Unconventional shale gas development: lessons learned rouzbeh g. moghanloo - The ebook with all chap

Page 1


https://ebookmass.com/product/unconventional-shale-gasdevelopment-lessons-learned-rouzbeh-g-moghanloo/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Transportation Amid Pandemics: Lessons Learned from COVID-19 Junyi Zhang

https://ebookmass.com/product/transportation-amid-pandemics-lessonslearned-from-covid-19-junyi-zhang/

ebookmass.com

Humanistic Crisis Management: Lessons Learned from COVID-19 Wolfgang Amann

https://ebookmass.com/product/humanistic-crisis-management-lessonslearned-from-covid-19-wolfgang-amann/

ebookmass.com

The Fossil Fuel Revolution: Shale Gas and Tight Oil Daniel J. Soeder

https://ebookmass.com/product/the-fossil-fuel-revolution-shale-gasand-tight-oil-daniel-j-soeder/

ebookmass.com

The Pretenders Rebecca Hanover

https://ebookmass.com/product/the-pretenders-rebecca-hanover-2/

ebookmass.com

The Politics of Speech in Later Twentieth-Century Poetry: Local Tongues in Heaney, Brooks, Harrison, and Clifton William Fogarty

https://ebookmass.com/product/the-politics-of-speech-in-latertwentieth-century-poetry-local-tongues-in-heaney-brooks-harrison-andclifton-william-fogarty/

ebookmass.com

NLN Core Competencies for Nurse Educators: A Decade of Influence 1st Edition

https://ebookmass.com/product/nln-core-competencies-for-nurseeducators-a-decade-of-influence-1st-edition/

ebookmass.com

Slow Burn: a Small-Town, Single Father Romance (Redemption Book 7) Jessica Prince

https://ebookmass.com/product/slow-burn-a-small-town-single-fatherromance-redemption-book-7-jessica-prince/

ebookmass.com

The Pursuit of Excellence : The Uncommon Behaviors of the World’s Most Productive Achievers Ryan Hawk

https://ebookmass.com/product/the-pursuit-of-excellence-the-uncommonbehaviors-of-the-worlds-most-productive-achievers-ryan-hawk/

ebookmass.com

Patient Assessment in Pharmacy Practice Third Edition –Ebook PDF Version

https://ebookmass.com/product/patient-assessment-in-pharmacy-practicethird-edition-ebook-pdf-version/

ebookmass.com

(eBook PDF) Research Methods, Design, and Analysis 13th

https://ebookmass.com/product/ebook-pdf-research-methods-design-andanalysis-13th-edition/

ebookmass.com

UnconventionalShaleGas Development LessonsLearned

MewbourneSchoolofPetroleumandGeologicalEngineering, TheUniversityofOklahoma,Norman,OK,UnitedStates

GulfProfessionalPublishingisanimprintofElsevier

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,Oxford,OX51GB,UnitedKingdom

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.In usingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-323-90185-7

ForInformationonallGulfProfessionalPublishingpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CharlotteCockle

SeniorAcquisitionsEditor: KatieHammon

EditorialProjectManager: NaomiRobertson

ProductionProjectManager: VigneshTamil

CoverDesigner: ChristianJ.Bilbow

TypesetbyMPSLimited,Chennai,India

Listofcontributors

GayanA.Abeykoon

HildebrandDepartmentofPetroleumandGeosystemsEngineering,TheUniversityofTexas atAustin,Austin,TX,UnitedStates

FranciscoJ.Argüelles-Vivas

HildebrandDepartmentofPetroleumandGeosystemsEngineering,TheUniversityofTexas atAustin,Austin,TX,UnitedStates

ArashDahi-Taleghani

JohnandWillieLeoneFamilyDepartmentofEnergyandMineralEngineering,The PennsylvaniaStateUniversity,UniversityPark,PA,UnitedStates

HassanDehghanpour

DepartmentofCivilandEnvironmentalEngineering,UniversityofAlberta,Edmonton,AB,Canada

DeepakDevegowda

MewbourneSchoolofPetroleumandGeologicalEngineering,TheUniversityofOklahoma, Norman,OK,UnitedStates

BirolDindoruk

CullenCollegeofEngineering,PetroleumEngineering,UniversityofHouston,Houston,TX, UnitedStates

TawfikElshehabi

PetroleumEngineeringDepartment,UniversityofWyoming,Laramie,WY,UnitedStates

YingkunFu

SchoolofEnergyResources,ChinaUniversityofGeosciences,Beijing,P.R.China;StateKey LaboratoryofShaleOilandGasEnrichmentMechanismsandEffectiveDevelopment,Beijing, P.R.China;DepartmentofCivilandEnvironmentalEngineering,UniversityofAlberta, Edmonton,AB,Canada

ZoyaHeidari

TheUniversityofTexasatAustin,Austin,TX,UnitedStates

AmirmasoudKalantari-Dahaghi

DepartmentofChemicalandPetroleumEngineering,TheUniversityofKansas,Lawrence, KS,UnitedStates

HamidrezaKarami

MewbourneSchoolofPetroleumandGeologicalEngineering,TheUniversityofOklahoma, Norman,OK,UnitedStates

LucyTingweiKo

BureauofEconomicGeology,TheUniversityofTexasatAustin,Austin,TX,UnitedStates

AdemideO.Mabadeje

HildebrandDepartmentofPetroleumandGeosystemsEngineering,CockrellSchoolof Engineering,TheUniversityofTexasatAustin,Austin,TX,UnitedStates

MarkWilliamMcClure

ResFracCorporation,PaloAlto,CA,UnitedStates

RouzbehG.Moghanloo

MewbourneSchoolofPetroleumandGeologicalEngineering,TheUniversityofOklahoma, Norman,OK,UnitedStates

RyosukeOkuno

HildebrandDepartmentofPetroleumandGeosystemsEngineering,TheUniversityofTexas atAustin,Austin,TX,UnitedStates

FelipePerez

MewbourneSchoolofPetroleumandGeologicalEngineering,TheUniversityofOklahoma, Norman,OK,UnitedStates

MichaelJ.Pyrcz

HildebrandDepartmentofPetroleumandGeosystemsEngineering,CockrellSchoolof Engineering,TheUniversityofTexasatAustin,Austin,TX,UnitedStates;Departmentof GeologicalSciences,JacksonSchoolofGeosciences,TheUniversityofTexasatAustin, Austin,TX,UnitedStates

AliRezaei

MidstreamProductionSystems,Houston,TX,UnitedStates

RakiSahai

MewbourneSchoolofPetroleumandGeologicalEngineering,TheUniversityofOklahoma, Norman,OK,UnitedStates

SaeedSalehi

MewbourneSchoolofPetroleumandGeologicalEngineering,TheUniversityofOklahoma, Norman,OK,UnitedStates

CarlH.Sondergeld

MewbourneSchoolofPetroleumandGeologicalEngineering,TheUniversityofOklahoma, Norman,OK,UnitedStates

FnuSuriamin

OklahomaGeologicalSurvey,TheUniversityofOklahoma,Norman,OK,UnitedStates

CatalinTeodoriu

MewbourneSchoolofPetroleumandGeologicalEngineering,TheUniversityofOklahoma, Norman,OK,UnitedStates

AliOusseiniTinni

MewbourneSchoolofPetroleumandGeologicalEngineering,TheUniversityofOklahoma, Norman,OK,UnitedStates

YuxingWu

MewbourneSchoolofPetroleumandGeologicalEngineering,TheUniversityofOklahoma, Norman,OK,UnitedStates

MohamedY.Soliman

CullenCollegeofEngineering,PetroleumEngineering,UniversityofHouston,Houston,TX, UnitedStates

HaoYu

StateKeyLaboratoryofOilandGasReservoirGeologyandExploitation,Southwest PetroleumUniversity,Chengdu,China

SebastianZavaletaVillarreal

MewbourneSchoolofPetroleumandGeologicalEngineering,TheUniversityofOklahoma, Norman,OK,UnitedStates

Preface

ShalegasdevelopmenthasradicallychangedthenaturalgasmarketinNorthAmerica. GiventheabundanceofnaturalgasathistoricallylowpriceshavingbecomeapossibilityintheUnitedStatesowingtotechnologicaladvances,thepresenceofoperators withsufficientriskappetite,andfavorablemonetarypolicies,asaresult,theproductionofnaturalgasintheUnitedStateshasseenanincreasingtrendforthepastdecade andhadpeakedatabout960billioncubicmetersin2019.Thisbolstereddomestic productionhasturnedthecountryintoapowerfulplayeringlobalnaturalgasmarkets.Consequently,theUnitedStateshasrisentobecometheworld'stopexporter frombeinginthelower48countriesinjustsixyearsafteritsfirstLNGcargowas exportedin2016.

Thisbookisanattempttosummarizethetechnologicaladvancesrealizedthrough shalegasrevolution.Thebookhasbeenspecificallydesignedforassetmanagers,petroleumengineers,shalegasstakeholders,andgraduatestudentswhowouldliketolearn moreaboutthedifferentaspectsofandchallengesassociatedwiththeproductionof naturalgasfromshalegasresources.

Chapter1 delvesintothedetailsofassetmanagementissuesanddelineatesupon thereservesreportingforshalereservoirs. Chapter2 addressesgeologicalcharacterizationcoveringtopicssuchasheterogeneityandorganicchemistryofshalegasandends withcasestudiesfrommultipleshaleplays. Chapter3 providesacomprehensive reviewofwellconstructionandcasingfatigueinmultifracturedhorizontalwells. Chapter4 isspecificallydedicatedtowellcontrolchallengesinhorizontalwellsand discussesoperationalcomplicationsthatoccurinshalegaswells. Chapter5 isdevoted towellintegrityandwellborestabilityissuesandpresentsstabilityofwellsin Tuscaloosashaleplaysasthecasestudy.

Chapter6 highlightsthechallengesinformationevaluationoforganic-richmud rocksandgoesintothedetailsofrecentadvancestoovercomethem. Chapter7 reviewsinterpretationmethodsusedfordiagnosticfractureinjectiontestsandexplains theauthor’spreferredapproach. Chapter8 outlinesanewtechniquebasedupon waveletanalysisevaluatingafracturenetworkinthesystemwithsomeexamplesfrom Utah’sFORGEproject. Chapter9 elaboratesproppantplacementandthechallenges associatedwithproppanttransportincomplexfracturenetworks.

Chapter10 presentsgeomechanicalmodelingcoveringtopicssuchasfracturepropagationandcasingdeformation. Chapter11 introducesanewdeclinemodelthatcan successfullydescribewaterproductionduringflowback. Chapter12 outlinesthe implementationofmoleculardynamicssimulationtodescribefluidsdistributionin

organicmatter. Chapter13 providesacomprehensivereviewofrecenteffortsforwettabilityalterationinliquid-richshaleplays. Chapter14 elaboratesonthescaledependencyofpetrophysicalpropertiesofshalesamples.

Chapter15 addressesthechallengesassociatedwithfluidliftingandthepractical treatmentssuggestedforshalesystems. Chapter16 summarizesproductiondataanalysis developedforshalegaswells. Chapter17 delineatesontheapplicationsofartificial intelligenceandmachinelearningalgorithmsinbuildingmeaningfulrelationsbetween experimentaldataandproductionperformance. Chapter18 unveilsanewscreening protocolforevaluationofgasinjectionexperimentsconductedtoenhanceliquidproductionanddiscussestheEagleFordcasestudy. Chapter19 dealswithsamplingbias indata-drivenapproachesusedinshalegasdevelopmentandintroducesanewworkflowfordebiasingspatiallyclusteredsamples.

5.3

5.6

6.1

6.2

7.Advancesininterpretationofdiagnosticfractureinjectiontests

7.1

7.1.1 Whatisadiagnosticfractureinjectiontests?

7.1.2 Thebasisforclassicaltechniques,andwhytheybecomeinaccurateinshale187

7.2.1

7.2.3

8.Fracturediagnostictesting

8.1

8.6.3 UtahFORGEexample(effectofheatexchange)

9.2 Sedimenttransporttheoryandtransportmechanismsinnoncrosslinkedfluids

12.Applicationofmoleculardynamicssimulationsforshalegassystems323 DeepakDevegowdaandFelipePerez

FranciscoJ.Argüelles-Vivas,GayanA.AbeykoonandRyosukeOkuno

14.Scaleconsiderationsduringpetrophysicalcharacterizationofshales393

14.3 SamplesizeconsiderationforMICPofshales

15.Challengesassociatedwithliftingandloadinginshalegaswellboresystems405 HamidrezaKarami

SebastianZavaletaVillarrealandRouzbehG.Moghanloo

17.Machinelearningapplicationsinunconventionalshalegassystems433 AmirmasoudKalantari-Dahaghi

18.Experimentalevaluationofenhancedoilrecoveryinunconventional

CarlH.Sondergeld

19.Spatialdataanalyticsforoptimumdatadeclusteringinshalesystems457 AdemideO.MabadejeandMichaelJ.Pyrcz

Fielddevelopmentandasset management

RakiSahai1,2

1AscentResources,OklahomaCity,OK,UnitedStates

2MewbourneSchoolofPetroleumandGeologicalEngineering,TheUniversityofOklahoma,Norman,OK,UnitedStates

1.1Introduction

HydrocarbonproductionfromshalereservoirshastransformedtheAmericanoiland gasindustryandhasledtothecountry’senergyindependenceinrecentyears.The phenomenalgrowthinthelasttwodecades,theresilienceoftheexplorationandproduction(E&P)operatorsamidstcommoditypricevolatilityinthelastfewyears,anda promisingoutlookforthecomingdecadessumsupthestoryofAmerica’sshaleboom recently.

Inthe1950s,whentheAmericangeophysicistM.KingHubbertmadehispredictionsofoilproductionpeakinginthelower48statesoftheUnitedStates,the oilindustrywasstillinitstechnicalinfancy.WhileHubertwasrightaboutthe peakoilinthe1970sat10millionbarrelsperday,commonlyreferredtoasthe “ Hubbert ’ sPeak, ” hisstatisticalanalysisdidnotconsidertheadvancesintechnologythatwouldmaketheextractionofhyd rocarbonsfromultra -tightreservoirs possible.Theapplicationofhorizontaldrillinginconjunctionwithadvancesin hydraulicfracturinghasledtotheeconomicextractionofoilandnaturalgasfrom tight,low-permeabilityunconventionalformations,suchasshale.Thedevelopmentofshaleformations,onceassumedtoactasa “ seal ” intheconventional petroleumsystem,ledtoareversalofUSoilproductiondecline,andin November2017,thedailyproductiononceagainsurpassedthe10millionbarrel markforthefirsttimesince1970( Fig.1.1 ). Fig.1.2 showstheshaleplaysinthe lower48statesoftheUnitedStates.

AlthoughtheUnitedStatesandCanadaarethetwoleadingcountriesinvolvedin thecommercialdevelopmentofshalereservoirs,anassessmentbytheUnitedStates EnergyInformationAdministrationin2013reportedtechnicallyrecoverableresources of7299tcfofshalegasand345MMbblsofshaleoilin137shaleformationsacross41 countries(UnitedStatesEIA,2013).ChinaandArgentinacurrentlyalsohaveongoing developmentprogramsbutwithlimitedcommercialsuccess.

Figure1.1 1920 2020USfielddailyproductionofcrudeoil(USEIA).

Figure1.2 ShaleplaysintheUSLower48(UnitedStatesEIA,2009).

1.2Background

Theterm “shale” referstoahardmudstonecomposedoffineclasticgrainslessthan 1/16mminsize,clayminerals,andorganicmatterwithshaleyorthinlylaminarbedding. Shaleisconsideredthesourcerockforconventionalandunconventionalhydrocarbon accumulations.Intermsofhydrocarbonaccumulationanddistribution,theshaleformationsareclassifiedas “continuous” accumulationsandarenotconfinedtothegeologic structureortrap.However,theformationisheterogeneousinnature,andthemineralogy, organiccontent,naturalfractures,andotherpropertiesvaryspatially.Shalesarecharacterizedbyverylowporosity(typicallylessthan5%)andultra-lowpermeability(100nDto 1mD),makingthemchallenginginrecoveringviablehydrocarbonseconomicallywithout hydraulicfracturing.Thehydrocarbonstoragemechanisminshaleformationsismore complexthantheconventionalsandstonereservoirs.Sincetheshaleformationactasboth sourcerockandreservoirforhydrocarbonproduction,itisreferredtoasa resourceplay

Arecentarticleinthe WallStreetJournal comparedthevariousdevelopmentvariablesforfourdifferenttypesofconventionalandunconventionalplays conventional onshoreplayinSaudiArabia,conventionalplayoffshore,oilsandsinAlberta,and shalereservoirinshaleplay(Fig.1.3).Withthetechnologicaladvancesindrillingand completionsoverthepastdecadeintheUSshaleindustry,thespudtofirstproduction cycletimeisprobablythefastest.Thecostofdevelopingwellshasalsodecreasedsignificantlyoverthepastdecade,makingshaledevelopmentonthelowendofcostperbarrel comparedtootherplays.However,duetothelowporosityandpermeability,the productiondeclinerateisthehighestamongthefour.Thearticleprovidedanexcellentanalogytoexplaintheissuewiththehighproductiondeclinerate producingoil andgasoutofaconventionalwellismuchlikeslowlypouringsodaoutofacan, whereasproducingoilandgasfromahydraulicallyfracturedshalewelllookslikewhat happenswhenyoushakethecanandopenit.Thehydrocarbonscomeoutquickly

Figure1.3 Comparisonofoilandgasexplorationtechnologies. (Modifiedfrom Lee,2020).

fromafracturedshalewellbutstartlosingmomentumrapidly,too.InanEagleFord well,theoilproductiondeclines60%inthefirstyearbutmorethan90%overthefirst 3years.Incomparison,conventionaloilfieldsonlydecline5% 10%ayear(Lee, 2020).Thishasadirectimplicationonthefielddevelopmentwithmoreshalewells (andmorecapital)neededeachyearforproductionmaintenance(i.e.,keepingfield productionflat)orgrowth,comparedtoaconventionalfield.

1.2.1Howwegottowherewearetoday?

Theshalegasrevolutionreferstothephenomenonthatemergedintermsofdomesticgas supplyintheUnitedStates.Theknowledgeofthepresenceoflargeamountsofhydrocarbonsinshalereservoirsisnotnew.Theshalerevolutionisnotdrivenbyarecentdiscovery ofanewtypeofformation;instead,therecentadvancesindrillingandstimulationtechnologyallowedthegeologistsandengineerstoexploittheshaleformationinacost-effective way.Thenaturalgaswasfirstextractedfrom shallowshalereservoirsinFredonia,New York,in1825(Milam,2011),threedecadesbeforethefirstcommercialconventionalwell wasdrilledbyCol.EdwinDrakein1859.However,thefirstcommercialdevelopmentof naturallyfracturedDevonianshalesstartedin1915(Nuttall,2021).Formostofthe 20thcentury,shaleformationwasconsidereda “seal” fortheconventionalreservoirs.It wasnotuntiltheUScrudeoilandnaturalgasproductionstartedtodeclineinthe1970s thattheinterestinshalereservoirsdevelopedinthemid-1970s.

Thefederalgovernmentinvestedinafewsupplyalternatives,includingtheEastern GasShalesProjectandtheGasResearchInstitute,toconductresearchonshalegasdevelopment.Thefederalgovernmentalsoprovidedtaxcreditsviathe1980EnergyActand Section29taxcredittofacilitateresearchanddevelopmentfrom1980to2000(Stevens, 2012).AlthoughtheEasternGasShaleProject(1976 92)increasedgasproductioninthe AppalachianandMichiganbasins,shalegasdevelopmentwasstillwidelyregardedasmarginaltouneconomicwithouttaxcredits(Wang&Krupnick,2013).

Oneoftheearlyinnovationsduringthisperiodwasthedevelopmentofmicroseismic mappingtechnologyatSandiaNationalLaboratoriesin1981.Thistechnologywasdevelopedtomapthecreatedhydraulicfracturesbylocatingthemicroseismicevents,which helpedevaluatetheeffectivenessofthestimulation.Althoughthistechnologywasinitially developedforthecoalbedmethaneresearch,itwassoonappliedtomapthehydraulic fracturegrowthduringthestimulationofnaturally-fracturedshaleformations.Anestimate ofcreatedfracturedimensions,referredtoasthestimulatedreservoirvolume(SRV),was thenusedtodecidethewell-to-well(orlateral)spacingforfull-fielddevelopment.

GeorgeP.Mitchelliscreditedwithpioneeringtheeconomicextractionofshale gasfromtheBarnettShale,whicheventuallyledtotheunprecedentedboomin domesticenergyproduction.ItstartedwithoneofMitchell’sgeologists,JimHenry, whoindicatedthattheBarnettShalehadlargenaturalfracturesandthatitmightbe

possibletoextractnaturalgas.Thetechniqueofhydraulicfracturingwasdevelopedin thelate1940s.MitchellEnergystartedimplementinghydraulicfracturingintheearly 1980sinanattempttoextractnaturalgasfromthesenaturally-fracturedBarnettShale commercially.In1984,MitchellEnergyswitchedfromusingfoam-basedtogel-based fracturingfluid,butitshowedlimitedsuccess.From1987to1997,MitchellEnergy completed304wellsconsideredcommercial,andtheeconomicreturnsweresufficient forcontinuingtheBarnettdevelopmentprogram(NTNG,2016).Itwasnotuntil 1998whenMitchellEnergyadaptedafracturingfluidrecipethatUnionPacific ResourceswasusingtocompletetheCottonValleywells.Thenewfracturingfluid, whichwaslatercalledthe “slickwater,” usedlargevolumesofwaterbutlowerconcentrationsofsandtocreatemicro-fracturesandhelpedunlockgasfromtightBarnett shale. Fig.1.4 showstheproductionresponseofaBarnettShalewellafterrefracswith gelfracandslickwater.Inadditiontoincreasingtheproductionrates,slickwaterfracturingreducedthecostsfrom$375,000perwellforgel-basedfracturingto$85,000 perwellforaslickwatertreatment(NTNG,2016).

Figure1.4 RefracsofashalewellinBarnettShaleperformedbyMitchellEnergy.Theslickwater treatmentdeliveredbetterresultsascomparedtothefoamandgelfracturetreatments. (Modified from King,2010).

Between1998and2002,Mitchellcontinuedtoimplementslickwaterfracture treatmentstootherwellsintheBarnettShale,whichresultedina250%increasein productionfromthearea.Then,in2002,DevonEnergy,recognizingthepotential thatexistedintheBarnettShale,acquiredMitchellEnergy.Itwasnotlongbeforethe otheroperators,suchasChesapeakeEnergy,XTOEnergy,andEOGResources, acquiredleasesintheBarnettShale,andby2005theplaywasproducinghalfatrillion cubicfeetofnaturalgas(NTNG,2016).

Theshalegasrevolutionwasover20yearsinmaking,buttherampingupofproductionstartedinthemid-2000s.Theshalegasandoildevelopmentandproduction intheUnitedStatescanbesummarizedintofourmainphases:

• 2003 08:AlthoughMitchellEnergyexperimentedwiththedrillingandcompletion designsfortheBarnettShalesincetheearly1980sandfoundcommercialsuccessin 1998,thefocusofshaletestingwasrestrictedtotheBarnettShale.TheshalerevolutionacrosstheUnitedStatesgainedmomentumintheearly2000swiththerisingnaturalgaspricesandgrowingdemandfrompower-andenergy-intensiveindustries (Majumdar&Mittal,2018).Duringthisperiod,thegaspriceremainedover$5per MMBtugasfromearly2003tomid-2008,andoperatorsexpandedtheirfocustoshale gasformationsacrossthecountry.Inthesummerof2004,SouthwesternEnergy announcedthatFayettevilleShaleinArkansashadmanyofthesamegeologiccharacteristicsthatmadetheBarnettShaleproductive,whichledtoadrillingboomin northernArkansas.Withsustainedhighgasprices,similardrillingboomsfollowedin theHaynesvilleShale(Louisiana/EastTexas)andMarcellusShale(Pennsylvania)plays.

TheWTIcrudeoilpricesalsopostedoneoftheirbiggestralliesinthisperiod, increasingfromabout$32perbarrelto$142perbarrel,duetothegrowing demandfromdevelopingnations,especiallyChinathatwasrapidlyrampingupits industryandinfrastructure,andriskingenergysecurityconcernsworldwide. Developmentofshaleresourcesduringthisperiodresultedinstronggrowthin investmentandemploymentintheindustry,withbothspikingtothehighestlevels since1990(Majumdar&Mittal,2018).

• 2008 14:TheglobalfinancialcrisisandGreatRecessionof2008negatively impactedtheeconomyandinducedabearmarketonoilandgasprices.Thecrude oilpricesdippedfromtheprevioushighof$142toabout$33perbarrelduring thesecondhalfof2008,whilethegaspricewentfromtradingover$13toultimatelysub-$3perMMBtuin2009.Theindustryrigactivitydecreasedbyabout 45%duringthistimebeforerecoveringwiththecommoditypricesin2009 10. Nevertheless,asaresultoftheshalegasrevolution,shalegasproductionincreased fromcontributingabout1.6%ofthetotalUSnaturalgasproductiontoover20% by2010(Fig.1.2)(Wang&Krupnick,2013).

Eventhoughtheshalegasdevelopmentcontinueduntil2012,theindustrywitnessedagradualshiftfromnaturalgastotightoilproductionduringthisphase.

Operatorsdiscoveredthatcombinedtechnologiesofhorizontaldrillingandslick waterhydraulicfracturingthathavebeensuccessfulintheshalegasreservoirscould beusedtoextractoilfromthetightoilformations.Withtheoilpricesstabilizing around$100perbarrelafterthefinancialcrisis,itstartedwiththeBakkenand ThreeForksformationsintheNorthDakota/Montana,andledEagleFordShale inSouthTexastoquicklybecomingthemostprolificoilfieldintheworld. Similarly,thePermianBasininWestTexas,whichwasonproductiondecline withseveraldecadesofconventionaldevelopmentsincethe1920s,wasrejuvenated asoperatorsfoundthetechnologyeffectiveintappingthehydrocarbonsfromthe highlyproductiveshaleformationssandwichedbetweentheconventionalreservoirs. By2014,theindustryrigcountreachedanall-timehighcountof2000rigs.Oneissue identifiedwiththelownaturalgaspricesandfocalshifttowardmoreoil-basedassets wasthetrendofoperators’ outspendingcashflowandaccumulatingdebt.

• 2014 16:Thisphasesawthelongestandoneofthedeepestdownturnsinoil prices,primarilydrivenbyagrowingsupplyglut.The70%pricedropbetween mid-2014andearly2016wasoneofthethreemostsignificantdeclinessince WorldWarIIandthelongestlastingsincethesupply-drivencollapseof1986.The initialdropinpriceswasprimarilydrivenbyoversupplywithboomingUSshale oilproduction,aslowdowninglobaleconomicactivityresultinginreducedoil imports,andothergeopoliticalconcerns.Inaddition,drillingandcompletionefficiencygainsreducedthebreakevenpricesconsiderably,makingtheUSshaleoil thedefactomarginalcostproducerontheinternationaloilmarket(Stocker, Baffes,&Vorisek,2018).

WiththeWTIoilpricefallingbelow$50perbarrel,concernsaroseregarding thesustainabilityofshaleresourcedevelopment.Heavydebtandhighcapital requirementsforcontinuedshaledevelopmentputpressureontheoperators’ annualbudgetsandcapitalallocationprocess.Limitedcapitalwasdeployedforthe developmentofnew(noncore)shaleplays.

Asshaleplaysmatured,theshaledevelopmentadvancedtothenextstageof hydrocarbonrecovery.In2015,EOGwasthefirstcompanythatreportedsuccessfulpilottestingofgasinjectionEORintheEagleFordShale.Fewotheroperators,includingBHPBilliton,MarathonOil,etc.,haveconductedfieldpilotsin differentshalereservoirssincethen.

• 2017 Current:Inearly2017,theoilmarketwasinasituationinwhichsupply waspersistentlyhigherthanthedemand.Short-termpriceswereveryvolatileand difficulttopredict.Theoperatorshavebuiltupanewinventoryofdrilleduncompletedwells(DUCs)astherigcountrecoveryoutpacedcompletionactivity.Ifthe commoditypricesweretodecreasefurther,theseDUCswouldstillbecommerciallyviableforcompletionasthedrillingcostswereconsideredsunkcosts.In 2018,OPECplushelpedbringthemarketbackintosupply-demandequilibrium.

However,othergeopoliticalfactorsworldwideresultedinsurplusproduction, causingtheWTIpricestofluctuatebetween$45and$65perbarrelformostof thisphase.Whilethedownturninpricesservedasanopportunityfortheoperators toimprovecoststructurebyfurtherenhancingdrillingandcompletiondesignsand efficiencies,theshaleindustrywitnessedseveralconsolidationsacrossdifferentplays amidstbankruptcyfilingsfromsmalltolarge-sizeoperators.

Thecovid-19pandemiccausedanunprecedenteddeclineintheglobaloildemand, leadingtoahistoricmarketcollapseinoilprices.Theoversupplyofcrudeoilresultedin theWTIoilpriceplummetingfrom$18perbarrelto $37perbarrelforashortperiod inApril2020.Theoilpricesreboundedwiththedemandrecoveringafterthelockdownswerelifted,OPECagreeingtosignificantcutsincrudeoilproduction,and globaleconomicactivityrecoveringlaterintheyear.Sofarin2021,operatorshave showncapitaldisciplinefocusingoncashflowdistributionfortheshareholders.Inaddition,operatorshavediscussedconcentratingondebtreductionandhigh-gradingportfolios.TheUnitedStatesshaleindustryhassurvivedthecommoditypricecrashand Covid-19pandemicandhasemergedmoreresilientfromtheslumpinrecentyears.

1.3Conventionalversusunconventionalreservoirs

Oneoftheearliestdistinctionsofconventionalandunconventionalresourceswas madebythelegaldesignationofspecifiedgasresourcesfortaxbreaksintheUnited States.Toreducethecountry’srelianceoncrudeoilimportsandachievethegoalof energyindependence,theUnitedStatesCongresshaspassedseveralstatutesoverthe decadesthatpromotethedevelopmentof “alternative” energyresourcesoutsidethe conventionaloilreservoirs.The1980CrudeOilWindfallProfitTaxActprovidedan additionaltaxbreakincentiveof$3(in1979dollars)perbarrelofoilequivalentto stimulatethedevelopmentofalternativeenergyresourcessuchasoilshale,naturalgas, etc.(Andrews,2006).Inthepetroleumindustry,thesealternativeenergyresources werelaterknownas “unconventional” todistinguishthemfromtheirtaxableconventionalcounterparts.Mostofthesetaxcreditswereusedforthedevelopmentoftight gas,coalbedmethane,andshalegasprojects(Campagna,2015).

Geologically,theestablishmentofapetroleumsystemisessentialfortheaccumulation,entrapment,andproductionofhydrocarbons.Theconventionalpetroleumsystemstypicallyrequirethefivekeyelementsofmaturesourcerock,migration pathway,reservoirrock,trap,andsealforhydrocarbonaccumulationtobepresent. Thehydrocarbonsweregeneratedwhentheorganicmaterialinthesourcerock,usuallyshaleorlimestone,wassubjectedtoheatandpressureovertime.Migrationrefers tothemovementofhydrocarbonsfromthesourcerocktoporousandpermeablereservoirrockandiscriticaltotheformationoftheconventionalpetroleumsystem.The impermeablesealandtrapactasabarriertopreventfluidmigrationbeyondthe

reservoir.Ultimately,themigrationofhydrocarbonsinconventionalaccumulations (structuralorstratigraphictraps)isdrivenbythegravitationalsegregationandbuoyancyforces,resultinginverticalsegregationofgas,oil,andwaterwithinthereservoir (Fig.1.5).Withporositiesusuallyaround10%orhigher,thefluidflowinporous mediafollowsDarcy’slaw.Thesehydrocarbonaccumulationsaregeographicallydiscreteandarereferredtoasdiscontinuousaccumulations.

Incontrast,unconventionalpetroleumsystems,suchasshaleandcoalbedmethane,actasself-sourcedandself-sealedreservoirs.Trapshavenoeffectonhydrocarbon accumulation,andmigrationisunnecessary.Theseareusuallythick,laterallyextensive, andcontinuousdepositsofhydrocarbons.Withmuchlowerporosityandsubmicroto nano-Darcypermeability,acombinationofhorizontalwellsandmultistagehydraulic fracturingisrequiredfortheeconomicexploitationoftheplay.Theproduction mechanismsaredominatedbythesmallporethroatsizesandgasadsorbedtothekerogenmatrixintheseorganic-richreservoirs.Withsmallpores,itiscommonlybelieved thatDarcy’slawmaynotbeapplicableandthattheflowoccursduetoadvectionor diffusion.Additionally,theshaleformationsarecommonlybelievedtobenaturally fractured,andwouldinteractwithcreatedhydraulicfracturesduringstimulationand impactthestimulatedrockvolumeandreservoirdrainageduringproduction.

Anotherwaytoexplainthedifferencebetweenconventionalandunconventional reservoirsisthroughthePetroleumResourceTriangle,originallyprovidedby Masters (1979).Theconventionalresources,theapexoftheresourcetriangle(Fig.1.6),

Figure1.5 Schematicofconventionalandunconventional(shale,coalbedmethane,oilshale) hydrocarbonaccumulations(SonnenbergandMeckel,2017).

representsmallvolumesofhydrocarbonsaccumulationsinstructuralorstratigraphic trapsthatareeasytodevelop.Aswemovetowardtheunconventionalresources,the baseofthetriangle,theserepresentlargevolumesthataredifficulttodevelopdueto increasedoperatingchallengesandwouldrequireimprovedtechnology,andwouldbe moreexpensivetodevelop.Theresourcesretainedinthesourcerocks(shaleandcoal bedmethaneformations)accountforapproximately50%ofallremaininghydrocarbon resources.Theword “unconventional” referstoshalegas,shaleoil,coalbedmethane (akacoalseamgasinAustralia),andgashydrates;thefocusofthischapter(andthis book)isonshaleoilandshalegasproduction.

Cander(2012) arguedthatPetroleumResourceTriangledefinesunconventional reservoirsqualitativelyasdifficultresourcestodevelop.Hedelineatedtheconventional andunconventionalreservoirsbasedontherockandfluidproperties rockpermeability(k),fluidviscosity(μ),andreservoirpressure whicharecriticalforunderstandingthehydrocarbonfluidmobilityinoilandgasreservoirs.Carterplotted permeabilityvs.viscosityanddefinedunconventionalreservoirsquantitivelyas resourcesinwhichtechnologymustbeusedtoincreasethemobilityratio(k/μ)in ordertoachievecommercialflowrates(Fig.1.7).

1.4Assetmanagement

Managingtheentirelifecycleofoilandgasfieldsrequiresthecollaborationofmultidisciplinaryteamsequippedtounderstandthegeologicalandengineeringdata,estimatehydrocarbon-in-place,andthencreateaplantodevelopthefieldeconomically basedontheexpectedproduction.Theoilandgasfieldsusuallyhavealifecycleof 30 60years,fromfirsthydrocarbonproductiontoabandonment.Forconventional fielddevelopment,theE&Plifecycleencompassesfivemajorphasesfromexploration tofieldabandonment(Salazar,2019):

Figure1.6 PetroleumResourceTriangle. (Modifiedfrom McKenzie-Brown,2018).

Figure1.7 Delineationofconventionalandunconventionalresourcesbasedonfluidmobility. (Modified from Cander,2012).

• Preexploration:Beforeexploration,oilandgascompaniesfocusonacquiringlimitedacreagewherepublicorprivatedataindicatesthepossibilityofhydrocarbons beingtrappedorwherecommercialpetroleumdepositshavealreadybeenfound. Thesigningofalandcontractandacreageacquisitionisthemilestonetomoveto theexplorationphase.

• Exploration:Thisphaseaimstoidentifythelikelihoodofhydrocarbondepositsin thesubsurfaceandestimatehowmuchoilandgasmaybepresent.Usually,the explorationphasestartsafewyearsbeforethefirstexplorationwellcanbedrilled. Oncetheacreagehasbeenacquiredandisavailableforexplorationactivities,a teamofgeologistsandgeophysicistsworktogethertomaptheoilandgasprospect (s)byacquiringandprocessingthedetailedG&G(GeologyandGeophysics)data, includingthe2Dand3Dseismicdata,airbornemagneticsurvey,geochemicalsurvey,etc.Thedatacollectedisthenevaluatedtoidentifyasubsurfacegeological formationlikelytoproducehydrocarbons.Justificationfordrillinganexploration wellismadebyassemblinggeoscienceandengineeringevidenceoftheexistence ofanactivepetroleumsystemwithareasonableprobabilityofencountering quality-reservoirrock,atrapofsufficientsize,adequatesealingrock,andappropriateconditionsforgenerationandmigrationofhydrocarbonstofillthetrap.Aninitialexplorationwellisthenplannedtoobtainadditionalsubsurfaceinformation, includingreservoirtopsanddepths,rockandfluidproperties,productionrates,and pressuresbycollectingwelllogs,mudlogs,pressureandtemperaturegauges,etc.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.