Transport and surface phenomena 1st edition kamil wichterle - Download the ebook in PDF with all cha

Page 1


https://ebookmass.com/product/transport-and-surfacephenomena-1st-edition-kamil-wichterle/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Introductory Transport Phenomena 1st Edition, (Ebook PDF)

https://ebookmass.com/product/introductory-transport-phenomena-1stedition-ebook-pdf/

ebookmass.com

Rotary Kilns, Second Edition: Transport Phenomena and Transport Processes Boateng

https://ebookmass.com/product/rotary-kilns-second-edition-transportphenomena-and-transport-processes-boateng/

ebookmass.com

Transport Phenomena, Revised 2nd Edition – Ebook PDF Version

https://ebookmass.com/product/transport-phenomena-revised-2nd-editionebook-pdf-version/

ebookmass.com

Policing and Combating Terrorism in Northern Ireland 1st ed. Edition Neil Southern

https://ebookmass.com/product/policing-and-combating-terrorism-innorthern-ireland-1st-ed-edition-neil-southern/

ebookmass.com

The Future of Television in the Global South: Reflections from Selected Countries George Ogola

https://ebookmass.com/product/the-future-of-television-in-the-globalsouth-reflections-from-selected-countries-george-ogola/

ebookmass.com

Public & Private Families. 1st Edition Andrew J. Cherlin.

https://ebookmass.com/product/public-private-families-1st-editionandrew-j-cherlin/

ebookmass.com

Glaube an dich und werde reich: Die Fortsetzung des Bestsellers "Denke nach und werde reich" (German Edition)

Napoleon Hill

https://ebookmass.com/product/glaube-an-dich-und-werde-reich-diefortsetzung-des-bestsellers-denke-nach-und-werde-reich-german-editionnapoleon-hill/ ebookmass.com

SCOTUS 2020: Major Decisions and Developments of the U.S. Supreme Court 1st ed. Edition Morgan Marietta

https://ebookmass.com/product/scotus-2020-major-decisions-anddevelopments-of-the-u-s-supreme-court-1st-ed-edition-morgan-marietta/

ebookmass.com

Cursed Fae (Fae War Chronicles Book 2) Jessica Wayne

https://ebookmass.com/product/cursed-fae-fae-war-chroniclesbook-2-jessica-wayne/

ebookmass.com

https://ebookmass.com/product/core-java-vol-ii-advanced-feature-12thedition-cay-s-horstmann/

ebookmass.com

TRANSPORTANDSURFACE PHENOMENA

FromtheCzechoriginaltranslatedby J.J.ULBRECHT

TRANSPORTANDSURFACE PHENOMENA

KAMILWICHTERLE MAREKVEČEŘ

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-818994-8

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: AnnekaHess

EditorialProjectManager: SaraValentino

ProductionProjectManager: R.VijayBharath

CoverDesigner: MarkRogers

TypesetbySPiGlobal,India

Foreword

Thethreebasicengineeringtasks

Thefundamentaltaskofanengineeringassignmentistofindqualitativelypossiblesolutionstoagivenproblemandtoanswerthequantitative questionaboutitstechnicalfeasibilityandeconomicadvantage.

Thequalitativesolutionusuallyleansonthesearchofthescientific,commercial,andpatentliteraturebut,inthefirstplace,onone’sownexperience combinedwithone’sowncapabilityofcombinationsandfantasy.

Whenaquantitativesolutionisrequiredthentheengineerisaskedto applythethreebasicengineeringtasks,oftenusingsimple,butmoreoften sophisticatedmathematicalmethods.

Thefirsttask isbasedonsimple,andinthesimplifiedworldofreallife, undisputedprinciplesof naturalsciences,suchasthelawofconservation ofmass,thelawofconservationofvariouskindsofenergy,andthestoichiometriclawsofchemistry;alsoincludedaresimplerulesfortheconversionof quantitiessuchasthemassandvolumes.Usingtheserulesonecanreliably perform massandenergybalances ofaparticularprocess.

Thesecondtask followsaquestionhowfarcanacertainprocessproceed,orunderwhatcircumstanceswilltheprocesschangequalitatively.In thiscase,onecanmakeuseofknown processequilibrium.Thequantities thatenterintothecalculationsherearemorecomplexparametersfromthe domainof statics and thermodynamics thatcanhavetheformofconstants,functions,orcomplexmathematicalobjects,thevaluesofwhichmust bedeterminedexperimentally.Alternatively,thevaluesofsome(suchasthe meltingpoints,vaportensions,solubilities,interfacialtensions,andbonding enthalpies)canbefoundwithsufficientaccuracyinatabularforminthe appropriateliterature.Insomecases,onecanuserelativelyreliableformulas fortheestimationofthesequantitiesintowhichoneneedstosubstitute quantitiesthatareeasiertoobtain.

Thethirdtask dealswiththe kinetics ofaprocess,i.e.,whatisitsrate. Inthecaseofchemicalandphysicalprocessesthatproceedoutsidetheequilibrium,therateisdeterminedbythesetofdrivingforcesopposedbyasetof resistancesthatactagainsttheequalizationofthepropertiesindifferentparts ofthesystem.Thethreemostsignificantresistancesarethosethatopposethe transferofmomentum, thetransferofheat,and thetransferofmass. Theseresistanceshave,toacertaindegree,alinearcharactersoitis

advantageoustostudythemtogetherunderacommontitleof transport phenomena.Aseparatetaskisthestudyofthe chemicalkinetics that, asarule,isnotlinearand,therefore,mustbestudiedindependently.

Transportphenomena:Thecontinuum andtheinterfaces

Underordinarycircumstancesweperceivethroughoursensesanymassas beinga continuum orasasetofcontinuaseparatedbysimple geometrical interfaces.Inreality(unlessonewantstoimmersedeeperintonuclear physics),themassisratherasetofmovingparticles(vibrating,sometimes rotating,andevenmutuallyexchangingtheirpositions).Despiteofthat, itisusefultoconsideralargesetofparticles(betheymolecules, nanoparticles,orevenparticlesvisiblebybareeye)tobeacontinuumto whichonecanassign averagedquantities toeverypointofthesystem. Intensivequantities areratiosofdirectlymeasurableextensivequantities (e.g.,thedensityistheratioofmassandvolumeatagivenpoint).

Amongthe statisticallyaveragedquantities,thelocalvelocityisthe statisticalaverageofparticlepathscuttingtheimaginaryplaneinthevicinity ofthepointinquestionperunitoftime)orthetemperature(expressing meanenergyoftheoscillatingmolecules).

Todescribesuchanapproach,the classicalphysics developedmathematicaltools;theanalysisofcontinuousfunctions(Newton,Leibnitz)lead tousual differentialandintegralcalculus

Theequilibriumstates inhomogeneousphasesarecharacterizedbyinvariabilityofquantitiesthatcanbecalledthe measuresofequilibrium,forexample,thetemperature.Whenthetemperatureisconstant,thereisnolocalheat transport,whentheconcentration(activities,fugacities)areconstant,thereis nomasstransport,etc.Thedisciplineofphysicsthatdealswiththeusualequilibriumprocessesiscalledstatics;inphysicalchemistryitiscalledthermodynamics.

Whenthesystemis notinequilibrium thenthevariabilityofthose quantitiesthatmeasuretheequilibriumleadtopositionchanging, regrouping,andtransformationsofbothmassandenergy.Toevaluate theratewithwhichthesystemmovestowardtheequilibrium,theso-called transportprocesses,itisusefultointroducequantitiesthatcharacterizethe basictransportphenomena: momentumtransfer,heattransfer,and masstransfer.Therelevanttransfercoefficientsare viscosity,thermal conductivity,anddiffusivity.

Inthepast,theindividualphenomenawerestudiedinseparatescientific disciplines,suchasthefluidmechanics,hydrodynamics,andthescience ofheatandmasstransfer.Later,itturnedout,howeverthatthesethree processesareanalogousandthattheycanbetreatedwiththesame mathematicaltools.

Asarule,theindividualstepsofanengineeringsolutionusuallyareas follows:

•Thedefinitionofaspatialandtemporalregioninwhichtheprocessin questiontakesplace.

•Theapplicationofamathematicalmodeltothetransportinquestion includingboundaryandinitialconditions.

•Ananalysisofpossiblesolutionsofthemodel,firstinasimplifiedform.

•Theevaluationofallpossiblesolutions,insimplecases,iscarriedout.

•Thepresentationoftheresultsinausefulform.

Thetransportacrossaphaseboundaryisaspecialcase.Thedifference betweenthetransportcoefficientsindifferentmediumsresultsinadiscontinuitythatmodifiesvelocityfields,velocitygradients,temperaturegradients,concentrationgradients,etc.Theopposinglimitsatthephase boundaryareusuallyrelatedbyasimplemathematicalformulathatisfortunatelynotmodifiedbythetransportitself.Therefore,thecommonrulesof physicsandphysicalchemistrydescribingtheequilibriumsatphaseboundaryremainvalid.Thus,theknowledgeofsurfacephenomenaisessentialfor thestudyofcomplextransportphenomena.

Thehistoryofthisdiscipline

Aperfunctoryopeningofanymonographtitled“TransportPhenomena”(possiblyexpandedin“Transportofmomentum,heat,andmass”) mightleadthereadertoerroneousconclusions.Thosewhoarenottoofond ofmathematicsarefrightenedbythemassofformulasandrelationshipsfrom thedomainofdifferentialequationsandthosefromthevectorcount.Onthe otherhand,mathematicalgeeksseeafascinatingplayingfield.

Thisshouldnotbeverysurprisingsincethisdisciplinegrewoutofthe workofsuch physicists (Newton,Bernoulli,Euler,Cauchy,Stokes,and others)whoareknownbytheirdiscoveriesinmathematicsneededforsolutionstospecificphysicalproblems.Itisevenpossibletoclaimwithacertain degreeofexaggerationthat mathematics initstimeoweditsprogress moretothestudyoftransportphenomenathanthescienceoftransport

phenomenatomathematics.Uptotheendofthe19thcentury,thesedisciplinesformedrelativelyspecialandnottooemphasizedpartofphysics.

Nextcametheperiodcharacterizedbytheprogressinshiptransportation,upswingofaviation,steamenergygeneration,andchemicalengineering,whenthisdisciplinebecomesthesubjectofinterestofexperimentalists andmathematicallytrainedengineerssuchasNusselt,Kirchhoff,Reynolds, Grashof,Zhoukovsky,Prandtl,Karman,Luikov,Kolmogoroff,andothers.

In1956,ProfessorHansKramersfromtheTechnicalUniversity,Delft (TheNetherlands)forthefirsttimeconnectedandorganizedtheexisting knowledgeaboutthetransportsofmomentum,heat,andmassinaseries oflectures“FysischeTransportverschijnselen”sothatmethodshithertoused onlyinparticularcasescouldnowbeusedgenerally.Thisideawasfurther expandedbyhisdiscipleR.B.Bird,laterprofessorofchemicalengineering attheUniversityofWisconsin,USA,andhiscolleaguesProfessorsW.E. StewartandE.N.Lightfootintheseminalmonograph“TransportPhenomena”publishedin1960.

Inthenexttwodecades,thedisciplinebecameadomainof theoreticians fromuniversitieswhograduallyfilledanyremaininggapsinalready solvedtasks.Inmostcases,theseweretheoreticalcomputationalworkseven thoughsomeofthemwerejustinsignificantproblems.Still,theappearance ofnewadvancedexperimentalmethodsmadeitpossibletocarryoutaseries ofnewmeasurementtechniques.Theinclusionoftransportphenomena coursesinengineeringcurriculaatuniversitiesbecamecommon.

Withtheexponentialgrowthoftheperformanceofthecomputational techniques,withtheexpansionofpersonalcomputers,andwiththeappearanceofuser-friendlysoftwarehasdiminishedthepressureonthe mathematical skillsofthesubmitter.Transportphenomenabecomeagainavailableto engineers andgenerallyforchemicalengineerswhoneedtounderstandthe processestakingplaceundermorecomplexconditionssincetheyhaveto designtheseprocesses.Thetemptingavailabilityofready-madesolutions shouldnot,however,distractfromasensibledefinitionoftheproblemand fromtherationalspecificationofthemaingoalofthecalculations.

Thestructureofthisbook

ThisbookoriginatedfromthelecturesgivenattheTechnicalUniversityOstrava(CzechRepublic)in1995forgraduatestudentsofchemical engineering.Thelectureswerealsoattendedbygraduatestudentsof

materialengineering,environmentalengineering,safetyengineering,and nanotechnology.Therefore,thebookisdividedintothreeparts:

Inthefirstpartnamed“FundamentalsofTransportPhenomena”the focusisongeometricallysimplesetupsinwhichthetransportoccurs.Some morecommonproblemsthatareoftenencounteredbyphysicalchemists, materialengineersandtechnologists(metallurgists,plasticsengineers, ceramicists,foodprocessingengineers,etc.)areexpanded.Toalargeextent, thispartisonlyqualitativebutitdefinescertainfundamentalconceptsofthis disciplinethatarelaterusedinmorecomplexsituations.

Thesecondpartnamed“BalancesofTransportPhenomena”isintended forpracticinghydrodynamicists,heattechnologists,andgenerallytochemicalengineerswhoneedtounderstandtheprocessesundermorecomplex conditionsanddesignsuchprocesses.Thesolutiontothesetasksusually requiresmorecomplexmathematicalapparatus.Therefore,itisthebasic priorityofthisworktogetthestudentformulateaspecifictasktosuch anextentthattheactualsolutioncanbeperformedwiththehelpofthecomputationalmethodsbyaspecialistwhodoesnotneedtoknowmuchabout thephysicalnatureoftheproblem.Acompletesolutionusuallyleadstothe descriptionofthevelocity,temperature,orconcentrationfieldsbutthe engineerneedstoobtainoutoftheseonlyrelativelysimpleresults,forexample,onlysomelocalvaluesorthosesuitablyaveraged.Thefinalaimisthusis tosuitablyspecifythetaskandsuitablyinterprettheresults.

Thethirdparttermed“MathematicalMethodsforSolvingtheTransports”conciselyelucidatesthemathematicalmeansusedtosolvethetransports:vectorandtensorcountandtheselectedapproachestosolvingpartial andordinarydifferentialequationsthatdonotbelongtothecommon widelytrainedgearofcollegestudentsoftechnicalandsciencefaculties.

Theaimofthistextwasnotthecreationofanencyclopedictreatmentof thesubjectneithertostaywithasimplemanualforthesolutionofafew standardtasks.Theaimistodemonstratehowthenecessaryconceptsand methodsofthedisciplinewerecreatedandtoshowwhataretheyuseful for.Thestudentshouldbecomecompetentinunderstandingoriginalworks dealingwiththetransferofmomentum,heat,andmassandorienthim/herselfinnumerousmonographsthatsystematicallydealwiththesubjectinvariousdepthsandextentandwithmiscellaneousorientationandapplication.

Forthepriceofacertaininconsistencyitwillbeattemptednottooverwhelmthestudentwithanexcessofformalisms.Rightfromthebeginning thetextissandwichedbetweennotesreferringtopracticalproblemsin whichthediscussedtheoreticalconceptsareapplied.

Otherbooks

VandenAkker,H.,Mudde,R.F.,2014.TransportPhenomena—TheArtofBalancing, firsted.DelftAcademicPress/VSSD,Delft,TheNetherlands.

Asano,K.,2006.MassTransfer:FromFundamentalstoModernIndustrialApplications. Weinheim,WileyVCH,Germany.

Astarita,G.,Ocone,R.,2002.SpecialTopicsinTransportPhenomena.Elsevier,Amsterdam,NewYork,UnitedStates.

Baukal,C.E.,2000.HeatTransferinIndustrialCombustion.CRCPress,BocaRaton, UnitedStates.

Beek,W.J.,Muttzall,K.M.K.,VanHeuven,J.W.,1999.TransportPhenomena,seconded. JohnWiley&Sons,Inc.,NewYork,UnitedStates.

Belfiore,L.A.,2003.TransportPhenomenaforChemicalReactorDesign.J.Wiley,New York,UnitedStates.

Bennett,C.O.,Meyers,J.O.,1982.Momentum,HeatandMassTransfer,McGraw-Hill Collegesubsequented.NewYork,UnitedStates.

Bergman,T.L.,2011.IntroductiontoHeatTransfer.JohnWiley&Sons,Inc.,Hoboken, NJ,UnitedStates.

Bird,R.B.,Stewart,W.E.,Lightfoot,E.N.,2006.TransportPhenomena,revisedseconded. JohnWiley&SonsInc.,NewYork,UnitedStates.

Bird,R.B.,Stewart,W.E.,Lightfoot,E.N.,Klingenberg,D.,2015.IntroductoryTransport Phenomena.JohnWiley&SonsInc.,NewYork,UnitedStates.

Brodkey,R.S.,Hershey,H.C.,2003.TransportPhenomena:AUnifiedApproach.Brodkey Publishing,Columbus,UnitedStates.

Carslaw,H.S.,Jaeger,J.C.,1959.ConductionofHeatinSolids.ClarendonPress, Oxford,UK.

C¸engel,Y.A.,Ghajar,A.J.,2015.HeatandMassTransfer:Fundamentals&Applications. McGraw-Hill,NewYork,UnitedStates.

Cussler,E.L.,2009.Diffusion:MassTransferinFluidSystems.CambridgeUniversityPress, Cambridge,NewYork,UnitedStates.

Das,M.K.,Mukherjee,P.P.,Muralidhar,K.,2018.ModelingTransportPhenomenain PorousMediaWithApplications.SpringerInternationalPublishing.

Deen,W.M.,1998.AnalysisofTransportPhenomena.OxfordUniversityPress,Oxford, England,UK.

Faghri,A.,Zhang,Y.,2006.TransportPhenomenainMultiphaseSystems.Elsevier,New York,UnitedStates.

Farmer,R.C.,Pike,R.W.,Cheng,G.C.,Chen,Y.-S.,2009.ComputationalTransportPhenomenaforEngineeringAnalyses,firsted.CRCPress,NewYork,UnitedStates. Fournier,R.L.,2017.BasicTransportPhenomenainBiomedicalEngineering,fourthed. CRCPress,BocaRaton,UnitedStates.

Geankoplis,CH.J.,1993.TransportProcessesandUnitOperations,thirded.PTRPrenticeHall,Inc.,ASimon&SchusterCompany,EnglewoodCliffs,NewJersey,UnitedStates.

Geankoplis,CH.J.,Hersel,A.A.,Lepek,D.H.,2018.TransportProcessesandSeparation ProcessPrinciples,fifthed.PrenticeHallInternationalSeries,NewJersey,UnitedStates. Geiger,G.H.,Poirier,D.R.,1973.TransportPhenomenainMetallurgy,firsted.AddisonWesley,Reading,UnitedStates.

Greenkorn,R.,1999.Momentum,Heat,andMassTransferFundamentals,firsted.CRC Press,NewYork,UnitedStates.

Griskey,R.,2006.TransportPhenomenaandUnitOperations.ACombinedApproach. JohnWiley&SonsInc.,NewYork,UnitedStates.

Hanjalic,K.,Kenjeres,S.,Tummers,M.J.,Jonker,H.J.J.,2009.AnalysisandModellingof PhysicalTransportPhenomena.VSSD,Delft,TheNetherlands.

Hauke,G.,2008.AnIntroductiontoFluidMechanicsandTransportPhenomena.Springer, Netherlands.

Incropera,F.P.,2007.FundamentalsofHeatandMassTransfer/FrankP.Incropera [etal.],JohnWiley,Hoboken,NJ,UnitedStates.

Jakobsen,H.A.,2014.ChemicalReactorModeling:MultiphaseReactiveflows.Springer, Berlin,Germany.

Jiji,L.M.,2009.HeatConvection.Springer-Verlag,Berlin,Heidelberg,Germany.

Jiji,L.M.,2009.HeatConduction.Springer-Verlag,Berlin,London,Germany.

Kou,S.,1996.TransportPhenomenainMaterialsProcessing.JohnWiley&SonsInc., NewYork,UnitedStates.

Leal,G.L.,2007.AdvancedTransportPhenomena,FluidMechanicsandConvective TransportProcesses.CambridgeUniversityPress,Cambridge,England,UK. Levenspiel,O.,2014.EngineeringFlowandHeatExchange.Springer,NewYork.

Lue,L.,2014.Momentum,Heat,andMassTransfer.Bookboon(Bookboon.COM).

Mashelkar,R.A.,1989.TransportPhenomenainPolymericSystems,vol.2.Balaji International,India.

McComb,W.D.,1990.ThePhysicsofFluidTurbulence.OxfordUniversityPress, NewYork,UnitedStates.

Plawsky,J.,2014.TransportPhenomenaFundamentals,thirded.CRCPress,NewYork, UnitedStates.

Poirier,D.R.,Geiger,G.H.,2016.TransportPhenomenainMaterialsProcessing.Springer InternationalPublishers,Switzerland.

Suryavanshi,B.M.,Dongre,L.R.,2006.TransportPhenomenaforChemical,Petrochemical andPolymerEngineering.NiraliPrakashan,Puna,India.

Ramachandran,P.A.,2014.AdvancedTransportPhenomena:Analysis,Modeling,and Computations,firsted.CambridgeUniversityPress,Cambridge,England,UK.

Rebay,M.,Kakac ¸,S.,Cotta,R.M.,2016.MicroscaleandNanoscaleHeatTransfer:Analysis, DesignandApplication.CRCPress,BocaRaton,FL,UnitedStates.

Rohsenow,W.M.,Choi,H.Y.,1961.Heat,Mass,andMomentumTransfer.Prentice-Hall, EnglewoodCliffs,NewJersey,UnitedStates.

Rorrer,G.L.,Foster,D.G.,Welty,J.,2014.FundamentalsofMomentum,Heat,andMass Transfer,revisedsixthed.JohnWiley&SonsInc.,NewYork,UnitedStates.

Ruocco,G.,2018.IntroductiontoTransportPhenomenaModeling.SpringerInternational Publishing.

Saatdjian,E.,2000.TransportPhenomena:EquationsandNumericalSolutions.JohnWiley &SonsInc.,NewYork,UnitedStates.

Sa ´ ez,A.E.,Baygents,J.C.,2014.EnvironmentalTransportPhenomena,firsted.CRCPress, BocaRaton,UnitedStates.

Sharma,K.R.,2010.TransportPhenomenainBiomedicalEngineering:ArtificialOrgan DesignandDevelopmentandTissueEngineering.McGraw-Hill,NewYork,United States.

Slattery,J.C.,1972.Momentum,EnergyandMassTransferinContinua.McGrawHillBook Co.,NewYork,UnitedStates.

Soto,R.,2016.KineticTheoryandTransportPhenomena.OxfordUniversityPress, Oxford,England,UK.

Thomas,W.J.,2000.IntroductiontoTransportPhenomena.PrenticeHall,UpperSaddle River,NewJersey,UnitedStates.

Tosun,I.,2007.ModelinginTransportPhenomena:AConceptualApproach,seconded. Elsevier,Amsterdam,TheNetherlands.

Truskey,G.,Yuan,F.,Katz,D.,2007.TransportPhenomenainBiologicalSystems: Internationaledition.Pearson,London,England,UK.

Venerus,D.C., Ottinger,H.Ch.,2018.AModernCourseinTransportPhenomena. CambridgeUniversityPress,Cambridge,England,UK.

Welty,J.R.,Wicks,Ch.E.,Wilson,R.E.,1976.FundamentalsofMomentum,Heat,and MassTransfer,seconded.JohnWiley&Son,NewYork,UnitedStates.

Welty,J.R.,Rorrer,G.L.,Foster,D.G.,2014.FundamentalsofMomentum,Heat,andMass Transfer,revisedsixthed.JohnWiley&Sons,NewYork,UnitedStates.

Yang,W.-J.,Mochizuki,S.,Nishiwaki,N.,1994.TransportPhenomenainManufacturing andMaterialsProcessing,aVolumeinTransportProcessesinEngineering.Elsevier Science.Amsterdam,TheNetherlands.

Acknowledgments

WewishtothankJ.J.Ulbrechtwho,55yearsagolenthisstudent,Kamil Wichterle,hiscopyofBird-Stewart-Lightfoot’s TransportPhenomena.At theageof90,professorUlbrechtofferedtotranslateourlecturenotesfrom CzechtoEnglishandhesucceededtocompletetheprojectwithin1year.

Definitionsofunidirectional steadytransport

Thesimplestcasesoftransportsaredemonstratedinthoughtexperiments whenthereisonlyoneimbalancemanifesteditselfbychangesinonly onepropertyinonedirection.Thenacoordinatesystemcanbesetupin suchawaythattheequilibriummeasureshaveaconstantvaluein x0 and x1 planes,whichisshownschematicallyin Fig.1.1A.ThenaCartesiancoordinatesystem x,y,z canbesetuptocarryoutthetransportonlyinthe z directionbetween x0 and x1 throughthearea ΔS ¼ Δy Δz.Forthetime being,letusignorethewaythisstatushasbeenreachedandmaintained andwhatisgoingonoutsidethesystemjustdefined.

Dailyexperienceshowsthat,atleastforsometransports,itispossibleto finda linearrelationship betweenthe intensityofthetransfer (i.e.,the transferthroughaunitareaoveraunitoftime)andthe drivingforce (i.e., thedifferencebetweenthemeasuresofaparticularbalance).Thiscanbefirst demonstratedforthetransferofheatenergy.

1.1Steadyunidirectionaltransportofheat byconduction

Inthecaseshownin Fig.1.1A,therewillbetwoconstant,timely invariabletemperatures T0 and T1 intheplanes x < x0 and x > x1.Thehistoryofhowthisstatewasarrivedataswellaswhatisgoingonat x > x0 and

Fig.1.1 Transportphenomena:(A)heat,(B)mass,(C)momentum.

x < x1 willbeignored.Shouldthetemperatures T0 and T1 bearebothdifferentthenenergytransportintheformof heat Q (theunitbeingJouleJ) willoccuratarate(heattransport) dQ/dt (theunitbeingJ/s,i.e.,Watt,W).

Itisobviousthatthistransportwillbedirectlyproportionaltothesizeofthe area ΔS.Itisthereforeusefultointroduceaquantity q bythedefinition

where q istheheattransportedthroughaunitareaduringaunittime [J/(m2s),i.e.,W/m2]calledthe intensityoftheheatflow,alternatively the densityoftheheatflow.Theintensityoftheheatflowdependson the drivingforce (T0 T1).Thereareseveralmechanismsbywhichthe heatcanbetransported.Inthecaseofsmalltemperaturedifferencesina stationarymatter,thekeymechanismisthe conductionofheat,where q isdirectlyproportionaltothedrivingforceandindirectlyproportional tothe thickness ofthematerial h (x1 x0),thus

wheretheconstant k definedbythisrelationisoneofthe materialconstants thatdependsonlyonthematerialproperties,i.e.,onthe composition andthe structure ofthematerialaswellasonthe physicochemical stateofaggregation ofthematter.Thismaterialconstantthatiscalled thermalconductivity hasthedimensionofW/(mK).The relation (1.2) canbeexpressedalsoinadifferentialformas

knownasthe Fourierlaw ofunidirectionalthermalconductivity.The minussignindicatesthattheheatmovesfromwarmerplanetocoolerone.

1.2Steadyunidirectionaltransferofmassbydiffusion

Ananalogoussituationisshownin Fig.1.1Bwherethecontrolareas arekeptatdifferent concentrations.Also,forthiscase,alinearrelationship canbeformulatedbetweenthe intensity (density)ofthetransfer(i.e.,the flowthroughaunitofareaoveraunitoftime)anda drivingforce (i.e.,the differencebetweenthemeasuresofaparticularbalance).

Severaldifferentunitscanbeusedtoexpressthetransferofmass(material orvolume).Inthesimplestcase,materialunitscanbeusedtoexpressthe transferofmaterial A.Ifthe materialamount isdenotedas N (thebasic unitis1mol)thenthematerialflow(rate)is dN/dt (theunitbeingmol/s).

Thenthe intensityofthematerialflow [measuredinmol/(m2s)]is expressedas

whichisdirectlyproportionaltothedrivingforcethat,inthiscase,willbe the concentrationdifference (C0 C1)(measuredinmol/m3).Itisobviousthattheflowofthematerialwillbeindirectlyproportionaltothe thickness ofthelayer h.Theconstantofproportionality D knownasthe diffusivity isamaterialconstant,thedimensionofwhichism2/s.

Itwouldbemorecorrecttouseactivitiesratherthanconcentrationsbut, inmostpracticalsituations,activitiesarealmostequaltoconcentrations.Partialpressures(orratherfugacities)aremoresuitableformasstransferingases then,however,stateequationsoughttobeemployedtocalculatethedriving force.Similarly,ifitismoreusefultoexpresstheintensityofflowinother quantitiesthanarethemassamounts,thentherelevantcorrelationsaretobe usedtoobtainthemassfloworthetransferofvolumes.Forthese recalculations,thefundamentalequationsintermsofmassconcentrations andflowshavetobeused.

The diffusioncoefficient isamorecomplexmaterialconstantsinceit dependsonthepropertiesofbothcomponents,thatis,the diffunding molecule aswellasthe medium inwhichthemoleculemoves.Byanalogy withtheconductionofheat,thedefiningrelationshipfortheunidirectional diffusioncanbeexpressedas

whichisknownas Fick’slaw.

1.3Steadyunidirectionaltransferofmomentum byviscousfrictioninfluids

Somewhatmorecomplexisthesituationdepictedin Fig.1.1Cina layeroffluid.Inthiscase,therearedifferenttangentialvelocitiesonthe twoboundaries uy inthe y direction.Thisconfigurationiscalledthesimple tangentialflowandthetransferofmomentumismediatedbyatangential force Fxy thathasatendencytospeeduptheslowerlayerwhileslowing upthefasterone.Accordingtothesecondlawofmotion,thechangeof momentumwillbe

Itisamatterofconvention,whichofthetwoactionswillbetakenasthe positiveone.Intheclassicalmechanics,thetraction(thepull)ischosenas thepositiveforcesothatthe intensityofthemomentumtransfer isequalto

Thus,thetransferofmomentumisthenegativevalueoftheforceactingona unitofarea,theso-called tangentialtension τyx,theunitofwhichisthe sameastheunitofpressure,whichisN/m2 orPa.ItwasNewtonwhofor thefirsttimeexpressedaconjecturethatthereisaproportionality

Thisrelationshipknownas Newton’slawofviscosity definesamaterial constant μ,theunitofwhichisPasorkg/ms,whichiscalledthe dynamic viscosity.Theterm(duy/dx)iscalled shearrate orthe rateofdeformation.Theoftenusedterm“velocitygradient”shouldbeavoidedbecause theshearvelocityissameasthevelocitygradientonlyinthesimplestconstellations(asexplainedin Chapter8).

1.4Similaritiesanddifferences

1.4.1Commonfeaturesofsometransportphenomena

Itwasshownthatthemathematicalmodelsoftheunidirectionaltransports ofheat,mass,andmomentumaresimilar.Thereasonforthissimilarityis thatthemotionofmoleculesplaysakeyroleinthesetransportsasshown inthe Chapter2.Eveninrathercomplexcasesinwhichmorecomplicated mathematicaltoolshavetobeused,somesimilaritiesdoexist.Solutions developedforoneofthesetransportscanbeusuallyusedfortheotherones.

1.4.2Othertransportphenomena

Othertransportphenomena,takingplaceoveraperiodoftime,areencounteredbothinthenatureaswellasinengineeringpractice.Letusmentionin thefirstplacethe transferofpressure.Thistransfertakesplaceatthespeed ofsoundsoitis,withtheexceptionofacousticandshockwaves,rarelyperceivable.Evenfasteristhe transferofenergybyradiation thattakesplace atthespeedoflight.Radiationtransportdoesnotneedthepresenceofmoleculessoittakesplaceeveninvacuum.Laterinthisbook,the radiationof heat isbrieflytreatedbecauseitmightbecomecomparablewithheat conduction.

Therearealargenumberofphenomenaduetothe transferofan electriccharge.Thistransferisrealizedeitherbythemotionofelectrons thathavenegligibleinertialmasssotheycanbeputtomotioninelectric conductorsatainfinitesimallyshorttimeorbysignificantlyslowermotion ofionsinelectrolytesthatiscomparabletodiffusion.Theirmotion(electric currentduetothedifferenceinelectricpotentials)islimitedbytheimpedanceofthemediumthatismadeofelectricresistanceand,inparticularat thetransitionbetweenconductorsandelectrolytes,byinductanceand capacity.

1.5Summary

Thischapterdealswiththreetransferphenomena:momentum,heat, andmass.Thesetransfersarecharacterizedbytransfercoefficientsthatdeterminetherelationshipbetweentheflowandthedrivingforce.Thesetransfer coefficientsaredynamicviscosity,thermalconductivity,anddiffusivity, respectively.Thetransfercoefficientsarematerialconstantsinthatthey dependonlyonthenatureofthemedia,whichisviewedasacontinuum.

Inunidirectionaltransfersitholdsthat

Flow ¼ transfercoefficient drivingforce:

Table1.1 summarizestheindividualcases.

Table1.1 Transportanddrivingforce.

PhenomenaFlow Transfer coefficientDrivingforce

Momentum transfer Tangentialstress Tensor (Tangentialforceon unitarea) τ [Pa]

HeattransferIntensityofheatflow

Dynamicviscosity

Scalar μ [Pas]

Vector q [W] Thermal conductivity

MasstransferIntensityofmassflow

Vector n [mol/(m2 s)]

Scalar k [W/mK]

Diffusivity

Scalar D [m2/s]

Shearrate Tensor γ (—u+u—)[s 1] (Equaltothe velocitygradient γ —u [s 1]onlyin thesimplestcase!)

Temperature gradient Vector —T [K/m]

Concentration gradient vector —C [mol/m4]

Transportphenomenainterms ofmassstructure

Thehypothesisthatmassisnotcontinuous,intuitivelyfeltforalongtime, wasconfirmedaroundtheyear1800.Itwaschemistrythatprovedthatthe smallestmoleculeswereoftheorderof0.1nm,thatis10 10 m.Thedualistic approachofseeingthemass,bothasaparticulatematterwhenworking withreactingmoleculesaswellasacontinuum,whenconsideringvolumes orconcentrations,isquitecommoninchemistrytoconsternationofphilosophers.Inessence,theapproachchosendependsonthescaleofconsideration.Thetransitionbetweentheparticulateapproachandthecontinuous oneisintheregionof10–100nm.Thehypothesisaboutthecontinuityof massinanobjectcanbeappliedwithoutanydetrimenttotheaccuracyifthe numberofparticlesintheobjectisverylarge.

Findingtherelationshipbetweenthestructureofmassandthetransport coefficientsisalsothesubjectofphysicalchemistry.Thevaluesofviscosity, thermalconductivity,anddiffusivityingasescomposedofsimplemolecules canbedeterminedusingthemolecularkinetictheoryofgases.Here,the determiningquantitiesarestatisticalvariablessuchasthemeanfreepath ofmoleculesandtheirspeedthatdependontemperature,pressure,and themolarmassinaknownway.Furtherdetailscanbelearnedfromstandard textbooksofphysicalchemistry.

Thismatterissomewhatmorecomplexinthecaseofliquidsandsolids. However,eveninthecaseofsubstantiallylargermacromolecularmaterials andcolloidsinwhichtheparticlesizeisoftheorderoftensorevenhundreds nanometers,dependencecanbefoundonthestructureandonthestatevariables.Theinterparticleattractivitymayevenincludetheelectrostaticforces. Alternatively,evenlargervolumesofmicrometricorcoarsesuspensionsand emulsionscanbecharacterizedasmultiphaseorquasi-continuoussystems. Inthesesystems,viscosity,thermalconductivity,anddiffusivitycanbeat leastestimatedwhilestudyingthetransferofmomentum,heat,andmass. Inversely,conclusionscanbemadeaboutthestructureandtheconstellation ofparticlesinamasssamplefromexperimentallyobtainedtransfer coefficients.

Thusphysicalchemistryprovidestheknowledgeof •howtoevaluatethetransfercoefficientsfromsimplemeasurements, •howthetransfercoefficientsdependonthestatevariables,

•howthetransfercoefficientsdependonthestructureofmass, •whatcanbelearnedfromthetransportprocesses,and •howtomodifythetransfercoefficientsinmaterials.

2.1Moleculartheoryoftransportphenomenaingases

Letusoutlineheresomeofthekeythesesofthemoleculartheoryof gaseswithoutgoingintotheirderivationandletusseewhattheyhaveto offertothestudyoftransportphenomena.

Moredetailscanbefound,e.g.,inMoore’stextbook(Moore,1999).

2.1.1Meanvelocityofrandommotionandthetemperature

Accordingtothemolecularkinetictheory,thegasmoleculesnotonlydisplayastatisticallyaveragedmotionthat,inacontinuum,presentsitselfasa flow butalsoanoutwardlyunobservable motion thatisdimensionally random.Inacontinuum,thismotionismanifestedasthe temperature.The energyofthismotionforsmallmoleculesisderivedmainlyfromthespeedof translationsinalldirectionscharacterizedbytheaveragemeanabsolute velocityoftherandommotion c.Itsrelationshiptothetemperature canbeexpressedby

Symbol“ ”denotesadirectproportionalitythatcouldbereplacedbyanoperator “ ¼K ,”wherethedimensionlesscoefficientofproportionalityKisclosetoone. Whenusingthesimplesttheoryonearrivesat K 1.6.

Atroomtemperature,thehighestknownvalueofcis1700m/sforhydrogenfor whichM ¼ 2.Itbecomessmallerforheaviermolecules,forexample,forthequicksilver vapors(M ¼ 200.6)thecisonly170m/s.

Inthecaseoflargermolecules,itisalsonecessarytoconsidertherotationalmotionofthemolecules,inclusiveofinteratomicvibrations.Should theabsolutevalueof c droptozero,thentheabsolutetemperatureisalsozero andnolowertemperaturecanexist.

2.1.2Pressure

Theresultingforceonaunitareaofalimitingwall,i.e.,the pressure isobtainedbytheintegrationofth emomentumofthevibratingmoleculesweighedwiththefrequencyoftheirimpactsontheunitareaof thewall

Itfollowsfromtherethat

Sothatitisapparentthattherelationshipbetweenthemeanvelocityofthe randomtranslationandthetemperatureisinanagreementwiththestate equationofidealgases.

2.1.3Thefreepathofmolecules

Theprobabilityofacollisionoftwomoleculesgrowswiththenumber n of moleculesinvolume V andwiththeircharacteristicdimension dM.Thereforetherelationshipofthemeanfreepath LM withthesequantitieswillbe givenby

sothatitisdirectlyproportionaltothevolumetakenbyonemoleculeand indirectlyproportionaltotheareaofitsprojectionontoaplane.Withthe useofthestateequationoftheidealgas,Eq. (2.4) becomes

Thevolumeofamoleculeoftheidealgasatroomtemperatureandpressurewillbe V =n ¼ 22 4 m 3=kmol = 6 022 1023 molecules=mol ¼ 37 2 nm 3

Takenthatthetypicalsizeofasmallmoleculeis0.4nm,itsfreepathwillbearound 50nm.

2.2Transportphenomenaingases

Themovingmolecules,whilecollidingwitheachother,equalize mutuallytheirmechanicalenergy,meaningthattheyevenouttheir respectivespeedsby momentumtransfer.Thusinacontinuum,this appearstobetheresultoftheactionof viscosity .Simultaneously,the intensityoftheirrandommotionsisbeingequalizedandthatresultsin equalizingtheir temperatures .Inacontinuum,thiswillbeseenas heat

transfer duetothe thermalconductivity.Finally,therandomlymovingmoleculeswillexchangetheirr espectiverandomposition,which meansthat,inamulticomponentsystem,thisleadstotheequalization oflocal concentrations.Onamacroscale,thismanifestsitselfasthe masstransfer dueto diffusivity

2.2.1Transportofmomentumingases

Letusconsideramass(ρLMS)closedbetweentwoplaneshavinganarea S separatedbyadistance LM.Anelementofthismasswillmovefromone planetotheotheronaverageintimeproportionaltotheratio(LM/c).If thedifferenceofthemeanvelocitiesofthesetwoplanesequalto(LM du/dy) thenthe intensityoftheflowofmomentum,thatisthemomentum transferredduringthetimeperiod(LM/c)bythearea S

Inacontinuum,theintensityoftheflowofmomentumisequaltothetangentialstress τ andtheratio

iscalledthe dynamicviscosity

Byapplyingthemodelofmomentumtransferbyoscillatingmolecules, weshallgetaproportionality

The kinematicviscosity definedas

isthemeasureoftheratewithwhichthespeedchangespropagateina continuum.

Byfurtherconsideration,itispossibletofindthecoefficientofproportionalitytobe

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.