Tissue elasticity imaging s. kaisar alam - Download the full ebook set with all chapters in PDF form

Page 1


Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Tissue Elasticity Imaging: Volume 2: Clinical Applications S. Kaisar Alam (Editor)

https://ebookmass.com/product/tissue-elasticity-imagingvolume-2-clinical-applications-s-kaisar-alam-editor/

ebookmass.com

Soft tissue augmentation Fourth Edition. Edition Murad Alam

https://ebookmass.com/product/soft-tissue-augmentation-fourth-editionedition-murad-alam/

ebookmass.com

Atlas of Wound Healing: A Tissue Regeneration Approach 1st Edition Soheila S. Kordestani

https://ebookmass.com/product/atlas-of-wound-healing-a-tissueregeneration-approach-1st-edition-soheila-s-kordestani/

ebookmass.com

Clan of Three Staffs (Hill Chargers Book 1) Chloe Garner

https://ebookmass.com/product/clan-of-three-staffs-hill-chargersbook-1-chloe-garner/

ebookmass.com

Mass Shootings in Central and Eastern Europe Alexei Anisin

https://ebookmass.com/product/mass-shootings-in-central-and-easterneurope-alexei-anisin/

ebookmass.com

Mike Meyers’ CompTIA security+ certification passport, (Exam SY0-501) Dawn Dunkerley

https://ebookmass.com/product/mike-meyers-comptia-securitycertification-passport-exam-sy0-501-dawn-dunkerley/

ebookmass.com

Fundamentals of Geoenvironmental Engineering. Understanding Soil, Water, and Pollutant Interaction and Transport Abdel -Mohsen Onsy Mohamed

https://ebookmass.com/product/fundamentals-of-geoenvironmentalengineering-understanding-soil-water-and-pollutant-interaction-andtransport-abdel-mohsen-onsy-mohamed/ ebookmass.com

Friendly Fire (Brothers of Fire Book 3) Kathryn Shay

https://ebookmass.com/product/friendly-fire-brothers-of-firebook-3-kathryn-shay/

ebookmass.com

Practical Risk-Adjusted Performance Measurement (The Wiley Finance Series) 2nd Edition Bacon

https://ebookmass.com/product/practical-risk-adjusted-performancemeasurement-the-wiley-finance-series-2nd-edition-bacon/

ebookmass.com

https://ebookmass.com/product/sparta-and-the-commemoration-of-warmatthew-a-sears/

ebookmass.com

TissueElasticity Imaging

Volume1:TheoryandMethods

ImagineConsultingLLC Dayton,NJ,UnitedStates

TheCenterforComputationalBiomedicineImaging andModeling(CBIM) RutgersUniversity Piscataway,NJ,UnitedStates

BrianS.Garra

DivisionofImaging,Diagnostics,andSoftwareReliability

OfficeofScienceandEngineeringLaboratories,CenterforDevices andRadiologicalHealth,FDA,SilverSpring,MD,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-809661-1

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionEditor: AnitaKoch

EditorialProjectManager: LindsayLawrence

ProductionProjectManager: PaulPrasadChandramohan

CoverDesigner: MatthewLimbert

TypesetbyTNQTechnologies

Contributors

SalavatR.Aglyamov

DepartmentofMechanicalEngineering,UniversityofHouston,Houston,TX, UnitedStates

PaulE.Barbone

DepartmentofMechanicalEngineering,BostonUniversity,Boston,MA, UnitedStates

JeremyJ.Dahl

DepartmentofRadiology,StanfordUniversity,Stanford,CA,UnitedStates

MarvinM.Doyley

DepartmentofElectricalandComputerEngineering,UniversityofRochester, Rochester,NY,UnitedStates

BogdanDzyubak

DepartmentofMedicalPhysics,MayoClinic,Rochester,MN,UnitedStates

KevinJ.Glaser

MedicalPhysics,MayoClinic,Rochester,MN,UnitedStates

TimothyJ.Hall

DepartmentofMedicalPhysics,UniversityofWisconsin,Madison,WI, UnitedStates

CarlD.Herickhoff

DepartmentofRadiology,StanfordUniversity,Stanford,CA,UnitedStates

BrendanF.Kennedy

BRITElab,HarryPerkinsInstituteofMedicalResearch,QEIIMedicalCentre, Nedlands,WA,Australia;DepartmentofElectrical,ElectronicandComputer Engineering,SchoolofEngineering,TheUniversityofWesternAustralia,Perth, WA,Australia

RobertM.Lerner

DepartmentofClinicalImaging,UniversityofRochester,Rochester,NY,United States;DepartmentofDiagnosticImaging,RochesterGeneralHospital, RochesterRegionalHealth,Rochester,NY,UnitedStates

AssadA.Oberai

DepartmentofAerospaceandMechanicalEngineering,UniversityofSouthern California,LosAngeles,CA,UnitedStates

KevinJ.Parker

WilliamF.MayProfessorofEngineering,ProfessorofElectricalandComputer Engineering,ofBiomedicalEngineering,andofImagingSciences(Radiology), UniversityofRochester,Rochester,NY,UnitedStates;DeanEmeritus,Schoolof Engineering & AppliedSciences,UniversityofRochester,Rochester,NY,United States

DavidD.Sampson

Optical+BiomedicalEngineeringLaboratory,DepartmentofElectrical,Electronic andComputerEngineering,TheUniversityofWesternAustralia,Perth,WA, Australia;UniversityofSurrey,Surrey,UnitedKingdom

ArseniiV.Telichko

DepartmentofRadiology,StanfordUniversity,Stanford,CA,UnitedStates

TomyVarghese

DepartmentofMedicalPhysicsUniversityofWisconsinSchoolofMedicineand PublicHealthUniversityofWisconsin Madison,Madison,WI,UnitedStates

PhilipWijesinghe

Optical+BiomedicalEngineeringLaboratory,DepartmentofElectrical,Electronic andComputerEngineering,TheUniversityofWesternAustralia,Perth,WA, Australia;BRITElab,HarryPerkinsInstituteofMedicalResearch,QEIIMedical Centre,Nedlands,WA,Australia

Abouttheeditors

PresidentandChiefEngineer,ImagineConsultingLLC,Dayton,NJ,UnitedStates

VisitingResearchFaculty,CenterforComputationalBiomedicineImagingand Modeling(CBIM),RutgersUniversity,Piscataway,NJ,UnitedStates

AdjunctFaculty,Electrical & ComputerEngineering,TheCollegeofNewJersey (TCNJ),Ewing,NJ,UnitedStates

Dr.S.KaisarAlamreceivedhisB.Tech(Honors)fromIIT,Kharagpur,India. Followinga3-yearstintasaLectureratRUET,Bangladesh,hecametothe UniversityofRochester,Rochester,NewYork,forgraduatestudiesandreceived hisM.S.andPh.D.degreesinelectricalengineeringin1991and1996,respectively. Afterspending3years(1995 1998)asapostdoctoralfellowattheUniversityof TexasHealthScienceCenter,Houston,Dr.AlamwasaPrincipalInvestigatorat RiversideResearch,NewYork,from1998to2013,workingonavarietyofresearch topicsinbiomedicalimaging.HewastheChiefResearchOfficeratImprolabsPte Ltd,anupcomingtechstartupinSingaporeuntil2017.Thenhefoundedhisown consultingcompanyforbiomedicalimageanalysis,signalprocessing,andmedical imaging.Hehasalsobeeninvolvedintrainingandmentoringhighschoolstudents. HehasbeenavisitingresearchprofessoratCBIM,RutgersUniversity,Piscataway, NewJersey(since2013),avisitingprofessoratIUT,Gazipur,Bangladesh(2010and 2012),andanadjunctfacultyatTheCollegeofNewJersey(TCNJ),Ewing,New Jersey(since2017).

Dr.Alamhasbeenactiveinresearchformorethan30years.Hisresearchinterests includediagnosticandtherapeuticapplicationsofultrasoundandoptics,andsignal/ imageprocessingwithapplicationstomedicalimaging.Theareasofhismostactive researchincludeelasticityimagingandquantitativeultrasound;heisamongafew researcherswithexperienceinbothquasistaticanddynamicelasticityimaging. Dr.Alamhaswrittenover40papersininternationaljournalsandholdsseveralpatents.Heisacoauthorofthetextbook ComputationalHealthInformatics (tobe publishedlate2019orearly2020by CRCPress).HeisaFellowofAIUM,aSenior MemberofIEEE,andaMemberofSigmaXi,AAPM,ASA,andSPIE.Dr.Alamhas servedintheAIUMTechnicalStandardsCommitteeandtheUltrasoundCoordinatingCommitteeoftheRSNAQuantitativeImagingBiomarkerAlliance (QIBA).HeisanAssociateEditorof Ultrasonics (Elsevier)and UltrasonicImaging (Sage).Dr.AlamwasarecipientoftheprestigiousFulbrightScholarAwardin 2011 2012.

DivisionofImaging,Diagnostics,andSoftwareReliability,OfficeofScienceand EngineeringLaboratories,CenterforDevicesandRadiologicalHealth,FDA,Silver Spring,MD,UnitedStates

Dr.BrianS.GarracompletedhisresidencytrainingattheUniversityofUtahand spent3yearsasanArmyradiologistinGermanybeforereturningtoWashington DCandtheNationalInstitutesofHealthinthemid1980s.After4yearsatthe NIH,hejoinedthefacultyofGeorgetownUniversityasDirectorofUltrasound. In1998,heleftGeorgetowntobecomeProfessor & ViceChairmanofRadiology attheUniversityofVermont/FletcherAllenHealthcare.In2009,Dr.Garrareturned totheWashingtonDCareaasChiefofImagingSystems & ResearchinRadiologyat theWashingtonDCVeteransAffairsMedicalCenter.InApril2010,healsojoined theFDAasanAssociateDirectorintheDivisionofImagingandAppliedMathematics/OSEL.In2018,helefttheVAandcurrentlysplitshistimebetweenthe FDAandprivatepracticeradiologyinFlorida.

Dr.Garra’sclinicalactivitiesincludespinalMRIandgeneralultrasound.His researchinterestsincludePACS,digitalsignalprocessing,andquantitativeultrasoundincludingDoppler,ultrasoundelastography,andphotoacoustictomography. HewaschairoftheFDAradiologicalDevicesPanelfrom1999to2002andhas beeninvolvedintheapprovalofseveralnewtechnologiesincludinghighresolution breastultrasound,thefirstdigitalmammographicsystem,thefirstcomputer-aided detectionsystemformammography,andthefirstcomputer-aidednoduledetection systemforchestradiographsaswellastheultrasoundcontrastagentalbunex.He alsoledtheteamthatdevelopedtheAIUMbreastultrasoundaccreditationprogram, andhelpeddeveloptheARDMSregistryinbreastultrasound.Heiscurrentlyalso ViceChairmanoftheUltrasoundCoordinatingCommitteeoftheRSNAQuantitativeImagingBiomarkerAlliance(QIBA)andisthePrincipalAuthoroftheforthcomingQIBAUltrasoundShearWaveSpeedProfilewhichwillprovidea standardapproachtoacquisitionofshearwavespeeddataforresearch,clinical application,andregulatorytesting.

Foreword

Giventheheavyrelativelysuccessfuluseofmanualpalpationoverthepastfew thousandyears,theultrasoundcommunity,andmedicineingeneral,wasvery excitedtounderstandandrealizethepossibilityofmeasuringandimagingthestiffnessoftissues.Thisincludedtissuestoodeepformanualpalpation.Improvingthe spatialandquantitativefidelityofelasticityimageswasaddressedaggressively.Also pursuedweremanyextensionsrelatedtoelasticproperties,suchastheanisotropyof elasticity,thecomplexelasticmodulus(viscousandelasticcomponents),andelasticityasafunctionoftimeundercompression.

Thistwo-volumebook TissueElasticityImaging extensivelycoverstheprinciples,implementation,andapplicationsofalltheseapproachestoimagethebiomechanicalpropertiesoftissues.Theachievedandfuturebiomedicalapplicationsof thesemanycapabilitiesarealsowellexplained,asareimportantopticalandmagneticresonanceimagingtechniquesthatfollowed,andthatsometimesleapedahead ofthemanyultrasounddevelopments.

Theserapidadvancesarebroughttolifeforthereaderofthesebooksbyphysiciansandotherimagingscientistsandengineerswhomadeleadingadvancesineach ofthecoveredareas.Iinitiallywishedtolistkeyleadauthorswithasummaryof theircontributions,butthatwouldessentiallyberepeatingmostofthetableofcontents.Theeditorsofthesebooks,Drs.BrianGarraandS.KaisarAlam,excelledin recruitingthemanyluminariestoauthorthevariouschapters,definingthetopics, andeditingtheworkforreadabilitybythetargetaudienceofimagingscientists,engineers,entrepreneurs,clinicians,andoperatorsofthesystems.Theworkshould serveasadefinitivereferenceforthoseteachingandthosewritingshorterexplanationsforvariousgroups.Thisisamuch-neededworkinthefield.Luckily,itwillnot bethelast,asadvancesareandwillcontinuetobemade.

UniversityofMichigan AnnArbor,Michigan UnitedStates

July14,2019

Preface

Sinceitsmodestbeginninginthelate1980stoearly1990s,elastographyhasgained wideacceptanceinmanyclinicalapplications,e.g.,detection,diagnosis,andtreatmentmonitoring.Toassessthegrowthofelastography,weperformedaPubMed searchfor“elastography.”Thetotalnumberofresultswas4711ifwesearched onlythetitle.Wehaveobservedthatsomepapersonelastographydonotinclude “elastography”inthetitlebutincludeitintheabstract.Accordingly,wealsoperformedatitle/abstractsearchfor“elastography”:thenumberofpaperswentupto 7912.Toprovideaperspectiveontherapidgrowth,thesenumberswere1and1, respectively,ifwelimitedthesearchtoonlytheyear1991.Thesenumbersincreased to16and22(title/abstract)in2001,265and399(title/abstract)in2011,and729and 1305(title/abstract)in2018.Clearlyfromtheseyearlynumbers,theascentofelastographyhasbeenrapid,especiallyduringthelastdecade.

Physicianshaveknownforalongtimethattissueelasticitychangeswith(ordue to)diseaseandroutinelyusedpalpationstoaidindiagnosticevaluations.Ifthe readereverwenttoaphysicianwithanabdominalcomplaint,thephysicianprobably palpatedtheabdomen,includingtheliver.Hippocrates(aGreekphysicianwholived duringGreece’sClassicalperiodandiswidelyregardedasthe“fatherofmedicine”) wroteaboutabdominalswellingsin TheBookofPrognostics:“.Suchswellingsas aresoft,freefrompain,andyieldtothefinger andarelessdangerousthanthe others. then,asarepainful,hard,andlarge,indicatedangerofspeedydeath; butsuchasaresoft,freeofpain,andyieldwhenpressedwiththefinger,are morechronicthanthese.”

Manualpalpation,however,issubjectiveandhighlydependentonthephysician expertise.Themeasurementsarenonquantitativeandnotveryusefulforsmallor deeplesions.Severalresearchersexploredtheclinicaluseoftissueelasticityin the1980s.Eventually,RobertLernerandKevinParkerpublishedthefirstjournal paperondynamicelastography(vibrationsonoelastography)in1988.Jonathan Ophirintroducedquasi-staticelastographyin1991.Manyotherelastographyvariantshavebeeninventedsincethen,andabriefhistorydescribingmanyofthem maybefoundinChapter1ofVolume1.Elastographymethodsdonottypicallysufferfromthelimitationsofmanualpalpation.Furthermore,quantitativeelastography allowsobjectivemonitoringofchangeovertime.Typically,medicalimagingmodalitiesmeasureanddisplayparametersthatvaryonlyafewpercentbetweennormal andpathologicaltissues.Incontrast,elastographymodalities(especiallythemodalitiesthatimageamodulus)canexploitparameterrangesofuptosixordersof magnitude!Elastographyisprobablytheonlymodalitywiththis(verylargedynamicrange)advantage.

Dr.BrianGarraandIhavebeeninvolvedwithelastographysinceitsearlydays. Wediscussededitingareferencebookonelastographyseveraltimesinthepast.We feltafewofyearsagothatthetimewasfinallyrightforustoputthisbooktogether. AsanAssociateEditoroftheElsevierJournal Ultrasonics,IknewourPublisher (atthetime)YsabelErmers.WeapproachedYsabel,andsheputusintouchwith Elsevier’sAcquisitionEditorDr.AnitaKoch.WithAnita’shelp,wefinalizedthe planforthebook.Thebookwasapprovedsoonafterward.BrianandIwantedthe booktobeusefulforintroducingsomeonetoelasticityimagingaswellasareferenceforsomeonemoreadvancedintheart.Someofthespecificsinthechapters ofbothvolumeswillbecomesomewhatoutdatedwithinashorttime.However, thebasicsandthegeneralinformationwillremainuseful.Thereaderscansearch theInternet(e.g.,Google,PubMed,etc.)andcontacttheauthorsinthisbookand otherexpertsforguidanceonthestateoftheart.Thereaderscanalsoconsultthe companionwebsiteforthisbookat https://www.elsevier.com/books-and-journals/ book-companion/978-0-12-809661-1.

Thereweremanyoptionswithrespecttotheorganizationofthebook.We decidedtodividethebookintotwovolumes.Volume1discussestheoryand methodsofelasticityimaging,andVolume2discussesclinicalapplicationsofelasticityimagingmodalities.InVolume1,Chapter1takesthereadersthroughabrief historyofelastography,startingwithsomediscussionaboutpreimagingdays.Chapter2providesaunifiedviewofthegoverningtheoryofelastography.(Individual chaptersinVolume1haveexpandedonthetheoryforeachmodality,asneeded.) Chapter3describesvibrationsonoelastography,thefirstelasticityimagingmethod. Itisfollowedbyadetaileddescriptionofquasi-staticelastographyinChapter4.A thoroughtreatmentofdynamicelastographytechniquesbasedonacousticradiation forceandshearwaveisprovidedinChapter5.Chapter6describesmagneticresonanceelastography.Inverseproblemsandmodulusconstructionarebrieflytreatedin Chapter7.Chapter8describeslateralandshearstrainimaging.Thevolumeconcludeswithadetailedchapteronopticalelastography(Chapter9).

InVolume2,ninechaptersdiscussseveralmajorclinicalapplicationsofelastography.Thisvolumecanalsoservetointroducebasicscientiststoanarrayofclinical applications,theircurrentchallenges,andfutureprospects.Evenafterthreedecades ofdevelopment,elastographyisarapidlyexpandingfield.Giventheever-increasing numberoflabs,researchers,andcommercialendeavors,webelievethatsuch progress(innewmethodsandclinicalapplications)islikelytocontinueformany years.

Werecruitedleadingresearcherstowritethechaptersandwouldliketothankall theauthorswhocontributed.Inaddition,wewouldliketothankthereviewerswho providedhelpfulcommentsforallthechapters.Theirservicewascrucialinensuring

thequalityofthechapters.Thenamesofthereviewersareindicatedbelowinan alphabeticalordertoacknowledgetheirservice.

S.KaisarAlam Dayton,NewJersey,USA October1,2019

Chapterreviewers:

Volume1:Theoryandmethods

ArunK.Thittai

AssadA.Oberai

DavidBradway

EEWVanHouten

GuyCloutier

JamesF.Greenleaf

Jean-LucGennisson

KirillLarin

MarkPalmeri

MarvinM.Doyley

MatthewUrban

MichaelRichards

SalavatAglyamov

ThomasA.Krouskop

TomSeidl

TomekCzernuszewicz

YogeshKannanMariappan

Acknowledgments

Editingthisimportantreferencebookwasmuchharderandatthesametime,much morefulfillingthanIcouldhaveeverimagined.Firstandforemost,Iwanttothank theAlmighty.Hegavemethepowertopursuemydreamsandthisbook.Icould neverhavedonethiswithoutmyfaithinHim.ThisbookhappenedbecauseHe wishedittobe.

Iamevergratefultomydeceasedparentswhoalwaysencouragedmetopursue mydreams.Thankyoumydearwife,daughter,andsonforyourconstantpatience andsupport,especiallyduringdifficulttimes.Myyoungerbrotherandsisterhave beenmysourceofstrengthsincetheywereborn.Theirspousesandchildrenhave beenasourceofinspirationandjoyforme.Ihavealargenumberofuncles,aunts, cousins,nephews,andnieces,whohavealwayssupportedme.Iamluckytohaveall ofyouasmyfamily.

IalsowanttothankmanyindividualswhomIregardasmentorsandfriends. TheyincludemychildhoodmentorDr.KaziKhairulIslam,mydoctoraladvisor Dr.KevinJ.Parker,mypostdocsupervisorlateDr.JonathanOphir,myformer supervisorsDr.ErnieFeleppaandlateDr.FredLizzi,andmycoeditorDr.Brian Garra.(Brianalsoprovidedtheartworkusedtodesignthecover.).

Iamalsoindebtedtomanyfamilymembers,friends,andcolleagues,andit wouldbeimpossibletothankthemallindividually.Iamluckytohavebeenyour family,friend,andcolleague.Thankyouall!

Lastbutnottheleast,thankstoeveryoneintheElsevierteam.Specialthanksto ourAcquisitionEditor(Dr.AnitaKoch),EditorialProjectManagers(LindsayLawrence,JenniferHorigan,andAmyClark),ProjectManager(PaulPrasad Chandramohan),CoverDesigner(MatthewLimbert),andmanyotherindividuals whoworkedbehindthescenestomakethisbookareality.

S.KaisarAlam Dayton,NewJersey,USA October1,2019

Anearlyhistoryofelasticity imaging 1

1DepartmentofClinicalImaging,UniversityofRochester,Rochester,NY,UnitedStates;

2DepartmentofDiagnosticImaging,RochesterGeneralHospital,RochesterRegionalHealth, Rochester,NY,UnitedStates

1. Overviewandpersonalobservationsfromaradiologist

Tissueelasticityimagingprovidesmedicalorbiologicalimageswithpixelsthat qualitativelyorquantitativelycorrespondtomeasuresoftissuestiffnessrelatedto clinicalpalpation.Qualitativeelasticityimagingreferstoaregionofinterestthatrespondsdifferentlytoaperturbingforcethantheadjacenttissue,whereasquantitative elasticityimagingreferstoaregionofinterestwhereameasuredvalueisassigned thatisafundamentalmechanicalpropertysuchaselasticity.Itwasdevelopedtoprovideobjectivebiomechanicalinformationtocomplementconventionalmedicalultrasonographicimaging.Conventionalmedicalultrasonographicimaging(B-scan) isbasedonrelativeamplitudesofbackscatteredlongitudinalwaves(echogenicity), whichshownodirectcorrelationtoorganandlesionstiffness [1,2].Tobetterunderstandtissueelasticityimaging’splaceinhistory,abriefdescriptionofmedicalultrasonographyandtissuestiffnessconsiderationsisnecessary.

Medicalultrasonographicimagingequipmentinitiallymimickedunderwatersonarusingthespeedofsoundinwaterfordesigningultrasonographicequipmentas anecholocationsystempresumingbiologicaltissuebehavedmuchlikewater.When consideringarelevantbiologicaltissueascomposedmainlyofwater,theoptimum parametersformedicalimagingrequiredlowmegahertzfrequenciesforadequate depthofpenetrationoflongitudinalwavesintodeeptissues,withminimalattenuationandwithbestimagedetail(smallestwavelength).Initially,bistableimagesof anatomywereproducedfromspecularreflectedechoesoriginatingfromorgan boundariesandinterfacesbasedonlongitudinalwave(bulkmodulus)impedance mismatches.Theseimageswereabletoidentifyfluid,gas,bone,orcalciumbut couldnotdifferentiatespecificorgansbytheirechogenicity.Byquantifyingthe strengthsoftheweakbackscatteredechoamplitudesfromthesmallscatteringcentersintissue,grayscale(B-scanorbrightnessmode)imageswereproducedthat depictedpatientanatomyinarangeofcontrastdetailwithdifferentechogenicity patterns.Althoughsomeorgansinthenormalstatehadcharacteristicrelativeechogenicitywhencomparedwithotherorgans,noelasticorviscousmechanicaltissue propertiescouldbegleanedfromtheimages,asechogenicityisacomplex

TissueElasticityImaging. https://doi.org/10.1016/B978-0-12-809661-1.00001-7 Copyright © 2020ElsevierInc.Allrightsreserved.

interactionofthebasicspecklepatternoftheultrasonographicinstrumentandthe distributionandstrengthofthescatteringcentersinthetissue/organ [3,4].Theimagesofrelativetissueechogenicitybasedonbulkimpedance(longitudinalwave propagation)mismatcheshavebeenextraordinarilyusefulinmedicine,depicting normalandabnormalanatomy,organsize,focallesions,abnormalmasses,fluidcollections,relativetissuemotion,andsubjectivecomplianceoftissuestoapplied transducerpressure.Becauseshearwavesdonotpropagatethroughwaterandare rapidlyattenuatedinbiologicaltissuesatmegahertzfrequencies [5],theywere notconsideredusefulformedicalultrasonographic.

Recognitionthatsubjectivetissuestiffnessbypalpationwasnotcorrelatedto echogenicitybecamethemotivationfordevelopingamethodtoimagestiffnessafter apilotstudysuggestedtissuestiffnessasdetectedbyclinicalpalpationwasabetter predictorofprostatecancerthanechogenicity [1,2,6]

“Ifit’snothard,it’snotcancer”wasaquotebyCharlesHuggins(Nobellaureate forthediscoveryofthehormonaltreatmentofprostatecancer)thatwassubsequentlyrelatedtotheauthorbyHarryFischer,MD,anotedX-raycontrastmedia researcherandformerchairmanoftheRadiologyDepartmentattheUniversityof Rochester.

Clearly,therewasmoretotissuestiffness(hardness)thanwasbeingdepictedby changesinechogenicityonconventionalultrasonographicequipment.Thisledtoan earlyprojecttoimageobjectivetissuestiffnesswithultrasonography,whichwould beindependentofechogenicity.Complementarystudiestomeasuretheelasticpropertiesofprostatetissueinvitroascomparedtopathologyweresubsequentlyreported [1,7 10].

Myinitialstudies(circa1982incollaborationwithProfessorRobertWaagofthe UniversityofRochester)startedwithgradedcompressionofastackoftwosponges, onestifferthantheother,withdetectionoftheradiofrequency(RF)ultrasoundsignalsfromregionsineachspongesubjectedtoincreasingdegreesofcompression. Offlinecomputerprocessingofthedatatodetectthecorrelationlengthofthesponge scatteringelementsfromeachspongeshowedthatforacertaindegreeofcompression,thestiffspongemaintaineditscorrelationlength,whereas,atthesame compressionlevel,thesofterspongecouldnolongershowacorrelationlength. Althoughtheconceptshowedpromiseindistinguishingahardfromsoftsponge, thecomputationaltimewaslongandseemedtoocomplexatthattimetoconsider forreal-timemedicalimagingandthatapproachwasabandoned.

Therealizationthattherewasaneedforamethodofimagingtissuestiffnessin “realtime”forpracticalradiologicimagingledtoexperimentswheretissuemimickingphantomsweresubjectedtolow-frequencyvibrationsormechanical thrusts(lowaudiblerange,50 200Hz).Thevibrationspropagatedintothephantomsfrombelowwithanaboverange-gatedDopplerultrasoundtransducer detectingthepeaklocalvelocitiesasafunctionofdistancethroughthespecimen. Bytranslatingthetransducerandvibrationsourceacrossthespecimeninincrements thatmatchedtheDopplergate,atwo-dimensionalimagewascreatedofrelative stiffness [2,11] (alsoseeChapter3ofthisvolume).Relatedwork(see Section2)

tocharacterizetissuestiffnesswasalsounderwaybyotherresearchers,althoughnot withthestatedgoalofproducingimagesoftissuestiffness.

2. Earlyhistoryoftissueelasticitydetermination

2.1 Palpation

Palpationistheexaminationofstructuresbytouchingthesurfaceoveranareaof concernwiththegoalofidentifyingandcharacterizingthedeepertissues.Ithas beenanimportantphysicianskillforthedetectionofunderlyinganatomicandpathologicconditionsforthousandsofyears [12].

Palpationcangiveanindicationoforgansizeandalsomaydetectinternalorgan abnormalitiessuchasoverallstiffness(whichmayrelatetofibrosis,scarring,tumor, orinflammation)orfocalabnormalitiessuchastumorsornodules.Abnormalities detectedoutsideorgansincludetumors,fluidcollections(abscesses,hematomas, cysts,seromas),andboneabnormalities.Vascularpulsationsmayalsobedetected byputtingafingeroveranarteryforpulserateandrhythmdeterminationandestimationofbloodpressure.Twoexamplesofmedicalteststhatmaybeviewedas quantitativepalpation(initiallyperformedbyclinicalpalpationbutwithpoorreproducibilityandaccuracy)arebloodpressuremeasurementsandoculartonometry, whichdetectintravascularbloodpressureandintraocularpressurebymeasuringa responsetoanappliedpressureorforce,respectively.Forexample,inbloodpressure measurements,systoleisdeterminedasthelowestpressurethatallowsapulsesound tobedetectedbyastethoscopeorDopplerultrasonographyasthepressureinthe cuffisreducedfromahighenoughpressuretoobstructthepulseorflow.Theintraocularpressureisdeterminedbymeasuringadeformationofthecorneatoaknown pressurepulse(puffofair)andcomparingtoastandard.

Avarietyofearlyattemptstoinvestigatetissuestiffnessinarelativeorquantitativemannerthatwouldcorrelatetopalpationwereexploredforseveraldecadesby researchersusinginstrumentationtoobjectivelymonitorstrain(changeindimensionperunitofinitialdimensionafterstressisapplied)ormotionimpartedtotissues usingvariousperturbingstresses(forcefieldsperunitarea).SeeChapters2and4of thisvolumefordetailsofhowstressandstrainpreciselyrelatetoelasticity.

2.2 OestreicherandvonGierke(1950s)

vonGierkeetal.usedastrobelightandcameratoimagesurfacewavepropagation patternsoverthehumanthigh,producedbyapistonsourceincontactwiththeskin at64Hz.Thepatternswererecordedatadistancefromthefocalharmonicforce appliedtotheskin.Surfacewavelengthandwavespeedweredetermined [13], whichcouldberelatedtomaterialpropertiesofanidealsemi-infinitemedium [14].

Theydidnotrelatethesurfacewavespeedtoshearwaves(slowwaves)orlongitudinalwaves(fastwaves)butitisapparent(fromthewavespeedsrecordedas approximatelyseveralmeterspersecond)thattheywereobservingeffectsofshear

wavedisturbancesinthetissueandthelongitudinalwaveswerenotdetected.This wasthefirstquantitativeexperimentalobservationofsurfacewavepropagationin humans.Surfacewavesarerecognizedtobeassociatedwithspeedsnearshear waves [14].

Thisworkfollowedaveryelegantmathematictreatmentofanoscillatingsphere inaviscoelasticmediumbyOestreicher [15].Theworkwaslargelyunexploiteduntilitsapplicationasafoundationfortissueelasticityimagingwasrecognizedand appliedtoenhancethecurrentunderstandingofthebasicscienceoftissueelasticity imaging [16,17] (alsoseeChapters2,3,and5ofthisvolume).

2.3 Earlytissuemotionstudies(1970tomid-1980s)

Althoughnotexplicitlystated,theimplicationforthesestudieswasthepresumption thattissuemotionresultingfromappliedforcefieldscouldultimatelyallowforthe determinationofobjectiverelative(qualitative)orabsolute(quantitative)tissuestiffness(andothermechanicalproperties,e.g.,viscosity)whenappropriatestress-strain physicalmodelswereapplied.Theappliedforcefieldswerefromavarietyofsourcessuchastransmittedcardiacpulsationsandcontrollableexternalforcesfrommechanicalpistons,acoustichorns,speakers,orpuffsofair.Internaltissuemotionwas detectedbyultrasonographyfortheseearlystudies,althoughsurfacewavemotion hadbeenexploredbyphotographictechniquesalso.

2.3.1 Instrument-enhancedpalpation

Anobjectiverelativeassessmentoftissueresponsetoexternalforcewasattempted intheearlystagesofmedicalultrasonographybyclinicalinvestigatorswhopalpated tissuesduringscanningwithstaticB-scanners,interleavingglobalimageswith selectedareaswheretissuemotionwasdepictedbyM-modeandlaterwithrealtimeB-mode,providingamoreglobalassessmentoftissueresponsetosimultaneous palpationorcompressionbytheultrasoundtransducer [18 23].Theseeffortsto gleanmorestiffnessinformationthanwasreadilyavailablefromastaticimageusing commercialinstrumentationaretobeapplaudedandservedtochallengeresearchers toconceiveofmorereproducibleandobjectivetechniques.Thistechniqueisstill usefulinultrasoundpracticeforthedetectionofslidingmotionoforgansortumors withrespecttootherstructures.

2.3.2

Tissuestimulationbycardiacpulsationsornaturalsources

WilsonandRobinsonpresentedanRFM-modeultrasoundsignalprocessingtechniquetomeasuresmalldisplacementsoflivertissuecausedbytheradialexpansion ofarterieswithintheliverfromcardiacpulsations.Theywereabletocalculatethe velocityoftissuemotionfromthetrajectoryofaconstantphasepointandintegrate thevelocityovertimetoestimatedisplacement [24].

DickinsonandHillusedthecorrelationcoefficientbetweensuccessiveA-scan linestomeasuretheamplitudeandfrequencyoftissuemotion.Theydefinedacorrelationparametertocharacterizethechangesoftheinterrogatedregionbetweenthe

successiveA-scans.Forsmalldisplacements,theyassumedthedecorrelationwas proportionaltodisplacement [25].Tristametal. [26] furtherdevelopedthetechniquetoinvestigatetheresponsesofnormalandcancerouslivertocardiacpulsation. DeJongetal. [27] alsousedamodifiedcorrelationtechniquetomeasuretissue motion.

Fetallungelasticitywasinvestigatedasanimportantparameteroffetallung maturitybyBirnholzandFarrell.Theytriedtoqualitativelydeterminethestiffness offetallungsbyevaluatingthelocalcompressionofthelungadjacenttotheheart comparedtothemoredistantlung,whichwouldcompressrelativelylessdepending onthelungstiffnessanddistancefromtheheart [28].Adleretal.developedmore quantitativeestimatesbyapplyingcorrelationtechniquestodigitizedM-modeimagesandestimatedaparameterthatcharacterizestherangeoftransmittedcardiac motioninfetallungs.Theparameterisameasureofthetemporallyandspatially averagedsystolictodiastolicdeformationperunitepicardialdisplacement [29]

Holenetal. [30] observedacharacteristicBessel-bandDopplerspectrumwhen usingDopplerultrasonographytoexamineunusuallyoscillatingheartvalves.Taylor [31] showedthattheexpressionfortheDopplerspectrumofascatteredDoppler signalfromavibratingtargetissimilartothatofapure-tonefrequencymodulation processundercertainconditions.

CoxandRogersstudiedtheDopplerultrasoundresponseoffishauditoryorgans tolow-frequencysound.ThevibrationamplitudeofthehearingorganwasdeterminedbycomparingtheratioofthecarrierandthefirstsidebandoftheDoppler spectrum [32].

Theseexperimentaltechniquesandmathematicsolutionsallmadecontributions torelativeandabsolutetissuestrainandvelocitymeasurements,butwithoutabsolutemeasuresofstress,strain,andboundaryconditionsofthetargettissues,as wellasappropriatemathematicmodels,intrinsicmaterialelasticityvaluescould notbequantitatedindependentoftheexperimentalsetup.

2.3.3 Tissuestimulationbyexternallycontrollablesources

Eisensheretal. [33] usedM-modeultrasonographytomonitorthefrequencycontent oftissuemotioninducedinbreastandlivertissuesbya1.5-Hzvibrationsource. Theyfoundthatthequasi-staticcompressionresponsefrombenignlesionswascharacteristicallysinusoidal,whereasthatfrommalignanttumorstendedtobemoreflat, i.e.,morenonlinear.

Satoetal. [34] investigatednonlinearinteractionsbetweenultrasoundandlower frequencypumpwavesintissuesatthetimewhenParkerandLerner [11] andKrouskopandLevinson [35] wereusinglinearmethodstoinvestigatethepropagationof vibrationsinsidetissues.

Krouskopetal.reportedoneofthefirstattemptsataquantitativemeasurementof tissueelasticityusinggatedpulseDopplertodetecttissuemotionsubjectedtoan externalvibration.Thesetofequationsrelatingtissuepropertiesandmovementsreducestosimpleformsunderassumptionsofisotropyandincompressibility.Determiningtissueelasticitythenreducestomeasuringpeaktissuedisplacementsand

gradients.Theysuggestedpossibleabsolutetissuestiffnesscouldbedeterminedina verysmallregion,i.e.,0.5 0.5mm,withinahomogeneousmedium [35].

ExceptfortheworkofKrouskop,thetissueelasticitydatawasqualitativeand lackingsufficientdetailforthedeterminationofafundamentaltissuepropertyindependentoftheexperimentalsetupthatcouldtranslatetoanabsolutemeasureoftissuestiffness(elasticity,i.e.,bulkmodulusorYoung’smodulusofelasticity; neglectingdensityvariationsinbiologicalsofttissues,whichareverysmall comparedwithelasticityvariations).Although,ingeneral,absolutestiffnessmeasurementscouldnotbeobtained,relativemeasurementscouldproveveryvaluable todetectfocallesionsintissueifthedatawerereliableoveranextendedareaallowingcomparisonofthetargettissuetotheadjacenttissue.

3. Theearlyeraofimagingtissuestiffness(late1980sto mid-1990s)

3.1 Vibrationamplitudesonoelastography(sonoelasticity)

Toourknowledge,thefirstpublishedimageofrelativestiffnesswasacrudegrayscalemapproportionaltopulse-Doppler-detectedvibrationmotioninatissuemimickingphantomcontainingahardinclusion,whichwassubjectedtoanexternal mechanicalstimulus [2,11].Thistechniquewascalled“sonoelasticity.”Afterinitial proofofconceptinphantomsandinvitroanimalstudies,real-timecolorDoppler vibrationalimagesweredemonstratedinanimalandhumantissues [1,36] (also seeChapter3ofthisvolume).

Real-timemodifiedcolorDopplerobservationoftissuevibrationamplitudeimagesduringdeliberatevariationofthefrequenciesoftheexternalvibrationsourcein therangeof50 200Hzresultedinvariablecentimeter-sizedmodalpatternscorrespondingtowavespeedsof1 3m/s,similartopublishedvaluesofshearwave speedintissues [13,36].Themodalpatternswereverysensitivetothefrequency changesandbecamemorecomplexathigherfrequencies.Hardinclusionsinthe phantomsdisturbedthemodalpatterns.Thissupportedthehypothesisthatthe observedsonoelasticitymodessensitivetotissuestiffnesswererelatedtoshear ratherthanlongitudinalwaves.Thisrecognitionthattissuestiffnesscorrelated morecloselywithshearwavepropagationthanwithlongitudinalwavepropagation waslikelythemotivationforseveralresearchlaboratoriestodirecttheirtissuecharacterizationeffortstowardshearwaves [37] (alsoseeChapter5ofthisvolume).

Areal-timevibrationamplitude(qualitative)imaging(sonoelasticity)studyof invitroprostatespecimensshowedbettersensitivityandpredictivevalueforcancer detectionthanconventionalB-scanalone [8].Thecancerousregionsinthespecimensshowedlessrelativemotionthantheadjacentnormaltissue.Amathematic modelforvibrationamplitudesonoelastographywascompleted,showingthatthe shearwaveelastographiccontrastwasordersofmagnitudegreaterthanthecontrast basedonechogenicity [38 40]

Later,theprinciplesofvibrationsonoelastographywerealsoappliedusingvocal fremitusastheexternalvibrationsourcewiththepatients’ownvoice(asinhummingavowelsound)inconjunctionwithDopplerdisplayofvibration.However, thelimitedcontroloveramplitude,frequency,andthecomplicationsoftheeffect ofvaryingechogenicityontheDopplerdisplayallcontributedtoavariableand patient-dependentresponseusingvocalfremitus [41].

3.2 Compressionelastography

Ophiretal.introducedcompressionelastographyasanimagingmethodtodisplay relativestiffnessbasedonlocaltissuestrainchangesinducedbya“modest”(2%) compressionappliedtoaB-scanreal-timeimagingtransducer.B-scanRFinformationfromthebackscatteredultrasonographybeforeandaftercompressionwasused tocalculatelocalstrainbycorrelationanalysis.Stiffertissueswouldundergoless strainthansofttissuesunderthesameappliedstress.Images,inprinciple,would besimpletointerpretbutrequiredtheapplicationofauniformstresstothesurface andinterveningtissuessuperficialanddeeptothetarget,whichisnoteasilyaccomplishedinpractice.Withintheselimitations,qualitative(relative)stiffnessimages wereobtained [42].

Thisconceptwasinitiallyintroducedinsomecommercialmedicalultrasonographicequipmentandcreatedaplatformforearlyclinicalstudiestoadvancethe fieldofrelativestiffnessimagingoftissues.Thisconceptgainedenoughsuccess tobecurrentlyavailableonnearlyallcommercialclinicalultrasonographicsystems. ThistopicisreviewedinmoredetailinChapter4ofthisvolume.

4. Quantitativetissuestiffnessdeterminationandimaging (1990topresent)

4.1 Quantitativetissuestiffnessdetermination

YamakoshiandSatoetal.developedavibrationphasegradientapproachthatmaps theamplitudeandphaseofthelow-frequencyshearwavepropagationinsidetissues, whichcanbeusedtoderivetheelasticandviscouscharacteristicsofthetissue [37]. Therateofchangeofphasecouldyieldaquantitativeestimateoftissuestiffness(see Chapter3ofthisvolume).

Transientelastography,amethodforthemeasurementoftheshearwaveelastic modulusorshearwavespeedinliver,wasthefirstapplicationofanelastographic methoddevelopedforaspecificapplicationthatmetwithwidespreadclinicalacceptance.Themethod,usinganexternalpistonlikemechanicalstimulationappliedtoa patient’sskin,transmittedshearwavepulsesintotheliverwhereultrasonographic monitoringoftheresultinglivertissuemotionalonganaxialpathyieldedameasure ofshearwavespeed [43].Thetechniquewasincorporatedinaninstrumentcalled FibroScan,whichhashadclinicalsuccessinstagingthedegreeofliverfibrosis 4. Quantitativetissuestiffnessdeterminationandimaging(1990topresent)

[44,45].FibroScandeterminesshearwavespeedbasedonshearwavetissuemotion detectedwithultrasoundwavesalongtheaxialbeamoftheultrasoundtransducer. Intuitively,shearwavespropagateatrightanglestolongitudinalwaves;however, longitudinalshearwavepropagationalongtheaxialpath,anonintuitiveresult,is predictedbytheanalysisofOestreicher’swork [15,17,46].

Therapidacceptanceofshearwavespeed(inmeterspersecond)orelasticity(in kilopascals)asaclinicalparameterforassessingthedegreeofliverfibrosiswas likelythestimulusfortheflurryofactivitythatfollowedwiththegoalofgenerating imagesofabsolutetissuestiffnessintermsoftissueelasticityorshearwavespeed. Shearmodulus G isrelatedtoshearwavespeed vs bytheexpression

Quantitativeimagingoftheelasticpropertiesoftissuesinvolvesperturbationof thetissueandmeasurementofthetissueresponseoverspaceandtime,withdetails dependingonwhetheritisbasedoncompressionelastography,mechanicalimaging, orshearwaveimaging.Knowledgeofthesurfacegeometryofthetissueunderexaminationandthemechanicalstimulationtothetissueasafunctionofspaceand timeisrequiredtomathematicallyprocessthedatausinginversemethodswhen appliedtoanappropriatemodel [47 51] (alsoseeChapter7ofthisvolume).

4.2 Furtherexpansionoftissueelasticityimaging(1994to present)

WorkattheUniversityofParisunderProfessorMathiasFinkdemonstratedthata transientshearwavetrackingapproachcouldproduceclinicallyusefulestimates ofshearwavespeed [43].ThisconceptwassuccessfullycommercializedintoaninstrumentcalledFibroScan.TherecognitionthatFibroScancouldquantifythefundamentaltissuepropertystiffness(i.e.,shearwavespeed[inmeterspersecond]or elasticity[inkilopascals];see Eq.(1.1))ledtoarapidexpansionofdevelopmental workleadingtoresearchinstrumentsandeventuallyclinicaltrialsforothermedical applications.Theensuinginstrumentscouldobtainalocalizedshearwavespeedina regionofinterestdefinedonaB-scanimage.Livercross-sectionalimagesofquantitativeshearwavespeedintissueshadbeenobtainedearlierusingmagneticresonanceimaging(MRI)andanexternallow-frequencysourceofshearwaves. However,duetothelimitedpatientaccesstoMRI,magneticresonanceelastography hadnotyetachievedwidespreadapplicationdespiteitselegantcapabilities [52]

Subsequently,cross-sectionalimagesofshearwavespeedintissueswereobtainedusingotherultrasonographictechniquesandeventuallyopticalmethods. Thesemajordevelopmentsarethesubjectsoflaterchaptersinthisvolumeand includevibrationsonoelastography,quasi-staticelastography,acousticradiation forceimpulse(ARFI)imaging,shearwaveimaging,opticalcomputedtomographic elastography,andMRIelastography.MRIelastography,inprinciple,coulddetect

three-dimensionalmotion,thuspermittinganonisotropicmaterial’sstresstensorto bemeasured.

Longitudinalultrasoundpulsesfocusedintissuesresultinsoundabsorptionleadingtoacousticmomentumtransferthatproducestissuemotionandareasourcefor localizedshearwaves(tissuemotion).Astheshearwavespeedintissuesisapproximately1000timesslowerthanthelongitudinalwavespeed,propagationofthe focaltissuesheardisplacementsormotioncanbedetectedorimagedusing thesametransducerthatappliedtheradiationforce [53 56].Thuspropagationof thefocaltissuedisplacementsandvelocitiescouldbetrackedtoquantitateshear wavespeed.Someoftheseconceptshavebeenusedcommercially(ARFI,shear waveelasticityimaging,andsupersonicimaging)andavoidthe,sometimescumbersome,externallyappliedlow-frequencyshearwavesource.

Useofacousticradiationforceasameansofgeneratingandpropagatingshear wavesintodeeptissuesusingfocusedultrasoundpulsesfromconventionalimaging transducershasbeenamajorcontributionforultrasound-basedimagingofcrosssectionaltissuestiffness [57].Thistechniquecanbetracedtocontributionsby severalinvestigators.Nightingale [58] hadusedacousticradiationforcetoproduce streamingmotionofliquidsforthecharacterizationofcystsinbreasttissue.Using thisconcept,NightingaleandTrahey [59] reportedaclinicalstudytodifferentiate cystsfromsolidlesions.Subsequently,theyappliedittoperturbbreasttissueformotionanalysis.Theyrealizedthatradiationforceitselfcouldbeusedtocreateanimage(ARFI) [56,60].

Sarvazyan [54] appliedacousticradiationforcetoproducelocalizedtissuemotionandtotakeadvantageoftheresultingshearwaves,whichhedetectedpropagatingperpendiculartothelongitudinalaxiallydirectedultrasoundbeam.An advantageofthistechniqueisthatthestimulatedtissueissmallinsizeandtheshear wavepropagationislimitedinrangesothatboundaryconditionsdonotcomplicate theshearwavepropagation [61]

Sarvazyanalsodevelopedanapproachcalledmechanicalimaginginwhichhe appliedanarrayofsurfacemechanicalstimulatorsanddetectorsoftheresponding stresspatternsatthesurfaceproducingdatathatcouldbeprocessedusinginversion modelstoprovidequantitativetissueconstants [62]

Additionalelasticitydeterminationrefinementsandimagingtechniquesthat havehadsuccessinthelaboratoryareshearwavedispersion [63],singletracking locationmethodsthatsuppressspecklenoiseinshearwavevelocityestimation [64],andlaboratoryandclinicaltrialsusingcrawlingwave [65],singletracking location [66],X-rayandcomputedtomographicelastography [67],andphotoacousticelastography [68].

Someofthesetopicsaresubjectsoflaterchaptersofthisvolume.Becauseofthe emerginginterestinelastographyandgivenitsclinicalimportance,KevinParker andcolleaguesattheRochesterCenterforBiomedicalUltrasoundsponsoredaspecialworkshopinWashington,DCinJune1994,invitingDrs.Ophir,Levinson,Bamber,andothersfromtheinternationalcommunitytoshareresearchinsights.This mayhavebeenthefirstdedicatedworkshoponelastography.

Laterinthe1990s,ProfessorsOphirandParkerwouldagreeontheneedfora dedicatedconferencewhereexpertsfrommultipledisciplinesofbiomechanics, cellularbiology,imagingsciences,radiology,andbiophysicscouldhaveextended discussionsabouttherapidlyexpandingworldofelastography.UrgedonbyDr. S.KaisarAlam,whohadworkedwithbothOphirandParker,theInternationalTissueElasticityConferencewaslaunchedwiththefirstconferenceinOctoberof2002 inNiagaraFalls,Canada.Thisconferenceflourishedwithnowover13meetings heldandiscurrentlychairedbyProfessorJeffBamber.

4.3 Microscopictissueelasticityimaging

Extensionofelasticityimagingtothemicroscopicdomainisoccurringthatportends torapidlyexpandknowledgeattheintra-andextracellularlevels.Opticalelastographyhasbeendoneusingopticalcomputedtomography(OCT,seeChapter9of thevolume)andothermethodssuchasMichelsonlaservibrometry [69].ThemechanicalexcitationforOCTcanuseexternalmechanicalstimulationorARFIin additiontoopticalabsorption,leadingtothermallygeneratedacousticwaves.

Thesetechniquesuselightscatteredfromsemitransparenttissuestogenerateimagesdepictedingrayscalesimilartoultrasoundechoimages,butwithmuchfiner resolutionfortrackingmechanicallyexcitedtissuemotionandproductionofmicroscopic(subcellularlevel)tissueelasticityimaging.

Photoacousticelastographycanprovidehigh-resolutionelasticityimages.Inone implementation,thecompressionisappliedmanuallyandtheresultingstrainmapis estimatedfromphotoacousticsignals [68].Photoacousticimaginguseslightpulses focusedwithinatissuetogenerateheatdependingontheopticalabsorptioncoefficientofthespecifictissue,whichcauseslocalthermalexpansiontocreatesharptissuemotionthatresultsinacousticwaves.Therangeofopticalabsorption coefficientsmaybeverywide,permittinganewbasisforcontrastandtissuecharacterizationrelatedtothephotochemicalabsorptioninadditiontotissuestiffness.

Tissueelasticityimagingonthemicroscopiclevelwilllikelyopennewareasof understandingofthefibroticresponseoftissuesattheextracellularmatrixandintracellularlevels.Stemcelldifferentiationhasbeenshowntobesensitivetothestiffnessofitsmilieu,whichmaytriggerstemcellstodifferentiateintocancercellsor fibrocytesthatimpactslivercirrhosis,idiopathicpulmonaryfibrosis,andsystemic sclerosis [70,71].Photoacousticabsorptionmaytargetmelaninorhemewithand withoutoxygentoprovidesuperiorcontrasttotheirneighboringtissues.Perhaps specialstainswithspecificphotoabsorptionfrequenciesandintracellularorganelle affinitiescouldleadtonewapplications.

5. Conclusion/discussion

Imagingandunderstandingtissueelasticityatthemacroscopictissueorganizational level(100micrometerstomillimeters)andmicroscopicintracellularand

extracellularmatrixlevelsportendstosignificantlyimpactourunderstandingof biologyanddiseases.Futureexperimentsandtheoriestounderstandreal(lossless, straininphasewithstress)andimaginary(strainoutofphasewithstress)componentsofshearwavespeedintissuesandsimulatedtissuephantomsasafunction ofrelativeamountsofatwo-phasesystemcomposedoffluidandasupportingsolid matrixsimulatingfibroustissue,cellmembrane,orintracellularorganellesmaybe rewarding.Mathematicmethods,somelabeledas“inverseproblems”(seeChapter7 ofthisvolume),continuetobedevelopedthatallowfortherealitiesofexperimental designssuchasfinitetissueboundaries,realisticstimulatingforceprofilesintime andspace,andanisotropyofthematerialunderevaluationtoobtainabsolutebiomechanicalpropertiesfromelastographydata [51].Thesemethodshavebeenappliedto studyadditionalmechanicaltissuepropertiesthatmayhaveclinicalrelevance,such asshearwavedispersion,anisotropy,porosity,andnonlinearity [51]

Optical/photoacousticelastographymayallowcellularbiologiststotargetintracellularorganellesusingspecialstainsthatcanbetunedtoopticalwavelengthsso thatopticalmodulationandmotiondetectioncouldproduceelastographicimages ofintracellularstructuresandevaluatetheirsurroundingstiffness.

Itisalsoexpectedthatelastographytechniqueswillbeextendedtomoreimaging platformsofdifferentmodalities,andwithspecializedapproachestunedtodifferent applicationsandpathologicconditions,includingthoseaffectingthemusculoskeletalandcardiovascularsystems,alongwithlargeorgansandthebrain.Morecomplexmeasuresoftissueanisotropyandviscositywilladdtotheexisting elastographicassessments.

Tissueelasticityimagingisagreatexampleofhowresearchersworkingwith clinicalcolleaguesadvancedmedicalimagingfromaqualitativeclinicalpattern recognitionsystemtoadiagnosticquantitativeimagingsystem.Fundamentalparameterssuchasshearwavespeedorbulkshearwaveelasticityasobjectivemeasuresofliverfibrosiscouldallowclinicianstotreatandfollow-uppatientswith liverdisease,thusavoidingsomebiopsiesanddirectingbiopsiestoproductivesites. ArecentGoogleinterrogationofelastographyproduced930,000references.Elasticityimagingiscurrentlybeingextendedtootherorgans(breast,thyroid,brain,muscle,kidney,skin,cervix,andplacenta,tonameafew)forimprovedclinical managementandpossiblereducednumbersofbiopsies.Multimodalitydevelopment hasallowedtissueelasticityimagingconceptstoextendbeyondultrasonographyto magneticresonanceandopticaltechniques,wherenewinsightsintofundamental understandingofdiseasesandbiologyaresuretobeforthcoming.

Acknowledgments

ThehelpfulperspectivesfromDrs.JeffreyBamberandKevinParkeraregreatlyappreciated inadditiontovaluableeditorialassistancefromDrs.S.KaisarAlamandBrianGarra.The expertassistancebyLindaWeidmaninthepreparationofthischapterwasessential.

References

[1]R.M.Lerner,S.R.Huang,K.J.Parker,"Sonoelasticity"imagesderivedfromultrasound signalsinmechanicallyvibratedtissues,UltrasoundMed.Biol.16(3)(1990)231 239.

[2]R.M.Lerner,K.J.Parker,J.Holen,R.Gramiak,R.C.Waag,Sonoelasticity:medical elasticityimagesderivedfromultrasoundsignalsinmechanicallyvibratedtargets, Acoust.Imaging16(1988)317 327.

[3]J.C.Bamber,G.R.terHaar,in:C.R.Hill(Ed.),PhysicalPrinciplesofMedical Ultrasonics,JohnWiley & Sons,NewYork-Chichester-Brisbane-Toronto,1986.

[4]C.B.Burckhardt,Speckleinultrasoundb-modescans,IEEETrans.Son.Ultrason.25 (1)(1978)1 6.

[5]L.A.Frizzell,E.L.Carstensen,J.F.Dyro,Shearpropertiesofmammalian-tissuesatlow megahertzfrequencies,J.Acoust.Soc.Am.60(6)(1976)1409 1411.

[6]R.M.Lerner,Lineararraytransrectalultrasound,evaluationoftheprostate:areviewof 85cases,in:AnnualMeeting,NortheasternSection,AmericanUrologicalAssociation., Buffalo,NY,1984.

[7]K.J.Parker,S.R.Huang,R.A.Musulin,R.M.Lerner,Tissueresponsetomechanicalvibrationsfor"sonoelasticityimaging",UltrasoundMed.Biol.16(3)(1990)241 246.

[8]D.J.Rubens,M.A.Hadley,S.K.Alam,L.Gao,R.D.Mayer,etal.,Sonoelasticityimagingofprostatecancer:invitroresults,Radiology195(2)(1995)379 383.

[9]L.S.Taylor,B.C.Porter,G.Nadasdy,P.A.diSant’Agnese,D.Pasternack,etal.,Threedimensionalregistrationofprostateimagesfromhistologyandultrasound,Ultrasound Med.Biol.30(2)(2004)161 168.

[10]T.A.Krouskop,T.M.Wheeler,F.Kallel,B.S.Garra,T.Hall,Elasticmoduliofbreast andprostatetissuesundercompression,Ultrason.Imaging20(4)(1998)260 274.

[11]R.M.Lerner,K.J.Parker,Sonoelasticityimagesderivedfromultrasoundsignalsinmechanicallyvibratedtargets,in:SeventhEuropeanCommunitiesWorkshop,Nijmegen, TheNetherlands,1987.

[12]D.Berger,Abriefhistoryofmedicaldiagnosisandthebirthoftheclinicallaboratory. Part1–Ancienttimesthroughthe19thcentury,Med.Lab.Obs.31(7)(1999),28 30, 32,34 40.

[13]H.E.vonGierke,H.L.Oestreicher,E.K.Franke,H.O.Parrack,W.W.Wittern,Physicsof vibrationsinlivingtissues,J.Appl.Physiol.4(12)(1952)886 900.

[14]K.F.Graff,Wavemotioninelasticsolids,in:OxfordEngineeringScienceSeries,ClarendonPress,Oxford,1975(Chapter6).

[15]H.L.Oestreicher,Fieldandimpedanceofanoscillatingsphereinaviscoelasticmedium withanapplicationtobiophysics,J.Acoust.Soc.Am.23(6)(1951)704 714.

[16]E.L.Carstensen,K.J.Parker,R.M.Lerner,Elastographyinthemanagementofliver disease,UltrasoundMed.Biol.34(10)(2008)1535 1546.

[17]E.L.Carstensen,K.J.Parker,Oestreicherandelastography,J.Acoust.Soc.Am.138(4) (2015)2317 2325.

[18]E.Ueno,E.Tohno,S.Soeda,Y.Asaoka,K.Itoh,etal.,Dynamictestsinreal-timebreast echography,UltrasoundMed.Biol.14(1988)53 57.

[19]C.R.Hill,A.Kratochwil,EuropeanFederationofSocietiesforUltrasoundinMedicine andBiology.,in:MedicalUltrasonicImages:Formation,Display,Recording,and Perception:BasedonPapersPresentedataEuropeanSymposiumHeldinBrussels,

January31-February1,1981.Internationalcongressseries,vol.541,Amsterdam ExcerptaMedica,1981,pp.292 298.

[20]C.M.Gros,G.Dale,B.Gairand,Breastechography:criteriaofmalignancyandresults, in:RecentAdvancesinUltrasoundDiagnosis,ExcerptaMedica,Amsterdam,1978.

[21]P.B.Guyer,K.C.Dewbury,D.Warwick,J.Smallwood,I.Taylor,DirectcontactB-scan ultrasoundinthediagnosisofsolidbreastmasses,Clin.Radiol.37(5)(1986)451 458.

[22]M.Tristam,D.C.Barbosa,D.O.Cosgrove,J.C.Bamber,C.R.Hill,ApplicationofFourieranalysistoclinicalstudyofpatternsoftissuemovement,UltrasoundMed.Biol.14 (8)(1988)695 707.

[23]J.C.Bamber,L.DeGonzalez,D.O.Cosgrove,P.Simmons,J.Davey,etal.,Quantitative evaluationofreal-timeultrasoundfeaturesofthebreast,UltrasoundMed.Biol.14 (Suppl.1)(1988)81 87.

[24]L.S.Wilson,D.E.Robinson,Ultrasonicmeasurementofsmalldisplacementsanddeformationsoftissue,Ultrason.Imaging4(1)(1982)71 82.

[25]R.J.Dickinson,C.R.Hill,Measurementofsofttissuemotionusingcorrelationbetween A-scans,UltrasoundMed.Biol.8(3)(1982)263 271.

[26]M.Tristam,D.C.Barbosa,D.O.Cosgrove,D.K.Nassiri,J.C.Bamber,etal.,Ultrasonic studyofinvivokineticcharacteristicsofhumantissues,UltrasoundMed.Biol.12(12) (1986)927 937.

[27]P.G.M.DeJong,T.Arts,A.P.G.Hoeks,R.S.Reneman,Determinationoftissuemotion velocitybycorrelationinterpolationofpulsedultrasonicechosignals,Ultrason.Imaging12(2)(1990)84 98.

[28]J.C.Birnholz,E.E.Farrell,Fetallungdevelopment:compressibilityasameasureof maturity,Radiology157(2)(1985)495 498.

[29]R.S.Adler,J.M.Rubin,P.H.Bland,P.L.Carson,Quantitativetissuemotionanalysisof digitizedM-modeimages:gestationaldifferencesoffetallung,UltrasoundMed.Biol. 16(6)(1990)561 569.

[30]J.Holen,R.C.Waag,R.Gramiak,Representationsofrapidlyoscillatingstructureson thedopplerdisplay,UltrasoundMed.Biol.11(2)(1985)267 272.

[31]K.J.Taylor,Absolutemeasurementofacousticparticlevelocity,J.Acoust.Soc.Am.59 (3)(1976)691 694.

[32]M.Cox,P.H.Rogers,Automatednoninvasivemotionmeasurementofauditoryorgans infishusingultrasound,J.Vib.Acoust.109(1)(1987)55 59.

[33]A.Eisensher,E.Schweg-Toffer,G.Pelletier,G.Jacquemard,Lapalpationechographiquerythmee-echosismographie,J.Radiol.64(1983)225 261.

[34]T.Sato,A.Fukusima,N.Ichida,H.Ishikawa,H.Miwa,etal.,Nonlinearparametertomographysystemusingcounterpropagatingprobeandpumpwaves,Ultrason.Imaging 7(1)(1985)49 59.

[35]T.A.Krouskop,D.R.Dougherty,F.S.Vinson,ApulsedDopplerultrasonicsystemfor makingnoninvasivemeasurementsofthemechanicalpropertiesofsofttissue, J.Rehabil.Res.Dev.24(2)(1987)1 8.

[36]K.J.Parker,R.M.Lerner,Sonoelasticityoforgans:shearwavesringabell, J.UltrasoundMed.11(8)(1992)387 392.

[37]Y.Yamakoshi,J.Sato,T.Sato,Ultrasonicimagingofinternalvibrationofsofttissue underforcedvibration,IEEETrans.Ultrason.Ferroelectr.Freq.Control37(2) (1990)45 53.

[38]L.Gao,K.J.Parker,S.K.Alam,D.Rubens,R.M.Lerner,Theoryandapplicationof sonoelasticityimaging,Int.J.ImagingSyst.Technol.8(1)(1997)104 109.

[39]K.J.Parker,D.Fu,S.M.Graceswki,F.Yeung,S.F.Levinson,Vibrationsonoelastographyandthedetectabilityoflesions,UltrasoundMed.Biol.24(9)(1998)1437 1447.

[40]R.M.Cramblitt,K.J.Parker,Generationofnon-Rayleighspeckledistributionsusing markedregularitymodels,IEEETrans.Ultrason.Ferroelectr.Freq.Control46(4) (1999)867 874.

[41]C.Sohn,A.Baudendistel,Differentialdiagnosisofmammarytumorswithvocalfremitusinsonography:preliminaryreport,UltrasoundObstet.Gynecol.6(3)(1995) 205 207.

[42]J.Ophir,I.Cespedes,H.Ponnekanti,Y.Yazdi,X.Li,Elastography:aquantitative methodforimagingtheelasticityofbiologicaltissues,Ultrason.Imaging13(2) (1991)111 134.

[43]L.Sandrin,M.Tanter,J.L.Gennisson,S.Catheline,M.Fink,Shearelasticityprobefor softtissueswith1-Dtransientelastography,IEEETrans.Ultrason.Ferroelectr.Freq. Control49(4)(2002)436 446.

[44]N.Ganne-Carrie,M.Ziol,V.deLedinghen,C.Douvin,P.Marcellin,etal.,Accuracyof liverstiffnessmeasurementforthediagnosisofcirrhosisinpatientswithchronicliver diseases,Hepatology44(6)(2006)1511 1517.

[45]J.Boursier,J.Vergniol,A.Sawadogo,T.Dakka,S.Michalak,etal.,Thecombinationof abloodtestandFibroscanimprovesthenon-invasivediagnosisofliverfibrosis,Liver Int.29(10)(2009)1507 1515.

[46]E.L.Carstensen,K.J.Parker,Physicalmodelsoftissueinshearfields,UltrasoundMed. Biol.40(4)(2014)655 674.

[47]C.Sumi,A.Suzuki,K.Nakayama,Estimationofshearmodulusdistributioninsofttissuefromstraindistribution,IEEETrans.Biomed.Eng.42(2)(1995)193 202.

[48]F.Kallel,M.Bertrand,Tissueelasticityreconstructionusinglinearperturbation method,IEEETrans.Med.Imaging15(3)(1996)299 313.

[49]M.M.Doyley,P.M.Meaney,J.C.Bamber,Evaluationofaniterativereconstruction methodforquantitativeelastography,Phys.Med.Biol.45(6)(2000)1521 1540.

[50]A.Samani,J.Bishop,D.B.Plewes,Aconstrainedmodulusreconstructiontechniquefor breastcancerassessment,IEEETrans.Med.Imaging20(9)(2001)877 885.

[51]M.M.Doyley,Model-basedelastography:asurveyofapproachestotheinverseelasticityproblem,Phys.Med.Biol.57(3)(2012)R35 R73.

[52]R.Muthupillai,D.J.Lomas,P.J.Rossman,J.F.Greenleaf,A.Manduca,etal.,Magneticresonanceelastographybydirectvisualizationofpropagatingacousticstrainwaves, Science269(5232)(1995)1854 1857.

[53]T.Sugimoto,S.Ueha,K.Itoh,Tissuehardnessmeasurementusingtheradiationforceof focusedultrasound,in:UltrasonicsSymposium,1990.Proceedings.,IEEE1990,1990.

[54]A.P.Sarvazyan,O.V.Rudenko,S.D.Swanson,J.B.Fowlkes,S.Y.Emelianov,Shear waveelasticityimaging:anewultrasonictechnologyofmedicaldiagnostics,UltrasoundMed.Biol.24(9)(1998)1419 1435.

[55]J.Bercoff,M.Tanter,M.Fink,Supersonicshearimaging:anewtechniqueforsofttissueelasticitymapping,IEEETrans.Ultrason.Ferroelectr.Freq.Control51(4)(2004) 396 409.

[56]K.R.Nightingale,M.L.Palmeri,R.W.Nightingale,G.E.Trahey,Onthefeasibilityof remotepalpationusingacousticradiationforce,J.Acoust.Soc.Am.110(1)(2001) 625 634.

[57]S.Catheline,F.Wu,M.Fink,Asolutiontodiffractionbiasesinsonoelasticity:the acousticimpulsetechnique,J.Acoust.Soc.Am.105(5)(1999)2941 2950.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.