Uav communications for 5g and beyond (wiley - ieee) 1st edition yong zeng (editor) - Download the eb

Page 1


UAVCommunicationsfor5GandBeyond(WileyIEEE)1stEditionYongZeng(Editor)

https://ebookmass.com/product/uav-communications-for-5g-andbeyond-wiley-ieee-1st-edition-yong-zeng-editor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

5G

& Beyond For

Dummies

Larry Miller

https://ebookmass.com/product/5g-beyond-for-dummies-larry-miller/

ebookmass.com

Neuroscience for Neurosurgeons (Feb 29, 2024)_(110883146X)_(Cambridge University Press) 1st Edition Farhana Akter

https://ebookmass.com/product/neuroscience-for-neurosurgeonsfeb-29-2024_110883146x_cambridge-university-press-1st-edition-farhanaakter/

ebookmass.com

Trapped: Brides of the Kindred Book 29 Faith Anderson

https://ebookmass.com/product/trapped-brides-of-the-kindredbook-29-faith-anderson/

ebookmass.com

Pediatric

Sonography 4th Edition, (Ebook PDF)

https://ebookmass.com/product/pediatric-sonography-4th-edition-ebookpdf/

ebookmass.com

Microeconomics, 11e 11th Edition David C. Colander

https://ebookmass.com/product/microeconomics-11e-11th-edition-david-ccolander/

ebookmass.com

The Fallen Architect 1st Edition Charles Belfoure

https://ebookmass.com/product/the-fallen-architect-1st-editioncharles-belfoure/

ebookmass.com

Rubber to Rubber Adhesion Dinesh Kumar Kotnees

https://ebookmass.com/product/rubber-to-rubber-adhesion-dinesh-kumarkotnees/

ebookmass.com

Hands-On Python for DevOps: Leverage Python's native libraries to streamline your workflow and save time with automation Roy

https://ebookmass.com/product/hands-on-python-for-devops-leveragepythons-native-libraries-to-streamline-your-workflow-and-save-timewith-automation-roy/ ebookmass.com

Scandal And American Politics In The 21st Century Busby

https://ebookmass.com/product/scandal-and-american-politics-inthe-21st-century-busby/

ebookmass.com

Absolute Harmony Elizabeth Kelly

https://ebookmass.com/product/absolute-harmony-elizabeth-kelly/

ebookmass.com

UAVCommunicationsfor5GandBeyond

Editedby YongZeng

SoutheastUniversity,China Jiangsu,China and PurpleMountainLaboratories Jiangsu,China

IsmailGuvenc

NorthCarolinaStateUniversity NC,USA

RuiZhang

NationalUniversityofSingapore

Singapore

GiovanniGeraci UniversitatPompeuFabra Barcelona,Spain

DavidW.Matolak UniversityofSouthCarolina SC,USA

Thiseditionfirstpublished2021 ©2021JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions.

TherightofYongZeng,IsmailGuvenc,RuiZhang,GiovanniGeraci,andDavidW.Matolaktobeidentified astheauthorsofthiseditorialworkhasbeenassertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andthe constantflowofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,the readerisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsfor eachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesinthe instructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisherand authorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswith respecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties, includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotional statementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasa citationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthors endorsetheinformationorservicestheorganization,website,orproductmayprovideorrecommendations itmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrendering professionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation. Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsites listedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitis read.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Zeng,Yong(ProfessoratSoutheastUniversity),author.| Guvenc,Ismail(ProfessoratNorthCarolinaStateUniversity)|Zhang,Rui(ProfessoratNational UniversityofSingapore),author.|Geraci,Giovanni(AssistantProfessoratUniversitatPompeuFabra), author.|Matolak,DavidW.,author.|JohnWiley&Sons,Inc.,publisher.

Title:UAVcommunicationsfor5Gandbeyond/YongZeng,IsmailGuvenc,Rui Zhang,GiovanniGeraci,DavidW.Matolak.

Description:Hoboken,NJ:Wiley-IEEEPress,[2021]|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2020030506(print)|LCCN2020030507(ebook)|ISBN 9781119575696(hardback)|ISBN9781119575672(adobepdf)|ISBN 9781119575726(epub)

Subjects:LCSH:Droneaircraft–Controlsystems.| Aeronautics–Communicationsystems.|Mobilecommunicationsystems.|5G mobilecommunicationsystems.

Classification:LCCTL589.4.Z4652021(print)|LCCTL589.4(ebook)| DDC629.135/5–dc23

LCrecordavailableathttps://lccn.loc.gov/2020030506

LCebookrecordavailableathttps://lccn.loc.gov/2020030507

CoverDesign:Wiley

CoverImage:©Waitforlight/GettyImages

Setin9.5/12.5ptSTIXTwoTextbySPiGlobal,Chennai,India 10987654321

Contents

ListofContributors xvii

Acronyms xxi

PartIFundamentalsofUAVCommunications 1

1Overview 3

QingqingWu,YongZeng,andRuiZhang

1.1UAVDefinitions,Classes,andGlobalTrend 3

1.2UAVCommunicationandSpectrumRequirement 4

1.3PotentialExistingTechnologiesforUAVCommunications 6

1.3.1DirectLink 6

1.3.2Satellite 7

1.3.3Ad-HocNetwork 8

1.3.4CellularNetwork 8

1.4TwoParadigmsinCellularUAVCommunications 9

1.4.1Cellular-ConnectedUAVs 9

1.4.2UAV-AssistedWirelessCommunications 10

1.5NewOpportunitiesandChallenges 11

1.5.1HighAltitude 11

1.5.2HighLoSProbability 12

1.5.3High3DMobility 12

1.5.4SWAPConstraints 13

1.6ChapterSummaryandMainOrganizationoftheBook 13 References 15

2ASurveyofAir-to-GroundPropagationChannelModelingfor UnmannedAerialVehicles 17

WahabKhawaja,IsmailGuvenc,DavidW.Matolak,Uwe-CarstenFiebig,andNicolas Schneckenberger

2.1Introduction 17

2.2LiteratureReview 20

2.2.1LiteratureReviewonAerialPropagation 20

2.2.2ExistingSurveysonUAVAGPropagation 21

2.3UAVAGPropagationCharacteristics 22

2.3.1ComparisonofUAVAGandTerrestrialPropagation 22

2.3.2FrequencyBandsforUAVAGPropagation 23

2.3.3ScatteringCharacteristicsforAGPropagation 24

2.3.4AntennaConfigurationsforAGPropagation 24

2.3.5DopplerEffects 25

2.4AGChannelMeasurements:Configurations,Challenges,Scenarios, andWaveforms 25

2.4.1ChannelMeasurementConfigurations 26

2.4.2ChallengesinAGChannelMeasurements 29

2.4.3AGPropagationScenarios 29

2.4.3.1OpenSpace 31

2.4.3.2Hilly/Mountainous 31

2.4.3.3Forest 32

2.4.3.4Water/Sea 32

2.4.4ElevationAngleEffects 32

2.5UAVAGPropagationMeasurementandSimulationResultsinthe Literature 33

2.5.1PathLoss/Shadowing 33

2.5.2DelayDispersion 36

2.5.3NarrowbandFadingandRicean K -factor 36

2.5.4DopplerSpread 37

2.5.5EffectsofUAVAGMeasurementEnvironment 37

2.5.5.1Urban/Suburban 38

2.5.5.2Rural/OpenField 38

2.5.5.3Mountains/Hilly,OverSea,Forest 39

2.5.6SimulationsforChannelCharacterization 40

2.6UAVAGPropagationModels 41

2.6.1AGPropagationChannelModelTypes 41

2.6.2Path-LossandLarge-ScaleFadingModels 42

2.6.2.1Free-SpacePath-LossModel 43

2.6.2.2Floating-InterceptPath-LossModel 43

2.6.2.3Dual-SlopePath-LossModel 43

2.6.2.4Log-DistancePath-LossModel 45

2.6.2.5ModifiedFSPLModel 45

2.6.2.6Two-RayPLModel 45

2.6.2.7Log-DistanceFIModel 45

2.6.2.8LOS/NLOSMixturePath-LossModel 46

2.6.3AirframeShadowing 47

2.6.4Small-ScaleFadingModels 47

2.6.5IntermittentMPCs 48

2.6.6EffectofFrequencyBandsonChannelModels 51

2.6.7MIMOAGPropagationChannelModels 52

2.6.8ComparisonofDifferentAGChannelModels 54

2.6.8.1Large-ScaleFadingModels 54

2.6.8.2Small-ScaleFadingModels 54

2.6.9ComparisonofTraditionalChannelModelswithUAVAGPropagationChannel Models 55

2.6.10RayTracingSimulations 56

2.6.113GPPChannelModelsforUAVs 58

2.7Conclusions 60 References 60

3UAVDetectionandIdentification 71

MartinsEzuma,FatihErden,ChethanKumarAnjinappa,OzgurOzdemir, IsmailGuvenc,andDavidMatolak

3.1Introduction 71

3.2RF-BasedUAVDetectionTechniques 75

3.2.1RFFingerprintingTechnique 76

3.2.2WiFiFingerprintingTechnique 76

3.3MultistageUAVRFSignalDetection 77

3.3.1PreprocessingStep:MultiresolutionAnalysis 78

3.3.2TheNaiveBayesianDecisionMechanismforRFSignalDetection 82

3.3.3DetectionofWiFiandBluetoothInterference 84

3.4UAVClassificationUsingRFFingerprints 89

3.4.1FeatureSelectionUsingNeighborhoodComponentsAnalysis(NCA) 91

3.5ExperimentalResults 92

3.5.1ExperimentalSetup 92

3.5.2DetectionResults 94

3.5.3UAVClassificationResults 95

3.6Conclusion 100 Acknowledgments 100 References 100

PartIICellular-ConnectedUAVCommunications 103

4PerformanceAnalysisforCellular-ConnectedUAVs 105 M.MahdiAzari,FernandoRosas,andSofiePollin

4.1Introduction 105

4.1.1Motivation 105

4.1.2RelatedWorks 107

4.1.3ContributionsandChapterStructure 108

4.2ModellingPreliminaries 109

4.2.1StochasticGeometry 109

4.2.2NetworkArchitecture 110

4.2.3ChannelModel 111

4.2.4BlockageModelingandLoSProbability 112

4.2.5UserAssociationStrategyandLinkSINR 112

4.3PerformanceAnalysis 112

4.3.1ExactCoverageProbability 113

4.3.2ApproximationsforUAVCoverageProbability 115

4.3.2.1DiscardingNLoSandNoiseEffects 116

4.3.2.2MomentMatching 116

4.3.3AchievableThroughputandAreaSpectralEfficiencyAnalysis 118

4.4SystemDesign:StudyCasesandDiscussion 119

4.4.1AnalysisofAccuracy 119

4.4.2DesignParameters 120

4.4.2.1ImpactofUAVAltitude 120

4.4.2.2ImpactofUAVAntennaBeamwidth 121

4.4.2.3ImpactofUAVAntennaTilt 123

4.4.2.4ImpactofDifferentTypesofEnvironment 123

4.4.3HeterogeneousNetworks–TierSelection 125

4.4.4NetworkDensification 127

4.5Conclusion 129 References 136

5PerformanceEnhancementsforLTE-ConnectedUAVs:Experiments andSimulations 139

RafhaelMedeirosdeAmorim,JeroenWigard,IstvánZ.Kovács, andTroelsB.Sørensen

5.1Introduction 139

5.2LTELiveNetworkMeasurements 140

5.2.1DownlinkExperiments 141

5.2.2Path-LossModelCharacterization 145

5.2.3UplinkExperiments 145

5.3PerformanceinLTENetworks 149

5.4ReliabilityEnhancements 150

5.4.1InterferenceCancellation 151

5.4.2Inter-CellInterferenceControl 152

5.4.3CoMP 152

5.4.4AntennaBeamSelection 153

5.4.5DualLTEAccess 155

5.4.6DedicatedSpectrum 158

5.4.7Discussion 158

5.5SummaryandOutlook 159 References 160

63GPPStandardizationforCellular-SupportedUAVs 163 Helka-LiinaMäättänen

6.1ShortIntroductiontoLTEandNR 163

6.1.1LTEPhysicalLayerandMIMO 165

6.1.2NRPhysicalLayerandMIMO 166

6.2DronesServedbyMobileNetworks 167

6.2.1InterferenceDetectionandMitigation 168

6.2.2MobilityforDrones 170

6.2.3NeedforDroneIdentificationandAuthorization 171

6.33GPPStandardizationSupportforUAVs 172

6.3.1MeasurementReportingBasedonRSRPLevelofMultipleCells 172

6.3.2Height,Speed,andLocationReporting 174

6.3.3UplinkPowerControlEnhancement 175

6.3.4FlightPathSignalling 175

6.3.5DroneAuthorizationandIdentification 176

6.4FlyingModeDetectioninCellularNetworks 177

References 179

7EnhancedCellularSupportforUAVswithMassiveMIMO 181 GiovanniGeraci,AdrianGarcia-Rodriguez,LorenzoGalatiGiordano, andDavidLópez-Pérez

7.1Introduction 181

7.2SystemModel 181

7.2.1CellularNetworkTopology 183

7.2.2SystemModel 184

7.2.3MassiveMIMOChannelEstimation 186

7.2.4MassiveMIMOSpatialMultiplexing 186

7.3Single-UserDownlinkPerformance 187

7.3.1UAVDownlinkC&CChannel 187

7.4MassiveMIMODownlinkPerformance 190

7.4.1UAVDownlinkC&CChannel 190

7.4.2UAV–GUEDownlinkInterplay 192

7.5EnhancedDownlinkPerformance 194

7.5.1UAVDownlinkC&CChannel 195

7.5.2UAV–GUEDownlinkInterplay 196

7.6UplinkPerformance 197

7.6.1UAVUplinkC&CChannelandDataStreaming 197

7.6.2UAV–GUEUplinkInterplay 198

7.7Conclusions 199 References 200

8High-CapacityMillimeterWaveUAVCommunications 203 NuriaGonzález-Prelcic,RobertW.Heath,CristianRusu,andAldebaroKlautau

8.1Motivation 203

8.2UAVRolesandUseCasesEnabledbyMillimeterWaveCommunication 206

8.2.1UAVRolesinCellularNetworks 206

8.2.2UAVUseCasesEnabledbyHigh-CapacityCellularNetworks 207

8.3AerialChannelModelsatMillimeterWaveFrequencies 208

8.3.1PropagationConsiderationsforAerialChannels 208

8.3.1.1AtmosphericConsiderations 208

8.3.1.2Blockages 210

x Contents

8.3.2Air-to-AirMillimeterWaveChannelModel 211

8.3.3Air-to-GroundMillimeterWaveChannelModel 212

8.3.4RayTracingasaTooltoObtainChannelMeasurements 214

8.4KeyAspectsofUAVMIMOCommunicationatmmWaveFrequencies 215

8.5EstablishingAerialmmWaveMIMOLinks 219

8.5.1BeamTrainingandTrackingforUAVMillimeterWaveCommunication 219

8.5.2ChannelEstimationandTrackinginAerialEnvironments 219

8.5.3DesignofHybridPrecodersandCombiners 221

8.6ResearchOpportunities 222

8.6.1SensingattheTower 222

8.6.2JointCommunicationandRadar 222

8.6.3PositioningandMapping 223

8.7Conclusions 223 References 223

PartIIIUAV-AssistedWirelessCommunications 231

9StochasticGeometry-BasedPerformanceAnalysisofDroneCellular Networks 233 MortezaBanagar,VishnuV.Chetlur,andHarpreetS.Dhillon

9.1Introduction 233

9.2OverviewoftheSystemModel 235

9.2.1SpatialModel 235

9.2.23GPP-InspiredMobilityModel 236

9.2.3ChannelModel 237

9.2.4MetricsofInterest 237

9.3AverageRate 238

9.4HandoverProbability 242

9.5ResultsandDiscussion 246

9.5.1DensityofInterferingDBSs 247

9.5.2AverageRate 247

9.5.3HandoverProbability 249

9.6Conclusion 250 Acknowledgment 251 References 251

10UAVPlacementandAerial–GroundInterferenceCoordination 255 AbhaykumarKumbharandIsmailGuvenc

10.1Introduction 255

10.2LiteratureReview 256

10.3UABSUseCaseforAG-HetNets 259

10.4UABSPlacementinAG-HetNet 260

10.5AG-HetNetDesignGuidelines 264

10.5.1Path-LossModel 265

10.5.1.1Log-DistancePath-LossModel 265

10.5.1.2Okumura–HataPath-LossModel 266

10.6Inter-CellInterferenceCoordination 266

10.6.1UEAssociationandScheduling 269

10.7SimulationResults 270

10.7.15pSEwithUABSsDeployedonHexagonalGrid 270

10.7.1.15pSEwithLog-NormalPath-LossModel 270

10.7.1.25pSEwithOkumura–HataPath-LossModel 271

10.7.25pSEwithGA-BasedUABSDeploymentOptimization 273

10.7.2.15pSEwithLog-NormalPath-LossModel 273

10.7.2.25pSEwithOkumura–HataPath-Lossmodel 275

10.7.3PerformanceComparisonBetweenFixed(Hexagonal)andOptimizedUABS DeploymentwitheICICandFeICIC 276

10.7.3.1InfluenceofLDPLMon5pSE 277

10.7.3.2InfluenceofOHPLMon5pSE 277

10.7.4ComparisonofComputationTimeforDifferentUABSDeployment Algorithms 277

10.8Concludingremarks 279 References 279

11JointTrajectoryandResourceOptimization 283 YongZeng,QingqingWu,andRuiZhang

11.1GeneralProblemFormulation 283

11.2InitialPathPlanningviatheTravelingSalesmanandPickup-and-Delivery Problems 285

11.2.1TSPwithoutReturn 286

11.2.2TSPwithGivenInitialandFinalLocations 287

11.2.3TSPwithNeighborhood 287

11.2.4Pickup-and-DeliveryProblem 288

11.3TrajectoryDiscretization 290

11.3.1TimeDiscretization 290

11.3.2PathDiscretization 291

11.4BlockCoordinateDescent 291

11.5SuccessiveConvexApproximation 292

11.6UnifiedAlgorithm 295

11.7Summary 296 References 296

12Energy-EfficientUAVCommunications 299 YongZengandRuiZhang

12.1UAVEnergyConsumptionModel 299

12.1.1Fixed-WingEnergyModel 300

12.1.1.1ForcesonaUAV 300

12.1.1.2StraightandLevelFlight 301

12.1.1.3CircularFlight 302

12.1.1.4ArbitraryLevelFlight 303

12.1.1.5Arbitrary3DFlight 304

12.1.2Rotary-WingEnergyModel 304

12.2EnergyEfficiencyMaximization 306

12.3EnergyMinimizationwithCommunicationRequirement 310

12.4UAV–GroundEnergyTrade-off 312

12.5ChapterSummary 312 References 313

13FundamentalTrade-OffsforUAVCommunications 315

QingqingWu,LiangLiu,YongZeng,andRuiZhang

13.1Introduction 315

13.2FundamentalTrade-offs 317

13.2.1Throughput–DelayTrade-Off 317

13.2.2Throughput–EnergyTrade-Off 318

13.2.3Delay–EnergyTrade-Off 319

13.3Throughput–DelayTrade-Off 319

13.3.1Single-UAV-EnabledWirelessNetwork 319

13.3.2Multi-UAV-EnabledWirelessNetwork 321

13.4Throughput–EnergyTrade-Off 323

13.4.1UAVPropulsionEnergyConsumptionModel 323

13.4.2Energy-ConstrainedTrajectoryOptimization 324

13.5FurtherDiscussionsandFutureWork 325

13.6ChapterSummary 327 References 327

14UAV–CellularSpectrumSharing 329

ChiyaZhangandWeiZhang

14.1Introduction 329

14.1.1CognitiveRadio 329

14.1.1.1OverlaySpectrumSharing 329

14.1.1.2UnderlaySpectrumSharing 330

14.1.2DroneCommunication 330

14.1.2.1UAVSpectrumSharing 331

14.1.2.2UAVSpectrumSharingwithExclusiveRegions 332

14.1.3ChapterOverview 333

14.2SNRMeta-DistributionofDroneNetworks 333

14.2.1StochasticGeometryAnalysis 333

14.2.2CharacteristicFunctionoftheSNRMeta-Distribution 334

14.2.3LOSProbability 338

14.3SpectrumSharingofDroneNetworks 338

14.3.1SpectrumSharinginSingle-TierDSCs 339

14.3.2SpectrumSharingwithCellularNetwork 342

14.4Summary 345 References 346

PartIVOtherAdvancedTechnologiesforUAV Communications 349

15Non-OrthogonalMultipleAccessforUAVCommunications 351 TianweiHou,YuanweiLiu,andXinSun

15.1Introduction 351

15.1.1Motivation 352

15.2User-CentricStrategyforEmergencyCommunications 352

15.2.1SystemModel 354

15.2.1.1Farusercase 354

15.2.1.2Nearusercase 355

15.2.2CoverageProbabilityoftheUser-CentricStrategy 356

15.3UAV-CentricStrategyforOffloadingActions 359

15.3.1SINRAnalysis 360

15.3.2CoverageProbabilityoftheUAV-CentricStrategy 361

15.4NumericalResults 364

15.4.1User-CentricStrategy 365

15.4.2UAV-CentricStrategy 367

15.5Conclusions 369 References 369

16PhysicalLayerSecurityforUAVCommunications 373 NadisankaRupasinghe,YavuzYapici,IsmailGuvenc,HuaiyuDai, andArupjyotiBhuyan

16.1Introduction 373

16.2BreachingSecurityinWirelessNetworks 374

16.2.1Denial-of-ServiceAttacks 374

16.2.2MasqueradeAttacks 374

16.2.3MessageModificationAttacks 374

16.2.4EavesdroppingIntruders 375

16.2.5TrafficAnalysis 375

16.3WirelessNetworkSecurityRequirements 375

16.3.1Authenticity 375

16.3.2Confidentiality 376

16.3.3Integrity 376

16.3.4Availability 376

16.4PhysicalLayerSecurity 376

16.4.1PhysicalLayerversusUpperLayers 377

16.4.2PhysicalLayerSecurityTechniques 377

16.4.2.1ArtificialNoise 378

16.4.2.2CooperativeJamming 378

16.4.2.3ProtectedZone 378

16.5PhysicalLayerSecurityforUAVs 379

16.5.1UAVTrajectoryDesigntoEnhancePLS 379

16.5.2CooperativeJammingtoEnhancePLS 381

16.5.3Spectral-andEnergy-EfficientPLSTechniques 382

16.6ACaseStudy:SecureUAVTransmission 383

16.6.1SystemModel 383

16.6.1.1LocationDistributionandmmWaveChannelModel 385

16.6.2ProtectedZoneApproachforEnhancingPLS 385

16.6.3SecureNOMAforUAVBSDownlink 386

16.6.3.1SecrecyOutageandSumSecrecyRates 386

16.6.3.2ShapeOptimizationforProtectedZone 388

16.6.3.3NumericalResults 389

16.6.3.4LocationoftheMostDetrimentalEavesdropper 389

16.6.3.5ImpactoftheProtectedZoneShapeonSecrecyRates 390

16.6.3.6VariationofSecrecyRateswithAltitude 391 Summary 392 References 393

17UAV-EnabledWirelessPowerTransfer 399 JieXu,YongZeng,andRuiZhang

17.1Introduction 399

17.2SystemModel 401

17.3Sum-EnergyMaximization 402

17.4Min-EnergyMaximizationunderInfiniteChargingDuration 403

17.4.1Multi-Location-HoveringSolution 404

17.5Min-EnergyMaximizationUnderFiniteChargingDuration 407

17.5.1SuccessiveHover-and-FlyTrajectoryDesign 407

17.5.1.1FlyingDistanceMinimizationtoVisit Γ HoveringLocations 407

17.5.1.2HoveringTimeAllocationWhen T ≥ Tfly 408

17.5.1.3TrajectoryRefinementWhen T < Tfly 409

17.5.2SCA-BasedTrajectoryDesign 409

17.6NumericalResults 411

17.7ConclusionandFutureResearchDirections 413 References 415

18Ad-HocNetworksintheSky 417 KameshNamuduri

18.1CommunicationSupportforUAVs 417

18.1.1SatelliteConnectivity 418

18.1.2CellularConnectivity 420

18.1.3AerialConnectivity 420

18.2TheMobilityChallenge 421

18.2.1UAS-to-UASCommunication 421

18.2.2MobilityModels 422

18.3EstablishinganAd-HocNetwork 423

18.3.1NetworkAddressing 424

18.3.2Routing 425

18.4Standards 426

18.4.1ASTM:RemoteIDforUAS 426

18.4.2EUROCAE:Safe,Secure,andEfficientUASOperations 426

18.4.33GPP:4GLTEand5GSupportforConnectedUASOperations 426

18.4.4IEEEP1920.1:AerialCommunicationsandNetworkingStandards 427

18.4.5IEEEP1920.2:Vehicle-to-VehicleCommunicationsStandardforUAS 427

18.5TechnologiesandProducts 427

18.5.1SilvusStreamcaster 427

18.5.2goTenna 427

18.5.3MPU5andWaveRelayfromPersistentSystems 428

18.5.4KineticMeshNetworksfromRajant 428

18.6Software-DefinedNetworkasaSolutionforUAVNetworks 428

18.7Summary 429 References 429

Index 433

ListofContributors

RafhaelMedeirosdeAmorim NokiaBellLabs

Denmark

ChethanKumarAnjinappa DepartmentofElectricalandComputer Engineering

NorthCarolinaStateUniversity NC USA

M.MahdiAzari DepartmentofElectricalEngineering

KULeuven Belgium

MortezaBanagar Wireless@VT BradeyDepartmentofElectricaland ComputerEngineering VirginiaTech

Blacksburg VA USA

ArupjyotiBhuyan IdahoNationalLaboratory IdahoFalls

ID USA

VishnuV.Chetlur Wireless@VT

BradeyDepartmentofElectricaland ComputerEngineering VirginiaTech

Blacksburg VA USA

HuaiyuDai DepartmentofElectricalandComputer Engineering

NorthCarolinaStateUniversity NC USA

HarpreetS.Dhillon Wireless@VT

BradeyDepartmentofElectricaland ComputerEngineering VirginiaTech

Blacksburg VA USA

FatihErden DepartmentofElectricalandComputer Engineering

NorthCarolinaStateUniversity NC USA

xviii ListofContributors

MartinsEzuma DepartmentofElectricalandComputer Engineering

NorthCarolinaStateUniversity NC USA

Uwe-CarstenFiebig InstituteofCommunicationsand Navigation

GermanAerospaceCenter(DLR) Wessling Germany

RobertW.Heath ElectricalandComputerEngineering Department

UniversityofTexasatAustin USA

LorenzoGalatiGiordano NokiaBellLabs

Dublin Ireland

AdrianGarcia-Rodriguez

NokiaBellLabs

Dublin

Ireland

GiovanniGeraci UniversitatPompeuFabra Barcelona Spain

NuriaGonzález-Prelcic ElectricalandComputerEngineering Department

UniversityofTexasatAustin USA

IsmailGuvenc DepartmentofElectricalandComputer Engineering

NorthCarolinaStateUniversity NC USA

TianweiHou SchoolofElectronicandInformation Engineering

BeijingJiaotongUniversity PRChina

WahabKhawaja DepartmentofElectricalandComputer Engineering

NorthCarolinaStateUniversity NC USA

AldebaroKlautau ComputerandTelecommunication EngineeringDepartment UniversidadeFederaldoPará

Brazil

IstvánZ.Kovács NokiaBellLabs

Denmark

AbhaykumarKumbhar DepartmentofElectricalandComputer Engineering

FloridaInternationalUniversity Miami USA

LiangLiu DepartmentofElectronicandInformation Engineering

TheHongKongPolytechnicUniversity HongKong

YuanweiLiu SchoolofElectronicEngineeringand ComputerScience

QueenMaryUniversityofLondon UK

DavidLópez-Pérez NokiaBellLabs

Dublin Ireland

DavidW.Matolak DepartmentofElectricalEngineering UniversityofSouthCarolina SC USA

Helka-LiinaMäättänen EricssonResearch Finland

KameshNamuduri UniversityofNorthTexas USA

OzgurOzdemir DepartmentofElectricalandComputer Engineering NorthCarolinaStateUniversity NC USA

SofiePollin DepartmentofElectricalEngineering KULeuven Belgium

FernandoRosas DataScienceInstitute DepartmentofBrainSciences andCenterforComplexityScience ImperialCollegeLondon UK

NadisankaRupasinghe DepartmentofElectricalandComputer Engineering NorthCarolinaStateUniversity NC USA and DOCOMOInnovations,Inc. PaloAlto CA USA

CristianRusu LCSL IstitutoItalianodiTecnologia(IIT) Liguria Italy

NicolasSchneckenberger InstituteofCommunicationsand Navigation GermanAerospaceCenter(DLR) Wessling Germany

TroelsB.Sørensen AalborgUniversity Denmark

XinSun SchoolofElectronicandInformation Engineering BeijingJiaotongUniversity PRChina

JeroenWigard NokiaBellLabs Denmark

QingqingWu StateKeyLaboratoryofInternetofThings forSmartCity UniversityofMacau China

JieXu FutureNetworkofIntelligenceInstitute (FNii)andSchoolofScienceand Engineering

TheChineseUniversityofHongKong Shenzhen PRChina

xx ListofContributors

YavuzYapici DepartmentofElectricalandComputer Engineering

NorthCarolinaStateUniversity NC USA

ChiyaZhang SchoolofElectronicandInformation Engineering

HarbinInstituteofTechnology Shenzhen China and PengChengLaboratory(PCL) Shenzhen China

RuiZhang DepartmentofElectricalandComputer Engineering NationalUniversityofSingapore Singapore

WeiZhang SchoolofElectricalEngineeringand Telecommunications UniversityofNewSouthWales Sydney Australia

YongZeng NationalMobileCommunications ResearchLaboratory SoutheastUniversity China and PurpleMountainLaboratories Jiangsu China

Acronyms

3GPP3rd/thirdgenerationpartnershipproject

5G5th/fifthgeneration

5pSE5th/fifthpercentilespectralefficiency

AAair-to-air

AGair-to-ground

AG-HetNetair–groundheterogeneouscellularnetwork

ASEareaspectralefficiency

ASTAarrivalsseetimeaverages

AWGNadditivewhiteGaussiannoise

B5Gbeyond5th/fifthgeneration

b/s/Hzbitspersecondperhertz

BERbiterrorrate

BHCAbusyhourcallattempts

BPPbinomialpointprocess

BPSKbinaryphaseshiftkeying

BRbandwidthreservation

BSbasestation

BSs/km2 basestationspersquarekilometer

b.u.bandwidthunit(s)

BVLoSbeyond-visual-line-of-sight

BWbandwidth

C2commandandcontrol

CACcall/connectionadmissioncontrol

CBPcallblockingprobability(-ies)

CCDFcomplementarycumulativedistributionfunction

CCScentumcallseconds

CDFcumulativedistributionfunction

CDTMconnectiondependentthresholdmodel

CE2RcurvedEarthtwo-ray

CFOcarrierfrequencyoffset

CIclose-in

CIRchannelimpulseresponse

CNPCcontrolandnon-payloadcommunications

Acronyms

CREcellrangeexpansion

CScompletesharing

CSFcoordinatedradiosubframe

CSIchannelstateinformation

CTFchanneltransferfunction

CWcontinuouswave

DBSdronebasestation

DiffServdifferentiatedservices

DMEdistance-measuringequipment

DPPDopplerpowerprofile

DSdualslope

DSB-AMdouble-sidebandamplitudemodulation

DS-SSdirectsequencespreadspectrum

EMLMErlangmultiratelossmodel

eICICenhancedinter-cellinterferencecoordination

erltheErlangunitoftraffic-load

FAAfederalaviationadministration

FBMCfilterbankmulticarrier

FCCfederalcommunicationscommission

FeICICfurther-enhancedinter-cellinterferencecoordination

FIfloatingintercept

FIFOfirstin-firstout

FMCWfrequency-modulatedcontinuouswave

Freq.frequency

FSPLfree-spacepathloss

GAgeneticalgorithm

GBSCMgeometricallybasedstochasticchannelmodel

GMSKGaussianminimumshiftkeying

GPSglobalpositioningsystem

GSgroundstation

GSa/sgigasamplespersecond

GSMglobalsystemformobilecommunication

GUEgrounduser/grounduserequipment

HAPhigh-altitudeplatform

HDhighdefinition

HetNetheterogeneousnetwork

ICIinter-carrierinterference

ICICinter-cellinterferencecoordination

IMPCintermittentmultipathcomponent

Infs.infrastructure

IS-GBSCMirregular-shapedgeometric-basedstochasticchannelmodel

ITUInternationalTelecommunicationUnion

kbpskilobitspersecond

LAPlow-altitudeplatform

LDACSL-banddigitalaeronauticalcommunicationssystems

LDPLMlog-distancepath-lossmodel

LoS/LOSline-of-sight

LTElong-termevolution

LUILisbonUniversityInstitute

mAhmilli-amphour

Mbpsmegabitspersecond

MBSmacrobasestation

mgfmomentgeneratingfunction

MIMOmultipleinput–multipleoutput

MISOmultipleinput–singleoutput

mmWavemillimeterwave

Mod.sig.modulatedsignal

MOIMBScellofinterest/macrobasestationcellofinterest

MPCmultipathcomponent

mphmilesperhour

MSKminimumshiftkeying

MUEMBSGUE/macrobasestationgrounduserequipment

N/Anotapplicable/notavailable

NGSCMnon-geometricstochasticchannelmodel

NLoS/NLOSnon-line-of-sight

OFDMorthogonalfrequency-divisionmultiplexing

OHPLMOkumura–Hatapath-lossmodel

OLOSobstructedline-of-sight

PAPRpeak-to-average-powerratio

PBSpicobasestation

PDFprobabilitydensityfunction

PDPpowerdelayprofile

PGpathgain

pgflprobabilitygeneratingfunctional

PLpathloss

PLEpath-lossexponent

PPPPoissonpointprocess

PRNpseudo-randomnumber

PSCpublicsafetycommunications

PSDpowerspectraldensity

QoSqualityofservice

REDrandomearlydetection

RFradiofrequency

RHSRighthandside

RMaruralmacro

RMS-DSroot-mean-squaredelayspread

RS-GBSCMregular-shapedgeometric-basedstochasticchannelmodel

RSRPreferencesymbolreceivedpower

RSRQreferencesignalreceivequality

RSSreceivedsignalstrength

xxiv Acronyms

RSSIreceivedsignalstrengthindicator

RTTround-triptime

r.v.randomvariable(s)

RWrandomwalk

RWPrandomwaypoint

RXreceiver

Satel.satellite

SDMAspace-divisionmultipleaccess

SEspectralefficiency

SIMOsingleinput–multipleoutput

SINRsignal-to-interference-plus-noiseratio

SIRsignal-to-interferenceratio

SIROserviceinrandomorder

SISOsingleinput–singleoutput

SNRsignal-to-noiseratio

TDLtappeddelayline

TDMAtimedivisionmultipleaccess

Terres.terrestrial

TOAtimeofarrival

TXtransmitter

UABSunmannedaerialbasestation

UASunmannedaircraftsystem/unmannedaerialsystem

UAVunmannedaerialvehicle

UDMuser-dependentmodel

UEuser/userequipment

UIMuser-independentmodel

UMaurbanmacro

UMiurbanmicro

UMTSuniversalmobiletelecommunicationsservice

UOIUABScellofinterest/unmannedaerialbasestationcellofinterest

USFuncoordinatedradiosubframe

UUEUABSGUE/unmannedaerialbasestationgrounduserequipment

UWBultra-wideband

V2Vvehicle-to-vehicle

Vehic.vehicular

VHFveryhighfrequency

WSSwide-sensestationary

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Uav communications for 5g and beyond (wiley - ieee) 1st edition yong zeng (editor) - Download the eb by Education Libraries - Issuu