Two-dimensional materials for nonlinear optics: fundamentals, preparation methods, and applications

Page 1


Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Two-Dimensional-Materials-Based Membranes: Preparation, Characterization, and Applications Gongping Liu

https://ebookmass.com/product/two-dimensional-materials-basedmembranes-preparation-characterization-and-applications-gongping-liu/

ebookmass.com

Defects in Two-Dimensional Materials Rafik Addou

https://ebookmass.com/product/defects-in-two-dimensional-materialsrafik-addou/

ebookmass.com

Computational Methods for Nonlinear Dynamical Systems: Theory and Applications in Aerospace Engineering Xuechuan Wang

https://ebookmass.com/product/computational-methods-for-nonlineardynamical-systems-theory-and-applications-in-aerospace-engineeringxuechuan-wang/

ebookmass.com

From Aristotle to Cicero. Essays in Ancient Philosophy

https://ebookmass.com/product/from-aristotle-to-cicero-essays-inancient-philosophy-gisela-striker/

ebookmass.com

Chipless RFID Based on RF Encoding Particle. Realization, Coding and Reading System 1st Edition Arnaud Vena

https://ebookmass.com/product/chipless-rfid-based-on-rf-encodingparticle-realization-coding-and-reading-system-1st-edition-arnaudvena/

ebookmass.com

Two-DimensionalMaterialsforNonlinearOptics

Two-DimensionalMaterialsfor NonlinearOptics

Fundamentals,PreparationMethods,andApplications

Editors

Prof.QiangWang LanzhouUniversity CollegeofChemistryandChemical Engineering No.222TianshuiSouthRoad 730000Lanzhou China

Prof.Hao-LiZhang LanzhouUniversity CollegeofChemistryandChemical Engineering No.222TianshuiSouthRoad 730000Lanzhou China

CoverImages:©SergMyshkovsky/Getty Images;©Marco_de_Benedictis/ GettyImages

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutsche Nationalbibliothekliststhispublicationinthe DeutscheNationalbibliografie;detailed bibliographicdataareavailableontheInternet at <http://dnb.d-nb.de>.

©2024WILEY-VCHGmbH,Boschstraße12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-35059-9

ePDFISBN: 978-3-527-83826-4

ePubISBN: 978-3-527-83827-1

oBookISBN: 978-3-527-83828-8

Typesetting Straive,Chennai,India

Contents

Preface xiii

ListofAbbreviations xv

1Preparationof2DMaterials 1 YueTangandHuaXu

1.1MechanicalExfoliationof2DMaterials 2

1.2Liquid-PhaseExfoliationof2DMaterials 4

1.3ChemicalVaporDepositionGrowthof2DMaterials 6

1.4CVDGrowthofWafer-ScaleSingleCrystal2DMaterials 8

1.5ThicknessControlinCVDGrowthof2DMaterials 10

1.6PhaseControlinCVDGrowthof2DMaterials 12

1.7SummaryandProspect 14 References 15

2AnIntroductiontotheNonlinearOpticalPropertiesof 2DMaterials 21

BolongWangandHao-LiZhang

2.1Introduction 21

2.2NonlinearOpticsof2DMaterials 22

2.2.1SHG,THG,andHHGSetups 24

2.2.2Four-WaveMixing 26

2.2.3Z-ScanTechniques 27

2.2.4NonlinearOpticalImaging 29

2.2.5Pump–ProbeTechniques 32

2.3Applicationof2DNonlinearMaterials 35

2.3.1OpticalLimiting 35

2.3.2Q-SwitchedandMode-LockedLasers 38

2.3.3OpticalSwitchandModulation 40

2.3.4OtherNonlinearOpticalPhenomena 41

2.4Prospect 43

2.4.1PreciseFabricationandFunctionalizationof2DMaterials 43

2.4.2HighResolutionSpatiotemporalCharacterizingTechniques 44

2.4.3NewPhysicsof2DMaterials 44

2.4.4Ever-LastingExpansionofApplications 44 Acknowledgment 45 References 45

3ModulationandEnhancementofOpticalNonlinearityin 2DMaterials 55 XinglinWenandQihuaXiong

3.1Introduction 55

3.2NonlinearOpticsin2DMaterials 57

3.2.1BasicsofNonlinearOptics 57

3.2.2ParametricNonlinearOptics 58

3.2.3NonparametricNonlinearOptics 59

3.3NonlinearityModulationin2DMaterials 60

3.3.1StructuralEngineering 60

3.3.1.1LayerNumber 60

3.3.1.2TwistedAngle 62

3.3.1.3StackingOrder 64

3.3.1.4EdgeStates 65

3.3.2OpticalModulation 66

3.3.2.1ExcitonicEffectsEnhancedNonlinearity 66

3.3.2.2Valley-DependentNonlinearity 69

3.3.2.3OpticalCavity-EnhancedNonlinearity 71

3.3.2.4All-OpticalModulation 73

3.3.3ElectricalModulation 75

3.3.4MagneticModulation 78

3.3.5Perspectives 78

AuthorContributions 78 Notes 79 Acknowledgment 79 References 79

4CharacterizingtheNonlinearOpticalPropertiesof 2DMaterialsbyDouble4fNonlinearImagingSystemwith PhaseObjectandFour-Wave-MixingMicroscopy 87 ZhongguoLiandYinglinSong

4.1Introduction 87

4.2PrincipleofNLOMeasurementTechnique 88

4.2.1NonlinearOpticalInteractionin2DMaterials 88

4.2.2TypicalNLOMeasurementMethodin2DMaterialResearch 89

4.2.2.1Self-PhaseModulation(SPM) 89

4.2.2.2Z-Scan 89

4.2.2.3Third-HarmonicGeneration(THG) 90

4.2.2.4Two-Photon-InducedPhotoluminescence(TPL) 90

4.3CharacterizingNLOResponseof2DMaterialsviaDouble4fNonlinear ImagingSystemwithPhaseObject(NIT-PO)Microscopy 91

4.4CharacterizingNLOResponseof2DMaterialsviaFour-Wave-Mixing Microscopy 95

4.5OutlookandPerspective 97 References 98

5UltrafastCarrierDynamicsinEmerging2DMaterials 103 JiaweiHuang,NingningDong,andJunWang

5.1Introduction 103

5.2UltrafastTime-ResolvedSpectroscopy 104

5.2.1PrincipleofPump–ProbeMeasurement 104

5.2.2ExperimentforUltrafastSpectroscopy 107

5.2.3FundamentalMechanismofRecombinationDynamics 107

5.3UltrafastOpticsinvanderWaals2DMaterials 109

5.3.1Graphene 109

5.3.2TransitionMetalDichalcogenides(TMDC) 109

5.3.3BlackPhosphorus 115

5.4UltrafastOpticsinEmergingQuasi-2DMaterials 118

5.4.12DPerovskite 118

5.4.2Non-Layered2DPlatinumSulfide 120

5.5PerspectivesonUltrafastOpticsfor2DMaterial 124 AuthorContributions 125 Notes 125

Acknowledgment 125 References 125

6TransientTerahertzSpectroscopyfor2DMaterials 131 JingyinXu,KaiZhang,HongLi,andTianwuWang

6.1Introduction 131

6.2GenerationandDetectionofTHzRadiation 132

6.2.1GenerationofTHzRadiationBasedonNonlinearOpticalProcesses 132

6.2.1.1PhotoconductiveAntennas(PCAs) 133

6.2.1.2Electro-optic(EO)Crystals 135

6.2.1.3AirPlasma 136

6.2.1.4THzEmissionof2DSemiconductorMaterials 140

6.2.2TypicalTHzTime-DomainSpectroscopySetup 141

6.2.2.1Time-DomainTHzSpectroscopyUnderPressure 143

6.2.3PhotoinducedChangesoftheDielectricFunctionin2DviaTHz Spectroscopy 147

6.3NanoscaleTHzScanningProbeMicroscopyof2DMaterials 149

6.3.1ScanningNear-FieldTHzMicroscopyforPolaritonin2DMaterials 150

6.3.2THz-STM 151

6.4Perspectives 154

6.4.1TransientTHzSpectroscopy 154

6.4.2High-ResolutionSpatialandTemporalTHzSpectroscopies 155

Acknowledgment 155 References 155

7GrapheneGlassforNonlinearOptics 163 QiXiao,JingyuSun,andHao-LiZhang

7.1LightAbsorptionofGraphene 163

7.2NonlinearOpticalPropertiesofGraphene 164

7.2.1Third-OrderNonlinearOpticalPropertiesofGraphene 164

7.2.2SaturableAbsorptionofGraphene 165

7.2.3High-OrderHarmonicGenerationofGraphene 165

7.3NonlinearOpticalPropertiesofGrapheneGlass 167

7.3.1Graphene-DopedGlass 167

7.3.2GrapheneGlassFabricatedbySpinCoating 167

7.3.3GrapheneGlassFabricatedbyTransferMethod 168

7.3.4DirectlyGrowthGrapheneonGlass 168

7.3.4.1GrapheneGrowthonHigh-Temperature-ResistantGlass 168

7.3.4.2GrapheneGrowthonMoltenGlass 171

7.3.4.3Metal-Catalyst-AssistedGrapheneGrowth 173

7.3.4.4Plasma-EnhancedLow-TemperatureGrapheneGrowth 176

7.4Perspectives 179

Acknowledgment 180 References 180

82DMaterialsforNonlinearOpticalLimiting 185 WenShang,BolongWang,andQiangWang

8.1Introduction 185

8.2NonlinearOpticalLimitingMechanism 186

8.2.1ReverseSaturableAbsorption 186

8.2.2Two-Photon/MultiphotonAbsorption 187

8.2.3FreeCarrierAbsorption 188

8.2.4NonlinearRefraction 188

8.2.5NonlinearScattering 189

8.32DMaterialsforOpticalLimiting 189

8.3.1GrapheneandAnalogs 190

8.3.1.1Graphene 190

8.3.1.2TransitionMetalDichalcogenides 194

8.3.1.3BlackPhosphorus 196

8.3.1.4HexagonalBoronNitride(h-BNS) 197

8.3.2Novel2DMaterials 197

8.3.2.1Antimonene 197

8.3.2.2Tellurene 198

8.3.2.32DPerovskites 200

8.3.2.42DMetal–OrganicFrameworks(2D-MOFs) 201

8.3.3MaterialswithNewStructuresandMechanism 203

8.3.3.1NonlinearPhotonicMetamaterials 203

8.3.3.2PlasmonicEffect-EnhancedNonlinearity 205

8.3.4MultifunctionalOpticalLimitingDevices 206

8.4ConclusionsandProspects 209 Acknowledgments 210 References 210

9TheSaturableAbsorbersBasedon2DMaterials 221 Xin-HaiYan,LeiZhang,andKai-GeZhou

9.1Introduction 221

9.2TheFundamentsinthe2DMaterials-BasedSaturableAbsorbers 222

9.2.1SATheory 222

9.2.2Slow-andFast-SaturableAbsorber 223

9.2.2.1Slow-SaturableAbsorber 224

9.2.2.2Fast-SaturableAbsorber 225

9.3TheFamilyof2DMaterial-BasedSaturableAbsorbers 225

9.3.1Mono-Elemental2DMaterials 226

9.3.1.1GroupIVA-Elemental2DMaterials 226

9.3.1.2GroupVA-Elemental2DMaterials 230

9.3.2Dual-Elemental2DMaterials 234

9.3.2.1TMDs 234

9.3.2.2TopologicalInsulators(TIs) 235

9.3.3Multi-Elemental2DMaterials 237

9.3.3.1MOFs 237

9.3.3.2MXenes 237

9.3.3.32DPerovskites 239

9.4Applications 239

9.4.1FabricationofSADeviceBasedon2DMaterials 239

9.4.1.1ScotchTapeExfoliation 240

9.4.1.2CVD,PVD 240

9.4.1.3LPE 240

9.4.2Q-SwitchedLaser 242

9.4.2.1Q-SwitchedFiberLaser 243

9.4.3Mode-LockedLaser 246

9.5PerspectivesandOutlook 248

Acknowledgment 249 References 249

10Second-HarmonicandThird-HarmonicGenerationsin 2DLayeredMaterials 257 XudongJinandMinZhao

10.1Introduction 257

10.1.1FundamentalsofSHGandTHG 258

10.1.22DLM-BasedSHG 259

10.1.3Graphene 260

12.3.5IntegratedOptoelectronicPlatform 318

12.3.5.1Field-EffectTransistorandPhotodetectors 318

12.3.5.2Sensors 320

12.3.6OtherApplications:Lubricants 320

12.4Perspectives 321

Acknowledgment 322

References 322 Index 333

xiv Preface

insightsbehindthem.Wehopethebookwillbeahandytoolkitforprofessionals, researchers,andgraduatestudentsworkingorinterestedinthefieldofnonlinear opticsandmaterials.

Theeditorsthankallthecontributorsofthisbookfortheirinsightfulchapters.We aregratefultotheproductioneditorsatWiley,Ms.LifenYangandKatherineWong, fortheirdiligentworkandexpertiseinmanagingtheprocess.

Lanzhou,People’sRepublicofChina QiangWang Hao-LiZhang

ListofAbbreviations

Number

2DTwodimensional

2DLMs2Dlayeredmaterials

2DCSTwo-dimensionalcoherentspectroscopy

1DOnedimensional

0DZerodimensional

2PATwo-photonabsorption

3PAThree-photonabsorption

3PMThree-photonmicroscopy

A

ABCDAir-biasedcoherentdetection

AC-STEMAberration-correctedscanningtransmissionelectionmicroscopy

AIEAggregation-inducedemission

AFMAtomicforcemicroscope

ASEAmplifiedspontaneousemission

B

BiBismuthene

BCBirefringencecrystals

BPBlackphosphorus

BSBeamsplitter

BPDsBalancedphotodiodes

BBOBetabariumborate

BNBoronnitride

BLGBilayergraphene

BGRBandgaprenormalization

xvi ListofAbbreviations

C

CARSAnti-StokesRamanscattering

CMOSComplementarymetal-oxidesemiconductor

CVDChemicalvapordeposition

CSSChineseSpaceStation

COFsCovalentorganicframeworks

CBConductionbands

CWContinuouswave

D

DACDiamondanvilcell

DFGDifference-frequencygeneration

DLCDiamond-likecarbon

D-ADonor–acceptor

DBRDistributedBraggreflector

DSMDiracsemimetal

DFWMDegenerateFWM

DTDifferentialtransmission

DFBDistributedfeedback

DWPDouble-wavelengthwaveplate

E

ESAExcited-stateabsorption

EDFErbium-dopedfiber

EBLElectronbeamlithography

ENZEpsilonnearzero

EDElectricdipole

EQElectricquadrupole

EOElectro-optic

EFISHElectric-field-inducedsecondharmonics

F

FWMFour-wavemixing

FWRFour-waverectification

fsFemtosecond

FCAFreecarrierabsorption

FETField-effecttransistor

FTOFluorine-dopedtinoxide

FWFundamentwavelength

F-PFabry–Pérotcavity

FWHMFullwidthathalfmaxima

G

GeGermanium

GOGrapheneoxide

GDGraphdiyne

GEOsGeostationaryorbits

GSAMGraphenesaturableabsorbermirror

H

HGHarmonicgeneration

HHGHigh-harmonicgeneration

h-BNHexagonalboronnitride

HEOsHighlyellipticalorbits

HAADFHigh-angleannulardarkfield

HTHightemperature

HPHalf-waveplate

HEGHydrogen-inducedexfoliatedgraphene h-MOHexagonalmetaloxides

I

ISSInternationalSpaceStation

IPAIsopropylammonium

L

LEEDLow-energyelectrondiffraction

LDLaserdiode

LEOsLow-Earthorbits

LiDARLightdetectionandranging

LDOSLocaldensityofstates

LPELiquid-phaseexfoliation

LAPCAsLarge-aperturephotoconductiveantennas

ListofAbbreviations xvii

PEEMPhotoemissionelectronmicroscopy

PtPlatinum

PCPolarizationcontroller

PDPhotodiode

PCAsPhotoconductiveantennas

POPhaseobject

PI-ISOPolarization-independentisolator

PSEPolymersolidelectrolyte

PVDPhysicalvapordeposition

PVTPhysicalvaportransport

PBPhotoinducedbleaching

PMParabolicmirrors

PMTPhotomultipliertube

PIAPhotoinducedabsorption

PtSPlatinumsulfide

PMTPhotomultipliertube

Q

QWsQuantumwells

QDsQuantumdots

R

RSAReversesaturableabsorption

rGOReducedgrapheneoxide

RIEReactiveionetching

S

SHGSecond-harmonicgeneration

SRSStimulatedRamanscattering

SASaturableabsorption

SAESonication-assistedexfoliation

SEEsSingle-eventeffects

SEUSingle-eventupset

SEFISingle-eventfunctionalinterruption

SETSingle-eventtransient

SELSingle-eventlatch-up

SNSPDSuperconductingnanowiresingle-photondetectors

SDIspectral-domaininterferometry

SOISilicononinsulator

SEMScanningelectronmicroscopy

SFMSum-frequencymixing

ListofAbbreviations xix

ListofAbbreviations xxi

WTungsten

WPWollastonprism

WDMWavelengthdivisionmultiplexer

WGMWhispering-gallerymode

XUVExtremeultraviolet

Preparationof2DMaterials

YueTangandHuaXu

ShaanxiNormalUniversity,KeyLaboratoryofAppliedSurfaceandColloidChemistryofMinistryof Education,ShaanxiKeyLaboratoryforAdvancedEnergyDevices,SchoolofMaterialsScienceand Engineering,Xi’an710119,P.R.China

Two-dimensional(2D)materials,anemergingnewclassofnanomaterialswith richstructuresandremarkableproperties,wouldbringmanytransformative technologiesandapplications[1].Sincethediscoveryofgrapheneforthefirsttime in2004,the2Dmaterialfamilyhasexpandeddramaticallytoincludeinsulators (hexagonalboronnitride[h-BN]),semiconductors(mosttransitionmetaldichalcogenides[TMDCs],blackphosphorus[BP],andtellurium[Te]),semi-metals(some TMDCsandgraphene),metals(transitionmetalcarbidesandnitrides[MXenes]), superconductors(NbSe2 ),andtopologicalinsulators(Bi2 Se3 andBi2 Te3 )[2,3].The atomicthicknessanddanglingfreesurfaceof2Dmaterials,togetherwiththeir superioroptical,electrical,magnetism,thermal,andmechanicalproperties,endow themwithgreatpromiseforapplicationsinopticalcommunication,electronics, optoelectronics,spintronics,memory,thermoelectric,andenergyconversationand storagedevices[4,5].

AshighlightedbythefamousnanomaterialscientistZhongfanLiu,“preparation determinesthefuture”isaninexorablelawforallmaterials.Inthepastdecade,a seriesofpreparationtechnologieshavebeendevelopedtofabricate2Dmaterialsfor satisfyingtherequirementsoftheirfundamentalstudiesandvariousapplications.In viewofthelayeredstructureof2Dmaterials,theprimarypreparationtechnologies canbedividedintotwomajortypes:top-downandbottom-upapproaches.Inthis chapter,wewillintroducetherecentlydevelopedpreparationtechnologiesfor2D materials,includingtwotop-downapproaches(mechanicalexfoliationandliquid exfoliation)andonebottom-upapproach(vaporphasegrowth).Here,wegivemore spacetointroducesinglecrystalgrowth,thicknesscontrol,andphasecontrolinthe vaporphasegrowthof2Dmaterials.

Two-DimensionalMaterialsforNonlinearOptics:Fundamentals,PreparationMethods,andApplications, FirstEdition.EditedbyQiangWangandHao-LiZhang. ©2024WILEY-VCHGmbH.Published2024byWILEY-VCHGmbH.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Two-dimensional materials for nonlinear optics: fundamentals, preparation methods, and applications by Education Libraries - Issuu