TowardsSustainable ChemicalProcesses
Editedby JingzhengRen
TheHongKongPolytechnicUniversity, DepartmentofIndustrialandSystemsEngineering, CenterforSustainabilityScience,HongKong,China
YufeiWang
Associateprofessor,StateKeyLaboratoryofHeavyOilProcessing, ChinaUniversityofPetroleum,Beijing,China
ChangHe
SchoolofMaterialsScienceandEngineering, SunYat-senUniversity,Guangzhou,China
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
©2020ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-12-818376-2
ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: AnitaKoch
EditorialProjectManager: EmeraldLi
ProductionProjectManager: SruthiSatheesh
CoverDesigner: MatthewLimbert
TypesetbySPiGlobal,India
Contributors
MuhammadW.Ajiwibowo UniversitasIndonesia,Depok,Indonesia
HousseinAlMoussawi LebaneseInternationalUniversity,LIU,Beirut,Lebanon
MuhammadAziz InstituteofIndustrialScience,TheUniversityofTokyo,Tokyo,Japan
BeatrizA.Belmonte ResearchCenterfortheNaturalandAppliedSciences,Universityof SantoTomas,Manila,Philippines
MichaelFrancisD.Benjamin ResearchCenterfortheNaturalandAppliedSciences, UniversityofSantoTomas,Manila,Philippines
MauricioCamargo EquipedeRecherchedesProcessusInnovatifs,ERPI-ENSGSI, UniversitedeLorraine,Nancy,France
ArifDarmawan TokyoInstituteofTechnology,Tokyo,Japan
FaroukFardoun FacultyofTechnology,DepartmentGIM,LebaneseUniversity,Saida, Lebanon
XiaoFeng SchoolofChemicalEngineering&Technology,Xi’anJiaotongUniversity,Xi’an, People’sRepublicofChina
ChangHe SchoolofMaterialsScienceandEngineering,GuangdongEngineeringCentre forPetrochemicalEnergyConservation,SunYat-senUniversity,Guangzhou,People’s RepublicofChina
XiaopingJia SchoolofEnvironmentandSafetyEngineering,QingdaoUniversityof ScienceandTechnology,Qingdao,China
ZhiweiLi SchoolofChemicalandMetallurgicalEngineering,Universityofthe Witwatersrand,Johannesburg,SouthAfrica
BoLiu StateKeyLaboratoryofHeavyOilProcessing,ChinaUniversityofPetroleum, Beijing,People’sRepublicofChina
HasnaLouahlia NormandieUniv,UNICAN,LUSAC,SaintLo,France
JiazeMa StateKeyLaboratoryofHeavyOilProcessing,ChinaUniversityofPetroleum, Beijing,People’sRepublicofChina
LeiMa SchoolofChemicalEngineering,BeijingInstituteofPetrochemicalTechnology, Beijing,China
EliasMartinez-Hernandez BiomassConversionDepartment,TheMexicanInstituteof Petroleum,MexicoCity,Mexico
PauloCesarNarva ´ ezRinco ´ n DepartamentodeIngenierı´aQuı´micayAmbiental,Grupo deProcesosQuı´micosyBioquı´micos,FacultaddeIngenierı´a,UniversidadNacionalde ColombiaSedeBogota ´ ,Bogota ´ ,Colombia
KokSiewNg DepartmentofEngineeringScience,UniversityofOxford,Oxford,United Kingdom
A ´ lvaroOrjuela DepartamentodeIngenierı´aQuı´micayAmbiental,GrupodeProcesos Quı´micosyBioquı´micos,FacultaddeIngenierı´a,UniversidadNacionaldeColombia SedeBogota ´ ,Bogota ´ ,Colombia
LuisF.Razon ChemicalEngineeringDepartment,DeLaSalleUniversity,Manila, Philippines
JingzhengRen DepartmentofIndustrialandSystemsEngineering,TheHongKong PolytechnicUniversity,HongKongSAR,People’sRepublicofChina
JulianaSerna DepartamentodeIngenierı´aQuı´micayAmbiental,GrupodeProcesos Quı´micosyBioquı´micos,FacultaddeIngenierı´a,UniversidadNacionaldeColombia SedeBogota ´ ,Bogota ´ ,Colombia
RaymondR.Tan ChemicalEngineeringDepartment,DeLaSalleUniversity,Manila, Philippines
RuiqiWang StateKeyLaboratoryofHeavyOilProcessing,ChinaUniversityofPetroleum, Beijing,People’sRepublicofChina
YufeiWang StateKeyLaboratoryofHeavyOilProcessing,ChinaUniversityofPetroleum, Beijing,People’sRepublicofChina
YanWu StateKeyLaboratoryofHeavyOilProcessing,ChinaUniversityofPetroleum, Beijing,People’sRepublicofChina
MinboYang SchoolofChemicalEngineering&Technology,Xi’anJiaotongUniversity, Xi’an,People’sRepublicofChina
lvaroOrjuelaa, MauricioCamargob
a DEPARTAMENTODEINGENIERI AQUI MICAYAMBIENTAL,GRUPODEPROCESOSQUI MICOS YBIOQUI ´ MICOS,FACULTADDEINGENIERI ´ A,UNIVERSIDADNACIONALDECOLOMBIASEDE BOGOTA ´ ,BOGOTA ´ ,COLOMBIA b EQUIPEDERECHERCHEDESPROCESSUSINNOVATIFS, ERPI-ENSGSI,UNIVERSIT EDELORRAINE,NANCY,FRANCE
1Introduction
Nowadays,theimportanceofreachingsustainableproductionandconsumptionis broadlyandgloballyrecognized.ThisisreflectedintheUnitedNations’statementon theSustainableDevelopmentGoals(SDGs)fortheyear2030(2015a).Inviewofthis, theWorldBusinessCouncilforSustainableDevelopment(WBCSD)haspublishedaspecificroadmaptohelpthechemicalsectorundertakeactionstocontributetotheSDG agenda( WBCSD,2018).Manychemicalindustryorganizationshavealsomanifestedtheir activesupportforfulfillingtheSDGs.Forexample,theInternationalCouncilofChemical Associations(ICCA)haspresentedareportofeffortsbeingmadeintheirsectortoachieve theSDGs(ICCA,2017).Also,theEuropeanChemicalIndustryCouncil(CEFIC)haspublishedasustainabilityreportwithinitsnewframework,ChemistryCan,createdtoboost cooperationbetweenCEFICmemberstowardsustainabledevelopment(CEFIC,2017). Similarly,theAmericanChemicalSociety(ACS)haspublishedapolicystatementfocused onsustainability,recommendinggovernmentactionsthatcanpromotetheSDGs(ACS, 2017).Additionally,severalbigchemicalindustries,suchasDow,BASF,andAkzoNobel, havealignedtheirgoalstothispurpose(AxonandJames,2017).
Inspiteoftheawarenessthatactionsareneededforsustainabledevelopment,thereis stillalongwaytogotoachievetheSDGs(UnitedNations,2018).Consideringthechemical sector,amajorchallengetoincorporatingasustainabilityapproachintoproduct/process designisitsinherentcomplexity.Sustainabledesigninvolves:
• Amultidimensionalperspective,becausebydefinitionitincorporatesatleastthree dimensions:economic,environmental,andsocial.Thesedimensionsareusually referredtoasthetriplebottomline(TBL)(HackingandGuthrie,2008; Govindanetal.,
2013).Moreover,inrecentapproaches,additionaldimensions,includingpoliticaland technological,arealsotakenintoaccount(Bautistaetal.,2016).
• Amultiscaleview,becausedecisionsmadeatthemolecular,phenomenological, process,andsupplierchainscalesmayhaveeffectsattheecosystemandplanetscales (Martinez-Hernandez,2017; HanesandBakshi,2015).
• Amultiactorproblem,becausedecisionsmustbemadeconsideringdifferent stakeholderswithdiverseandevencontradictoryintereststhatmaybeaffectedor benefitedbytheproduct/processtobedevised(Azapagicetal.,2016).Stakeholdersto beconsideredincludeinvestors,organizations,governments,individuals, communities,andworkers.
Thecomplexnatureofsustainabilitymeansmoreeffortisrequiredforitsimplementation.Nevertheless,itisalsoanopportunityforbroadeningthescopeofchemicalengineeringdesignbeyondthechemicalplant.Sustainabilitycanbeevaluatedusing indicatorsrelatedtoeachdimension,andtheappropriateindicatorsmustbeselected accordingtothedesignstageunderevaluationandtheavailableinformation. AsustainabledesignmustconsidersimultaneouslyallTBLdimensionsthroughoutthe entiredesignprocess,i.e.,fromtheearlydesignstageswhentheproductisdevised,componentsareselectedand/orachemicalrouteisdefined,allthewaytotheproduction stagewhentheplantisinoperationandadministrativeandmanufacturingdecisions aremade.Thus,theimplementationofsustainabilityassessmentcanbemoredemanding duringtheearlydesignstageswheninformationisscarceandtheimpactofdecisionsis highanddifficulttocorrectatlaterstages(Sernaetal.,2016; Argotietal.,2019).Inthis context,appropriateassessmentmethodsforeachdimensionanddecision-makingtools involvingmultipleobjectivesareneeded.
Severalsustainabilityassessmentapproachesapplicabletoearlydesignstageshave beenproposed.Examplesaretheindicator-basedmethodologyproposedby Srinivasan andNhan(2008),theenvironmentalhazardindex(EHI)(CaveandEdwards,1997),and thewastereduction(WAR)algorithm( Youngetal.,2000),amongmanyothers.Thesocial dimensionisdifficulttoassessattheearlydesignstagesduetoalackofmodelsandinformation(Argotietal.,2019).Somemethodsapplyasurrogateapproachusingsafetyand healthindicators.Examplesofsafetyassessmentapproachesaretheinherentsafetyindex (ISIandISI2)(Aduetal.,2008)andtheprototypeinherentsafetyindex(PIIS)(Edwards andLawrence,1993).ExamplesofoccupationalhealthindicatorsaretheInherentOccupationalHealthIndex(HassimandEdwards,2006)andtheGloballyHarmonizedSystem ofClassificationandLabellingofChemicals(GHS).Thelatterisglobalstandardforhazardousmaterialcategorizationthathasbeenwidelyimplementedworldwide(United Nations,2015b).Itcanalsobeusedtoassesstheenvironmentalandhealthhazardsof substances(SuarezandNarva ´ ez,2017).However,moreinvestigationisrequiredto generateamorecomprehensiveassessmentofthesocialdimensionatearlyandadvanced stagesoftheproductandprocessdesign.
Forthespecificcaseofsustainabilityassessmentsduringproductdesign,therearedifferentmethodologiesinwhichsustainabilityindicatorshavebeenincorporatedtoa greaterorlesserdegree.Forexample,inadditiontocost, Conteetal.(2011) and Mattei etal.(2013) consideredflammabilityandtoxicityascriteriaforselectingsafeandeconomic productcomponents. Heintzetal.(2014) proposedaframeworkforsubstitutingpossible toxicingredientswithmoresustainableoptions,consideringtheirlethaldose(LD50)and bioconcentrationfactor(BCF).Similarly,aframeworkintegratingcomputer-aidedmoleculardesignandacompleteevaluationofoccupationalhealthandsafetycriteriawas presentedby Tenetal.(2016).Inthatproposal,sevenindicesrelatedtothesafetyandhealth characteristicsofchemicalmoleculeswereselectedandimplementedwhengenerating molecularproducts.Theseindicesareflammabilityandexplosivenessforsafety;andviscosity,materialphase,volatility,andexposurelimitforoccupationalhealth.
Inadditiontotheselectionofsuitableindicators,twoaspectsmustbeconsidered whencarryingoutanintegratedsustainabilityassessment:(1)tonormalizetheindicators tomakethemcomparable,(2)topresenttheindicatorssimultaneouslysothatdecisionmakerscanidentifyeventualcompromisesbetweenalternatives(Sernaetal.,2016).When incorporatingmultipledimensionsintotheassessments,allstakeholderpreferenceshave tobeincluded.Thiscanbedonebyimplementingamulticriteriadecisionanalysis (MCDA)(Govindanetal.,2013; Sernaetal.,2016; Azapagicetal.,2016),andmultiactor decision-making(MADM)methods(Renetal.,2013).Accordingtotheproblemand theavailabilityofmodelsandinformation,designalternativescanbeidentifiedbyexperience,literaturesearch,orbymodelingandoptimization.Inthelattercase,whencompleteproblemmodelingispossible,optimizationcanbedonebeforeorafter incorporatingassessmentswithMCDAorMADM(Azapagicetal.,2016).Inthefirst option,theParetofrontisidentifiedbyapplyingamultiobjectiveoptimizationmethod, andtheassessmentsareintegratedsubsequently,andthebestalternativeisdefined.In thesecondoption,thecriteriaarefirstintegratedintoasingleobjective,andsubsequently aneasiermono-objectiveoptimizationisperformed.Theadvantageofthefirstoptionisa clearidentificationofallthebestalternatives(Paretofront)andpossibletrade-offs.
Takingtheaboveintoaccount,thischapterpresentsadecision-makingmethodology applicabletothesustainabledesignofchemicalproductsandprocessesatearlydesign stages.Itisbasedonapreviouslypresentedmethodologythatusesindicatorstoassess theprocessdesignalternativesandMCDAmethodstointegratetheassessment(Serna etal.,2016).ThecontributionofthischapteristhatitextendstheapplicationofthemethodologytoproductdesignandpresentsnewindicatorsbasedontheGHSthatrequirelittle informationandcanbeeasilyappliedatearlydesignstages.Additionally,theherepresentedmethodologyusestheMCDAmethodssuchastheanalytichierarchyprocess (AHP)andthepreferencerankingorganizationmethodforenrichmentofevaluations (PROMETHEE).Thelatterisanoncompensatorydecisionmethodthatenablesaclear comparisonofalternativesandtheidentificationofsynergiesandcompromises.The
followingsectionexplainsthestepsofdecisionmethodology,whichisexemplifiedin Section3 throughtwocasestudies:theselectionofachemicalroutetoproduceglyceryl monostearate,andtheselectionofaformulationforcosmeticapplication.
2Frameworkforthesustainabilityassessmentofchemical productsandprocessesatearlydesignstages
Fig.1.1 presentsthestepsinvolvedinthemulticriteriaanalyzes-basedframeworkproposedinthischapter.Thestepsarebasedonthepreviouslypresentedmethodology (Sernaetal.,2016),butinthisproposalanewsetofindicatorsapplicabletobothproducts andprocessesispresented,andadifferentMCDAmethodisusedfortheintegrationof assessments.Theframeworkhasfoursteps:
1. Problemdefinition.Thisincludesthesubstepsoftheobjectivestatement,knowledge oftheproduct,identificationofalternatives,andinformationgathering.
2. Assessmentofalternatives.Thiscomprisestheselectionofappropriateindicators applicableattheearlystagesofproductandprocessdesign,calculationofindicators foreachalternative,andnormalizationofindicators.
3. Integrationofassessments.Thisstepinvolvesthecalculationofweightsforthe indicators,calculationofaglobalsustainabilityindex,andtheexplorationofthe relationshipbetweenindicatorsthroughasensitivityanalysis.Inthisstudy,forthe
statement
definition
Assessment of alternatives
of assessments
1.Objective statement
2.Knowledge of the product
3.Identification of alternatives
4.Information gathering
1. Selection of indicators
2. Calculation of indicators
3. Normalization of indicators
Calculation of weights 2. Ranking of alternatives 3. Sensitivity analysis
FIG.1.1 Multicriteriaanalyses-basedframeworktoassessproduct/processalternativesundersustainabilitycriteriaat earlydesignstages. AdaptedfromSerna,J.,Dı´az,E.,Narva ´ ez,P.,Camargo,M.,Ga ´ lvez,D.,Orjuela,A ´ .,2016.Multicriteriadecisionanalysisfortheselectionofsustainablechemicalprocessroutesduringearlydesignstages.Chem. Eng.Res.Des. https://doi.org/10.1016/j.cherd.2016.07.001.
assessmentofalternatives,indicatorsapplicabletoearlydesignstagesofproductand processdesignarepresented.Fortheintegrationofassessments,theMCDAmethod isused.
4. Finaldecision
2.1Problemdefinition
Inthisstep,thescopeofthedesignisdefinedandtheproductisthoroughlycharacterized (properties,specifications,prices,legalframework,etc.).Iftheproductisnotaformulationbuttheresultofareactionandaseparationprocess,itisnecessarytoidentifyand studythepossiblechemicalprocessroutesandrawmaterialsforitsgeneration.Ifthe productisaformulation,itisnecessarytogatherinformationaboutthepossibleingredientstobeused.Inbothcases,thisinformationincludeseconomic,safety,occupational health,andenvironmentalpropertiesofthesubstances,andoperatingconditionsofthe processes.Amongothers,sourcesforthisinformationinclude:
• scientificpapers
• safetydatasheetofingredients
• suppliers’documentation
• reportsfromgovernmentalandintergovernmentalagenciesandorganizations(e.g., EuropeanChemicalsAgency(ECHA),theOrganizationforEconomicCo-operation andDevelopment(OECD),andtheU.S.EnvironmentalProtectionAgency(EPA))
• scientificdatabases(e.g.,PubChem,eChemPortal)
• ECHAdossierofchemicals
• groupcontributionmethodstocalculatesomesafetyandoccupationalhealthindices formolecules(e.g., Tenetal.,2016)
• softwarethatincorporatespropertyestimationtools(e.g.,EPISuitefromEPA)
2.2Assessmentofalternatives
Duringthisstage,theperformanceofeachalternativeisassessedwithintheTBLdimensionsthroughsuitableindicators.Becausethemethodologyisapplicabletoearlydesign stages,wheninformationonthesocialdimensionisveryscarceatthispoint,thisdimensionwasindirectlyassessedviahealthandsafetyindicators,asshownin Fig.1.2.
2.2.1Selectionofindicators
Asetofindicatorsisusedtocalculatethesustainabilityperformanceofdifferentchemical processroutesandformulationsattheearlydesignstages.Mostofthemaredefinedbased ontheGHS(UnitedNations,2015b).Theindicatorscanbecalculatedusingtheproperties ofthesubstances,whicharenormalizedusingtheirdefinitionaccordingtoGHSHazard statements(H statements).An H statementisassignedtoasubstancetoindicateahazard class(e.g.,acutetoxicity,eyeirritation,flammability,etc.)andahazardcategory(i.e.,divisionofahazardclassthatspecifiesitsseverity)(UnitedNations,2015b).Alternatively, indicatorscanbedefineddirectlyfromthe H statements,whichcanbefoundinthesafety
Economic dimension
Economic indicator
Added value (VA)
Assessment of the product/process alternatives
Environmental dimension
Impact on water
Hazard to aquatic life (HtoAL)
Hazard to aquatic life long term (HtoAL_L)
Impact on air Waste
Hazard to the ozone layer (HtoOL)
Global warming potential (GWP)
Photochemical oxidation potential (PCOP)
Ozone depletion potential (ODP)
Acidification potential (AP)
Bioconcentration factor (BCF)
Renewable sources (RS)
Biodegradability (BD)
Social dimension
Physical hazards Health hazards
Flammability (F)
Explosiveness (E)
Reactivity (R)
Oxidiser (O)
Self-heating (SH)
Flammability by mixture with water (RFG)
Corrosion to metals (CtoM)
Gases under pressure (GUP)
Temperature (T)
Pressure (P)
Heat of reaction (H)
Complexity of separation (CSP)
Sustainabilityindicatorstoassessproduct/processalternativesatearlydesignstages.
Acute toxicity (AT)
Eye irritation (EI)
Skin irritation (SI)
Respiratory irritation (RI)
Danger if enters airways (DA)
Carcinogenicity (CAR)
Mutagenicity (MUT)
Damage to fertility (Dfer)
Damage to organs (DtoO)
Damage to organs long term (DtoO_L)
informationonsubstances.ThisapproachwasusedbecausetheGHSinformationwas constructedoncurrentscientificprinciples,isgloballyaccepted,andisavailablefor almostanycommercialsubstance.
Tocompletetheassessment,additionalindicatorsoutsidetheGHSareproposed.Most ofthemhavebeenpreviouslyincludedintheWARalgorithm( YoungandCabezas,1999) andtheinherentsafetyindex(ISI)approach(Heikkil,1999).Someadditionalindicators arealsoproposed,andthecompletelistispresentedin Table1.1.Itisnotalwaysnecessary touseallthelistedindicators;someofthemcanbedisregardedoradditionalonescanbe included.Decision-makershavetoselectthemostsuitableindicatorsaccordingtoproductcharacteristics,thespecificcontextofselectionproblem,andtheavailabilityof information.
2.2.2Calculationofindicators
Table1.1 presentsalistofindicatorsapplicabletosustainabilityassessmentatearly designstages.Tocalculateanindicatorforachemicalroute,thisapproachusestheaveragevalueofallsubstancesinvolvedinthereactionandgivesthesamerelativeimportance toallofthem(Sernaetal.,2016).Thisisdonetoavoidtheunderestimationofanalternativewhenithasacriticalcomponentinsmallquantitythatmaydisappearasthereactionadvances(Sernaetal.,2016).
FIG.1.2
Economic dimension
Indicator Explanation
Addedvalue(VAT )Theaddedvalue VA correspondstothedifferencebetween productvalueandrawmaterialcosts.Itcanbenormalizedby dividingthisdifferencebythesalepriceofproducts,obtainingthe dimensionlessnormalizedaddedvalue(VA).
Thetotalnormalizedaddedvalue(VAT )correspondsto1minusthe normalizedaddedvalue(VA).Thisiscalculatedtomakethe indicatorcomparablewithotherindicatorsoftheassessment.A high VA andthecorrespondinglowervalueof VAT meansabetter economicperformance
Normalizedindicator Sources
• VAp forformulations
• VAp forproductsfromachemicalprocessroute
Normalization
Environmental dimension Hazardtoaquatic life(HtoAL)
Thishazardindicatesthatthesubstancecancausedamageto aquaticorganismsinashort-termexposure,anditisrepresented with H statements400–402.Itispossibletodirectlyfind H statementsrelatedtoHtoALinthematerialsafetydatasheet (MSDS)ofasubstance.Alternatively,iftoxicityinformationon aquaticlifeisavailable,itisalsopossibletoidentifythe corresponding H statementofasubstanceasfollows:
Here, CFp istheconversionfactorofproduct p, M isthemolecularweightofproduct p orrawmaterial i,mp isthemassofproduct p,NP isthetotalnumberofproducts, Pc isthepurchasepriceofrawmaterial i,PPp is thesalepriceofproduct p,NI isthetotalnumberofrawmaterials, VA istheaddedvalueofproduct p, VA is thenormalizedaddedvalueofthealternative, VAT isthetotalnormalizedaddedvalueofthealternative, ν isthestoichiometriccoefficientofproduct p orrawmaterial i, and x isthecompositionofcomponent i in theformulation
• ThenormalizedindicatorvalueofHtoAL(Ii, HtoAL)forpuresubstancesisdefinedbasedon H statements 400–402asfollows:
1 if H ¼ 400 verytoxictoaquaticlife
0 75 if H ¼ 401 toxictoaquaticlife
HtoAL or I p, HtoAL
(1.8)
0 05 if H ¼ 402 harmfultoaquaticlife
0 if H ¼ nostatement
• ThenormalizedindicatorvalueofHtoALforachemicalroute(I r HtoAL )iscalculatedastheaverageofthe indicatorsofthecomponents,asfollows:
Theindicatorwas usedin Sernaetal. (2016) Equationswere takenfrom Carvalhoetal. (2008) and modifiedtosuit theapproach proposedinthis study
• H400—hazardcategory1,if96hlethalconcentration(LC50) (fish)and/or48hhalfmaximaleffectiveconcentration(EC50) (crustacean)and/or72or96hErC50 (algaeoraquaticplant)are 1mg/L
• H401—hazardcategory2,ifanyofthepreviouslyconsidered concentrationsare >1and 10mg/L
• H402—hazardcategory3,ifanyofthepreviouslyconsidered concentrationsare >10and 100mg/L
• H statementisnotassigned,ifanyoftheconsideredproperties are >100mg/L
Inthecaseofamixture,itispossibletofindthe H statementas follows:
• H400—hazardcategory1,if 25%ofthecomponentsare classifiedasH400
• H401—hazardcategory2,ifthesumoftheconcentrationsofits componentsincategoryH401plus10timestheconcentrationof itscomponentsincategoryH400is 25%.
• H402—hazardcategory3,ifthesumoftheconcentrationsofits componentsincategoryH402plus10timestheconcentration ofitscomponentsincategoryH401plus100timestheconcentrationofitscomponentsincategoryH400is 25%
Here, NI isthetotalnumberofsubstancesinthechemicalroute, Ii α istheindicatorofsubstance i associatedwiththeindicatorcategory α, I r α isthenormalizedindicatorofthechemicalroute r associated withtheindicatorcategory α Thisnormalizationmethodisvalidforthecalculationofchemicalrouteindicatorsdefinedaccordingto UnitedNations(2015b)
• NormalizedindicatorvalueofHtoALforaformulationisdefinedintwosteps:(1)mixturerulesareused toclassifytheformulationinacategory;(2)thenormalizedindicatorvaluefortheformulationis assignedfollowingEq.(1.8)
Forotherindicators,ifmixturerulesorbetterpropertymixturepredictionmodelsarenotavailable,the indicatoriscalculatedasanapproximationatearlydesignstageswithalinearrelationasfollows:
H statements informationfrom UnitedNations (2015b)
where NI isthetotalnumberofsubstancesofaproduct, I α istheindicatorofsubstance i associatedwith thecategory α indicator,and Ip, α isthenormalizedimpactofproduct p associatedwithimpactcategory α
Indicator Explanation
Whentoxicityinformationforsomeofthecomponentsofamixture isunknown,andthe H statementsoftherestareknown,itis possibletoapproximateHtoALofthemixtureassigningahazard categoryfollowingthesesteps:(1)tofindthetoxicityoftheportion ofingredientswithtoxicityinformationusingEq.(1.7);(2)toclassify thatportionofthemixtureinan H categoryusingtherulesfor substancesgivenatthebeginningofthissection;(3)tofindthe H categoryoftheentiremixtureusingthepreviouslypresentedrules formixtureclassification.
P x LEðÞC50 m ¼ Pn x LEðÞC50 (1.7)
Here x istheconcentrationofcomponent i inthemixture, L(E)C50i is thelethalconcentrationorhalfmaximaleffectiveconcentrationof thecomponent, n isthenumberofcomponents,and L(E)C50m isthe lethalconcentrationorhalfmaximaleffectiveconcentrationofthe mixture
Hazardtoaquatic life—long-lasting effect(HtoAL_L)
Thishazardindicatesthatthesubstancecancausedamageto aquaticorganismsinalong-termexposure,anditisrepresented with H statements410–413. H statementsrelatedtoHtoAL_Lcan befounddirectlyintheMSDSofasubstance.Alternatively,if toxicitydataonaquaticlifeforthelongtermareavailable,itisalso possibletoidentifythe H statementofasubstanceasfollows:
• H410—hazardcategory1,ifitisnonrapidlybiodegradableand theNOEC(noobservedeffectconcentration)orECx(concentrationthatcausesaresponsethatis x%ofthemaximum)(fish) and/orNOECorECx(crustacean)and/orNOECorECx(algaeor aquaticplant)is 0.1mg/L
• H411—hazardcategory2,ifitisnon-rapidlybiodegradableand theNOECorECx(fish)and/orNOECorECx(crustacean)and/or NOECorECx(algaeoraquaticplant)is >0.1and 1mg/L
• H410—hazardcategory1,ifitisrapidlybiodegradableandthe NOECorECx(fish)and/orNOECorECx(crustacean)and/or NOECorECx(algaeoraquaticplant)is 0.01mg/L
• H411—hazardcategory2,ifitisrapidlybiodegradableandthe NOECorECx(fish)and/orNOECorECx(crustacean)and/or NOECorECx(algaeoraquaticplant)is >0.01and 0.1mg/L
• H412—hazardcategory3,ifitisrapidlybiodegradableandthe NOECorECx(fish)and/orNOECorECx(crustacean)and/or NOECorECx(algaeoraquaticplant)is >0.1and 1mg/L
WheninformationaboutchronictoxicitysuchasNOECorECxisnot available,itispossibletoclassifyasubstancefollowingtherules:
• H410—hazardcategory1,ifits96hLC50 (fish)and/or48hEC50 (crustacean)and/or72and/or96hErC50 (concentrationatwhich a50%inhibitionofgrowthrateisobserved)(algaeoraquatic plant)is 1mg/L,anditisnotrapidlybiodegradableand/orBCFis >500and/orKO/W > 4
• H411—hazardcategory2,ifits96hLC50 (fish)and/or48hEC50 (crustacean)and/or72and/or96hErC50 (algaeoraquaticplant) is >1and 10mg/L,andthesubstanceisnotrapidlybiodegradableand/orBCFis >500and/orKO/W > 4
• H412—hazardcategory3,ifthe96hLC50 (fish)and/or48hEC50 (crustacean)and/or72and/or96hErC50 (algaeoraquaticplant) is >10and 100mg/L,andthesubstanceisnotrapidlybiodegradableand/orBCFis >500and/orKO/W > 4
• H413—hazardcategory4,ifthesubstanceispoorlysolubleandif noacutetoxicityisreported,itisnotrapidlybiodegradableand KO/W > 4
H statementofamixtureisassignedasfollows:
• H410—category1,ifitcontains 25%ofcomponentsclassified asH410
• H411—category2,ifthesumoftheconcentrationsofitscomponentsincategoryH411,plus10timestheconcentrationofits componentsincategoryH410is 25%
Normalizedindicator
• ThenormalizedindicatorvalueofHtoAL_Lforpuresubstances(I i , HtoAL L )isdefinedbasedon H statements410–413,asfollows:
1 if H ¼ 410 verytoxictoaquaticlife longlastingeffects
0:75 if H ¼ 411 toxictoaquaticlife longlastingeffects
0 5 ifH ¼ 412 harmfultoaquaticlife longlastingeffects
0 25 if H ¼ 413 maycauselong lastingharmfuleffects
0 if H ¼ Nostatement
• NormalizedindicatorvalueofHtoAL_Lforachemicalroute(Ir, HtoAL L ),iscalculatedwithEq.(1.9)
• NormalizedindicatorvalueofHtoAL_Lforaformulatedproduct(I p, HtoAL L )isdefinedintwosteps:(1) mixturerulesareusedtoclassifytheformulationinanHcategory;(2)thenormalizedindicatorvaluefor theformulationisassignedfollowingEq.(1.12).ForHtoAL_L,mixturerulesarepresentedinthe explanationcolumn
Sources
H statements informationfrom UnitedNations (2015b)
I
Hazardtothe ozonelayer (HtoOL)
• H412—category3,ifthesumoftheconcentrationsofitscomponentsincategoryH412,plus10timestheconcentrationofits componentsincategoryH411,plus100timestheconcentration ofitscomponentsincategoryH410is 25%
• H413—category4,ifthesumoftheconcentrationsofitscomponentsincategoriesH413plusH412plus411plus410is 25%
Whenchronictoxicityinformationforsomeofthecomponentsofa mixtureisknownandthe H statementsoftherestareknown,itis possibletoapproximateHtoAL_Lofamixture,assigningitahazard categoryfollowingthenextsteps:
(1)tofindthechronictoxicityoftheportionofingredientswith toxicityinformationusingEq.(1.11);
where x istheconcentrationofcomponent i intherapidly degradableingredients, x istheconcentrationofcomponent j in thenon-rapidlydegradableingredients, NOECi isthechronictoxicityofcomponent i intherapidlydegradableingredients, NOEC is thechronictoxicityofcomponent inthenon-rapidlydegradable ingredients, n isthenumberofcomponents, EQNOECm isthe chronictoxicityofthemixture;
(2)toclassifytheportionofthemixturein H categoriesaccording tochronictoxicityusingtherulesforsubstanceclassification givenatthebeginningofthissection;
(3)tofindthe H categoryoftheentiremixtureusingtherulesof mixtureclassificationpreviouslypresented
ODPisdefinedonlyforthosesubstancesthatstayinthe atmospherelongenoughtoreachthestratosphereandcontaina chlorineorbromineatom(YoungandCabezas,1999).
AnysubstancelistedintheMontrealProtocol,whichmeansithas anODP,oranymixturecontaining >0.1%ofasubstanceinthe MontrealProtocollist,hasan H statement420
Globalwarming potential(GWP)
Bydefinition,thisimpactisdeterminedbycomparing“theextentto whichaunitmassofachemicalabsorbsinfraredradiationoverits atmosphericlifetimetotheextentthatCO2 absorbsinfrared radiationoveritsrespectivelifetimes”(YoungandCabezas,1999)
• ThenormalizedindicatorvalueofHtoOLforpuresubstances(I , HtoOL )orproductformulations(I p HtoOL )is definedbasedonEq.(1.13):
I , HtoOL or I p HtoOL ¼ 1 if H ¼ H420 harmspublichealthandtheenvironment bydestroyingozoneintheupperatmosphere
if H ¼ Nostatement
• NormalizedindicatorvalueofHtoOLforachemicalroute(I r HtoOL ),iscalculatedwithEq.(1.9)
• NormalizedindicatorvalueofGWPforachemicalroute(I r GWP )iscalculatedwithEq.(1.14) andforaformulatedproduct(I p GWP )withEq.(1.15):
H statements informationfrom UnitedNations (2015b)
Photochemical oxidationpotential (PCOP)
“Thisimpactcategoryisdeterminedbycomparingtherateatwhich aunitmassofchemicalreactswithahydroxylradical(OH )tothe rateatwhichaunitmassofethylenereactswithOH”(Youngand Cabezas,1999)
Here, NI isthetotalnumberofsubstances, Potential α isthepotentialenvironmentalimpactofcomponent i associatedwithimpactcategory α, hPotentialriα istheaverageofimpactsofcomponents i inchemical processroute r associatedwithimpactcategory α, σ α isthestandarddeviationofpotentialenvironmental impactofsubstancesassociatedwithimpactcategory α, xi isthecompositionofcomponent i, σ α wt isthe weightedstandarddeviationofpotentialenvironmentalimpact, I r , α isthenormalizedpotentialimpactof chemicalprocessroute r associatedwithimpactcategory α,and I p α isthenormalizedimpactofthe formulation
• NormalizedindicatorvaluesofPCOPforachemicalroute(I r , PCOP )andforaformulatedproduct(I p, PCOP ) arecalculatedwithEqs.(1.14),(1.15),respectively
Youngand Cabezas(1999); normalization methodfrom Srinivasanand Nhan(2008);the indicatorwasalso usedin Sernaetal. (2016)
YoungandCabezas(1999);normalizationmethod from Srinivasan andNhan(2008); theindicatorwas alsousedin Serna etal.(2016) Continued
Table1.1 Indicatorsforsustainabilityassessmentofproduct/processalternativesatearlydesignstages—cont’d
Indicator Explanation
ODP
Acidification potential(AP)
“Thisimpactcategoryisdeterminedbycomparingtherateatwhich aunitmassofchemicalreactswithozonetoformmolecularoxygen totherateatwhichaunitmassofCFC-11(trichlorofluoromethane) reactswithozonetoformmolecularoxygen.Forachemicaltohave ODPitmustexistintheatmospherelongenoughtoreachthe stratosphere,italsomustcontainachlorineorbromineatom” (YoungandCabezas,1999)
“Thisimpactcategoryisdeterminedbycomparingtherateof releaseofH+intheatmosphereaspromotedbyachemicaltothe rateofreleaseofH+intheatmosphereaspromotedbySO2” (YoungandCabezas,1999)
Normalizedindicator
• NormalizedindicatorvaluesofODPforachemicalroute(I r , ODP )andforaformulatedproduct( p, ODP )are calculatedwithEqs.(1.14),(1.15),respectively
• NormalizedindicatorvaluesofAPforachemicalroute(I r AP )andforaformulatedproduct(I p AP )are calculatedwithEqs.(1.14),(1.15),respectively
Sources
YoungandCabezas,(1999);normalizationmethod from Srinivasan andNhan(2008); theindicatorwas alsousedin Serna etal.(2016)
YoungandCabezas(1999);normalizationmethod from Srinivasan andNhan(2008); theindicatorwas alsousedin Serna etal.(2016)
Bioconcentration factor(BCF)
Socialdimension— physicalhazard
Renewablesource (RS)
“Bio-concentrationmeansnetresultofuptake,transformationand eliminationofasubstanceinanorganismduetowaterborne exposure.Thepotentialforbioaccumulationwouldnormallybe determinedbyusingtheoctanol/waterpartitioncoefficient,usually reportedasalogKow determinedbyOECDTestGuideline107or 117”(UnitedNations,2015b)
Rawmaterialsareclassifiedaccordingtotheirsourceintothe categories:(1)naturalresourcesonlyphysicallymodified,(2) enzymaticallymodified,(3)chemicallymodified,(4)fromboth naturalandsyntheticsources,or(5)completelysyntheticorigin (COSMOS-standard,2018)
Biodegradability (BD)
“Degradationmeansthedecompositionoforganicmoleculesinto smallermoleculesandeventuallytocarbondioxide,waterandsalts. Readybiodegradationcanmosteasilybedefinedusingthe biodegradabilitytests(A–F)ofOECDTestGuideline301”(United Nations,2015b).
AccordingtoASTM5864applicabletooilsandlubricants,anoilis readilybiodegradableifitdegrades 60%within28days.Itis inherentlybiodegradableifitdegradesfrom30%to60%in 28days,anditisnonbiodegradableifitdoesnotdegrade >30%in 28days(SharmaandBiresaw,2017)
Flammability(F)Aliquidisflammableifithasaflashpoint 93°C.Itisrepresented with H statementsH224–227.Aliquidisclassifiedinthehazard categoriesasfollows:
• H224—flammabilityhazardcategory1,ifithasaflashpoint <23°Candinitialboilingpoint 35°C
• H225—flammabilityhazardcategory2,ifithasaflashpoint
<23°Candinitialboilingpoint >35°C
• H226—flammabilityhazardcategory3,ifithasaflashpoint 23°Cand 60°C
• H227—flammabilityhazardcategory4,ifithasaflashpoint
>60°Cand 93°C
Formixtures,theflashpointcanbecalculatedaspresentedin GmehlingandRasmussen(1982),wheretheUNIFACgroupcontributionmethodisused.
Asolidisflammableifitisreadilycombustibleorcausesorcontributestofire.Itisrepresentedwith H statementH228.Itispossibletodirectlyfindan H statementrelatedtothishazardinthe MSDSofasubstance.Ifthisinformationisnotavailable,asolid substancecanbeclassifiedasfollows:
• NormalizedindicatorvaluesofBCFforachemicalroute(I r BCF )andforaformulatedproduct(I p BCF )are calculatedwithEqs.(1.14),(1.15),respectively
• ThenormalizedindicatorvalueofRSforpuresubstances(I , RS )orproductformulations(I p, RS )isdefined basedonEq.(1.16):
1 if Source ¼ syntheticorigin 0 66 if Source ¼ bothnaturalandsyntheticsources 0 33 if Source ¼ naturalsourceschemicallymodified
0 if Source ¼ naturalresourcesphysically=enzimaticmodified
• NormalizedindicatorvalueofRSforachemicalroute(I r , RS )iscalculatedwithEq.(1.9)
YoungandCabezas(1999);normalizationmethod from Srinivasan andNhan(2008)
(1.16)
• ThenormalizedindicatorvalueofBDforpuresubstances(I , BD )orformulatedproducts( p BD )isdefined basedonEq.(1.18):
ifitisnon biodegradable
I ,
5 if Biodegradabilityisinherent 0 if Biodegradabilityisreadil y
ThenormalizedindicatorvalueofBDforachemicalroute(I r BD )iscalculatedwithEq.(1.9)
• Thenormalizedindicatorvalueof F forpuresubstances(I , F )ormixtures(I p F )isdefinedbasedon Eq.(1.19):
1 if H ¼ 220,222,224,229 extremelyflammable
0 75 if H ¼ 225 veryflammable 0 5 if H ¼ 221,223,226,228 flammable
ifNostatement
• Thenormalizedindicatorvalueof F forachemicalroute(I r F )iscalculatedwithEq.(1.9)
Basedonclassificationfrom COSMOS-standard (2018);theindicatorwasalsoused in Sernaetal. (2016)
Youngand Cabezas,(1999); normalization from biodegradability definitionfrom ASTM5864.
H statements informationfrom UnitedNations (2015b)
(1.19)
• H228—flammabilityhazardcategory1,ifitisasolidormixture otherthanmetalpowdersthathasaburningtime <45sor burningrate >2.2mm/s,andthefirecausecannotbestoppedby wettedzones,oritismetalpowderwithaburningtime 5min
• H228—flammabilityhazardcategory2,ifitisasolidormixture otherthanmetalpowdersthathasaburningtime <45sor burningrate >2.2mm/s,andthefirecauseisstoppedbywetted zonesinatleast4min,oritismetalpowderwithaburningtime >5and 10min
Agasisflammableifithasaflammableconcentrationrangewith airat20°Cand1atm.Itisrepresentedwith H statementsH220and 221.Itispossibletodirectlyfindan H statementrelatedtothis hazardinsubstancesafetydocumentation.Ifthisinformationisnot available,itispossibletoclassifyitasfollows:
• H220—flammabilityhazardcategory1,ifat20°Cand1atmit hasaflammablerangewithair 12%points,independentofthe lowerflammablelimit,oritignitesinamixturewithairata concentration 13%
• H221—flammabilityhazardcategory2,ifitisadifferentgasfrom thoseclassifiedincategory1,andhasaflammabilityrangewith airat20°Cand1atm
Forgaseousmixtures,thecriteriontodefineifitisflammableis showninEq.(1.17):
P n i V % Tci > 1(1.17)
where Vi%istheequivalentflammablegascontent, Tci isthe maximumconcentrationofaflammablegasinnitrogenatwhich themixtureisstillnotflammablewithair.Inmixtureswithinertgas otherthannitrogen,theirconcentrationmustbecorrectedtobe includedintheformulawithafactor K Anaerosolisflammableifitcontainsanysolid,liquid,orflammable gas.Itisrepresentedwith H statementsH222and223
Explosiveness(E)Explosivenesscanbeassessedbasedontheupperexplosivelimit (UEL)andlowerexplosivelimit(LEL)ofeachsubstance,as suggestedintheInherentSafetyIndexapproach(Heikkil,1999), alsoimplementedin SrinivasanandNhan(2008) andTenetal. (2016).Thecalculationandclassificationcriteriaareshownin Eq.(1.20):
Ii,E ¼ (UEL LEL)vol%(1.20) whereexplosivenessisscoredwith
• 0—nonexplosive
• 1for I ,E >0and 20
• 2for I ,E >20and 45
• 3for I ,E >45and 70
• 4for I ,E >70and 100
Formixtures,explosivelimitscanbeapproximatedwithLeChatelier’srule(HristovaandTchaoushev,2006),asshowninEqs.(1.21), (1.22)
LELmix ¼ 100 P x LEL (1.21)
UELmix ¼ 100 P x UEL (1.22)
Reactivity(R)Aself-reactivesubstanceisaliquidorsolidthatisunstableand reactsstronglyandexothermicallyevenwithoutthepresenceof oxygen.Itisrepresentedwith H statementsH200–205.The classificationcategoriesforthishazardare:
• H240—typeAsubstance,ifitisaself-reactivesubstanceor mixturethatcandetonate
• H241—typeBsubstance,ifitisaself-reactivesubstancethatis liabletoundergoathermalexplosionwithinthepackage
• Thenormalizedindicatorvalueof E forpuresubstances(I E )ormixtures(I p, E )isdefinedbasedon Eq.(1.23):
1 if Iiorp, E > 70and 100
0 75 if Iiorp E > 45and 70
I E or I p E ¼
0:5 if Iiorp E > 20and 45
0 25 if Iiorp, E > 0and 20
0 ifnon explosive
• Thenormalizedindicatorvalueof E forachemicalroute(I r E )iscalculatedwithEq.(1.9)
(1.23)
• Thenormalizedindicatorvalueof R forpuresubstances(I i , R )ormixtures(I p R )isdefinedbasedon Eq.(1.24):
1 if H ¼ 240 heatingmaycauseanexplosion
0 66 if H ¼ 241 heatingmaycauseafireorexplosion
I R or I p R ¼
(1.24)
0 33 if H ¼ 242 heatingmaycauseafire
0 ifH ¼ Nostatement
• Thenormalizedindicatorvalueof R forachemicalroute(I r , R )iscalculatedwithEq.(1.9)
H statements informationfrom UnitedNations (2015b) Continued
Heikkil(1999)
Indicator Explanation
• H242—typeCsubstance,ifitisaself-reactivesubstancethat possessesexplosivepropertiesbutcannotdetonateordeflagrate aspackaged
• H242—typeDsubstance,ifitisaself-reactivesubstancethatin laboratorytestingdetonatespartially,doesnotdeflagraterapidly, andshowsnoviolenteffectwhenheatedunderconfinement,or inlaboratorytestingdoesnotdetonate,deflagratesslowly,and showsnoviolenteffectwhenheatedunderconfinement,orin laboratorytestingdoesnotdetonateordeflagrateandshowsa mediumeffectwhenheatedunderconfinement
• H242—typeEsubstance,ifitisaself-reactivesubstancethatin laboratorytestingdoesnotdetonateordeflagrateandshowsa lowornoeffectwhenheatedunderconfinement
• H242—typeFsubstance,ifitisaself-reactivesubstancethatin laboratorytestingdoesnotdetonateordeflagrateandshowsa lowornoeffectwhenheatedunderconfinementaswellaslow ornoexplosivepower
Oxidizer(O) Anoxidizerisasubstancethatcontributestoorcausesthe combustionofothersubstanceormaterial.Itisrepresentedwith H statementsH270–272.Theclassificationcategoriesforthishazard are:
Forgaseoussubstancesandmixtures:
• H270—category1isgiventogasesthathaveanoxidationpower (OP)greaterthanthatofair,i.e.,substanceswithOP 23.5%.
where x ismolarfractionofoxidizergas i, C iscoefficientofoxygen equivalencyofthe i-oxidizinggasinthemixture, Kk iscoefficientof equivalencyoftheinnergas k comparedtonitrogen, Bk ismolar fractionofthe k inertgasinthemixture, OG istotalnumberof oxidizinggases, IG totalnumberofinertgases
Forliquidsubstancesormixtures,theclassificationisbasedontest O.2PartIIIsubsection34.4.2,asfollows:
• H271—category1,ifitignitesspontaneouslyinthetestconditions(1:1mixturebymassofthetestedsubstance:cellulose),orit presentsameanpressurerisetimelowerthanareference comparison(1:1mixturebymassofperchloricacid:cellulose)
• H272—category2,ifintestconditions(1:1mixturebymassof thetestedsubstance:cellulose)itpresentsameanpressurerise timelessthanorequaltoareference(40%aqueoussodium chloratesolutionandcellulose)andhasnotbeenclassifiedin category1
• H272—category3,ifintestconditions(1:1mixturebymassof thetestedsubstance:cellulose)itpresentsameanpressurerise timelessthanorequaltoareference(65%aqueousnitricacid andcellulose)andhasnotbeenclassifiedincategory1or2
Forsolidsubstancesormixtures:
• H271—category1,ifintestconditions(4:1or1:1mixtureby massofthesample:cellulose)itpresentsameanburningtimeless thanareference(3:2bymasspotassiumbromatetocellulose)
• H272—category2,ifintestconditions(4:1or1:1mixtureby massofthesample:cellulose)itpresentsameanburningtime equaltoorlessthanareference(2:3bymasspotassiumbromate tocellulose),andhasnotbeenclassifiedincategory1
• Thenormalizedindicatorvalueof O forpuresubstances(I O )ormixtures(I p O )isdefinedbasedon Eq.(1.26): I , O or I p
1if H ¼ 270 maycauseorintensifyfire;oxidizer
1if H ¼ 271 maycausefireorexplosion;strongoxidizer 0 5if H ¼ 272 mayintensifyfire 0ifH ¼ Nostatement
• Thenormalizedindicatorvalueof O forachemicalroute(I r O )iscalculatedwithEq.(1.9)
Sources
H statements informationfrom UnitedNations (2015b)
(1.26)
• H272—category2,ifintestconditions(4:1or1:1mixtureby massofthesample:cellulose)itpresentsameanburningtime equaltoorlessthanareference(3:7bymasspotassiumbromate tocellulose),andhasnotbeenclassifiedincategory1or2
Self-heating(SH)Pyrophoricsubstancesormixturesareliquidsorsolidsthatcan ignitein5minincontactwithair.Theyareidentifiedwith H statement250—category1.
Self-heatingsubstancesormixturesareliquidsorsolidsthatdiffer frompyrophoricsubstancesastheyareself-heatingwhenin contactwithair.Theycanalsoigniteiftheyareinlargeamounts andafterlongperiods.Theyareclassifiedintotwocategories:H251 forself-heatingsubstancesandH252forself-heatingsubstances whentheyareinlargequantities
Releaseflammable gaseswhenmixed withwater(RFG)
Corrosivetometals (CtoM)
Substances(mixtures,liquids,orsolids)thatreleaseflammable gasesorbecomeflammableincontactwithwater.Theyare representedwith H statementsH260–261.Theclassification categoriesforthishazardare:
• H260—category1,substanceswhichreactstronglywithwaterat ambienttemperatureandthegasproducedignitesspontaneouslyorreactsreadilywithwatersothattherateofproductionof flammablegasis 10L/kgsubstancemin
• H261—category2,substanceswhichreactreadilywithwaterso thattherateofproductionofflammablegasis 20L/kgsubstancehour
• H261—category3,substanceswhichreactslowlywithwaterso thattherateofproductionofflammablegasis 1L/kg substancehour
Asubstanceiscorrosivetometalswhenitcandamageordestroy metalsbyachemicalreaction.Itisrepresentedwith H statement 290.Theclassificationforthishazardis:
• H290—category1,corrosionrateoneithersteeloraluminumis 6.25mm/yearat55 °C
Gasesunder pressure(GUP)
Process temperature(T)
Gasesunder200kPaat20°Corliquefiedgases.Theyare representedwith H statements280,281.Categoriesforthishazard are:
• H280—compressedgasisagasunderpressurethatiscompletely gaseousat 50°C,includinggaseswithacriticaltemperature 5°C
• H280—liquefiedgasisagaswhichispartiallyliquidattemperature > 50°C
• H280—dissolvedgasisagasthatispackedunderpressureand dissolvedinaliquidsolvent
• H281—refrigeratedliquefiedgasisagasthatispartiallyliquefied duetothelowtemperaturewhenpackaged
ProcesstemperatureisclassifiedaccordingtotheInherentSafety Index(Heikkil,1999),wheretherangesareselectedaccordingto thedangertohumansasfollows:
• 1,forprocesstemperature 0°C(lowtemperaturesmayconstituteahazardbecauseaneffortisrequiredtomaintainthe processinthatcondition;ifthereisafailure,substancesmay begintovaporize;anotherhazardisthepresenceofsolidsdueto thelowtemperaturethatmaycauseablockage;construction materialsandisolationstrategiesmustbecarefullyconsidered)
• 0,forprocesstemperature >0°Cand 70°C
• 1,forprocesstemperature >70°Cand 150°C(hazardfor thermalstress,mildtemperatureprocess)
• 2,forprocesstemperature >150°Cand 300°C(hightemperatureprocess,beyondthistemperaturestrengthofcarbonstill decreasesconsiderably)
• 3,forprocesstemperature >300°Cand 600°C(veryhigh temperature,atthistemperaturerange,thestrengthofcarbon stilldecreasesconsiderably,sospecialmaterialsarerequired)
• 4,forprocesstemperature >600°C(extremelyhightemperature)
• ThenormalizedindicatorvalueofSHforpuresubstances(I SH )ormixtures(I p, SH )isdefinedbasedon Eq.(1.27):
1 if H ¼ 250 catchesfirespontaneouslyifexposedtoair 0 66 if H ¼ 251 self heating;maycatchfire
0 33 if H ¼ 252 self heatinginlargequantities;maycatchfire 0 if H ¼ Nostatement
ThenormalizedindicatorvalueofSHforachemicalroute(I r SH )iscalculatedwithEq.(1.9)
• ThenormalizedindicatorvalueofRFGforpuresubstances(I RFG )ormixtures(I p RFG )isdefined basedonEq.(1.28):
if H ¼ 260 incontactwithwaterreleasesflammablegases whichmayignitespontaneously
:5 if H ¼ 261 incontactwithwaterreleasesflammablegases
H statements informationfrom UnitedNations (2015b)
• Thenormalizedindicatorvalueof E forachemicalroute(I r E )iscalculatedwithEq.(1.9) H statements informationfrom UnitedNations (2015b)
• ThenormalizedindicatorvalueofCtoMforpuresubstances(I i CtoM )ormixtures(I p, CtoM )isdefinedbased onEq.(1.29):
• ThenormalizedindicatorvalueofCtoMforachemicalroute(I r , R )iscalculatedwithEq.(1.9)
• ThenormalizedindicatorvalueofGUPforpuresubstances(I GUP )ormixtures(I p GUP )isdefinedbasedon Eq.(1.30):
1 if H ¼ 280 containsgasunderpressure,mayexplodeifheated 1 if H ¼ 281 containsrefrigeratedgas,maycausecryogenicburn orinjury 0 if H ¼ Nostatement
ThenormalizedindicatorvalueofGUPforachemicalroute(I r , GUP )iscalculatedwithEq.(1.9)
H statements informationfrom UnitedNations (2015b)
H statements informationfrom UnitedNations (2015b)
• Thenormalizedindicatorvalueof T fortheassessmentofchemicalroutesorproductproductionprocess (IT )isdefinedbasedonEq.(1.31):
ifProcessTemperature > 600°C
75 ifProcessTemperature > 300°Cand 600°C 0 5 ifProcessTemperature > 150°Cand 300°C 0 25 ifProcessTemperature > 70°Cand 150°C 0 25 ifProcessTemperature 0°C 0 ifProcessTemperature > 0°Cand 70°C
FromtheInherent SafetyIndex (Heikkil,1999)
Socialdimension— healthhazard
Indicator Explanation
Process pressure(P)
Processpressureisclassifiedaccordingtotheinherentsafetyindex (Heikkil,1999),wheretherangesareselectedaccordingtothe dangertohumansasfollows:
• 1,forprocesspressurebetween0and0.5bar(lowpressure)
• 0,forprocesspressurebetween0.5and5bar
• 1,forprocesspressurebetween5and25bar(mildpressured process)
• 2,forprocesspressurebetween25and50bar(highpressure)
• 3,forprocesspressurebetween50and200bar(veryhigh pressure)
• 4,forprocesspressure >200bar(extremelyhighpressure)
Heatofreaction (H)(when applicable)
Complexityin separationprocess (CSP)
HeatofreactionisclassifiedaccordingtotheInherentSafetyIndex (Heikkil,1999)asfollows:
• 0—thermallyneutral,whenheatofreactionis 200J/g
• 1—mildlyexothermic >200and <600J/g
• 2—moderatelyexothermic >600and <1200J/g
• 3—stronglyexothermic >1200and <3000J/g
• 4—extremelyexothermic 3000J/g
Inthepresentapproach,theabsolutevalueoftheheatofreactionis usedtocalculatetheindicator.Thisisdonetotakeintoaccountthe dangerousnessofheatsourcesthatwouldfeedtheendothermic reactions
Conversion(X)andyield(Y)ofareactionindicatetherawmaterials andproductsthatarepresentattheendofareactionstage.Alow valueof X showsthatmostattentionmustbegiventothe separationbetweenthemainproductandrawmaterials.Alow valueof Y showsthattheseparationprocessshouldfocusonthe mainproductandbyproducts.Ingeneral,lowvaluesof X and Y indicatehighrecirculationrates.Complexityofseparationand purificationoperationsdependonthespecificnatureand propertiesofthecomponentsofthemixture
Acutetoxicity(AT)Acutetoxicitywhenswallowedisrelatedtoadverseeffects occurringafteranoraladministrationofasingledoseofthe substance.Itisdefinedby H statements300–303.
Toxicitybyskincontactisrelatedtotheadverseeffectsoccurring afteradermaladministrationofasingledoseofthesubstance.Itis definedby H statements310–313.
Toxicitybyinhalationhazardisrelatedtoadverseeffectsoccurring afterinhalationexposuretothesubstancefor4h.Itisdefinedby H statements330–333.
Itispossibletodirectlyfind H statementsrelatedtotheacute toxicityofasubstanceinitssafetydocumentation.Iftoxicitydatais available,itisalsopossibletoidentifythe H statementasfollows:
• IforalLD50 5mg/kgbodyweightordermalLD50 50mg/kg bodyweightorinhalationgas 100ppm,thenacutetoxicity correspondstothe H statementoffatal,hazardcategory1
• IforalLD50 > 5and 50mg/kgbodyweightordermalLD50 > 50 and 200mg/kgbodyweightorinhalationgas100and 500, thenacutetoxicitycorrespondstothe H statementoffatal, hazardcategory2
• IforalLD50 > 50and 100mg/kgbodyweightordermal LD50 > 50and 200mg/kgbodyweightorinhalationgas500 and 2500,thenacutetoxicitycorrespondstothe H statement oftoxic,hazardcategory3
• IforalLD50 > 300and 2000mg/kgbodyweightordermal LD50 > 1000and 2000mg/kgbodyweightorinhalationgas 2500and 20,000,thenacutetoxicitycorrespondstothe H statementofharmful,hazardcategory4
Normalizedindicator
• Thenormalizedindicatorvalueof P fortheassessmentofchemicalroutesorproductprocesses(IP )is definedbasedonEq.(1.32):
1 ifProcessPressure > 200bar
0 75 ifProcessPressure > 50and 200bar
0 5 ifProcessPressure > 25and 50bar
0 25 ifProcessPressure > 5and 25bar
0:25 ifProcessPressure 0:5bar
0 ifProcessPressure > 0 5and 5bar
• Thenormalizedindicatorvalueof H forchemicalroutes(I r H )isdefinedbasedonEq.(1.33):
1 if |Heatofreaction| 3000J=g
0 75 if |Heatofreaction| 1200 < 3000J=g
0 5 if |Heatofreaction| 600and < 1200J=g
0 25 if |Heatofreaction| 200and < 600J=g
0 if |Heatofreaction| < 200J=g
Theindicatorisnotapplicableforproductgeneratedwithoutreaction
• ThenormalizedindicatorvalueofCSPforchemicalroutes(I r , CSP )isdefinedbasedonEq.(1.34):
(1.33)
Sources
FromtheInherent SafetyIndex (Heikkil,1999)
where I r , CSP isthenormalizedindicatorofCSP, Yr istheyieldofchemicalprocessroute r, Xr istheconversionofchemicalprocessroute r, f isafactorthattakesvaluesfrom0to1toidentifywhichofthe followingseparationprocessmaybemorecomplex.Ittakesvalues >0.5iftheseparationofthemain productsfromotherproductsisverydifficult.Ittakesvalues <0.5iftheseparationofthemainproducts fromunreactedrawmaterialisverycomplex
Theindicatorisnotapplicableforproductgeneratedwithoutreaction
• ThenormalizedindicatorvalueofATforpuresubstances(I AT )ormixtures(I p, AT )isdefinedbasedon Eq.(1.36):
1 if H ¼ 300,310,330 fatalifswallowed,skin,inhaled
0 75 if H ¼ 301,311,331 toxicifswallowed,skin,inhaled
0 5 if H ¼ 302,312,332 harmfulifswallowed,skin,inhaled
0 25 if H ¼ 303,313,333 maybeharmfulifswallowed,skin,inhaled
0 if H ¼ Nostatement
• ThenormalizedindicatorvalueofATforachemicalroute(I r AT )iscalculatedwithEq.(1.9)
H statements informationfrom UnitedNations (2015b)
(1.36)
FromtheInherent SafetyIndex (Heikkil,1999)
Fromthisstudy
• IforalLD50 > 2000and 5000mg/Kgbodyweightordermal LD50 > 2000and 5000mg/kgbodyweight,thenacutetoxicity correspondstothe H statementofmaybeharmful,hazardcategory5
Inthecaseofamixture,itispossibletofindthe H statementbased oninformationfromingredientsasfollows:(1)calculateacute toxicityestimate(ATE)fromingredients,(2)useEq.(1.35)tocalculateATEofthemixture,(3)findthe H statementsbasedonthe rulespreviouslygivenforsubstances:
100 ATEm ¼ Pn x ATE (1.35)
where ATEm istheATEofthemixture, x isthecompositionin percentageofthecompound I,and ATE istheATEofcomponent i. ATEforingredientsisequivalenttoLD50,LC50 whenavailable,orit canbeapproximatedwhenthe H statementoftheingredientis knownasfollows:
• Whentheingredientishazardcategory1,ATEis0.5oralacute toxicitymg/kgbodyweightor5dermalacutetoxicitymg/kg bodyweightor10ppmVacutetoxicityinhalation
• Whentheingredientishazardcategory2,ATEis5oralacute toxicitymg/kgbodyweightor50dermalacutetoxicitymg/kg bodyweightor100ppmVacutetoxicityinhalation
• Whentheingredientishazardcategory3,ATEis100oralacute toxicitymg/kgbodyweightor300dermalacutetoxicitymg/kg bodyweightor700ppmVacutetoxicityinhalation
• Whentheingredientishazardcategory4,ATEis500oralacute toxicitymg/kgbodyweightor1100dermalacutetoxicitymg/kg bodyweightor4500ppmVacutetoxicityinhalation
• Whentheingredientishazardcategory5,ATEis2500oralacute toxicitymg/kgbodyweightor2500dermalacutetoxicitymg/kg bodyweight
Eyeirritation(EI)Seriouseyedamageisproducedifaftertheapplicationofa substancetheeffectisnotfullyreversiblewithin21days.Eye irritationisachangeintheeyeaftertheapplicationofasubstanceis fullyreversiblewithin21days.Itisrepresentedwith H statements 318–320.Ifthe H statementofasubstanceisunknown,the classificationinthesecategoriesisbasedonexistingdataofeffects onhumansoranimals,structure–activityrelationship,invitroor invivotest.
Inthecaseofamixture,itispossibletofindthe H statementbased oninformationfromingredientsasfollows:
• H318—category1ofseriouseyedamage,ifitcontains >3%of componentsinskincategory1(H314)and/oreyecategory1 (H318)
• H319or320—category2ofseriouseyeirritantoreyeirritant,ifit contains 1but <3%ofcomponentsinskincategory1and/or eyecategory1(H318)
• H319or320—category2ofseriouseyeirritantoreyeirritant,ifit contains 10%ofacomponentinthesameeyecategory
• H319or320—category2ofseriouseyeirritantoreyeirritant,ifit contains 10%ofthesumof10timestheconcentrationof substancesofeyecategory1/skincategory1pluseyecategory2
Skinirritation(SI)Asubstanceisirritantwhenitcausesreversibledamagetotheskin. Thisisidentifiedwith H statementsH315andH316.Asubstanceis corrosivewhenitcausesirreversibledamagetotheskin.Itis identifiedwithstatementH316.Ifthe H statementofasubstanceis unknown,theclassificationonthesecategoriesisbasedonexistent dataofeffectsonhumansoranimals,structure–activity relationship,invitroorinvivotest. Inthecaseofamixture,itispossibletofindthe H statementbased oninformationfromingredientsasfollows:
• ThenormalizedindicatorvalueofEIforpuresubstances(I EI )ormixtures(I p EI )isdefinedbasedon Eq.(1.37):
1 if H ¼ 318 causesseriouseyedamage
0 75 if H ¼ 319 causesseriouseyeirritation
0 5 if H ¼ 320 causeseyeirritation
0 ifH ¼ Nostatement
Thenormalizedindicatorvalueof E forachemicalroute(I r EI ),iscalculatedwithEq.(1.9)
H statements informationfrom UnitedNations (2015b)
• ThenormalizedindicatorvalueofSIforpuresubstances(I SI )ormixtures(I p SI )isdefinedbasedon Eq.(1.38): I SI or I p
1 if H ¼ 314 causessevereskinburnsandeyedamage
0 75 if H ¼ 315 causesskinirritation
0 5 if H ¼ 316 causesmildskinirritation
0 25 if H ¼ 317 maycauseanallergicskinreaction
0 ifH ¼ Nostatement
ThenormalizedindicatorvalueofSIforachemicalroute(I r SI )iscalculatedwithEq.(1.9)
(1.38)
H statements informationfrom UnitedNations (2015b) Continued
Indicator Explanation Normalizedindicator
• H314—categorizedascorrosive,ifitcontains 5%ofacorrosive component
• H315—categorizedasirritant,ifitcontainsbetween1%and5% ofcorrosiveingredients, >10%ofanirritantingredient,orthe sumof10timescorrosiveingredientsplusirritantingredientsis 10%
• H316—categorizedasmildirritant,ifitcontainsbetween1%to 10%ofirritantingredientsorithas >10%ofmildirritant ingredients,orthesumof10timescorrosiveingredientsplus irritantingredientsis 1to <10%,orthesumof10timescorrosiveingredientsplusirritantingredientsplusmildirritant ingredientsis 10%
Askinsensitizerisasubstancethatleadstoanallergyresponseafter contact.Itisrepresentedwith H statement317.Ifthe H statement ofasubstanceisunknown,theclassificationonthesecategoriesis basedontestsonhumansoranimals.Inthecaseofamixture,itis possibletofindthe H statementbasedoninformationfrom ingredientsasfollows:
• H317—category1,ifitcontains 0.1%ofsubstancesclassified asskinsensitizercategory1A(highfrequencyofoccurrenceofa reaction)
• H317—category1,ifitcontains 0.1%ofsubstancesclassified asskinsensitizercategory1B(lowtomoderatefrequencyof occurrenceofareaction)
Respiratory irritation(RI)
Dangerwhen entersairways (DA)
Arespiratorysensitizerisasubstancethatleadstoasensitivityof theairwaysafterinhalation.Itisrepresentedwiththe H statements 334,335,336. Ifthe H statementofasubstanceisunknown,theclassificationon thesecategoriesisbasedontestsonhumansoranimals. Inthecaseofamixture,itispossibletoapproximatethe H statementbasedoninformationfromingredientsasfollows:
• H334,H335,H336—respiratorysensitizercategory1,ifitcontains 0.1%ofsolid/liquid/gassubstancesclassifiedassensitizer category1A(highfrequencyofoccurrenceofareaction)
• H334,H335,H336—respiratorysensitizercategory1,ifitcontains 1%ofsolid/liquidsubstancesclassifiedassensitizercategory1B(lowtomoderatefrequencyofoccurrenceofareaction) or 1%ofgaseoussubstancesclassifiedassensitizercategory1B
Thisdangerreferstothepossibledamagecausedbyasubstance whenitentersthetracheaorthelowerrespiratorysystemafterits aspirationthroughtheoralornasalcavityorindirectlywhen vomiting.Itisindicatedby H statements304–305. Itispossibletodirectlyfind H statementsrelatedtotheaspiration dangerofasubstanceinitssafetydocumentation.Itisalsopossible toidentifythe H statementasfollows:
• H304—category1,ifthereisexperimentalhumanevidenceof thehighdanger.Examplesofsubstanceswiththisbehaviorare: certainhydrocarbons,turpentineandpineoil
• H304—category1,ifitisahydrocarbonwithakinematicviscosity 20.5mm2/sat40°C
• H305—category2,ifthereisevidencebasedonanimaltestsand expertjudgmentofthisbehaviorconsideringpropertiessuchas volatility,boilingpoint,surfacetension,andsolubility.Additionally,thesubstancehasnotbeenclassifiedincategory1andit hasaviscosity 14mm2/sat40°C.Examplesofsubstanceswith thisbehaviorare: n-primaryalcohols,withachainof3–13carbons,isobutylalcoholandketoneswithamaximumchainlength of13carbons
Inthecaseofamixture,itispossibletoapproximatethe H statementbasedoninformationfromingredientsasfollows:
• ThenormalizedindicatorvalueofRIforpuresubstances(I i , RI )ormixtures(I p, RI )isdefinedbasedon Eq.(1.39): I
or
1 if H ¼ 334 maycauseallergyorasthmasymptomsor breathingdifficultiesifinhaled
1 if H ¼ 335 maycauserespiratoryirritation
1 if H ¼ 336 maycausedrowsinessordizziness
0 ifH ¼ Nostatement
• ThenormalizedindicatorvalueofRIforachemicalroute( r , RI )iscalculatedwithEq.(1.9)
• ThenormalizedindicatorvalueofDAforpuresubstances(I i , DA )ormixtures(I p DA )isdefinedbasedon Eq.(1.40)
1 if H ¼ 304 maybefatalifswallowedandentersairways
0:5 if H ¼ 305 maybeharmfulifswallowedandentersairways 0 ifH ¼ Nostatement
• ThenormalizedindicatorvalueofDAforachemicalroute( r , DA )iscalculatedwithEq.(1.9)
Sources
H statements informationfrom UnitedNations (2015b)
H statements informationfrom UnitedNations (2015b)
(1.40)
Carcinogenicity (Car)
Mutagenicity (Mut)
• H304—category1,ifitcontains 10%ofingredientsclassifiedin category1andhasaviscosity 20.5mm2/sat40°C
• H304—category1,ifitcontains 10%ofingredientsclassifiedin category2,andhasaviscosity 14mm2/sat40°C
Acarcinogenisasubstancethatcausescancer.Itisrepresented with H statements350–351.Itispossibletodirectlyfind H statementsrelatedtothishazardinsubstancesafety documentation.Classificationofsubstancesinthishazardisbased onepidemiologicalinformationoranimaldataasfollows:
• H350—category1,basedonhumanevidence(1A)oranimal evidence(1B)
• H351—category2,basedonhumanevidenceoranimalevidence butisnotsufficienttoclassifythesubstanceincategory1 Formixtures:
• H350—category1—maycausecancer,ifitcontains 0.1%of ingredientsclassifiedinthesamecategory
• H351—category2—suspectedofcausingcancer,ifitcontains 1%ofingredientsclassifiedincategory2
Thishazardreferstochemicalsthatcancausemutations.Itis possibletodirectlyfind H statementsrelatedtothishazardinits safetydocumentation.
• H340—category1,itisbasedonevidencefromhumanepidemiologicalstudies,invivogermcellmutagenicitytestsinmammalsorinvivosomaticcellmutagenicitytestsincombinationwith othersupportingtestsingermcellsinvivo.Testsshowing mutageniceffectsinhumangermcells
• H341—category2,itisbasedonevidencefromsomaticcell mutagenicitytestsinvivoinmammals;orinvivosomaticcell genotoxicitytestssupportedbyinvitromutagenicitytests
Inthecaseofamixture,itispossibletoapproximatethe H statementbasedoninformationfromingredientsasfollows:
• H340—category1—maycausegeneticdefects,ifitcontains 0.1%ofingredientsclassifiedinthesamecategory
• H340—category2—maycausegeneticdefects,ifitcontains 1%ofingredientsclassifiedinthesamecategory
Damagetofertility (DFer)
Thishazardreferstoprobabledamagetothesexualityfunctionand fertilityoffemales.Itisrepresentedwith H statements360–362.Itis possibletodirectlyfind H statementsrelatedtothishazardin substancesafetydocumentation.Classificationofsubstancesinthis hazardisbasedonevidencefromhumansoranimalsasfollows:
• H360—category1,itisbasedonhumanevidence(1A)oranimal evidence(1B)
• H361—category2,itisbasedonhumanevidenceoranimal evidencewhichisnotsufficienttoclassifythesubstanceincategory1
• H362—maycauseharmtobreast-fedchildren,itisbasedon evidenceofhazardtobabiesduringlactationperiod,evidenceof adverseeffectduetotransferinthemilk,presenceofpotential highlevelofthesubstanceinthebreastmilk
Formixtures:
• H360—category1,ifitcontains 0.1%ofingredientsclassified inthesamecategory
• H361—category2,ifitcontains 0.1%ofingredientsclassified inthesamecategory
• H362—maycauseharmtobreast-fedchildren,ifitcontains 0.1%ofingredientsclassifiedinthesamecategory
• ThenormalizedindicatorvalueofCarforpuresubstances(I Car )ormixtures(I p Car )isdefinedbasedon Eq.(1.41)
• ThenormalizedindicatorvalueofCarforachemicalroute(I r Car )iscalculatedwithEq.(1.9)
H statements informationfrom UnitedNations
• ThenormalizedindicatorvalueofMutforpuresubstances(I , Mut )ormixtures(I p, Mut )isdefinedbasedon Eq.(1.42) I Mut or I
1 ifH ¼ 340 maycausegeneticdefects 0 5 if H ¼ 341 suspectedofcausinggeneticdefects 0 ifH ¼ Nostatement
< : (1.42)
• ThenormalizedindicatorvalueofMutforachemicalroute(I r , Mut )iscalculatedwithEq.(1.9)
• ThenormalizedindicatorvalueofDFerforpuresubstances( , DFer )ormixtures(I p DFer )isdefinedbased onEq.(1.43)
1 if H ¼ 360 maydamagefertilityortheunbornchild
0 5 if H ¼ 361 suspectedofdamagingfertilityortheunbornchild
0 5 if H ¼ 362 maycauseharmtobreast fedchildren
0 ifH ¼ Nostatement
ThenormalizedindicatorvalueofDFerforachemicalroute(I r DFer )iscalculatedwithEq.(1.9)
(1.43)
H statements informationfrom UnitedNations (2015b)
(2015b)
H statements informationfrom UnitedNations (2015b)
I , DFer or p DFer
Table1.1 Indicatorsforsustainabilityassessmentofproduct/processalternativesatearlydesignstages—cont’d
Indicator Explanation
Damagetoorgans (DtoO)
Damagetoorgans prolonged exposure(DtoO_L)
Thishazardreferstosubstancesthatcausenolethaldamagebut cancausedamagetoorgansafterasingleexposure.Itis representedwith H statements370or371.Itispossibletodirectly find H statementsrelatedtothishazardinsubstancesafety documentation.Theclassificationisdoneasfollows:
• H370—category1,ifthereisevidencefromhumandataorsignificanttoxiceffectsinanimalswithadditionalevidenceofacute toxicitydatasuchas:oral(rat) 300mg/kgbodyweight,dermal ratorrabbit 1000mg/kgbodyweight,inhalation(rat)gas 2500ppm/4h
• H371—category2,ifthereisevidencefromanimalsoftoxic effectsthatmayberelevanttohumanhealth,suchasoral(rat) LD50 > 300and 2000mg/kgbodyweight,dermalratorrabbit LD50 > 1000and 2000mg/kgbodyweight,inhalation(rat)gas
>2500and 20,000ppm/4h
Formixtures:
• H370—category1,ifitcontains 10%ofingredientsclassifiedin thesamecategory
• H371—category2,ifitcontains 10%ofingredientsclassifiedin thesamecategory
• H371—category2,ifitcontains 1%and < 10%ofingredients classifiedincategory1
Thishazardreferstosubstancesthatcausenolethaldamagebut cancausedamagetoorgansafterrepeatedexposure.Itis representedwith H statements372or373.Itispossibletodirectly find H statementsrelatedtothishazardinsubstancesafety documentation.Theclassificationisdoneasfollows:
• H372—category1,ifthereisevidencefromhumandataorsignificanttoxiceffectsinanimalsthatareconsideredtobetoxicfor humansafterrepeatedexposure.Inthelattercase,additional evidenceisrequired,suchastoxicitydataafter90daysrepeated dosestudy:oral(rat) 10mg/Kgbodyweight/day,dermalrator rabbit 20mg/kgbodyweight/day,inhalation(rat)gas 50ppm/6hday
• H373—category2,ifthereisevidencefromanimalsoftoxic effectsthatmaybeharmfultohumanhealthafterrepeated exposure.Theclassificationinthiscategoryusestoxicitydata aftera90-dayrepeateddosestudyforguidance:oral(rat) 100 and >10mg/kgbodyweight/day,dermalratorrabbit 200and >20mg/kgbodyweight/day,inhalation(rat)gas 250and >50ppm/6hday
Formixtures:
• H372—category1,ifitcontains 10%ofingredientsclassifiedin thesamecategory
• H373—category2,ifitcontains 10%ofingredientsclassifiedin thesamecategory
• H373—category2,ifitcontains 1%and < 10%ofingredients classifiedincategory1
Normalizedindicator
• ThenormalizedindicatorvalueofDtoOforpuresubstances(I DtoO )ormixtures(I p DtoO )isdefinedbased onEq.(1.44)
ThenormalizedindicatorvalueofDtoOforachemicalroute(I r , DtoO )iscalculatedwithEq.(1.9)
Sources
H statements informationfrom UnitedNations (2015b)
• ThenormalizedindicatorvalueofDtoO_Lforpuresubstances(I DtoO_L)ormixtures(Ip DtoO_L)isdefined basedonEq.(1.45)
1 if H ¼ 372 causesdamagetoorgansthroughprolonged orrepeatedexposure
0:5 if H ¼ 373 maycausedamagetoorgansthroughprolonged orrepeatedexposure
ifH ¼ Nostatement
H statements informationfrom UnitedNations (2015b)
(1.45)
• ThenormalizedindicatorvalueofDtoO_Lforachemicalroute(I r DtoO L )iscalculatedwithEq.(1.9)
Ii DtoO L or Ip DtoO L ¼
Tocalculatetheindicatorsforaformulation,itissuggestedthatspecificmixingrules areusedfortheindicatorormixturepropertymodels.Ifthisisnotpossible,theindicator valueforthemixtureisestimatedthroughtheweightedaverageofpropertiesofthe componentsusingtheircorrespondingcompositions.Inthiscase,theweightedaverage isappliedbecausecomponentsandcompositioninaformulationarenotsupposedto changeovertime.
(i) Economicdimension
Thepresentapproachusesaddedvalueasaneconomicindicator.Itsvalueis calculatedfromtheratioofproductvalueminusrawmaterialcoststoproductvalue. Thisvaluegivesaninitialestimateofthepossibleprofitsoftheproduct.Thelarger thisvalue,thegreaterthegainperproduct.Ifthevalueoftheproductsislessthanthe costsofrawmaterials,thealternativeisscreenedoutimmediately.Inadvancedesign stages,capitalandoperatingcostsmustbeincluded.Itissuggestedthatenergy consumptionindicatorsareusedinlaterdesignstages,oncetheseparation operationsaredefined.
(ii) Environmentaldimension
Thisdimensionisrepresentedthroughthreegroupsofindicators:impactsonwater, impactsonair,andwaste.Theymeasurethepotentialnegativeimpactsofthe evaluatedalternativesontheenvironment.
(a) Impactsonwater
Thisgroupofindicatorsisrepresentedbyhazardtoaquaticlife(HtoAL)and hazardtoaquaticlifelongterm(HtoAL_L);bothofthemaredefinedaccordingto theGHS.
(b) Impactsonair
Thisgroupiscomposedoffiveindicators:Globalwarmingpotential(GWP), photochemicaloxidationpotential(PCOP),ozonedepletionpotential(ODP), acidificationpotential(AP)fromtheWARalgorithm( YoungandCabezas,1999; SrinivasanandNhan,2008),andhazardtotheozonelayer(HtoOL)definedfrom theGHS.
(c) Waste
Thisgroupofindicatorsisrepresentedbythebioconcentrationfactor(BCF), renewablesources(RS),andbiodegradability(BD).BCFisdefinedfromGHS,and therenewablesourceindicatorisobtainedbyclassifyingsubstancesinto differentcategories,namely:(1)naturalresourcesonlyphysicallymodified,(2) enzymaticallymodified,(3)chemicallymodified,(4)frombothnaturaland syntheticsources,or(5)ofcompletelysyntheticorigin.Thisisasimilarapproach tothatproposedbyCosmos-Ecocertstandards(COSMOS-standard,2018).BDis assessedbyclassifyingsubstancesasreadily,inherently,andnonbiodegradable, accordingtoASTM5864(SharmaandBiresaw,2017).
(iii) Socialdimension
Thisdimensionisrepresentedthroughtwogroupsofindicators:physicalhazards andhealthhazards.