworkingtextbook:each ideaencounteredisembeddedinworkedexamplesandinexercises–some withsolutions,somewithhelpfulhintsencouragingthereadertoexploreandto internalisethatidea.

ANotetotheInstructorxiii

ANotetotheStudentReaderxv

1Preliminaries1 1.1Realnumbers1

1.2Thebasicrulesofinequalities—achecklistofthingsyouprobablyknow already2 1.3Modulus3 1.4Floor4

2Limitofasequence—anidea,adefinition,atool5 2.1Introduction5

2.2Sequences,andhowtowritethem6 2.3Approximation10

2.4Infinitedecimals11 2.5Approximatinganarea13

2.6Asmallsliceof π 16

2.7Testinglimitsbythedefinition17

2.8Combiningsequences;thealgebraoflimits24

2.9POSTSCRIPT:toinfinity29 2.10Importantnoteon‘elementaryfunctions’35

3Interlude:differentkindsofnumbers37 3.1Sets37

3.2Intervals,maxandmin,supandinf40 3.3Denseness47

4Upanddown—increasinganddecreasingsequences53

4.1Monotonicboundedsequencesmustconverge53

4.2Induction:infinitereturnsforfiniteeffort62

4.3Recursivelydefinedsequences71

4.4POSTSCRIPT:Theepsilonticsgame—the‘fifthfactorofdifficulty’75

5Samplingasequence—subsequences77 5.1Introduction77

5.2Subsequences77

5.3Bolzano-Weierstrass:theovercrowdedinterval83

6Special(orspeciallyawkward)examples87 6.1Introduction87

6.2Importantexamplesofconvergence87

7Endlesssums—afirstlookatseries103 7.1Introduction103

7.2Definitionandeasyresults104

7.3Bigseries,smallseries:comparisontests111

7.4Theroottestandtheratiotest118

8Continuousfunctions—thedomainthinksthatthegraphisunbroken125 8.1Introduction125

8.2Aninformalviewofcontinuity127

8.3Continuityatapoint133

8.4Continuityonaset134

8.5Keytheoremsoncontinuity138

8.6Continuityoftheinverse146

9Limitofafunction153

9.1Introduction153 9.2Limitofafunctionatapoint158

10Epsilonticsandfunctions169

10.1Theepsilonticviewoffunctionlimits169 10.2Theepsilonticviewofcontinuity174 10.3One-sidedlimits177

11Infinityandfunctionlimits185

11.1Limitofafunctionas x tendstoinfinityorminusinfinity185

11.2Functionstendingtoinfinityorminusinfinity192

12Differentiation—theslopeofthegraph201 12.1Introduction201 12.2Thederivative203

12.3Upanddown,maximumandminimum:fordifferentiablefunctions213 12.4Higherderivatives223

12.5Alternativeproofofthechainrule225

13TheCauchycondition—sequenceswhosetermspacktightlytogether229

13.1Cauchyequalsconvergent229

14Moreaboutseries237

14.1Absoluteconvergence237 14.2The‘robustness’ofabsolutelyconvergentseries242 14.3Powerseries252

15Uniformcontinuity—continuity’sglobalcousin259 15.1Introduction259

15.2Uniformlycontinuousfunctions263 15.3Theboundedderivativetest272

16Differentiation—meanvaluetheorems,powerseries277 16.1Introduction277

16.2Cauchyandl’Hôpital277 16.3Taylorseries284

16.4Differentiatingapowerseries287

17Riemannintegration—areaunderagraph293 17.1Introduction293

17.2Riemannintegrability—howcloselycanrectanglesapproximateareas undergraphs?295

17.3Theintegraltheoremsweoughttoexpect305

17.4Thefundamentaltheoremofcalculus313

18Theelementaryfunctionsrevisited325 18.1Introduction325

18.2Logarithmsandexponentials325 18.3Trigonometricfunctions332

19Exercises:foradditionalpractice341

Suggestionsforfurtherreading377 Index379

ANotetotheInstructor

Thefirsttwelvechapterspresenttheideasofanalysistowhichvirtuallyeveryone enrolleduponadegreepathwaywithinmathematicalscienceswillrequireexposure.Thosewhosedegreeisexplicitlyinmathematicsarelikelytoneedmostofthe rest.Ofcourse,howthismaterialisdividedacrosstheyearsoracrossthesemesters willvaryfromoneinstitutiontoanother.

Mostoftheexercisessetoutwithinthetextareprovidedwithspecimen solutionseithercomplete,outlinedorhintedat,butinthefinalchapterwehave alsoincludedasuiteofovertwohundredproblemswhichareintendedtoassistyou increatingassessmentsforyourstudentgroups.Specimensolutionstotheseare availabletoyou,butnotdirectlytoyourstudents,byapplicationtothepublishers: pleaseseethewebpagewww.oup.co.uk/companion/McCluskey&McMasterfor howtoaccessthem.

Priorknowledgethatthereadershouldhavebeforeundertakingstudyofthis materialincludesafamiliaritywithelementarycalculusandbasicmanipulative algebraincludingthebinomialtheorem,agoodintuitiveunderstandingofthe realnumbersystemincludingrationalandirrationalnumbers,basicprooftechniquesincludingproofbycontradictionandbycontraposition,verybasicset (andfunction)theory,andtheuseofsimpleinequalitiesincludingmodulus. Substantialrevisionnotesonseveralofthesetopicsareprovidedwithinthetext whereappropriate.

ANotetotheStudentReader

If,asastudentofthematerialthatthisbooksetsforth,youareenrolledona courseofstudyatathird-levelinstitution,yourinstructorswillguideandpaceyou throughit.Carefulconsiderationofthefeedbacktheygiveyouontheworkyou submitwillbeveryprofitabletoyouasyoudevelopcompetenceandconfidence.

Ifyouareanindependentreader,notengagedwithsuchaninstitution’sprogrammes,weintendthatyoualsowillfindthatthetextsupportsyourendeavoursthroughitsdesign:inparticular,throughtheexpansive(almostleisurely) treatmentoftheinitialideasthatreallyneedtobethoroughlygraspedbeforeyou proceed,throughtheinformalandintuitivebackgrounddiscussionsthatseekto developafeelforconceptsthatwillworkinparallelwiththeirprecisemathematical formulations,andthroughtheexplicitinclusionofroughworkparagraphsthat allowyoutolookovertheshoulderofthemoreexperiencedpractitionerofthe craftandunderthebonnetoftheproblembeingtackled.

Inbothcases,ourstrongestadvicetoyouistoworkthrougheveryexercise asyouencounterit,andeithercheckyouransweragainstaspecimenanswer whereavailable,seeifitconvincesacolleagueorfellowstudent,orsubmititfor assessmentorfeedbackasappropriate.Nobodylearnsanalysismerelybyreading it,anymorethanyoucanlearnswimmingorcyclingjustbyreadingahow-tobook, howeverwell-intentionedorknowledgablywrittenitmaybe.Noonecanteachyou analysiswithoutyourcommitment;butyoucanchoosetolearnitand,ifyoudo, thisworkingtextbookisdesignedtohelpyoutowardssuccess.

Preliminaries

1.1 Realnumbers

Youcanchoosetothinkoftherealnumbersasbeingallthepossibledecimals–finiteandinfinite,recurringandnon-recurring,positiveandnegativeandzero, wholenumbersandfractionsandsurds1andnon-surdssuchas π and e,andevery possiblecombinationofsuchobjects.Equallywell,youcanchoosetothinkof themasbeing(orbeingrepresentedby)allthepointsthatlieonacontinuous unbrokenstraightline(the realline,the realaxis)thatstretchesawayendlesslyin bothdirections.Somewhereonthatlineisapointmarked0(zero)whichseparates thepositives(onitsright)fromthenegatives(onitsleft),andpacingoutfrom zeroatregularintervalsinbothdirectionsliethewholenumbers(the integers)like distancemarkersalongthatendlessroad.

Thisisnot,ofcourse,aproperdefinitionofwhatrealnumbersare.Wearetaking whatissometimescalleda naïve viewofthesystemofrealnumbers:nothaving sufficienttimetoconstructit–todigdeeplyenoughintothelogicalfoundationsof mathematicstocomeupwithaguaranteeofitsexistence–weareinsteadseeking tohighlightthecommonconsensusonhowrealnumbersbehave,combineand compare.Thisconsensuswillalreadybeenoughtoletusstartexplainingsome basicideasinanalysis(andweshallsaymoreaboutthefinerstructureofthereal numbersinChapter3).

NothinginSection1.2islikelytostrikethestudentreaderasbeingmuchmore thancommonsense,andnorshoulditatthisstageofstudy.Nevertheless,itisall tooeasytomakemistakesin comparisonsbetweennumbers – inequalities –andit isconsequentlyimportanttokeeptheseapparentlyobviousrulesinmindandto buildupagoodmeasureofconfidenceintheiruse,especiallybecausesomany argumentsinanalysisdependuponusinginequalities.Sections1.3and1.4present acoupleofusefuloperationsonrealnumbersthatarestronglyconnectedwith inequalities.

1thatis,non-rationalnumbersinvolvingroots,suchas √2, 3 √5 1 + √2 , 10 3 √2.

UndergraduateAnalysis:AWorkingTextbook,AislingMcCluskeyandBrianMcMaster2018. ©AislingMcCluskeyandBrianMcMaster2018.Published2018byOxfordUniversityPress

1.2 Thebasicrulesofinequalities—achecklist

ofthingsyouprobablyknowalready

•Eachrealnumberiseitherpositiveorzeroornegative.‘Non-negative’means positiveorzero.

• x > y and y < x bothmean x y ispositive2.

• x ≥ y and y ≤ x bothmean x y isnon-negative3.

• x < y < z meansboth x < y and y < z .Likewisefor >, ≤, ≥.

•If x < y and y < z ,then x < z .Likewisefor >, ≤, ≥

•If x ≤ y and y ≤ x,then x = y.

•If x and y aredifferentrealnumbers,thenoneofthemisgreaterthantheother, andisusuallydenoted4bymax{x, y}.

•Youcanaddanumbertoaninequalitywithoutdamagingit:

x < y ⇒ x + a < y + a.

•Youcanaddtwoinequalities:

(x < y and a < b) ⇒ x + a < y + b

•Noticehowtousethesymbol‘ ⇒ ’(pronounced implies):thelastlineis shorthandfor‘if x < y and a < b then x + a < y + b’.

•Youcanmultiplyaninequality byapositivenumber withoutdamagingit: provided a > 0,wehave x < y ⇒ ax < ay.

•Ifyoumultiplyaninequality byanegativenumber,theinequalitybecomes reversed:

providedthat a < 0,wehave x < y ⇒ ax > ay.

•Youcanmultiplytwoinequalitiesprovidedthatallthenumbersinvolvedare positive:

(0 < a < b and0 < x < y) ⇒ ax < by ; (0 < a ≤ b and0 < x ≤ y) ⇒ ax ≤ by.

•Providedthatthenumbersinvolvedarepositive,youcantakereciprocals acrossaninequality,andtheinequalitybecomesreversed: x < y ⇒ 1/x > 1/y providedthat x, y arepositive.

•Providedthatthenumbersinvolvedarepositive,youcantakesquareroots5 acrossaninequality,andtheinequalityispreserved:

x < y ⇒ √x < √y providedthat x, y arepositive.Likewiseforcuberoots, fourthrootsandsoon.

2–andarepronouncedas x isgreater/larger/biggerthan y, y isless/smallerthan x 3–andarepronouncedas x isgreaterthanorequalto y, y islessthanorequalto x 4If x = y thenmax{x, y} means x (or y,whichisthesamething).

5Recallthatthesymbol √x alwaysmeansthe non-negative squarerootof x

•‘Therearelargeintegers:’thatis,foranygivenrealnumber x wecanfindan integer n sothat n > x.

1.3 Modulus

1.3.1 Definition If x isarealnumber,wedefine6its modulus (alsocalledits absolutevalue)as |x|= thegreaterof x and x.Thatis:

•If x ≥ 0then |x|= x;

•If x < 0then |x|=−x.

Sincetheeffectofmodulusisto‘throwawaytheminusfromnegativenumbers’, thefollowingshouldbeobvious:

1.3.2 Proposition Foranyrealnumbers x, y:

• x ≤|x|, x ≤|x|,

• |− x|=|x|,

• |xy|=|x||y|,

• x y = |x| |y| providedthat y = 0,

• √x2 =|x|.

1.3.3 Thetriangleinequality Foranyrealnumbers x and y,wehave |x + y|≤|x|+|y|

Proof

Since x ≤|x| and y ≤|y|,addinggivesus x + y ≤|x|+|y|. Exactlythesamereasoninggivesus x + ( y) =−(x + y) ≤|x|+|y| Now |x + y| iseither x + y or (x + y).Sowhicheveroneitis,itis ≤|x|+|y|

Note

Itiseasytoextendthisbyinduction7todealwithanyfinitelistofnumbers,thus: |x1 + x2 + x3 + ... + xn |≤|x1 |+|x2 |+|x3 |+ ... +|xn |.

1.3.4 Thereversetriangleinequality Foranyrealnumbers x and y,wehave |x|−|y| ≤|x y|.

6Morebriefly: |x|= max{x, x}

7Wediscussthistypeofargumentindetaillaterinthetext.

Proof

Usethetriangleinequalityon x = (x y) + y andweget |x|≤|x y|+|y|,from which |x|−|y|≤|x y|.

Interchange x and y,andwealsoget |y|−|x|≤|y x|=|x y|.

Now |x|−|y| iseither |x|−|y| or |y|−|x|.Sowhicheveroneitis,itis ≤|x y|.

1.4 Floor

1.4.1 Definition When x isarealnumber,wedefinethe floor of x (alsocalled the integerpart of x or,informally, xroundeddowntothenearestinteger)tobethe largestintegerthatis ≤ x.Theusualnotationforthefloorof x is x ,althoughsome bookswriteitas[x].Forinstance, 5.6 = 5, π = 3, 7 = 7, −8 1 2 =−9.

Ifyouchoosetoimaginetherealnumbersasbeingsetoutalongtherealline, withtheintegers–markedherebyheavierdots–embeddedintoitatregular intervals,thenthefollowingdiagramshouldhelpyoutopicturetherelationship between x and x

+1

Case1:when x isnotaninteger x

+1

Case2:when x itselfisaninteger

Inbothcases,theessentialinequalityconnecting x and x is

≤ x < x + 1 or,equivalently

1 < x ≤ x

Limitofasequence —anidea,adefinition, atool

2.1 Introduction

Mathematicalanalysishasacquiredareputation–notentirelyjustified–for seemingmoredifficultthanotherfirst-yearundergraduatestudyareas.Weshall beginourexplorationofitbyseekingtoidentifythefactorsthathavecontributed tothisimage,andwhatwecandotoexplainoraddressthem.

Firstly,thestudyofmathematicsis cumulative toagreaterdegreethanthat ofmostdisciplines.Eachnewblockofmathematicsthatastudentencountersis builtdirectlyonother,underpinning,blocks,anditispracticallyimpossibleto achieveconfidenceinthenewwithouthavingpreviouslyidentifiedandgraspedthe oldersupportingmaterial.Nomatterhowwellyoucanimplementdifferentiation algorithms,yourchanceofsuccessfullyfindingthesecondderivativeof x4 isvery limiteduntilyou’velearnedyourthree-timestable.

Secondly,mathematicsis hard.Bythatwedonotmeanthatitisintrinsically difficult:inthissense,‘hard’istheoppositeof‘soft’,nottheoppositeof‘easy’. Learningapieceofmathematicsrequiresapreciseunderstandingoftheterms thatitinvolves,oftheargumentsthatitemploysandofthequestionsthatitseeks toanswer.Abroadappreciation,asolidgeneraloverviewofthetopic,willonits ownbeutterlyinsufficientforactualapplication. Precision ofconceptandoflogical discourse,aswellasthepreviouslymentionedcumulativeness,arethehallmarks ofadisciplinethatis‘hard’inthissense.

Yetthesetwofactorsarecommontothewholeofmathematics.Whydoes analysisinparticularhavesuchadauntingpublicimage?

Itseemstousthat,thirdly,a lackofintroductorygradualness comesintoplay here.Mosttopics,inmathematicsandelsewhere,canbeadequatelyexplainedto thebeginnerbyworkinginitiallyonsimplespecialcases.Sotheusualarenafor firststepsinlinearalgebraissomethinglikethecoordinateplane,ratherthan aninfinite-dimensionalBanachspace;Frenchlanguagelessonsdonotkickoffby handingoutatableofthecompletetensesofcommonirregularverbs.Inanalysis, however,theveryfirstconceptthatabeginnerhastomakesenseofisoneofthe mostdemanding:untilyouhaveacrispunderstandingofthenotionofthelimit ofasequence(or,amatterofsimilardifficulty,ofthesupremumofasetofreal UndergraduateAnalysis:AWorkingTextbook,AislingMcCluskeyandBrianMcMaster2018. ©AislingMcCluskeyandBrianMcMaster2018.Published2018byOxfordUniversityPress

numbers)youcanneitherreadnorcarryoutanysignificantanalyticactivity.On thecreditside,thismeansthatwecanhonestlypromisethebeginnerthatthe materialgetseasieroncewearethroughmostofChapter2–aninterestingcontrast withmanytopics,bothmathematicalandotherwise–providedalwaysthatthis firstconceptisfullyandthoroughlyunderstoodbeforewegoanyfurther.

Fourthly–andthisisanotherpointthatappliestothewholeofthediscipline, butisparticularlyrelevantjusthere–mathematicsasasubjectandmathematicians asabreedareinclinedtoprefer conciseness oververbositywhentheypresentfinal versionsoftheirwork,andtofeelmoreathomewithterse,lean,point-by-point argumentsratherthanexpansive,wordy,descriptiveaccounts.Thereare,however, somekeymomentsinanalysiswhereexpansiveratherthancompressedaccounts actuallyhelpindeliveringunderstanding,andthedefinitionofsequencelimits, rightatthestartofourstudy,isoneofthem.Itisperfectlypossibletowritedown thatdefinitioninoneline:butifwedo,mostreaderswillnotseethepointofit, willnotgraspthekindofproblemthatitissetuptoaddressandwillnotbeable tomakeeffectiveuseofiteveninquitesimpleexamples.So–withapologiestoall thosewhodon’tlikereadingessays–weseenoalternativetospendingafairbitof timeandseveralhundredwordsfillinginthebackgroundand‘thinkingoutloud’ abouthowtousethisideainapplications.Weagainreiteratethattheconceptitself isnotintrinsicallydifficult;itismerelydifferentfrommathematicalnotionsthat youhavealreadymastered,andneedsaparticularformofargumentpresentation inordertogetthebestoutofit.Wealsocommittogettingbacktoconcise,unwordyargumentsassoonasandwhereverpossible.

Withallthisinmind,weshalldevotemostofChapter2toathoroughand leisurelyexplorationofthisonesingleideathatopensthepathtoanalyticargumentsinmathematics:limitsofsequences–itsintuitivemeaning,someofthe contextsinwhichitarises,howtodefineitintermssufficientlyprecisetodo seriousmathematicswithit,andhowtohandlethatrigorousdefinitioninarange ofillustrativeexamples.Pleasekeepinmindthat,oncetheopeningchapterissafely assimilated,mostoftherestofthefirst-yearanalysissyllabusiseasier.(Bytheway, thereisafifthfactorcontributingtothewidespreadperceptionofthedifficultyof introductoryanalysis,butitconcernsitslogicalstructureratherthanitsnarrowly mathematicalcontent,soweshallsetitasideuntilsomefamiliaritywiththebasic ideahasbeengained–seeSection4.4.)

2.2 Sequences,andhowtowritethem

A realsequence inmathematics,sometimesmoreproperlycalledan infinitereal sequence,isanunendinglistofrealnumbersinaparticularorder:afirstone,a second,athird,andsoonwithoutend.Inothertopicswithinmathematics,itpays tolookatunendinglistsofobjectsofotherkinds–complexnumbers,functions, sets–butforthepresentweshallrestrictourfocustorealnumbers,andusethe singleword‘sequence’alwaystomean‘realsequence’(sincenoothervarieties areunderourattention).Thesortsofsymbolsthatwewritedowntoidentifya particularsequencethatwewanttoworkwithlooklikeoneofthefollowing:

(a1 , a2 , a3 , a4 , , an , )

(a1 , a2 , a3 , a4 , ··· )

(an )n∈N

(an )n≥1

(an )

–andinmanycaseswecompletethedescriptionbysettingdownaformulafor howtocalculateeachindividualnumber an inthelist(theso-called nth term).For instance,ifwewishtotalkaboutthesequenceofallperfectsquares,thatis,all thesquaresofpositiveintegersintheirnaturalorder,thenallofthefollowingare acceptablesymbols:

(1,4,9,16, ··· , n2 , ··· )

(1,4,9,16, ··· )

(n2 )n∈N

(n2 )n≥1

(n2 )

(a1 , a2 , a3 , a4 , ··· , an , ··· ) where an = n2 foreachpositiveinteger n

(a1 , a2 , a3 , a4 , ) where an = n2 ,eachpositiveinteger n

(an )n∈N inwhich an = n2 foreach n

(an )n≥1 with an = n2 foreach n

(an ), an = n2 foreachpositiveinteger n

Itmayseemalittleirritatingthatsomanydifferentstylesofsymbolareallowed, butthisismostlytoenableustotailorthenotationweusetotheparticularproblem thatweareworkingonwithoutwritingmorethanisnecessary.Forinstance,ifthe formulafor an isassimpleas an = n2 ,thenwereallyhavenoneedforaseparate symbolforthe nth term,andwemightjustaswellwriteitas n2 allthetime;onthe otherhand,ifthe nth termissomethingascomplicatedas

thenweshallcertainlynotwanttowritethatoutmoreoftenthanisneedful,andin suchcases,havingabriefsymbolsuchas an tostandinforitwillbeaconsiderable benefitandrelief.

Althoughtheideaofdenotingasequencebyalistofitsfirstfewtermsora formulaforitsgeneralterm,wrappedupinbrackets,islittlemorethancommon sense,itwillbeimportanttousethisnotationconsistentlyandcorrectly.Sowe nowflagupafew dos and don’ts concerninghowbesttoemployit:

•Wheneveryouuseanotationlike (a1 , a2 , a3 , a4 , ··· , an , ··· ) or (a1 , a2 , a3 , a4 , ),becarefulnottoleaveoutthefinalrowofdots:becausea symbolsuchas (a1 , a2 , a3 , a4 , , an ) or (a1 , a2 , a3 , a4 ) isastandardwayto writea finite listofnumbersconsistingofonly n or,indeed,onlyfouritems, andyouwillconfusethepersonreadingyourworkifyouuseitwhenyou actuallyintendaninfinitesequence.

•Alsobecautiousaboutusingsuchasymbolas (1,4,9,16, ):however obviousitmaybetoyouthatthisintendsthesequenceofperfectsquares,there are other perfectlygoodsequenceswhosefirstfourtermsare1,4,9and16. Therefore,onlyusethisstyleofnotationifitisgenuinelyclearwhatthe ‘pattern’ofthetermsis.Notethatthesymbol (12 ,22 ,32 ,42 , ··· ) makesthis patternquiteunambiguous.

•Alwaystakecarenottoleaveofftheenclosingbracketswhenwritingdowna sequence:ifyouwritejust n2 ,yourreaderwillthinkthatyoumeanonlythe singlenumber n2 (forsomeparticular n thatyouhaveinmind)ratherthanthe wholeendlesslistofthesquares.

•Therearesomeoccasionswhen n = 1isnotthebeststartingpointfora sequence.If,forinstance,weneedtodiscussthesequence

n 1)(n 3) , thenwedarenotuse n = 1or n = 3becauseitwouldleadtodivisionbyzero (whichis,ofcourse,meaningless).Thenotationcanbetweakedslightlyto avoidthis,forexample,bywriting

whichstartsthelistoffsafelyat n = 4.

•Again,ifwewanttoworkwiththeendlesslistoffactorials,itmaybeusefulto recallthatzero-factorialisaperfectlygoodandusefulnumber,andexplicitlyto includeitinourdiscussionbyusinganotationsuchas

(n!)n≥0 .

Hereareafewillustrativeexamplesofsequences,somepresentedinmorethan onestyleofsymbol.Youmayfinditusefulto‘translatethemintoEnglish’inyour head;forinstance,thefirstis‘thesequenceofoddpositiveintegers’,thefourthis ‘thesequenceofprimes’,thesixthis‘thesequenceofreciprocalsofthepositive integersbutwiththesignalternating’andsoon.

2.2.1 Example

1. (1,3,5,7,9, ··· ) = (2n 1)n≥1 2. 3 2 , 3 4 , 9 8 , 15 16 , 33 32 , 63 64 , ··· = 1 + 1 2 ,1 1 22 ,1 +

3. 5, 1 2 ,5, 1 4 ,5, 1 8 ,5, 1 16 ,5, 1 32 , ··· = (xn ) where xn = 5if n isoddbut xn = 2 n/2 if n iseven.

4. (2,3,5,7,11, ··· ) = (yn )n≥1 where yn isthe nth primenumber.Noticehow potentiallymisleadingthefirstsymbolwashere:itcouldhavemeantseveral differentsequencesincluding,forexample,‘two,andthentheoddintegers excludingtheperfectsquares’.Thesecondsymbolwasfreefromanysuch ambiguity.

5. (1, 8,27, 64,125, 216, ) = (1, 8,27, 64, , ( 1)n 1 n 3 , ) = (( 1)n

Onceagainthefirstsymbolmighthavebeenmisunderstood,butthesecond andthirdleftnoroomforconfusion.

6.

7. (1, √2,3

Youshouldnoticethatsomesequences,butbynomeansallofthem,seemto besettlingtowardsan‘equilibriumvalue’,a‘steadystate’aswescanfurtherand furtheralongthelist.Forinstance,(2)aboveappearstobesettlingtowards1,and (6)towards0;incontrast,(1)and(4)aresofarshowingnosignofsettling,butare ‘explodingtowardsinfinity’(andofcourseweshallneedtomakethatphrasealot moreprecisebeforewedoanythingseriouswithit)while(5)isdoingsomekind ofcosmicsplitsbyexplodingtowardsinfinityandminusinfinityatthesametime (samecomment).Inthecaseofthelastfoursequences(7)to(10),itismuchless clear–tounaidedcommonsense–whatisgoingtohappeninthelongrun.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Undergraduate analysis: a working textbook aisling mccluskey - Download the ebook and explore the mo by Education Libraries - Issuu