Towards sustainable chemical processes: applications of sustainability assessment and analysis, desi

Page 1


TowardsSustainableChemicalProcesses: ApplicationsofSustainabilityAssessmentand Analysis,DesignandOptimization,and HybridizationandModularization1stEdition

JingzhengRen

https://ebookmass.com/product/towards-sustainable-chemicalprocesses-applications-of-sustainability-assessment-andanalysis-design-and-optimization-and-hybridization-andmodularization-1st-edition-jingzheng-ren/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Applications in Design and Simulation of Sustainable Chemical Processes 1st Edition Dimian A.

https://ebookmass.com/product/applications-in-design-and-simulationof-sustainable-chemical-processes-1st-edition-dimian-a/

ebookmass.com

Biofuels for a More Sustainable Future: Life Cycle

Sustainability Assessment and Multi-Criteria Decision Making 1st Edition Jingzheng Ren (Editor)

https://ebookmass.com/product/biofuels-for-a-more-sustainable-futurelife-cycle-sustainability-assessment-and-multi-criteria-decisionmaking-1st-edition-jingzheng-ren-editor/

ebookmass.com

Life Cycle Sustainability Assessment for Decision-Making: Methodologies and Case Studies 1st Edition Jingzheng Ren (Editor)

https://ebookmass.com/product/life-cycle-sustainability-assessmentfor-decision-making-methodologies-and-case-studies-1st-editionjingzheng-ren-editor/

ebookmass.com

Professional C++ 5th Edition Marc Gregoire

https://ebookmass.com/product/professional-c-5th-edition-marcgregoire/

ebookmass.com

Making the Global Economy Work for Everyone Marco Magnani

https://ebookmass.com/product/making-the-global-economy-work-foreveryone-marco-magnani/

ebookmass.com

The Get Things Done Book: 41 Tools to Start, Stick With and Finish Things Mikael Krogerus

https://ebookmass.com/product/the-get-things-done-book-41-tools-tostart-stick-with-and-finish-things-mikael-krogerus/

ebookmass.com

Masculinities and Manhood in Contemporary Irish Drama: Acting the Man Cormac O'Brien

https://ebookmass.com/product/masculinities-and-manhood-incontemporary-irish-drama-acting-the-man-cormac-obrien/

ebookmass.com

The Silenced Women Frederick Weisel

https://ebookmass.com/product/the-silenced-women-frederick-weisel/

ebookmass.com

Financial

Inclusion and the Role of Banking System Sudarshan Maity

https://ebookmass.com/product/financial-inclusion-and-the-role-ofbanking-system-sudarshan-maity/

ebookmass.com

An Invitation to Health: Taking Charge of Your Health 19th

https://ebookmass.com/product/an-invitation-to-health-taking-chargeof-your-health-19th-edition-dianne-hales/

ebookmass.com

TowardsSustainable ChemicalProcesses

TowardsSustainable ChemicalProcesses

TheHongKongPolytechnicUniversity, DepartmentofIndustrialandSystemsEngineering, CenterforSustainabilityScience,HongKong,China

YufeiWang

Associateprofessor,StateKeyLaboratoryofHeavyOilProcessing, ChinaUniversityofPetroleum,Beijing,China

ChangHe

SchoolofMaterialsScienceandEngineering, SunYat-senUniversity,Guangzhou,China

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-818376-2

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: AnitaKoch

EditorialProjectManager: EmeraldLi

ProductionProjectManager: SruthiSatheesh

CoverDesigner: MatthewLimbert

TypesetbySPiGlobal,India

Contributors

MuhammadW.Ajiwibowo UniversitasIndonesia,Depok,Indonesia

HousseinAlMoussawi LebaneseInternationalUniversity,LIU,Beirut,Lebanon

MuhammadAziz InstituteofIndustrialScience,TheUniversityofTokyo,Tokyo,Japan

BeatrizA.Belmonte ResearchCenterfortheNaturalandAppliedSciences,Universityof SantoTomas,Manila,Philippines

MichaelFrancisD.Benjamin ResearchCenterfortheNaturalandAppliedSciences, UniversityofSantoTomas,Manila,Philippines

MauricioCamargo EquipedeRecherchedesProcessusInnovatifs,ERPI-ENSGSI, UniversitedeLorraine,Nancy,France

ArifDarmawan TokyoInstituteofTechnology,Tokyo,Japan

FaroukFardoun FacultyofTechnology,DepartmentGIM,LebaneseUniversity,Saida, Lebanon

XiaoFeng SchoolofChemicalEngineering&Technology,Xi’anJiaotongUniversity,Xi’an, People’sRepublicofChina

ChangHe SchoolofMaterialsScienceandEngineering,GuangdongEngineeringCentre forPetrochemicalEnergyConservation,SunYat-senUniversity,Guangzhou,People’s RepublicofChina

XiaopingJia SchoolofEnvironmentandSafetyEngineering,QingdaoUniversityof ScienceandTechnology,Qingdao,China

ZhiweiLi SchoolofChemicalandMetallurgicalEngineering,Universityofthe Witwatersrand,Johannesburg,SouthAfrica

BoLiu StateKeyLaboratoryofHeavyOilProcessing,ChinaUniversityofPetroleum, Beijing,People’sRepublicofChina

HasnaLouahlia NormandieUniv,UNICAN,LUSAC,SaintLo,France

JiazeMa StateKeyLaboratoryofHeavyOilProcessing,ChinaUniversityofPetroleum, Beijing,People’sRepublicofChina

LeiMa SchoolofChemicalEngineering,BeijingInstituteofPetrochemicalTechnology, Beijing,China

EliasMartinez-Hernandez BiomassConversionDepartment,TheMexicanInstituteof Petroleum,MexicoCity,Mexico

PauloCesarNarva ´ ezRinco ´ n DepartamentodeIngenierı´aQuı´micayAmbiental,Grupo deProcesosQuı´micosyBioquı´micos,FacultaddeIngenierı´a,UniversidadNacionalde ColombiaSedeBogota ´ ,Bogota ´ ,Colombia

KokSiewNg DepartmentofEngineeringScience,UniversityofOxford,Oxford,United Kingdom

A ´ lvaroOrjuela DepartamentodeIngenierı´aQuı´micayAmbiental,GrupodeProcesos Quı´micosyBioquı´micos,FacultaddeIngenierı´a,UniversidadNacionaldeColombia SedeBogota ´ ,Bogota ´ ,Colombia

LuisF.Razon ChemicalEngineeringDepartment,DeLaSalleUniversity,Manila, Philippines

JingzhengRen DepartmentofIndustrialandSystemsEngineering,TheHongKong PolytechnicUniversity,HongKongSAR,People’sRepublicofChina

JulianaSerna DepartamentodeIngenierı´aQuı´micayAmbiental,GrupodeProcesos Quı´micosyBioquı´micos,FacultaddeIngenierı´a,UniversidadNacionaldeColombia SedeBogota ´ ,Bogota ´ ,Colombia

RaymondR.Tan ChemicalEngineeringDepartment,DeLaSalleUniversity,Manila, Philippines

RuiqiWang StateKeyLaboratoryofHeavyOilProcessing,ChinaUniversityofPetroleum, Beijing,People’sRepublicofChina

YufeiWang StateKeyLaboratoryofHeavyOilProcessing,ChinaUniversityofPetroleum, Beijing,People’sRepublicofChina

YanWu StateKeyLaboratoryofHeavyOilProcessing,ChinaUniversityofPetroleum, Beijing,People’sRepublicofChina

MinboYang SchoolofChemicalEngineering&Technology,Xi’anJiaotongUniversity, Xi’an,People’sRepublicofChina

Sustainabilityassessmentfor chemicalproductandprocessdesign duringearlydesignstages

lvaroOrjuelaa, MauricioCamargob

a DEPARTAMENTODEINGENIERI AQUI MICAYAMBIENTAL,GRUPODEPROCESOSQUI MICOS YBIOQUI ´ MICOS,FACULTADDEINGENIERI ´ A,UNIVERSIDADNACIONALDECOLOMBIASEDE BOGOTA ´ ,BOGOTA ´ ,COLOMBIA b EQUIPEDERECHERCHEDESPROCESSUSINNOVATIFS, ERPI-ENSGSI,UNIVERSIT EDELORRAINE,NANCY,FRANCE

1Introduction

Nowadays,theimportanceofreachingsustainableproductionandconsumptionis broadlyandgloballyrecognized.ThisisreflectedintheUnitedNations’statementon theSustainableDevelopmentGoals(SDGs)fortheyear2030(2015a).Inviewofthis, theWorldBusinessCouncilforSustainableDevelopment(WBCSD)haspublishedaspecificroadmaptohelpthechemicalsectorundertakeactionstocontributetotheSDG agenda( WBCSD,2018).Manychemicalindustryorganizationshavealsomanifestedtheir activesupportforfulfillingtheSDGs.Forexample,theInternationalCouncilofChemical Associations(ICCA)haspresentedareportofeffortsbeingmadeintheirsectortoachieve theSDGs(ICCA,2017).Also,theEuropeanChemicalIndustryCouncil(CEFIC)haspublishedasustainabilityreportwithinitsnewframework,ChemistryCan,createdtoboost cooperationbetweenCEFICmemberstowardsustainabledevelopment(CEFIC,2017). Similarly,theAmericanChemicalSociety(ACS)haspublishedapolicystatementfocused onsustainability,recommendinggovernmentactionsthatcanpromotetheSDGs(ACS, 2017).Additionally,severalbigchemicalindustries,suchasDow,BASF,andAkzoNobel, havealignedtheirgoalstothispurpose(AxonandJames,2017).

Inspiteoftheawarenessthatactionsareneededforsustainabledevelopment,thereis stillalongwaytogotoachievetheSDGs(UnitedNations,2018).Consideringthechemical sector,amajorchallengetoincorporatingasustainabilityapproachintoproduct/process designisitsinherentcomplexity.Sustainabledesigninvolves:

• Amultidimensionalperspective,becausebydefinitionitincorporatesatleastthree dimensions:economic,environmental,andsocial.Thesedimensionsareusually referredtoasthetriplebottomline(TBL)(HackingandGuthrie,2008; Govindanetal.,

2013).Moreover,inrecentapproaches,additionaldimensions,includingpoliticaland technological,arealsotakenintoaccount(Bautistaetal.,2016).

• Amultiscaleview,becausedecisionsmadeatthemolecular,phenomenological, process,andsupplierchainscalesmayhaveeffectsattheecosystemandplanetscales (Martinez-Hernandez,2017; HanesandBakshi,2015).

• Amultiactorproblem,becausedecisionsmustbemadeconsideringdifferent stakeholderswithdiverseandevencontradictoryintereststhatmaybeaffectedor benefitedbytheproduct/processtobedevised(Azapagicetal.,2016).Stakeholdersto beconsideredincludeinvestors,organizations,governments,individuals, communities,andworkers.

Thecomplexnatureofsustainabilitymeansmoreeffortisrequiredforitsimplementation.Nevertheless,itisalsoanopportunityforbroadeningthescopeofchemicalengineeringdesignbeyondthechemicalplant.Sustainabilitycanbeevaluatedusing indicatorsrelatedtoeachdimension,andtheappropriateindicatorsmustbeselected accordingtothedesignstageunderevaluationandtheavailableinformation. AsustainabledesignmustconsidersimultaneouslyallTBLdimensionsthroughoutthe entiredesignprocess,i.e.,fromtheearlydesignstageswhentheproductisdevised,componentsareselectedand/orachemicalrouteisdefined,allthewaytotheproduction stagewhentheplantisinoperationandadministrativeandmanufacturingdecisions aremade.Thus,theimplementationofsustainabilityassessmentcanbemoredemanding duringtheearlydesignstageswheninformationisscarceandtheimpactofdecisionsis highanddifficulttocorrectatlaterstages(Sernaetal.,2016; Argotietal.,2019).Inthis context,appropriateassessmentmethodsforeachdimensionanddecision-makingtools involvingmultipleobjectivesareneeded.

Severalsustainabilityassessmentapproachesapplicabletoearlydesignstageshave beenproposed.Examplesaretheindicator-basedmethodologyproposedby Srinivasan andNhan(2008),theenvironmentalhazardindex(EHI)(CaveandEdwards,1997),and thewastereduction(WAR)algorithm( Youngetal.,2000),amongmanyothers.Thesocial dimensionisdifficulttoassessattheearlydesignstagesduetoalackofmodelsandinformation(Argotietal.,2019).Somemethodsapplyasurrogateapproachusingsafetyand healthindicators.Examplesofsafetyassessmentapproachesaretheinherentsafetyindex (ISIandISI2)(Aduetal.,2008)andtheprototypeinherentsafetyindex(PIIS)(Edwards andLawrence,1993).ExamplesofoccupationalhealthindicatorsaretheInherentOccupationalHealthIndex(HassimandEdwards,2006)andtheGloballyHarmonizedSystem ofClassificationandLabellingofChemicals(GHS).Thelatterisglobalstandardforhazardousmaterialcategorizationthathasbeenwidelyimplementedworldwide(United Nations,2015b).Itcanalsobeusedtoassesstheenvironmentalandhealthhazardsof substances(SuarezandNarva ´ ez,2017).However,moreinvestigationisrequiredto generateamorecomprehensiveassessmentofthesocialdimensionatearlyandadvanced stagesoftheproductandprocessdesign.

Forthespecificcaseofsustainabilityassessmentsduringproductdesign,therearedifferentmethodologiesinwhichsustainabilityindicatorshavebeenincorporatedtoa greaterorlesserdegree.Forexample,inadditiontocost, Conteetal.(2011) and Mattei etal.(2013) consideredflammabilityandtoxicityascriteriaforselectingsafeandeconomic productcomponents. Heintzetal.(2014) proposedaframeworkforsubstitutingpossible toxicingredientswithmoresustainableoptions,consideringtheirlethaldose(LD50)and bioconcentrationfactor(BCF).Similarly,aframeworkintegratingcomputer-aidedmoleculardesignandacompleteevaluationofoccupationalhealthandsafetycriteriawas presentedby Tenetal.(2016).Inthatproposal,sevenindicesrelatedtothesafetyandhealth characteristicsofchemicalmoleculeswereselectedandimplementedwhengenerating molecularproducts.Theseindicesareflammabilityandexplosivenessforsafety;andviscosity,materialphase,volatility,andexposurelimitforoccupationalhealth.

Inadditiontotheselectionofsuitableindicators,twoaspectsmustbeconsidered whencarryingoutanintegratedsustainabilityassessment:(1)tonormalizetheindicators tomakethemcomparable,(2)topresenttheindicatorssimultaneouslysothatdecisionmakerscanidentifyeventualcompromisesbetweenalternatives(Sernaetal.,2016).When incorporatingmultipledimensionsintotheassessments,allstakeholderpreferenceshave tobeincluded.Thiscanbedonebyimplementingamulticriteriadecisionanalysis (MCDA)(Govindanetal.,2013; Sernaetal.,2016; Azapagicetal.,2016),andmultiactor decision-making(MADM)methods(Renetal.,2013).Accordingtotheproblemand theavailabilityofmodelsandinformation,designalternativescanbeidentifiedbyexperience,literaturesearch,orbymodelingandoptimization.Inthelattercase,whencompleteproblemmodelingispossible,optimizationcanbedonebeforeorafter incorporatingassessmentswithMCDAorMADM(Azapagicetal.,2016).Inthefirst option,theParetofrontisidentifiedbyapplyingamultiobjectiveoptimizationmethod, andtheassessmentsareintegratedsubsequently,andthebestalternativeisdefined.In thesecondoption,thecriteriaarefirstintegratedintoasingleobjective,andsubsequently aneasiermono-objectiveoptimizationisperformed.Theadvantageofthefirstoptionisa clearidentificationofallthebestalternatives(Paretofront)andpossibletrade-offs.

Takingtheaboveintoaccount,thischapterpresentsadecision-makingmethodology applicabletothesustainabledesignofchemicalproductsandprocessesatearlydesign stages.Itisbasedonapreviouslypresentedmethodologythatusesindicatorstoassess theprocessdesignalternativesandMCDAmethodstointegratetheassessment(Serna etal.,2016).ThecontributionofthischapteristhatitextendstheapplicationofthemethodologytoproductdesignandpresentsnewindicatorsbasedontheGHSthatrequirelittle informationandcanbeeasilyappliedatearlydesignstages.Additionally,theherepresentedmethodologyusestheMCDAmethodssuchastheanalytichierarchyprocess (AHP)andthepreferencerankingorganizationmethodforenrichmentofevaluations (PROMETHEE).Thelatterisanoncompensatorydecisionmethodthatenablesaclear comparisonofalternativesandtheidentificationofsynergiesandcompromises.The

followingsectionexplainsthestepsofdecisionmethodology,whichisexemplifiedin Section3 throughtwocasestudies:theselectionofachemicalroutetoproduceglyceryl monostearate,andtheselectionofaformulationforcosmeticapplication.

2Frameworkforthesustainabilityassessmentofchemical productsandprocessesatearlydesignstages

Fig.1.1 presentsthestepsinvolvedinthemulticriteriaanalyzes-basedframeworkproposedinthischapter.Thestepsarebasedonthepreviouslypresentedmethodology (Sernaetal.,2016),butinthisproposalanewsetofindicatorsapplicabletobothproducts andprocessesispresented,andadifferentMCDAmethodisusedfortheintegrationof assessments.Theframeworkhasfoursteps:

1. Problemdefinition.Thisincludesthesubstepsoftheobjectivestatement,knowledge oftheproduct,identificationofalternatives,andinformationgathering.

2. Assessmentofalternatives.Thiscomprisestheselectionofappropriateindicators applicableattheearlystagesofproductandprocessdesign,calculationofindicators foreachalternative,andnormalizationofindicators.

3. Integrationofassessments.Thisstepinvolvesthecalculationofweightsforthe indicators,calculationofaglobalsustainabilityindex,andtheexplorationofthe relationshipbetweenindicatorsthroughasensitivityanalysis.Inthisstudy,forthe

statement

definition

Assessment of alternatives

of assessments

1.Objective statement

2.Knowledge of the product

3.Identification of alternatives

4.Information gathering

1. Selection of indicators

2. Calculation of indicators

3. Normalization of indicators

Calculation of weights 2. Ranking of alternatives 3. Sensitivity analysis

FIG.1.1 Multicriteriaanalyses-basedframeworktoassessproduct/processalternativesundersustainabilitycriteriaat earlydesignstages. AdaptedfromSerna,J.,Dı´az,E.,Narva ´ ez,P.,Camargo,M.,Ga ´ lvez,D.,Orjuela,A ´ .,2016.Multicriteriadecisionanalysisfortheselectionofsustainablechemicalprocessroutesduringearlydesignstages.Chem. Eng.Res.Des. https://doi.org/10.1016/j.cherd.2016.07.001.

assessmentofalternatives,indicatorsapplicabletoearlydesignstagesofproductand processdesignarepresented.Fortheintegrationofassessments,theMCDAmethod isused.

4. Finaldecision

2.1Problemdefinition

Inthisstep,thescopeofthedesignisdefinedandtheproductisthoroughlycharacterized (properties,specifications,prices,legalframework,etc.).Iftheproductisnotaformulationbuttheresultofareactionandaseparationprocess,itisnecessarytoidentifyand studythepossiblechemicalprocessroutesandrawmaterialsforitsgeneration.Ifthe productisaformulation,itisnecessarytogatherinformationaboutthepossibleingredientstobeused.Inbothcases,thisinformationincludeseconomic,safety,occupational health,andenvironmentalpropertiesofthesubstances,andoperatingconditionsofthe processes.Amongothers,sourcesforthisinformationinclude:

• scientificpapers

• safetydatasheetofingredients

• suppliers’documentation

• reportsfromgovernmentalandintergovernmentalagenciesandorganizations(e.g., EuropeanChemicalsAgency(ECHA),theOrganizationforEconomicCo-operation andDevelopment(OECD),andtheU.S.EnvironmentalProtectionAgency(EPA))

• scientificdatabases(e.g.,PubChem,eChemPortal)

• ECHAdossierofchemicals

• groupcontributionmethodstocalculatesomesafetyandoccupationalhealthindices formolecules(e.g., Tenetal.,2016)

• softwarethatincorporatespropertyestimationtools(e.g.,EPISuitefromEPA)

2.2Assessmentofalternatives

Duringthisstage,theperformanceofeachalternativeisassessedwithintheTBLdimensionsthroughsuitableindicators.Becausethemethodologyisapplicabletoearlydesign stages,wheninformationonthesocialdimensionisveryscarceatthispoint,thisdimensionwasindirectlyassessedviahealthandsafetyindicators,asshownin Fig.1.2.

2.2.1Selectionofindicators

Asetofindicatorsisusedtocalculatethesustainabilityperformanceofdifferentchemical processroutesandformulationsattheearlydesignstages.Mostofthemaredefinedbased ontheGHS(UnitedNations,2015b).Theindicatorscanbecalculatedusingtheproperties ofthesubstances,whicharenormalizedusingtheirdefinitionaccordingtoGHSHazard statements(H statements).An H statementisassignedtoasubstancetoindicateahazard class(e.g.,acutetoxicity,eyeirritation,flammability,etc.)andahazardcategory(i.e.,divisionofahazardclassthatspecifiesitsseverity)(UnitedNations,2015b).Alternatively, indicatorscanbedefineddirectlyfromthe H statements,whichcanbefoundinthesafety

Economic dimension

Economic indicator

Added value (VA)

Assessment of the product/process alternatives

Environmental dimension

Impact on water

Hazard to aquatic life (HtoAL)

Hazard to aquatic life long term (HtoAL_L)

Impact on air Waste

Hazard to the ozone layer (HtoOL)

Global warming potential (GWP)

Photochemical oxidation potential (PCOP)

Ozone depletion potential (ODP)

Acidification potential (AP)

Bioconcentration factor (BCF)

Renewable sources (RS)

Biodegradability (BD)

Social dimension

Physical hazards Health hazards

Flammability (F)

Explosiveness (E)

Reactivity (R)

Oxidiser (O)

Self-heating (SH)

Flammability by mixture with water (RFG)

Corrosion to metals (CtoM)

Gases under pressure (GUP)

Temperature (T)

Pressure (P)

Heat of reaction (H)

Complexity of separation (CSP)

Sustainabilityindicatorstoassessproduct/processalternativesatearlydesignstages.

Acute toxicity (AT)

Eye irritation (EI)

Skin irritation (SI)

Respiratory irritation (RI)

Danger if enters airways (DA)

Carcinogenicity (CAR)

Mutagenicity (MUT)

Damage to fertility (Dfer)

Damage to organs (DtoO)

Damage to organs long term (DtoO_L)

informationonsubstances.ThisapproachwasusedbecausetheGHSinformationwas constructedoncurrentscientificprinciples,isgloballyaccepted,andisavailablefor almostanycommercialsubstance.

Tocompletetheassessment,additionalindicatorsoutsidetheGHSareproposed.Most ofthemhavebeenpreviouslyincludedintheWARalgorithm( YoungandCabezas,1999) andtheinherentsafetyindex(ISI)approach(Heikkil,1999).Someadditionalindicators arealsoproposed,andthecompletelistispresentedin Table1.1.Itisnotalwaysnecessary touseallthelistedindicators;someofthemcanbedisregardedoradditionalonescanbe included.Decision-makershavetoselectthemostsuitableindicatorsaccordingtoproductcharacteristics,thespecificcontextofselectionproblem,andtheavailabilityof information.

2.2.2Calculationofindicators

Table1.1 presentsalistofindicatorsapplicabletosustainabilityassessmentatearly designstages.Tocalculateanindicatorforachemicalroute,thisapproachusestheaveragevalueofallsubstancesinvolvedinthereactionandgivesthesamerelativeimportance toallofthem(Sernaetal.,2016).Thisisdonetoavoidtheunderestimationofanalternativewhenithasacriticalcomponentinsmallquantitythatmaydisappearasthereactionadvances(Sernaetal.,2016).

FIG.1.2

Economic dimension

Indicator Explanation

Addedvalue(VAT )Theaddedvalue VA correspondstothedifferencebetween productvalueandrawmaterialcosts.Itcanbenormalizedby dividingthisdifferencebythesalepriceofproducts,obtainingthe dimensionlessnormalizedaddedvalue(VA).

Thetotalnormalizedaddedvalue(VAT )correspondsto1minusthe normalizedaddedvalue(VA).Thisiscalculatedtomakethe indicatorcomparablewithotherindicatorsoftheassessment.A high VA andthecorrespondinglowervalueof VAT meansabetter economicperformance

Normalizedindicator Sources

• VAp forformulations

• VAp forproductsfromachemicalprocessroute

Normalization

Environmental dimension Hazardtoaquatic life(HtoAL)

Thishazardindicatesthatthesubstancecancausedamageto aquaticorganismsinashort-termexposure,anditisrepresented with H statements400–402.Itispossibletodirectlyfind H statementsrelatedtoHtoALinthematerialsafetydatasheet (MSDS)ofasubstance.Alternatively,iftoxicityinformationon aquaticlifeisavailable,itisalsopossibletoidentifythe corresponding H statementofasubstanceasfollows:

Here, CFp istheconversionfactorofproduct p, M isthemolecularweightofproduct p orrawmaterial i,mp isthemassofproduct p,NP isthetotalnumberofproducts, Pc isthepurchasepriceofrawmaterial i,PPp is thesalepriceofproduct p,NI isthetotalnumberofrawmaterials, VA istheaddedvalueofproduct p, VA is thenormalizedaddedvalueofthealternative, VAT isthetotalnormalizedaddedvalueofthealternative, ν isthestoichiometriccoefficientofproduct p orrawmaterial i, and x isthecompositionofcomponent i in theformulation

• ThenormalizedindicatorvalueofHtoAL(Ii, HtoAL)forpuresubstancesisdefinedbasedon H statements 400–402asfollows:

1 if H ¼ 400 verytoxictoaquaticlife

0 75 if H ¼ 401 toxictoaquaticlife

HtoAL or I p, HtoAL

(1.8)

0 05 if H ¼ 402 harmfultoaquaticlife

0 if H ¼ nostatement

• ThenormalizedindicatorvalueofHtoALforachemicalroute(I r HtoAL )iscalculatedastheaverageofthe indicatorsofthecomponents,asfollows:

Theindicatorwas usedin Sernaetal. (2016) Equationswere takenfrom Carvalhoetal. (2008) and modifiedtosuit theapproach proposedinthis study

• H400—hazardcategory1,if96hlethalconcentration(LC50) (fish)and/or48hhalfmaximaleffectiveconcentration(EC50) (crustacean)and/or72or96hErC50 (algaeoraquaticplant)are 1mg/L

• H401—hazardcategory2,ifanyofthepreviouslyconsidered concentrationsare >1and 10mg/L

• H402—hazardcategory3,ifanyofthepreviouslyconsidered concentrationsare >10and 100mg/L

• H statementisnotassigned,ifanyoftheconsideredproperties are >100mg/L

Inthecaseofamixture,itispossibletofindthe H statementas follows:

• H400—hazardcategory1,if 25%ofthecomponentsare classifiedasH400

• H401—hazardcategory2,ifthesumoftheconcentrationsofits componentsincategoryH401plus10timestheconcentrationof itscomponentsincategoryH400is 25%.

• H402—hazardcategory3,ifthesumoftheconcentrationsofits componentsincategoryH402plus10timestheconcentration ofitscomponentsincategoryH401plus100timestheconcentrationofitscomponentsincategoryH400is 25%

Here, NI isthetotalnumberofsubstancesinthechemicalroute, Ii α istheindicatorofsubstance i associatedwiththeindicatorcategory α, I r α isthenormalizedindicatorofthechemicalroute r associated withtheindicatorcategory α Thisnormalizationmethodisvalidforthecalculationofchemicalrouteindicatorsdefinedaccordingto UnitedNations(2015b)

• NormalizedindicatorvalueofHtoALforaformulationisdefinedintwosteps:(1)mixturerulesareused toclassifytheformulationinacategory;(2)thenormalizedindicatorvaluefortheformulationis assignedfollowingEq.(1.8)

Forotherindicators,ifmixturerulesorbetterpropertymixturepredictionmodelsarenotavailable,the indicatoriscalculatedasanapproximationatearlydesignstageswithalinearrelationasfollows:

H statements informationfrom UnitedNations (2015b)

where NI isthetotalnumberofsubstancesofaproduct, I α istheindicatorofsubstance i associatedwith thecategory α indicator,and Ip, α isthenormalizedimpactofproduct p associatedwithimpactcategory α

Indicator Explanation

Whentoxicityinformationforsomeofthecomponentsofamixture isunknown,andthe H statementsoftherestareknown,itis possibletoapproximateHtoALofthemixtureassigningahazard categoryfollowingthesesteps:(1)tofindthetoxicityoftheportion ofingredientswithtoxicityinformationusingEq.(1.7);(2)toclassify thatportionofthemixtureinan H categoryusingtherulesfor substancesgivenatthebeginningofthissection;(3)tofindthe H categoryoftheentiremixtureusingthepreviouslypresentedrules formixtureclassification.

P x LEðÞC50 m ¼ Pn x LEðÞC50 (1.7)

Here x istheconcentrationofcomponent i inthemixture, L(E)C50i is thelethalconcentrationorhalfmaximaleffectiveconcentrationof thecomponent, n isthenumberofcomponents,and L(E)C50m isthe lethalconcentrationorhalfmaximaleffectiveconcentrationofthe mixture

Hazardtoaquatic life—long-lasting effect(HtoAL_L)

Thishazardindicatesthatthesubstancecancausedamageto aquaticorganismsinalong-termexposure,anditisrepresented with H statements410–413. H statementsrelatedtoHtoAL_Lcan befounddirectlyintheMSDSofasubstance.Alternatively,if toxicitydataonaquaticlifeforthelongtermareavailable,itisalso possibletoidentifythe H statementofasubstanceasfollows:

• H410—hazardcategory1,ifitisnonrapidlybiodegradableand theNOEC(noobservedeffectconcentration)orECx(concentrationthatcausesaresponsethatis x%ofthemaximum)(fish) and/orNOECorECx(crustacean)and/orNOECorECx(algaeor aquaticplant)is 0.1mg/L

• H411—hazardcategory2,ifitisnon-rapidlybiodegradableand theNOECorECx(fish)and/orNOECorECx(crustacean)and/or NOECorECx(algaeoraquaticplant)is >0.1and 1mg/L

• H410—hazardcategory1,ifitisrapidlybiodegradableandthe NOECorECx(fish)and/orNOECorECx(crustacean)and/or NOECorECx(algaeoraquaticplant)is 0.01mg/L

• H411—hazardcategory2,ifitisrapidlybiodegradableandthe NOECorECx(fish)and/orNOECorECx(crustacean)and/or NOECorECx(algaeoraquaticplant)is >0.01and 0.1mg/L

• H412—hazardcategory3,ifitisrapidlybiodegradableandthe NOECorECx(fish)and/orNOECorECx(crustacean)and/or NOECorECx(algaeoraquaticplant)is >0.1and 1mg/L

WheninformationaboutchronictoxicitysuchasNOECorECxisnot available,itispossibletoclassifyasubstancefollowingtherules:

• H410—hazardcategory1,ifits96hLC50 (fish)and/or48hEC50 (crustacean)and/or72and/or96hErC50 (concentrationatwhich a50%inhibitionofgrowthrateisobserved)(algaeoraquatic plant)is 1mg/L,anditisnotrapidlybiodegradableand/orBCFis >500and/orKO/W > 4

• H411—hazardcategory2,ifits96hLC50 (fish)and/or48hEC50 (crustacean)and/or72and/or96hErC50 (algaeoraquaticplant) is >1and 10mg/L,andthesubstanceisnotrapidlybiodegradableand/orBCFis >500and/orKO/W > 4

• H412—hazardcategory3,ifthe96hLC50 (fish)and/or48hEC50 (crustacean)and/or72and/or96hErC50 (algaeoraquaticplant) is >10and 100mg/L,andthesubstanceisnotrapidlybiodegradableand/orBCFis >500and/orKO/W > 4

• H413—hazardcategory4,ifthesubstanceispoorlysolubleandif noacutetoxicityisreported,itisnotrapidlybiodegradableand KO/W > 4

H statementofamixtureisassignedasfollows:

• H410—category1,ifitcontains 25%ofcomponentsclassified asH410

• H411—category2,ifthesumoftheconcentrationsofitscomponentsincategoryH411,plus10timestheconcentrationofits componentsincategoryH410is 25%

Normalizedindicator

• ThenormalizedindicatorvalueofHtoAL_Lforpuresubstances(I i , HtoAL L )isdefinedbasedon H statements410–413,asfollows:

1 if H ¼ 410 verytoxictoaquaticlife longlastingeffects

0:75 if H ¼ 411 toxictoaquaticlife longlastingeffects

0 5 ifH ¼ 412 harmfultoaquaticlife longlastingeffects

0 25 if H ¼ 413 maycauselong lastingharmfuleffects

0 if H ¼ Nostatement

• NormalizedindicatorvalueofHtoAL_Lforachemicalroute(Ir, HtoAL L ),iscalculatedwithEq.(1.9)

• NormalizedindicatorvalueofHtoAL_Lforaformulatedproduct(I p, HtoAL L )isdefinedintwosteps:(1) mixturerulesareusedtoclassifytheformulationinanHcategory;(2)thenormalizedindicatorvaluefor theformulationisassignedfollowingEq.(1.12).ForHtoAL_L,mixturerulesarepresentedinthe explanationcolumn

Sources

H statements informationfrom UnitedNations (2015b)

I

Hazardtothe ozonelayer (HtoOL)

• H412—category3,ifthesumoftheconcentrationsofitscomponentsincategoryH412,plus10timestheconcentrationofits componentsincategoryH411,plus100timestheconcentration ofitscomponentsincategoryH410is 25%

• H413—category4,ifthesumoftheconcentrationsofitscomponentsincategoriesH413plusH412plus411plus410is 25%

Whenchronictoxicityinformationforsomeofthecomponentsofa mixtureisknownandthe H statementsoftherestareknown,itis possibletoapproximateHtoAL_Lofamixture,assigningitahazard categoryfollowingthenextsteps:

(1)tofindthechronictoxicityoftheportionofingredientswith toxicityinformationusingEq.(1.11);

where x istheconcentrationofcomponent i intherapidly degradableingredients, x istheconcentrationofcomponent j in thenon-rapidlydegradableingredients, NOECi isthechronictoxicityofcomponent i intherapidlydegradableingredients, NOEC is thechronictoxicityofcomponent inthenon-rapidlydegradable ingredients, n isthenumberofcomponents, EQNOECm isthe chronictoxicityofthemixture;

(2)toclassifytheportionofthemixturein H categoriesaccording tochronictoxicityusingtherulesforsubstanceclassification givenatthebeginningofthissection;

(3)tofindthe H categoryoftheentiremixtureusingtherulesof mixtureclassificationpreviouslypresented

ODPisdefinedonlyforthosesubstancesthatstayinthe atmospherelongenoughtoreachthestratosphereandcontaina chlorineorbromineatom(YoungandCabezas,1999).

AnysubstancelistedintheMontrealProtocol,whichmeansithas anODP,oranymixturecontaining >0.1%ofasubstanceinthe MontrealProtocollist,hasan H statement420

Globalwarming potential(GWP)

Bydefinition,thisimpactisdeterminedbycomparing“theextentto whichaunitmassofachemicalabsorbsinfraredradiationoverits atmosphericlifetimetotheextentthatCO2 absorbsinfrared radiationoveritsrespectivelifetimes”(YoungandCabezas,1999)

• ThenormalizedindicatorvalueofHtoOLforpuresubstances(I , HtoOL )orproductformulations(I p HtoOL )is definedbasedonEq.(1.13):

I , HtoOL or I p HtoOL ¼ 1 if H ¼ H420 harmspublichealthandtheenvironment bydestroyingozoneintheupperatmosphere

if H ¼ Nostatement

• NormalizedindicatorvalueofHtoOLforachemicalroute(I r HtoOL ),iscalculatedwithEq.(1.9)

• NormalizedindicatorvalueofGWPforachemicalroute(I r GWP )iscalculatedwithEq.(1.14) andforaformulatedproduct(I p GWP )withEq.(1.15):

H statements informationfrom UnitedNations (2015b)

Photochemical oxidationpotential (PCOP)

“Thisimpactcategoryisdeterminedbycomparingtherateatwhich aunitmassofchemicalreactswithahydroxylradical(OH )tothe rateatwhichaunitmassofethylenereactswithOH”(Youngand Cabezas,1999)

Here, NI isthetotalnumberofsubstances, Potential α isthepotentialenvironmentalimpactofcomponent i associatedwithimpactcategory α, hPotentialriα istheaverageofimpactsofcomponents i inchemical processroute r associatedwithimpactcategory α, σ α isthestandarddeviationofpotentialenvironmental impactofsubstancesassociatedwithimpactcategory α, xi isthecompositionofcomponent i, σ α wt isthe weightedstandarddeviationofpotentialenvironmentalimpact, I r , α isthenormalizedpotentialimpactof chemicalprocessroute r associatedwithimpactcategory α,and I p α isthenormalizedimpactofthe formulation

• NormalizedindicatorvaluesofPCOPforachemicalroute(I r , PCOP )andforaformulatedproduct(I p, PCOP ) arecalculatedwithEqs.(1.14),(1.15),respectively

Youngand Cabezas(1999); normalization methodfrom Srinivasanand Nhan(2008);the indicatorwasalso usedin Sernaetal. (2016)

YoungandCabezas(1999);normalizationmethod from Srinivasan andNhan(2008); theindicatorwas alsousedin Serna etal.(2016) Continued

Table1.1 Indicatorsforsustainabilityassessmentofproduct/processalternativesatearlydesignstages—cont’d

Indicator Explanation

ODP

Acidification potential(AP)

“Thisimpactcategoryisdeterminedbycomparingtherateatwhich aunitmassofchemicalreactswithozonetoformmolecularoxygen totherateatwhichaunitmassofCFC-11(trichlorofluoromethane) reactswithozonetoformmolecularoxygen.Forachemicaltohave ODPitmustexistintheatmospherelongenoughtoreachthe stratosphere,italsomustcontainachlorineorbromineatom” (YoungandCabezas,1999)

“Thisimpactcategoryisdeterminedbycomparingtherateof releaseofH+intheatmosphereaspromotedbyachemicaltothe rateofreleaseofH+intheatmosphereaspromotedbySO2” (YoungandCabezas,1999)

Normalizedindicator

• NormalizedindicatorvaluesofODPforachemicalroute(I r , ODP )andforaformulatedproduct( p, ODP )are calculatedwithEqs.(1.14),(1.15),respectively

• NormalizedindicatorvaluesofAPforachemicalroute(I r AP )andforaformulatedproduct(I p AP )are calculatedwithEqs.(1.14),(1.15),respectively

Sources

YoungandCabezas,(1999);normalizationmethod from Srinivasan andNhan(2008); theindicatorwas alsousedin Serna etal.(2016)

YoungandCabezas(1999);normalizationmethod from Srinivasan andNhan(2008); theindicatorwas alsousedin Serna etal.(2016)

Bioconcentration factor(BCF)

Socialdimension— physicalhazard

Renewablesource (RS)

“Bio-concentrationmeansnetresultofuptake,transformationand eliminationofasubstanceinanorganismduetowaterborne exposure.Thepotentialforbioaccumulationwouldnormallybe determinedbyusingtheoctanol/waterpartitioncoefficient,usually reportedasalogKow determinedbyOECDTestGuideline107or 117”(UnitedNations,2015b)

Rawmaterialsareclassifiedaccordingtotheirsourceintothe categories:(1)naturalresourcesonlyphysicallymodified,(2) enzymaticallymodified,(3)chemicallymodified,(4)fromboth naturalandsyntheticsources,or(5)completelysyntheticorigin (COSMOS-standard,2018)

Biodegradability (BD)

“Degradationmeansthedecompositionoforganicmoleculesinto smallermoleculesandeventuallytocarbondioxide,waterandsalts. Readybiodegradationcanmosteasilybedefinedusingthe biodegradabilitytests(A–F)ofOECDTestGuideline301”(United Nations,2015b).

AccordingtoASTM5864applicabletooilsandlubricants,anoilis readilybiodegradableifitdegrades 60%within28days.Itis inherentlybiodegradableifitdegradesfrom30%to60%in 28days,anditisnonbiodegradableifitdoesnotdegrade >30%in 28days(SharmaandBiresaw,2017)

Flammability(F)Aliquidisflammableifithasaflashpoint 93°C.Itisrepresented with H statementsH224–227.Aliquidisclassifiedinthehazard categoriesasfollows:

• H224—flammabilityhazardcategory1,ifithasaflashpoint <23°Candinitialboilingpoint 35°C

• H225—flammabilityhazardcategory2,ifithasaflashpoint

<23°Candinitialboilingpoint >35°C

• H226—flammabilityhazardcategory3,ifithasaflashpoint 23°Cand 60°C

• H227—flammabilityhazardcategory4,ifithasaflashpoint

>60°Cand 93°C

Formixtures,theflashpointcanbecalculatedaspresentedin GmehlingandRasmussen(1982),wheretheUNIFACgroupcontributionmethodisused.

Asolidisflammableifitisreadilycombustibleorcausesorcontributestofire.Itisrepresentedwith H statementH228.Itispossibletodirectlyfindan H statementrelatedtothishazardinthe MSDSofasubstance.Ifthisinformationisnotavailable,asolid substancecanbeclassifiedasfollows:

• NormalizedindicatorvaluesofBCFforachemicalroute(I r BCF )andforaformulatedproduct(I p BCF )are calculatedwithEqs.(1.14),(1.15),respectively

• ThenormalizedindicatorvalueofRSforpuresubstances(I , RS )orproductformulations(I p, RS )isdefined basedonEq.(1.16):

1 if Source ¼ syntheticorigin 0 66 if Source ¼ bothnaturalandsyntheticsources 0 33 if Source ¼ naturalsourceschemicallymodified

0 if Source ¼ naturalresourcesphysically=enzimaticmodified

• NormalizedindicatorvalueofRSforachemicalroute(I r , RS )iscalculatedwithEq.(1.9)

YoungandCabezas(1999);normalizationmethod from Srinivasan andNhan(2008)

(1.16)

• ThenormalizedindicatorvalueofBDforpuresubstances(I , BD )orformulatedproducts( p BD )isdefined basedonEq.(1.18):

ifitisnon biodegradable

I ,

5 if Biodegradabilityisinherent 0 if Biodegradabilityisreadil y

ThenormalizedindicatorvalueofBDforachemicalroute(I r BD )iscalculatedwithEq.(1.9)

• Thenormalizedindicatorvalueof F forpuresubstances(I , F )ormixtures(I p F )isdefinedbasedon Eq.(1.19):

1 if H ¼ 220,222,224,229 extremelyflammable

0 75 if H ¼ 225 veryflammable 0 5 if H ¼ 221,223,226,228 flammable

ifNostatement

• Thenormalizedindicatorvalueof F forachemicalroute(I r F )iscalculatedwithEq.(1.9)

Basedonclassificationfrom COSMOS-standard (2018);theindicatorwasalsoused in Sernaetal. (2016)

Youngand Cabezas,(1999); normalization from biodegradability definitionfrom ASTM5864.

H statements informationfrom UnitedNations (2015b)

(1.19)

• H228—flammabilityhazardcategory1,ifitisasolidormixture otherthanmetalpowdersthathasaburningtime <45sor burningrate >2.2mm/s,andthefirecausecannotbestoppedby wettedzones,oritismetalpowderwithaburningtime 5min

• H228—flammabilityhazardcategory2,ifitisasolidormixture otherthanmetalpowdersthathasaburningtime <45sor burningrate >2.2mm/s,andthefirecauseisstoppedbywetted zonesinatleast4min,oritismetalpowderwithaburningtime >5and 10min

Agasisflammableifithasaflammableconcentrationrangewith airat20°Cand1atm.Itisrepresentedwith H statementsH220and 221.Itispossibletodirectlyfindan H statementrelatedtothis hazardinsubstancesafetydocumentation.Ifthisinformationisnot available,itispossibletoclassifyitasfollows:

• H220—flammabilityhazardcategory1,ifat20°Cand1atmit hasaflammablerangewithair 12%points,independentofthe lowerflammablelimit,oritignitesinamixturewithairata concentration 13%

• H221—flammabilityhazardcategory2,ifitisadifferentgasfrom thoseclassifiedincategory1,andhasaflammabilityrangewith airat20°Cand1atm

Forgaseousmixtures,thecriteriontodefineifitisflammableis showninEq.(1.17):

P n i V % Tci > 1(1.17)

where Vi%istheequivalentflammablegascontent, Tci isthe maximumconcentrationofaflammablegasinnitrogenatwhich themixtureisstillnotflammablewithair.Inmixtureswithinertgas otherthannitrogen,theirconcentrationmustbecorrectedtobe includedintheformulawithafactor K Anaerosolisflammableifitcontainsanysolid,liquid,orflammable gas.Itisrepresentedwith H statementsH222and223

Explosiveness(E)Explosivenesscanbeassessedbasedontheupperexplosivelimit (UEL)andlowerexplosivelimit(LEL)ofeachsubstance,as suggestedintheInherentSafetyIndexapproach(Heikkil,1999), alsoimplementedin SrinivasanandNhan(2008) andTenetal. (2016).Thecalculationandclassificationcriteriaareshownin Eq.(1.20):

Ii,E ¼ (UEL LEL)vol%(1.20) whereexplosivenessisscoredwith

• 0—nonexplosive

• 1for I ,E >0and 20

• 2for I ,E >20and 45

• 3for I ,E >45and 70

• 4for I ,E >70and 100

Formixtures,explosivelimitscanbeapproximatedwithLeChatelier’srule(HristovaandTchaoushev,2006),asshowninEqs.(1.21), (1.22)

LELmix ¼ 100 P x LEL (1.21)

UELmix ¼ 100 P x UEL (1.22)

Reactivity(R)Aself-reactivesubstanceisaliquidorsolidthatisunstableand reactsstronglyandexothermicallyevenwithoutthepresenceof oxygen.Itisrepresentedwith H statementsH200–205.The classificationcategoriesforthishazardare:

• H240—typeAsubstance,ifitisaself-reactivesubstanceor mixturethatcandetonate

• H241—typeBsubstance,ifitisaself-reactivesubstancethatis liabletoundergoathermalexplosionwithinthepackage

• Thenormalizedindicatorvalueof E forpuresubstances(I E )ormixtures(I p, E )isdefinedbasedon Eq.(1.23):

1 if Iiorp, E > 70and 100

0 75 if Iiorp E > 45and 70

I E or I p E ¼

0:5 if Iiorp E > 20and 45

0 25 if Iiorp, E > 0and 20

0 ifnon explosive

• Thenormalizedindicatorvalueof E forachemicalroute(I r E )iscalculatedwithEq.(1.9)

(1.23)

• Thenormalizedindicatorvalueof R forpuresubstances(I i , R )ormixtures(I p R )isdefinedbasedon Eq.(1.24):

1 if H ¼ 240 heatingmaycauseanexplosion

0 66 if H ¼ 241 heatingmaycauseafireorexplosion

I R or I p R ¼

(1.24)

0 33 if H ¼ 242 heatingmaycauseafire

0 ifH ¼ Nostatement

• Thenormalizedindicatorvalueof R forachemicalroute(I r , R )iscalculatedwithEq.(1.9)

H statements informationfrom UnitedNations (2015b) Continued

Heikkil(1999)

Indicator Explanation

• H242—typeCsubstance,ifitisaself-reactivesubstancethat possessesexplosivepropertiesbutcannotdetonateordeflagrate aspackaged

• H242—typeDsubstance,ifitisaself-reactivesubstancethatin laboratorytestingdetonatespartially,doesnotdeflagraterapidly, andshowsnoviolenteffectwhenheatedunderconfinement,or inlaboratorytestingdoesnotdetonate,deflagratesslowly,and showsnoviolenteffectwhenheatedunderconfinement,orin laboratorytestingdoesnotdetonateordeflagrateandshowsa mediumeffectwhenheatedunderconfinement

• H242—typeEsubstance,ifitisaself-reactivesubstancethatin laboratorytestingdoesnotdetonateordeflagrateandshowsa lowornoeffectwhenheatedunderconfinement

• H242—typeFsubstance,ifitisaself-reactivesubstancethatin laboratorytestingdoesnotdetonateordeflagrateandshowsa lowornoeffectwhenheatedunderconfinementaswellaslow ornoexplosivepower

Oxidizer(O) Anoxidizerisasubstancethatcontributestoorcausesthe combustionofothersubstanceormaterial.Itisrepresentedwith H statementsH270–272.Theclassificationcategoriesforthishazard are:

Forgaseoussubstancesandmixtures:

• H270—category1isgiventogasesthathaveanoxidationpower (OP)greaterthanthatofair,i.e.,substanceswithOP 23.5%.

where x ismolarfractionofoxidizergas i, C iscoefficientofoxygen equivalencyofthe i-oxidizinggasinthemixture, Kk iscoefficientof equivalencyoftheinnergas k comparedtonitrogen, Bk ismolar fractionofthe k inertgasinthemixture, OG istotalnumberof oxidizinggases, IG totalnumberofinertgases

Forliquidsubstancesormixtures,theclassificationisbasedontest O.2PartIIIsubsection34.4.2,asfollows:

• H271—category1,ifitignitesspontaneouslyinthetestconditions(1:1mixturebymassofthetestedsubstance:cellulose),orit presentsameanpressurerisetimelowerthanareference comparison(1:1mixturebymassofperchloricacid:cellulose)

• H272—category2,ifintestconditions(1:1mixturebymassof thetestedsubstance:cellulose)itpresentsameanpressurerise timelessthanorequaltoareference(40%aqueoussodium chloratesolutionandcellulose)andhasnotbeenclassifiedin category1

• H272—category3,ifintestconditions(1:1mixturebymassof thetestedsubstance:cellulose)itpresentsameanpressurerise timelessthanorequaltoareference(65%aqueousnitricacid andcellulose)andhasnotbeenclassifiedincategory1or2

Forsolidsubstancesormixtures:

• H271—category1,ifintestconditions(4:1or1:1mixtureby massofthesample:cellulose)itpresentsameanburningtimeless thanareference(3:2bymasspotassiumbromatetocellulose)

• H272—category2,ifintestconditions(4:1or1:1mixtureby massofthesample:cellulose)itpresentsameanburningtime equaltoorlessthanareference(2:3bymasspotassiumbromate tocellulose),andhasnotbeenclassifiedincategory1

• Thenormalizedindicatorvalueof O forpuresubstances(I O )ormixtures(I p O )isdefinedbasedon Eq.(1.26): I , O or I p

1if H ¼ 270 maycauseorintensifyfire;oxidizer

1if H ¼ 271 maycausefireorexplosion;strongoxidizer 0 5if H ¼ 272 mayintensifyfire 0ifH ¼ Nostatement

• Thenormalizedindicatorvalueof O forachemicalroute(I r O )iscalculatedwithEq.(1.9)

Sources

H statements informationfrom UnitedNations (2015b)

(1.26)

• H272—category2,ifintestconditions(4:1or1:1mixtureby massofthesample:cellulose)itpresentsameanburningtime equaltoorlessthanareference(3:7bymasspotassiumbromate tocellulose),andhasnotbeenclassifiedincategory1or2

Self-heating(SH)Pyrophoricsubstancesormixturesareliquidsorsolidsthatcan ignitein5minincontactwithair.Theyareidentifiedwith H statement250—category1.

Self-heatingsubstancesormixturesareliquidsorsolidsthatdiffer frompyrophoricsubstancesastheyareself-heatingwhenin contactwithair.Theycanalsoigniteiftheyareinlargeamounts andafterlongperiods.Theyareclassifiedintotwocategories:H251 forself-heatingsubstancesandH252forself-heatingsubstances whentheyareinlargequantities

Releaseflammable gaseswhenmixed withwater(RFG)

Corrosivetometals (CtoM)

Substances(mixtures,liquids,orsolids)thatreleaseflammable gasesorbecomeflammableincontactwithwater.Theyare representedwith H statementsH260–261.Theclassification categoriesforthishazardare:

• H260—category1,substanceswhichreactstronglywithwaterat ambienttemperatureandthegasproducedignitesspontaneouslyorreactsreadilywithwatersothattherateofproductionof flammablegasis 10L/kgsubstancemin

• H261—category2,substanceswhichreactreadilywithwaterso thattherateofproductionofflammablegasis 20L/kgsubstancehour

• H261—category3,substanceswhichreactslowlywithwaterso thattherateofproductionofflammablegasis 1L/kg substancehour

Asubstanceiscorrosivetometalswhenitcandamageordestroy metalsbyachemicalreaction.Itisrepresentedwith H statement 290.Theclassificationforthishazardis:

• H290—category1,corrosionrateoneithersteeloraluminumis 6.25mm/yearat55 °C

Gasesunder pressure(GUP)

Process temperature(T)

Gasesunder200kPaat20°Corliquefiedgases.Theyare representedwith H statements280,281.Categoriesforthishazard are:

• H280—compressedgasisagasunderpressurethatiscompletely gaseousat 50°C,includinggaseswithacriticaltemperature 5°C

• H280—liquefiedgasisagaswhichispartiallyliquidattemperature > 50°C

• H280—dissolvedgasisagasthatispackedunderpressureand dissolvedinaliquidsolvent

• H281—refrigeratedliquefiedgasisagasthatispartiallyliquefied duetothelowtemperaturewhenpackaged

ProcesstemperatureisclassifiedaccordingtotheInherentSafety Index(Heikkil,1999),wheretherangesareselectedaccordingto thedangertohumansasfollows:

• 1,forprocesstemperature 0°C(lowtemperaturesmayconstituteahazardbecauseaneffortisrequiredtomaintainthe processinthatcondition;ifthereisafailure,substancesmay begintovaporize;anotherhazardisthepresenceofsolidsdueto thelowtemperaturethatmaycauseablockage;construction materialsandisolationstrategiesmustbecarefullyconsidered)

• 0,forprocesstemperature >0°Cand 70°C

• 1,forprocesstemperature >70°Cand 150°C(hazardfor thermalstress,mildtemperatureprocess)

• 2,forprocesstemperature >150°Cand 300°C(hightemperatureprocess,beyondthistemperaturestrengthofcarbonstill decreasesconsiderably)

• 3,forprocesstemperature >300°Cand 600°C(veryhigh temperature,atthistemperaturerange,thestrengthofcarbon stilldecreasesconsiderably,sospecialmaterialsarerequired)

• 4,forprocesstemperature >600°C(extremelyhightemperature)

• ThenormalizedindicatorvalueofSHforpuresubstances(I SH )ormixtures(I p, SH )isdefinedbasedon Eq.(1.27):

1 if H ¼ 250 catchesfirespontaneouslyifexposedtoair 0 66 if H ¼ 251 self heating;maycatchfire

0 33 if H ¼ 252 self heatinginlargequantities;maycatchfire 0 if H ¼ Nostatement

ThenormalizedindicatorvalueofSHforachemicalroute(I r SH )iscalculatedwithEq.(1.9)

• ThenormalizedindicatorvalueofRFGforpuresubstances(I RFG )ormixtures(I p RFG )isdefined basedonEq.(1.28):

if H ¼ 260 incontactwithwaterreleasesflammablegases whichmayignitespontaneously

:5 if H ¼ 261 incontactwithwaterreleasesflammablegases

H statements informationfrom UnitedNations (2015b)

• Thenormalizedindicatorvalueof E forachemicalroute(I r E )iscalculatedwithEq.(1.9) H statements informationfrom UnitedNations (2015b)

• ThenormalizedindicatorvalueofCtoMforpuresubstances(I i CtoM )ormixtures(I p, CtoM )isdefinedbased onEq.(1.29):

• ThenormalizedindicatorvalueofCtoMforachemicalroute(I r , R )iscalculatedwithEq.(1.9)

• ThenormalizedindicatorvalueofGUPforpuresubstances(I GUP )ormixtures(I p GUP )isdefinedbasedon Eq.(1.30):

1 if H ¼ 280 containsgasunderpressure,mayexplodeifheated 1 if H ¼ 281 containsrefrigeratedgas,maycausecryogenicburn orinjury 0 if H ¼ Nostatement

ThenormalizedindicatorvalueofGUPforachemicalroute(I r , GUP )iscalculatedwithEq.(1.9)

H statements informationfrom UnitedNations (2015b)

H statements informationfrom UnitedNations (2015b)

• Thenormalizedindicatorvalueof T fortheassessmentofchemicalroutesorproductproductionprocess (IT )isdefinedbasedonEq.(1.31):

ifProcessTemperature > 600°C

75 ifProcessTemperature > 300°Cand 600°C 0 5 ifProcessTemperature > 150°Cand 300°C 0 25 ifProcessTemperature > 70°Cand 150°C 0 25 ifProcessTemperature 0°C 0 ifProcessTemperature > 0°Cand 70°C

FromtheInherent SafetyIndex (Heikkil,1999)

Socialdimension— healthhazard

Indicator Explanation

Process pressure(P)

Processpressureisclassifiedaccordingtotheinherentsafetyindex (Heikkil,1999),wheretherangesareselectedaccordingtothe dangertohumansasfollows:

• 1,forprocesspressurebetween0and0.5bar(lowpressure)

• 0,forprocesspressurebetween0.5and5bar

• 1,forprocesspressurebetween5and25bar(mildpressured process)

• 2,forprocesspressurebetween25and50bar(highpressure)

• 3,forprocesspressurebetween50and200bar(veryhigh pressure)

• 4,forprocesspressure >200bar(extremelyhighpressure)

Heatofreaction (H)(when applicable)

Complexityin separationprocess (CSP)

HeatofreactionisclassifiedaccordingtotheInherentSafetyIndex (Heikkil,1999)asfollows:

• 0—thermallyneutral,whenheatofreactionis 200J/g

• 1—mildlyexothermic >200and <600J/g

• 2—moderatelyexothermic >600and <1200J/g

• 3—stronglyexothermic >1200and <3000J/g

• 4—extremelyexothermic 3000J/g

Inthepresentapproach,theabsolutevalueoftheheatofreactionis usedtocalculatetheindicator.Thisisdonetotakeintoaccountthe dangerousnessofheatsourcesthatwouldfeedtheendothermic reactions

Conversion(X)andyield(Y)ofareactionindicatetherawmaterials andproductsthatarepresentattheendofareactionstage.Alow valueof X showsthatmostattentionmustbegiventothe separationbetweenthemainproductandrawmaterials.Alow valueof Y showsthattheseparationprocessshouldfocusonthe mainproductandbyproducts.Ingeneral,lowvaluesof X and Y indicatehighrecirculationrates.Complexityofseparationand purificationoperationsdependonthespecificnatureand propertiesofthecomponentsofthemixture

Acutetoxicity(AT)Acutetoxicitywhenswallowedisrelatedtoadverseeffects occurringafteranoraladministrationofasingledoseofthe substance.Itisdefinedby H statements300–303.

Toxicitybyskincontactisrelatedtotheadverseeffectsoccurring afteradermaladministrationofasingledoseofthesubstance.Itis definedby H statements310–313.

Toxicitybyinhalationhazardisrelatedtoadverseeffectsoccurring afterinhalationexposuretothesubstancefor4h.Itisdefinedby H statements330–333.

Itispossibletodirectlyfind H statementsrelatedtotheacute toxicityofasubstanceinitssafetydocumentation.Iftoxicitydatais available,itisalsopossibletoidentifythe H statementasfollows:

• IforalLD50 5mg/kgbodyweightordermalLD50 50mg/kg bodyweightorinhalationgas 100ppm,thenacutetoxicity correspondstothe H statementoffatal,hazardcategory1

• IforalLD50 > 5and 50mg/kgbodyweightordermalLD50 > 50 and 200mg/kgbodyweightorinhalationgas100and 500, thenacutetoxicitycorrespondstothe H statementoffatal, hazardcategory2

• IforalLD50 > 50and 100mg/kgbodyweightordermal LD50 > 50and 200mg/kgbodyweightorinhalationgas500 and 2500,thenacutetoxicitycorrespondstothe H statement oftoxic,hazardcategory3

• IforalLD50 > 300and 2000mg/kgbodyweightordermal LD50 > 1000and 2000mg/kgbodyweightorinhalationgas 2500and 20,000,thenacutetoxicitycorrespondstothe H statementofharmful,hazardcategory4

Normalizedindicator

• Thenormalizedindicatorvalueof P fortheassessmentofchemicalroutesorproductprocesses(IP )is definedbasedonEq.(1.32):

1 ifProcessPressure > 200bar

0 75 ifProcessPressure > 50and 200bar

0 5 ifProcessPressure > 25and 50bar

0 25 ifProcessPressure > 5and 25bar

0:25 ifProcessPressure 0:5bar

0 ifProcessPressure > 0 5and 5bar

• Thenormalizedindicatorvalueof H forchemicalroutes(I r H )isdefinedbasedonEq.(1.33):

1 if |Heatofreaction| 3000J=g

0 75 if |Heatofreaction| 1200 < 3000J=g

0 5 if |Heatofreaction| 600and < 1200J=g

0 25 if |Heatofreaction| 200and < 600J=g

0 if |Heatofreaction| < 200J=g

Theindicatorisnotapplicableforproductgeneratedwithoutreaction

• ThenormalizedindicatorvalueofCSPforchemicalroutes(I r , CSP )isdefinedbasedonEq.(1.34):

(1.33)

Sources

FromtheInherent SafetyIndex (Heikkil,1999)

where I r , CSP isthenormalizedindicatorofCSP, Yr istheyieldofchemicalprocessroute r, Xr istheconversionofchemicalprocessroute r, f isafactorthattakesvaluesfrom0to1toidentifywhichofthe followingseparationprocessmaybemorecomplex.Ittakesvalues >0.5iftheseparationofthemain productsfromotherproductsisverydifficult.Ittakesvalues <0.5iftheseparationofthemainproducts fromunreactedrawmaterialisverycomplex

Theindicatorisnotapplicableforproductgeneratedwithoutreaction

• ThenormalizedindicatorvalueofATforpuresubstances(I AT )ormixtures(I p, AT )isdefinedbasedon Eq.(1.36):

1 if H ¼ 300,310,330 fatalifswallowed,skin,inhaled

0 75 if H ¼ 301,311,331 toxicifswallowed,skin,inhaled

0 5 if H ¼ 302,312,332 harmfulifswallowed,skin,inhaled

0 25 if H ¼ 303,313,333 maybeharmfulifswallowed,skin,inhaled

0 if H ¼ Nostatement

• ThenormalizedindicatorvalueofATforachemicalroute(I r AT )iscalculatedwithEq.(1.9)

H statements informationfrom UnitedNations (2015b)

(1.36)

FromtheInherent SafetyIndex (Heikkil,1999)
Fromthisstudy

• IforalLD50 > 2000and 5000mg/Kgbodyweightordermal LD50 > 2000and 5000mg/kgbodyweight,thenacutetoxicity correspondstothe H statementofmaybeharmful,hazardcategory5

Inthecaseofamixture,itispossibletofindthe H statementbased oninformationfromingredientsasfollows:(1)calculateacute toxicityestimate(ATE)fromingredients,(2)useEq.(1.35)tocalculateATEofthemixture,(3)findthe H statementsbasedonthe rulespreviouslygivenforsubstances:

100 ATEm ¼ Pn x ATE (1.35)

where ATEm istheATEofthemixture, x isthecompositionin percentageofthecompound I,and ATE istheATEofcomponent i. ATEforingredientsisequivalenttoLD50,LC50 whenavailable,orit canbeapproximatedwhenthe H statementoftheingredientis knownasfollows:

• Whentheingredientishazardcategory1,ATEis0.5oralacute toxicitymg/kgbodyweightor5dermalacutetoxicitymg/kg bodyweightor10ppmVacutetoxicityinhalation

• Whentheingredientishazardcategory2,ATEis5oralacute toxicitymg/kgbodyweightor50dermalacutetoxicitymg/kg bodyweightor100ppmVacutetoxicityinhalation

• Whentheingredientishazardcategory3,ATEis100oralacute toxicitymg/kgbodyweightor300dermalacutetoxicitymg/kg bodyweightor700ppmVacutetoxicityinhalation

• Whentheingredientishazardcategory4,ATEis500oralacute toxicitymg/kgbodyweightor1100dermalacutetoxicitymg/kg bodyweightor4500ppmVacutetoxicityinhalation

• Whentheingredientishazardcategory5,ATEis2500oralacute toxicitymg/kgbodyweightor2500dermalacutetoxicitymg/kg bodyweight

Eyeirritation(EI)Seriouseyedamageisproducedifaftertheapplicationofa substancetheeffectisnotfullyreversiblewithin21days.Eye irritationisachangeintheeyeaftertheapplicationofasubstanceis fullyreversiblewithin21days.Itisrepresentedwith H statements 318–320.Ifthe H statementofasubstanceisunknown,the classificationinthesecategoriesisbasedonexistingdataofeffects onhumansoranimals,structure–activityrelationship,invitroor invivotest.

Inthecaseofamixture,itispossibletofindthe H statementbased oninformationfromingredientsasfollows:

• H318—category1ofseriouseyedamage,ifitcontains >3%of componentsinskincategory1(H314)and/oreyecategory1 (H318)

• H319or320—category2ofseriouseyeirritantoreyeirritant,ifit contains 1but <3%ofcomponentsinskincategory1and/or eyecategory1(H318)

• H319or320—category2ofseriouseyeirritantoreyeirritant,ifit contains 10%ofacomponentinthesameeyecategory

• H319or320—category2ofseriouseyeirritantoreyeirritant,ifit contains 10%ofthesumof10timestheconcentrationof substancesofeyecategory1/skincategory1pluseyecategory2

Skinirritation(SI)Asubstanceisirritantwhenitcausesreversibledamagetotheskin. Thisisidentifiedwith H statementsH315andH316.Asubstanceis corrosivewhenitcausesirreversibledamagetotheskin.Itis identifiedwithstatementH316.Ifthe H statementofasubstanceis unknown,theclassificationonthesecategoriesisbasedonexistent dataofeffectsonhumansoranimals,structure–activity relationship,invitroorinvivotest. Inthecaseofamixture,itispossibletofindthe H statementbased oninformationfromingredientsasfollows:

• ThenormalizedindicatorvalueofEIforpuresubstances(I EI )ormixtures(I p EI )isdefinedbasedon Eq.(1.37):

1 if H ¼ 318 causesseriouseyedamage

0 75 if H ¼ 319 causesseriouseyeirritation

0 5 if H ¼ 320 causeseyeirritation

0 ifH ¼ Nostatement

Thenormalizedindicatorvalueof E forachemicalroute(I r EI ),iscalculatedwithEq.(1.9)

H statements informationfrom UnitedNations (2015b)

• ThenormalizedindicatorvalueofSIforpuresubstances(I SI )ormixtures(I p SI )isdefinedbasedon Eq.(1.38): I SI or I p

1 if H ¼ 314 causessevereskinburnsandeyedamage

0 75 if H ¼ 315 causesskinirritation

0 5 if H ¼ 316 causesmildskinirritation

0 25 if H ¼ 317 maycauseanallergicskinreaction

0 ifH ¼ Nostatement

ThenormalizedindicatorvalueofSIforachemicalroute(I r SI )iscalculatedwithEq.(1.9)

(1.38)

H statements informationfrom UnitedNations (2015b) Continued

Indicator Explanation Normalizedindicator

• H314—categorizedascorrosive,ifitcontains 5%ofacorrosive component

• H315—categorizedasirritant,ifitcontainsbetween1%and5% ofcorrosiveingredients, >10%ofanirritantingredient,orthe sumof10timescorrosiveingredientsplusirritantingredientsis 10%

• H316—categorizedasmildirritant,ifitcontainsbetween1%to 10%ofirritantingredientsorithas >10%ofmildirritant ingredients,orthesumof10timescorrosiveingredientsplus irritantingredientsis 1to <10%,orthesumof10timescorrosiveingredientsplusirritantingredientsplusmildirritant ingredientsis 10%

Askinsensitizerisasubstancethatleadstoanallergyresponseafter contact.Itisrepresentedwith H statement317.Ifthe H statement ofasubstanceisunknown,theclassificationonthesecategoriesis basedontestsonhumansoranimals.Inthecaseofamixture,itis possibletofindthe H statementbasedoninformationfrom ingredientsasfollows:

• H317—category1,ifitcontains 0.1%ofsubstancesclassified asskinsensitizercategory1A(highfrequencyofoccurrenceofa reaction)

• H317—category1,ifitcontains 0.1%ofsubstancesclassified asskinsensitizercategory1B(lowtomoderatefrequencyof occurrenceofareaction)

Respiratory irritation(RI)

Dangerwhen entersairways (DA)

Arespiratorysensitizerisasubstancethatleadstoasensitivityof theairwaysafterinhalation.Itisrepresentedwiththe H statements 334,335,336. Ifthe H statementofasubstanceisunknown,theclassificationon thesecategoriesisbasedontestsonhumansoranimals. Inthecaseofamixture,itispossibletoapproximatethe H statementbasedoninformationfromingredientsasfollows:

• H334,H335,H336—respiratorysensitizercategory1,ifitcontains 0.1%ofsolid/liquid/gassubstancesclassifiedassensitizer category1A(highfrequencyofoccurrenceofareaction)

• H334,H335,H336—respiratorysensitizercategory1,ifitcontains 1%ofsolid/liquidsubstancesclassifiedassensitizercategory1B(lowtomoderatefrequencyofoccurrenceofareaction) or 1%ofgaseoussubstancesclassifiedassensitizercategory1B

Thisdangerreferstothepossibledamagecausedbyasubstance whenitentersthetracheaorthelowerrespiratorysystemafterits aspirationthroughtheoralornasalcavityorindirectlywhen vomiting.Itisindicatedby H statements304–305. Itispossibletodirectlyfind H statementsrelatedtotheaspiration dangerofasubstanceinitssafetydocumentation.Itisalsopossible toidentifythe H statementasfollows:

• H304—category1,ifthereisexperimentalhumanevidenceof thehighdanger.Examplesofsubstanceswiththisbehaviorare: certainhydrocarbons,turpentineandpineoil

• H304—category1,ifitisahydrocarbonwithakinematicviscosity 20.5mm2/sat40°C

• H305—category2,ifthereisevidencebasedonanimaltestsand expertjudgmentofthisbehaviorconsideringpropertiessuchas volatility,boilingpoint,surfacetension,andsolubility.Additionally,thesubstancehasnotbeenclassifiedincategory1andit hasaviscosity 14mm2/sat40°C.Examplesofsubstanceswith thisbehaviorare: n-primaryalcohols,withachainof3–13carbons,isobutylalcoholandketoneswithamaximumchainlength of13carbons

Inthecaseofamixture,itispossibletoapproximatethe H statementbasedoninformationfromingredientsasfollows:

• ThenormalizedindicatorvalueofRIforpuresubstances(I i , RI )ormixtures(I p, RI )isdefinedbasedon Eq.(1.39): I

or

1 if H ¼ 334 maycauseallergyorasthmasymptomsor breathingdifficultiesifinhaled

1 if H ¼ 335 maycauserespiratoryirritation

1 if H ¼ 336 maycausedrowsinessordizziness

0 ifH ¼ Nostatement

• ThenormalizedindicatorvalueofRIforachemicalroute( r , RI )iscalculatedwithEq.(1.9)

• ThenormalizedindicatorvalueofDAforpuresubstances(I i , DA )ormixtures(I p DA )isdefinedbasedon Eq.(1.40)

1 if H ¼ 304 maybefatalifswallowedandentersairways

0:5 if H ¼ 305 maybeharmfulifswallowedandentersairways 0 ifH ¼ Nostatement

• ThenormalizedindicatorvalueofDAforachemicalroute( r , DA )iscalculatedwithEq.(1.9)

Sources

H statements informationfrom UnitedNations (2015b)

H statements informationfrom UnitedNations (2015b)

(1.40)

Carcinogenicity (Car)

Mutagenicity (Mut)

• H304—category1,ifitcontains 10%ofingredientsclassifiedin category1andhasaviscosity 20.5mm2/sat40°C

• H304—category1,ifitcontains 10%ofingredientsclassifiedin category2,andhasaviscosity 14mm2/sat40°C

Acarcinogenisasubstancethatcausescancer.Itisrepresented with H statements350–351.Itispossibletodirectlyfind H statementsrelatedtothishazardinsubstancesafety documentation.Classificationofsubstancesinthishazardisbased onepidemiologicalinformationoranimaldataasfollows:

• H350—category1,basedonhumanevidence(1A)oranimal evidence(1B)

• H351—category2,basedonhumanevidenceoranimalevidence butisnotsufficienttoclassifythesubstanceincategory1 Formixtures:

• H350—category1—maycausecancer,ifitcontains 0.1%of ingredientsclassifiedinthesamecategory

• H351—category2—suspectedofcausingcancer,ifitcontains 1%ofingredientsclassifiedincategory2

Thishazardreferstochemicalsthatcancausemutations.Itis possibletodirectlyfind H statementsrelatedtothishazardinits safetydocumentation.

• H340—category1,itisbasedonevidencefromhumanepidemiologicalstudies,invivogermcellmutagenicitytestsinmammalsorinvivosomaticcellmutagenicitytestsincombinationwith othersupportingtestsingermcellsinvivo.Testsshowing mutageniceffectsinhumangermcells

• H341—category2,itisbasedonevidencefromsomaticcell mutagenicitytestsinvivoinmammals;orinvivosomaticcell genotoxicitytestssupportedbyinvitromutagenicitytests

Inthecaseofamixture,itispossibletoapproximatethe H statementbasedoninformationfromingredientsasfollows:

• H340—category1—maycausegeneticdefects,ifitcontains 0.1%ofingredientsclassifiedinthesamecategory

• H340—category2—maycausegeneticdefects,ifitcontains 1%ofingredientsclassifiedinthesamecategory

Damagetofertility (DFer)

Thishazardreferstoprobabledamagetothesexualityfunctionand fertilityoffemales.Itisrepresentedwith H statements360–362.Itis possibletodirectlyfind H statementsrelatedtothishazardin substancesafetydocumentation.Classificationofsubstancesinthis hazardisbasedonevidencefromhumansoranimalsasfollows:

• H360—category1,itisbasedonhumanevidence(1A)oranimal evidence(1B)

• H361—category2,itisbasedonhumanevidenceoranimal evidencewhichisnotsufficienttoclassifythesubstanceincategory1

• H362—maycauseharmtobreast-fedchildren,itisbasedon evidenceofhazardtobabiesduringlactationperiod,evidenceof adverseeffectduetotransferinthemilk,presenceofpotential highlevelofthesubstanceinthebreastmilk

Formixtures:

• H360—category1,ifitcontains 0.1%ofingredientsclassified inthesamecategory

• H361—category2,ifitcontains 0.1%ofingredientsclassified inthesamecategory

• H362—maycauseharmtobreast-fedchildren,ifitcontains 0.1%ofingredientsclassifiedinthesamecategory

• ThenormalizedindicatorvalueofCarforpuresubstances(I Car )ormixtures(I p Car )isdefinedbasedon Eq.(1.41)

• ThenormalizedindicatorvalueofCarforachemicalroute(I r Car )iscalculatedwithEq.(1.9)

H statements informationfrom UnitedNations

• ThenormalizedindicatorvalueofMutforpuresubstances(I , Mut )ormixtures(I p, Mut )isdefinedbasedon Eq.(1.42) I Mut or I

1 ifH ¼ 340 maycausegeneticdefects 0 5 if H ¼ 341 suspectedofcausinggeneticdefects 0 ifH ¼ Nostatement

< : (1.42)

• ThenormalizedindicatorvalueofMutforachemicalroute(I r , Mut )iscalculatedwithEq.(1.9)

• ThenormalizedindicatorvalueofDFerforpuresubstances( , DFer )ormixtures(I p DFer )isdefinedbased onEq.(1.43)

1 if H ¼ 360 maydamagefertilityortheunbornchild

0 5 if H ¼ 361 suspectedofdamagingfertilityortheunbornchild

0 5 if H ¼ 362 maycauseharmtobreast fedchildren

0 ifH ¼ Nostatement

ThenormalizedindicatorvalueofDFerforachemicalroute(I r DFer )iscalculatedwithEq.(1.9)

(1.43)

H statements informationfrom UnitedNations (2015b)

(2015b)
H statements informationfrom UnitedNations (2015b)
I , DFer or p DFer

Table1.1 Indicatorsforsustainabilityassessmentofproduct/processalternativesatearlydesignstages—cont’d

Indicator Explanation

Damagetoorgans (DtoO)

Damagetoorgans prolonged exposure(DtoO_L)

Thishazardreferstosubstancesthatcausenolethaldamagebut cancausedamagetoorgansafterasingleexposure.Itis representedwith H statements370or371.Itispossibletodirectly find H statementsrelatedtothishazardinsubstancesafety documentation.Theclassificationisdoneasfollows:

• H370—category1,ifthereisevidencefromhumandataorsignificanttoxiceffectsinanimalswithadditionalevidenceofacute toxicitydatasuchas:oral(rat) 300mg/kgbodyweight,dermal ratorrabbit 1000mg/kgbodyweight,inhalation(rat)gas 2500ppm/4h

• H371—category2,ifthereisevidencefromanimalsoftoxic effectsthatmayberelevanttohumanhealth,suchasoral(rat) LD50 > 300and 2000mg/kgbodyweight,dermalratorrabbit LD50 > 1000and 2000mg/kgbodyweight,inhalation(rat)gas

>2500and 20,000ppm/4h

Formixtures:

• H370—category1,ifitcontains 10%ofingredientsclassifiedin thesamecategory

• H371—category2,ifitcontains 10%ofingredientsclassifiedin thesamecategory

• H371—category2,ifitcontains 1%and < 10%ofingredients classifiedincategory1

Thishazardreferstosubstancesthatcausenolethaldamagebut cancausedamagetoorgansafterrepeatedexposure.Itis representedwith H statements372or373.Itispossibletodirectly find H statementsrelatedtothishazardinsubstancesafety documentation.Theclassificationisdoneasfollows:

• H372—category1,ifthereisevidencefromhumandataorsignificanttoxiceffectsinanimalsthatareconsideredtobetoxicfor humansafterrepeatedexposure.Inthelattercase,additional evidenceisrequired,suchastoxicitydataafter90daysrepeated dosestudy:oral(rat) 10mg/Kgbodyweight/day,dermalrator rabbit 20mg/kgbodyweight/day,inhalation(rat)gas 50ppm/6hday

• H373—category2,ifthereisevidencefromanimalsoftoxic effectsthatmaybeharmfultohumanhealthafterrepeated exposure.Theclassificationinthiscategoryusestoxicitydata aftera90-dayrepeateddosestudyforguidance:oral(rat) 100 and >10mg/kgbodyweight/day,dermalratorrabbit 200and >20mg/kgbodyweight/day,inhalation(rat)gas 250and >50ppm/6hday

Formixtures:

• H372—category1,ifitcontains 10%ofingredientsclassifiedin thesamecategory

• H373—category2,ifitcontains 10%ofingredientsclassifiedin thesamecategory

• H373—category2,ifitcontains 1%and < 10%ofingredients classifiedincategory1

Normalizedindicator

• ThenormalizedindicatorvalueofDtoOforpuresubstances(I DtoO )ormixtures(I p DtoO )isdefinedbased onEq.(1.44)

ThenormalizedindicatorvalueofDtoOforachemicalroute(I r , DtoO )iscalculatedwithEq.(1.9)

Sources

H statements informationfrom UnitedNations (2015b)

• ThenormalizedindicatorvalueofDtoO_Lforpuresubstances(I DtoO_L)ormixtures(Ip DtoO_L)isdefined basedonEq.(1.45)

1 if H ¼ 372 causesdamagetoorgansthroughprolonged orrepeatedexposure

0:5 if H ¼ 373 maycausedamagetoorgansthroughprolonged orrepeatedexposure

ifH ¼ Nostatement

H statements informationfrom UnitedNations (2015b)

(1.45)

• ThenormalizedindicatorvalueofDtoO_Lforachemicalroute(I r DtoO L )iscalculatedwithEq.(1.9)

Ii DtoO L or Ip DtoO L ¼

Tocalculatetheindicatorsforaformulation,itissuggestedthatspecificmixingrules areusedfortheindicatorormixturepropertymodels.Ifthisisnotpossible,theindicator valueforthemixtureisestimatedthroughtheweightedaverageofpropertiesofthe componentsusingtheircorrespondingcompositions.Inthiscase,theweightedaverage isappliedbecausecomponentsandcompositioninaformulationarenotsupposedto changeovertime.

(i) Economicdimension

Thepresentapproachusesaddedvalueasaneconomicindicator.Itsvalueis calculatedfromtheratioofproductvalueminusrawmaterialcoststoproductvalue. Thisvaluegivesaninitialestimateofthepossibleprofitsoftheproduct.Thelarger thisvalue,thegreaterthegainperproduct.Ifthevalueoftheproductsislessthanthe costsofrawmaterials,thealternativeisscreenedoutimmediately.Inadvancedesign stages,capitalandoperatingcostsmustbeincluded.Itissuggestedthatenergy consumptionindicatorsareusedinlaterdesignstages,oncetheseparation operationsaredefined.

(ii) Environmentaldimension

Thisdimensionisrepresentedthroughthreegroupsofindicators:impactsonwater, impactsonair,andwaste.Theymeasurethepotentialnegativeimpactsofthe evaluatedalternativesontheenvironment.

(a) Impactsonwater

Thisgroupofindicatorsisrepresentedbyhazardtoaquaticlife(HtoAL)and hazardtoaquaticlifelongterm(HtoAL_L);bothofthemaredefinedaccordingto theGHS.

(b) Impactsonair

Thisgroupiscomposedoffiveindicators:Globalwarmingpotential(GWP), photochemicaloxidationpotential(PCOP),ozonedepletionpotential(ODP), acidificationpotential(AP)fromtheWARalgorithm( YoungandCabezas,1999; SrinivasanandNhan,2008),andhazardtotheozonelayer(HtoOL)definedfrom theGHS.

(c) Waste

Thisgroupofindicatorsisrepresentedbythebioconcentrationfactor(BCF), renewablesources(RS),andbiodegradability(BD).BCFisdefinedfromGHS,and therenewablesourceindicatorisobtainedbyclassifyingsubstancesinto differentcategories,namely:(1)naturalresourcesonlyphysicallymodified,(2) enzymaticallymodified,(3)chemicallymodified,(4)frombothnaturaland syntheticsources,or(5)ofcompletelysyntheticorigin.Thisisasimilarapproach tothatproposedbyCosmos-Ecocertstandards(COSMOS-standard,2018).BDis assessedbyclassifyingsubstancesasreadily,inherently,andnonbiodegradable, accordingtoASTM5864(SharmaandBiresaw,2017).

(iii) Socialdimension

Thisdimensionisrepresentedthroughtwogroupsofindicators:physicalhazards andhealthhazards.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.