Thermofluids: from nature to engineering ting - Download the entire ebook instantly and explore ever

Page 1


https://ebookmass.com/product/thermofluids-from-nature-to-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Nourishing Tomorrow: Clean Engineering and Nature-Friendly Living David S-K Ting

https://ebookmass.com/product/nourishing-tomorrow-clean-engineeringand-nature-friendly-living-david-s-k-ting/

ebookmass.com

Romantic Empiricism: Nature, Art, and Ecology from Herder to Humboldt Dalia Nassar

https://ebookmass.com/product/romantic-empiricism-nature-art-andecology-from-herder-to-humboldt-dalia-nassar/

ebookmass.com

Shield Tunnel Engineering: From Theory to Practice 1st Edition Shuying Wang

https://ebookmass.com/product/shield-tunnel-engineering-from-theoryto-practice-1st-edition-shuying-wang/

ebookmass.com

Broberg and Fenger on Preliminary References to the European Court of Justice 3rd Edition Morten Broberg

https://ebookmass.com/product/broberg-and-fenger-on-preliminaryreferences-to-the-european-court-of-justice-3rd-edition-mortenbroberg/

ebookmass.com

The Way You Are

Lea Coll

https://ebookmass.com/product/the-way-you-are-lea-coll/

ebookmass.com

Just A Summer Fling (Boys Of Rose Briar Hill) Alisha Williams

https://ebookmass.com/product/just-a-summer-fling-boys-of-rose-briarhill-alisha-williams-3/

ebookmass.com

CISSP Exam Certification Companion: 1000+ Practice Questions and Expert Strategies for Passing the CISSP Exam

https://ebookmass.com/product/cissp-exam-certificationcompanion-1000-practice-questions-and-expert-strategies-for-passingthe-cissp-exam-mohamed-aly-bouke/ ebookmass.com

Strategic Management: Competitiveness and Globalisation, 7th Asia-Pacific Edition Dallas Hanson

https://ebookmass.com/product/strategic-management-competitivenessand-globalisation-7th-asia-pacific-edition-dallas-hanson/

ebookmass.com

Pregnancy and Birth Sourcebook 4th Edition Angela L. Williams (Editor)

https://ebookmass.com/product/pregnancy-and-birth-sourcebook-4thedition-angela-l-williams-editor/

ebookmass.com

Lunchtime Chronicles: Chocolate Baklava Amaya Black & Lunchtime Chronicles

https://ebookmass.com/product/lunchtime-chronicles-chocolate-baklavaamaya-black-lunchtime-chronicles/

ebookmass.com

Thermofluids

Thermofluids

FromNaturetoEngineering

Mechanical,Automotive&MaterialsEngineering

Turbulence&EnergyLaboratory

UniversityofWindsor Windsor,Ontario,Canada

AcademicPressisanimprintofElsevier

125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearch andexperiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirown safetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-90626-5

ForInformationonallAcademicPresspublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CharlotteCockle

AcquisitionsEditor: RachelPomery

EditorialProjectManager: SaraValentino

ProductionProjectManager: SwapnaSrinivasan

CoverDesigner: MilesHitchen

TypesetbyAptara,NewDelhi,India

Dedication

Toallthosewhocontemplatenature,savoritsbeauty, andlearnandliveitssimplicity.

“Natureispleasedwithsimplicity.Andnatureisnodummy.”

–IsaacNewton.

Part1 Introduction

1.Thermofluids3

1.1WhatisThermofluids?4 1.1.1Thermodynamics4 1.1.2Fluidmechanics6 1.1.3Heattransfer8

1.2Thermodynamics,fluidmechanics,andheattransfer9

1.3Dimensionsandunits10

1.4Organizationofthebook14 Problems15 References16

2.Energyandthermodynamics19

2.1Thestudyofenergy19

2.2Theconservationofenergy22

2.3Thequalityofenergy24

2.4Thermodynamicsystems27

2.5Thermodynamicstate,equilibrium,andproperties28 Problems29 References30

3.Movingfluids33

3.1Whatisafluid?34

3.2Thecontinuumfluid36

3.3Naturethrivesinmovingfluids37

3.4Whatisviscosity?37

3.5Newtonianfluids40

3.6Aclassificationoffluidmotions43 3.6.1Fluidviscosity43

3.6.2Fluidcompressibility44

3.6.3Flowspace44

3.6.4Steadyversusunsteadyflow44

3.6.5Laminarversusturbulentflow45

3.7Fluidmechanicstextbooks45 Problems46 References47

4.Thetransferofthermalenergy51

4.1Whatisthermalenergy?51

4.2Specificheats54

4.3Heattransferversusthermodynamics57

4.4Thethreeheattransfermechanisms58

4.4.1Conduction59

4.4.2Convection60 4.4.3Radiation61 Problems63 References64

Part2

AnEcologicalViewonEngineering Thermodynamics

5.Thefourlawsofecology69

5.1Whatisecology?69

5.2Thefourlawsofecology72

5.3Animalthermoregulation75

5.4Learningfromintelligentdesigns78

5.4.1Natural-convection-enabledairtransport78

5.4.2Wearingpolarbearhair79

5.4.3Ecologicalbuildings79

5.4.4Intelligentdesignsarecomplexandintegrated80 Problems80 References81

6.Thefirstlawofthermodynamics85

6.1Energy86

6.2Thermodynamicsystems90

6.3Heatandworktransfer92

6.4Conservationofenergy93

6.5Movingboundarywork99

6.6Enthalpy101

6.7Thermodynamiccycle103 Problems105 References106

7.Thesecondlawofthermodynamics109

7.1Introduction110

7.2One-wayenergyflow112

7.3Entropy114

7.4Heatsourceandsink117

7.5Heatengine118

7.6Reverseheatengines127 Problems130 References132

Part3 EnvironmentalandEngineeringFluidMechanics

8.Fluidstatics135

8.1Whatispressure?136

8.2Fluidstatics137

8.3Hydrostaticpressure140

8.4Measuringpressure144

8.5Hydrostaticforceonasurface147

8.5.1Curvedtwo-dimensionalsurfaces152

8.6Buoyancy153

8.6.1Immersedbodies155

8.6.2Floatingbodies156 Problems157 References158

9.Bernoulliflow161

9.1Streamline,streakline,andpathline162

9.1.1Streamline162

9.1.2Streakline162

9.1.3Pathline163

9.2Streamline,streamtube,andBernoulli’sWig164

9.3TheBernoulliequation166

9.4Bernoulli’spressures168

9.5Flowratemeasurements172

9.6Energylineandhydraulicgradeline174 Problems177 References179

10.Dimensionalanalysis181

10.1Dimensionalhomogeneity182

10.2Scalinganddimensionalanalysis183

10.3BuckinghamPitheorem186

10.4Prevailingnondimensionalparametersinfluidmechanics188

10.5Someremarksondimensionalanalysis194

x Contents

Problems194 References196

11.Internalflow199

11.1Flowinachannel200

11.2TheReynoldsnumberandthetypeofpipeflow200 11.3Developingpipeflow203

11.3.1Laminarpipeflowentrancelength204

11.3.2Turbulentpipeflowentrancelength205

11.3.3Pressureandshearstress206

11.4Fullydevelopedhorizontalpipeflow208

11.4.1Pressuredrop208

11.4.2Velocityprofile210

11.4.3Volumetricflowrateandaveragevelocity211

11.5Fullydevelopedinclinedpipeflow212

11.6Energyconservationandheadlossinpipeflow214

11.6.1Headloss215

11.7Majorandminorlossesinpipeflow216

11.7.1TheMoodychart(diagram)219 Problems223 References225

12.Externalflow227

12.1Everydayexternalflow228

12.2Liftanddrag229

12.3Boundarylayer231

12.3.1Disturbanceboundarylayer232

12.4Flatplateboundarylayerdevelopment233

12.4.1Laminarboundarylayer235

12.4.2Transitionalboundarylayer237

12.4.3Turbulentboundarylayer237

12.5Bluffbodyaerodynamics239

12.5.1Steadyflowacrossasmoothcircularcylinder240

12.5.2Vortexshedding243

12.5.3Streamlining247 Problems248 References249

13.Steadyconductionofthermalenergy255

13.1Fourier’slawofheatconduction256

13.2Fromelectricresistancetothermalresistance260

13.3One-dimensionalheatconductionincylindricalcoordinates261

13.4Heatconductionradiallythroughasphere263

13.5Steadyconductionthroughmultilayeredwalls264

13.5.1Thermalcontactresistance265

13.6Multilayeredinhomogeneouswalls267

13.6.1Parallel-pathmethod269

13.6.2Isothermal-planemethod270 Problems271 References273

14.Transientconductionofthermalenergy275

14.1Alumpedsystemwithhomogeneoustemperature276 14.2Biotnumber282

14.3One-dimensionaltransientproblems284

14.4Semi-infinitesolid290 Problems293 References294

15.Naturalconvection295

15.1Naturalconvectionandthermals296

15.2Thermalexpansionandbuoyancyforce299

15.3Nondimensionalparametersinnaturalconvection301

15.4TheclassicalRayleigh–Bernardconvection304

15.5Continuousthermalplumesandbuoyantjets308

15.6Freeconvectionalongaverticalplate309

15.7Otherfreeconvectioncases313 Problems316 References317

16.Forcedconvection319

16.1Whatistheforcebehindforcedconvection?320

16.2Theconvectionheattransfercoefficient323

16.3Forcingheattoconvectfromaflatsurface324

16.4Primaryparametersinforcedconvection330

16.5Nusseltnumber,Reynoldsnumber,andPrandtlnumber333

16.5.1Nusselt–Reynoldsencounter333

16.5.2Nusseltnumber333

16.5.3Prandtlnumber334

16.6Nu–Re–Prrelationships336

16.6.1Constanttemperatureflatplate336

16.6.2Uniformheatfluxflatplate338

16.7Relatingheatconvectionwithflowshearatthewall340

16.8Forcedconvectionaroundacircularcylinder343

16.9Othernondimensionalparametersofforcedconvection345

16.10Internalforcedconvection347

16.10.1Pipeflowregimes348

16.10.2Hydrodynamicandthermalentrancelengths348

16.10.3Uniform-heat-fluxpipe349

16.10.4Constant-surface-temperaturepipe350

16.10.5Nusseltnumberandpumpingcostforlaminar andturbulentforcedconvectioninapipe350 Problems353 References355

17.Thermalradiation357

17.1TheradiatingSun357

17.2Allbodiesaboveabsolutezeroradiateheat361

17.3Absorptivity,transmissivity,andreflectivity362

17.4Vieworshapefactors365

17.5Furtherreadingonthermalradiation369 Problems369 References371

18.Heatexchangers373

18.1Naturethrivesbyexploitingeffectiveheatexchangers374

18.1.1Indirect(noncontact)heatexchanger376

18.1.2Directcontactheatexchanger377

18.2Counter-flow,parallel-flow,andcrossflowheatexchangers378

18.3Movingalongaconstant-temperaturepassage380

18.4Heatexchangebetweenahotstreamandacoldstream382

18.4.1Heatcapacityrate383

18.5Logmeantemperaturedifference384

18.5.1Parallel-flowheatexchanger386

18.5.2Counter-flowheatexchanger387

18.5.3Correctionfactor388

18.6Heatexchangereffectivenessandnumberoftransferunits389 Problems392 References393 Index395

Christmastreeworms

Christmastreewormshaveanarrayofphotoreptorsoneponymousfeeding appendages.Theyabsorblightmaximallyat464nminwavelength,probably functioningasasilhouette-detectingintruderalarm[Boketal.,2017].Thisalert systemapparentlycanbebreachedinturbulentwaters,whereCaribbeansharpnosepufferspreyChristmastreewormswiththeirlongsnoutandlargefused frontteeth[Hoeksema&tenHove,2017].Assuch,thisnaturalphenomenon illustratesthespectacularworkingsofengineeringthermofluids;radiation,fluid turbulence,andothers.

M.J.Bok,M.L.Porter,H.A.tenHove,R.Smith,D-E.Nilsson,“Radiolareyes ofSerpuidWorms(Annelida,Serpulidae):structures,functionandphototransduction,”BiologyBulletin,233:39-57,2017.

B.W.Hoeksema,H.A.tenHove,“AttackonaChristmastreewormbya CaribbeansharpnosepufferfishatSt.Eustatius,DutchCaribbean,”Bulletinof MarineScience,93(4):1023-1024,2017.

Caribbeansharpnosepuffershavealongsnoutandlargefusedfrontteeth, well-suitedtoprey.Christmastreewormspossiblyfailedtodictateandretract inturbulentwaters.

Listoffigures

Fig.1.1 Asimplifiedillustrationofthecycleoflifesustainedviatheorderly transferofenergyoriginatingfromthesun(createdbyS.Akhand).

Fig.1.2 Anillustrationoftherelativesizesandsurvivalwaterdepthsofagiant squid,adolphinandahuman(createdbyY.Yang).

Fig.1.3 Agiraffe’sbigheartversusafist-sizedhumanheart(createdbyY.Yang). WilliamHazlittstatedthat,“Theseatofknowledgeisinthehead,of wisdom,intheheart.”

Fig.1.4 Afennecfoxequippedwithfan-likeearsaboundinginheat-transferring bloodvesselstostaycoolintheSaharaDesert(createdbyS.Akhand). Therearemanybloodvesselsbringingwarmbloodtothebigearsand returningcoolerbloodafterdissipatingheatthroughtheextendedsurface areaintotheambientair.

Fig.1.5 Heightversuslength(createdbyY.Yang).Dr.JASmeasuresalamppost tothedesiredlengthandasksT.-E.Barutocutofftheexcesslength.T.-E. Barusees“height”butnot“length.”

Fig.2.1 Alivinghumanbodyisaheatengine(createdbyO.Imafidon).Food providesthefueltogenerateworkandheat.Theunusedenergyfromthe excessfoodisstoredasfatforfutureusage.

Fig.2.2 Comparingthequalityofelectrical,mechanical,andthermalenergy (createdbyO.Imafidon).Theeaseintransformingtheformofenergyto otherformsindicatesthequalityoftheenergy.

Fig.2.3 Ahierarchyoffoodenergychain(createdbyO.Imafidon).Consuming thefoodofthelowerlevelismoreefficientandenvironmentallyfriendly because90%lossesarecompoundedupthepyramid.

Fig.3.1 Fluidsversussolids(createdbyF.Fashimi).Fluidscannotsustainashear force,thatis,afluidcontinuestomoveunderashearforce.Asolid deformsunderashearforcetoacertainamountandstops.

Fig.3.2 Themovingfluidwithastablevortexringaboveaflyingdandelionseed (createdbyX.Wang).Theappropriateporosity,shape,density,orweight anditsdistribution,anddimensionsfurnishtherightconditionsfora stablevortexringabovetheseed,empoweringtheseedtotravelfarand wideridingontheomnipresentatmosphericwind.

Fig.3.3 Ablackflylarvacapitalizingonflowvorticesandflow-inducedvibrations toscoopupfoodandconvectitintoitscephalicfans(createdbyY.Yang). Thecephalicfansdanceinharmonywiththeorganizedflowstructures thatsweepupfood,andsynchronouslyconveyingthefoodtothefans.

Fig.3.4 Arotationalrheometerformeasuringfluidviscosity(createdbyF. Fashami).Withknowngap,dgap = Ro –Ri ,innerradius,Ri ,inner cylinderlength,L,thetorque,Tq ,requiredtospintheinnercylinderata prescribedspeed,Srpm ,yieldsthefluidviscosity, μ.

Fig.3.5 ShearingarubberblockversusaNewtonianfluid,ofwidthW(createdby Y.YangandD.Ting).Therubberblock,beingasolid,deforms,while water,beingafluid,movescontinuously.

5

7

8

9

11

21

24

26

34

38

39

39

41

Fig.3.6 ShearstressversusshearingstrainratefortypicalNewtonianfluids (createdbyO.Imafidon).Theslopecorrespondstotheviscosity.With increasingtemperature,from20°Cto30°C,theslopecorrespondingto waterdecreases.Inotherwords,theviscosityofmostNewtonianfluids decreaseswithincreasingtemperature.

Fig.3.7 Laminarsteadyversusunsteadywakedownstreamofasquarecylinder (createdbyX.Wang).Thelocalflowissteadywhenitsfeaturesdonot changewithrespecttotime,anditisunsteadyiftheflowcharacteristics varywithtime.Thetwocounter-rotatingvorticesremainstationary behindthecylinderataReynoldsnumberof45.Thesevorticesshed alternativelyataslightlyhigherReynoldsnumberof50.

Fig.3.8 Risingincensesmokechangingfromlaminartotransition,toturbulent flowasitrises(createdbyX.Wang).

Fig.4.1 Creatingdisorderbymeltingandevaporatingicecubeswithheatina fryingpan(createdbyX.Wang).Iceismorerigidandthusorderlythan water,andwaterismoreorderlythansteam.Theprogressivelymore energeticH2 Oisdrivenbytemperature,thehigherthetemperature,the moredisorderaretheH2 Omolecules.

Fig.4.2 H2 Omoleculesbecomeprogressivelymoredisorderedfromicetowater tosteam,withincreasingtemperature(createdbyM.Abbasi).Aunique featureaboutH2 Oisthatthemoleculesaremorelooselypackedinthe solidphase,ice,thanintheliquidphase,water.Atthesametime,the moleculesaremorerigidlyheldtogetherinicethaninwater.The crystallinelatticeiniceisdominatedbyaregulararrayofhydrogen bonds,spacingthemoleculesfartherapartthantheyareinliquidwater. Liquidwatercontainstheintermolecularforce,thatis,thehydrogenbond occursbetweenthepartiallynegativeoxygenofawatermoleculeandthe partiallypositivehydrogenonaneighboringwatermolecule.

Fig.4.3 Adrinkingbirdoperatesasaheatengine(createdbyA.Raj).Theambient airsuppliestheheattooperatethisheatengine.Aportionofthissupplied heatisutilizedtoevaporatewaterfromthehead,causingtheliquidtorise upviatheinnerstemtothehead.Theremainingheatiswasted,for example,byheatingtheheadwhenthebottomendofthestemisopened upabovetheliquidsurface,orbyheatingtheotherpartsofthebird’sbody.

Fig.4.4 Modulatingtemperatureviaseabreezeandlandbreeze(createdbyA. Raj).Thehighheatcapacityofwaterbuffersanddampenstemperature fluctuationsinnear-waterneighborhood.Duringtheday,theland,dueto itslowerheatcapacity,isheatedupfasterthanthewaters,bytherising sun,asthehotairrisesonland,thecoolerairabovethewatersbreezes andcoolstheland.Aftersunset,thelowerheatcapacitylandcoolsoff fasterthanthehigherheatcapacitywater,andthewindcirculation reversesintolandbreeze.

Fig.4.5 Specificheatcapacityofairatconstantvolumeversusconstantpressure (createdbyF.Kermanshahi).Forcompressiblefluidlikeairthespecific heatcapacityatconstantpressureislargerthanthespecificheatcapacity atconstantvolumebytheexpansionworkofpushingthesystem boundarysuchasamovablepiston.

43

45

47

52

53

54

55

57

Fig.4.6 Therateofheatconductionisproportionaltothesurfaceareaavailable forheattransferandthe(negative)temperaturegradient(createdbyF. Kermanshahi).Notethatheattransferspontaneouslyfromhightolow temperature,thatis,inthenegative-temperature-gradientdirection. 60

Fig.4.7 Theheattransferofbarbequingfishfillets(createdbyX.Wang).Toputit concisely,heatisconductedfromthehotgrilltothefishaswitnessedby thebeautifulgrilllines.Heatisconvectedfromthefiretothefishvia mostlyinvisibleenergetichotplumesofdifferentsizes.Atthesametime, heatisradiatedfromthesootyfireandthehotinnersurfacestothe respectivefishsurfacethatisinview.

Fig.5.1

Fig.5.2

Acold-bloodedfrogadjustingitselftoitssurroundings(createdbyS. Akhand).Theleftfigureshowsthatthebodytemperatureofthefrogis lowbecauseitisinacoolautumnenvironment.Therightfigureexhibits thatthebodytemperatureofthefrogishighbecauseitssurroundingsis hot,duringahotsummerday.

Anillustrationofthe“BoilingFrog”fable(createdbyS.F.Zinati).Ifwe putalivefrogintoapotofhotwater,itwilljumpoutimmediately.Onthe otherhand,ifweplaceitinapotofroom-temperaturewater,andheatit upslowly,thefrogwilladjustitsbodytemperaturetothatoftheslowly increasingwatertemperature.Accordingtothe“BoilingFrog”narrative, iftheriseinwatertemperatureissufficientlyslow,thefrogwilleventually beboiledtodeathwithoutrealizingthewateristoohotforittostay.

Fig.5.3 Thesimplifiedfoodchain(createdbyS.Akhand).Afalloutofthesecond lawofthermodynamicsisthateventhemightyeagle,thekingofthesky, diesanddecomposes.Ittakesthealways-givingsuntotransformthe compostbackintoallkindsofheartyplantsthatprovidehighqualityfood and/orenergy.Notethatfoodwebisamoreaccuratedescriptionthat illustratesthecomplexityinvolved,asmostorganismshaveamorediverse appetitethanonefood.

Fig.5.4 Ectothermssurvivechangesintheirenvironmentprimarilyviabehavioral thermoregulation(createdbyS.Akhand).Alizardtakesadvantageofthe ground,shade,andthesunappropriatelytoachieveacomfortablethermal condition.

Fig.6.1 Thedifferentformsofenergyincludemechanical,thermal, electromagnetic,electrical,chemical,andnuclear(createdbyS.Akhand). Notincludedintheillustrationarekineticenergyandpotentialenergy.

Fig.6.2 Thermodynamicsystems(A)opensystem,(B)closedsystem,and(C) isolatedsystem(createdbyX.Wang).Bothmassandenergycanenteror leaveanopensystem.Onlyenergycancrosstheboundaryofaclosed system.Nothingcanenterorexitanisolatedsystem.

Fig.6.3 Theconservationofenergybetweenpotentialandkineticenergyofa frictionlessskateboarderisanalogoustothatofapendulum(createdby Y.Yang).Intheidealfrictionlesssituation,thesumofpotentialenergy andkineticenergyisaconstant.

Fig.6.4 Moving-boundaryworkofapiston-cylinderclosedsystem(createdby F.Kermanshahi).Notethatworkisapath-dependenttransientprocess, whereadifferentpathleadstoadifferentamountofwork.Expansion alongPathAleadstomoreworkthanalongPathBandPathC.

Fig.6.5 TheCarnotenginecycle(createdbyY.Yang).Isothermalheatadditionof amountQH atthehighertemperature,TH .Adiabatic(Q=0)expansion, decreasingpressureasthevolumeincreases.Isothermalheatrejectionof amountQL atthelowertemperature,TL .Adiabaticcompressionprocess backtoitsinitialstate.

Fig.7.1 Thefourlawsofthermodynamicsillustrated(createdbyO.Imafidon). Thezerothlawdealswiththermalequilibrium.Thefirstlawisaboutthe conservationofenergy.Thesecondlawisconcernedwiththenaturalflow

62

71

71

73

77

87

91

95

99

103

Fig.7.2

directionofenergy.Accordingtothethirdlaw,theabsolutezero temperaturecorrespondstozeroentropyforaperfectcrystal.

Decreasingorderand,thus,increasingentropyfromsolidtoliquidto gaseousphase(createdbyX.Wang).Inthesolidphase,theH2 O moleculesarerigidlyconfinedwithintheicecubes.Theyarefreetomove aroundwithinthespreadofthewaterinthepanwhentheicecubesmelt. BoilingthewaterintosteamgrantsfullfreedomtotheH2 Omolecules, allowingthemtoroameverywhereintotheenvironment.

Fig.7.3 Anisolatedsystemoficecubesinhotwater(createdbyS.Zinati).The entropyoftheentiresystemincreasesasthehotwaterlosesthermal energytomelttheicecubes.

Fig.7.4 Aheatengine(createdbyO.Imafidon).Aportionoftheheatfromthe high-temperaturereservoir,QH ,isconvertedintousefulwork,W,while theremainingunusedheatisdissipatedintothelow-temperaturereservoir aswasteheat,QL

Fig.7.5 Asteampowerplantisaheatengine(createdbyF.Kermanshahi). High-temperatureheatfromahigh-temperaturereservoirentersthe system(heatengine)atQH .Steamproducedbytheboilerspinsthe turbine,leadingtoanetusefulpoweroutputofWnet ;thisisthenetpower afteraportionofitisemployedtooperatethepump.Theremaining unusedheatisdissipatedintothelow-temperaturereservoir,atarateQL , viathecondenser.

Fig.7.6

Athermoelectricgeneratorasaheatengine(createdbyO.Imafidon). ThermalenergyentersthesystemfromtheheatsourceatTH viathehot leg.Partofthisenergyisharnessedtorotatethefan.Theremaining untappedthermalenergyleavesthesystem,viathecoldleg,intotheheat sinkatTL .

Fig.7.7 ACarnotheatengine(createdbyO.Imafidon).Itisanideal,or theoreticallymost-efficient,engine,settingthelimitforrealenginesto strivefor.

Fig.7.8 Areverseheatengine(createdbyO.Imafidon).Workinput,Win ,is requiredtomoveheatfromalower-temperatureregionatTL toa higher-temperaturezoneatTH .Forheatpumps,thedesiredoutputisQH , theheatforwarmingupazonethatisatahighertemperaturethanthe regionwherethethermalenergyisextractedfrom.Ontheotherhand,the thermalenergyremovalfromacoolerregionQL isthedesirableoutput forrefrigeratorsandairconditioners,andthedumpingofthisheatintoa higher-temperaturereservoirismadepossibleviaareverseheatengine withappropriateworkinput.

Fig.8.1 Pressureisforceperunitarea(createdbyY.Yang).A0.102-kgapple undernormalgravityproduces0.102 × 9.81 = 1kg m/s2 = 1Nofforce orweight.Therightfigureillustratesthatthis1Nforceisexertedon Newton’shatand,thus,head.Ifthis1-Nforceisdistributedoverasurface areaof1m2 ,thenthecorrespondingpressureonthesurfaceis1Pa.

Fig.8.2

Forcesactingonasmallwedge-shapedfluidelementofafluidatrest (createdbyD.Ting).Theinfinitesimalfluidelementhasaunitwidthinto thepage.Thezdirectionispointingverticallyupand,hence,gravityis actinginthenegativezdirection.

Fig.8.3 AneverydayworkingsofPascal’slaw,apressureappliedatapointinan enclosedfluidisdistributedequallythroughoutthefluidinalldirections (createdbyX.Wang).Thevolumeoffluidisrelativelysmall,withno appreciablevariationinhydrostaticpressure,and,therefore,itcanbe consideredasapointforallpracticalpurposes.

111

114

115

119

120

121

123

128

137

138

139

Fig.8.4 AnengineeringapplicationofPascal’slaw,whereapressureappliedata pointinanenclosedfluidisdistributedequallythroughoutthefluidinall directions(createdbyF.Fashami).Foracarjack,thepressurethroughout theenclosedfluidisthesame,otherthanapossiblesmalldifferencein hydrostaticpressureduetodifferingheight,ifany,betweenPoint1and Point2.WithoutanyheightdifferencebetweenPoint1andPoint2,we haveF1 = F2 A1 /A2 .Thissaysthatarelativelysmall,appliedforce,F1 , canresultinalargeF2 forliftingacar,whenA2 ismuchlargerthanA1 .

Fig.8.5 Hydrostaticpressureillustrated(createdbyX.Wang).Thepressure increaseslinearlywithdepth,orheight,h.Thehigherthepressure,the strongerthejet.

Fig.8.6 Shrinkingaballoonusinghydrostaticpressure(createdbyX.Wang).An interestingexperimentistousealongballoonandpositionitverticallyin awatercolumn.Theincreasinghydrostaticpressurewithdepthwillresult inashrinkingcrosssectionwithwaterdepth.

Fig.8.7 Thehydrostaticpressuredependsontheheightofthefluidcolumnand nottheshapeofthecontainerorthesurfaceareaonwhichthepressure acts(createdbyX.Wang).Itgoeswithoutsayingthatthehydrostatic pressureisalsoafunctionofthefluiddensity,theactinggravity,andthe surroundingpressurethatactsonthefreesurface(butnottheareaofthe freesurface).

Fig.8.8 Measuringthestaticpressuredifferenceusingamanometer(createdbyF. Kermanshahi).Ingeneral,thedensityofthemovingfluidintheconduitis ordersofmagnitudelessthanthatofthemanometerfluidintheUtube and,hence,P1 -P2 = ρ L gh,where ρ L isthedensityofthemanometer liquid,andhistheheightdifferenceofthemanometerliquidinthetwo armsofthemanometer.

Fig.8.9 Measuringtheatmosphericpressureusingabarometer(createdbyX. Wang).Theweightoftheatmosphericairexertsaforceonthefree surfaceofthebarometricfluid,suchasmercury,inthereservoiratthe baseandtheresultingpressurekeepsthecolumnoffluidstandinginside thecolumnatthecorrespondingheight.Notethatthepressureactingon thefreesurfaceatthetopofthecolumnofthebarometricfluidinthetube isvirtuallyzero.Toputitanotherway,theonlypressureactingonthe columnofbarometricfluidinsidethetubeisthehydrostaticpressure inducedbytheweightofthefluidcolumn,andthisiscounterbalancedby theatmosphericpressureactingonthefreesurfaceofthebarometricfluid inthereservoir.

Fig.8.10

Fig.8.11

Fig.8.12

Hydrostaticforceontheflatsurfacesofacylindricaltank(createdbyF. Fashami).Here,thegagepressure,P,istakenasthepressurewithrespect totheatmosphericpressure,thatis,P = 0indicatesthatthepressureis atmospheric,andtheverticallyupwardactingatmosphericpressure cancelsoutthedownwardactingpressure.Thebottomsurfacemustbe abletowithstandanetforceof ρ ghAorapressureof ρ gh,inorderforthe tanktoholdwater.

Hydrostaticforceactingonaflatsurfacesubmergedinafluid(createdby O.Imafidon).Thecentroid,CG ,at(xC ,yC ),isthegeometriccenterofthe plateandthecenterofpressure,CP ,at(xR ,yR ),isthepointwherethe resultantforceacts.

Hydrostaticforceonatwo-dimensionalcurvedsurface(createdbyO. Imafidon).Theforceactinginthehorizontaldirectionisfromthe hydrostaticpressurethatincreaseslinearlywithdepthbelowthefree

140

141

142

143

144

146

148

149

Fig.8.13

Fig.8.14

surface.Theforceactingintheverticaldirectionisthatduetotheweight ofthevolumeoffluidsittingontopofthesurface. 153

Atequilibriumintheverticaldirection,thedownwardweightofthe rubberduckyisequaltotheupwardbuoyantforce(createdbyX.Wang). Thisbuoyantforceisequaltotheweightofthedisplacedfluid(water)by therubberducky. 154

Neutrallybuoyantrubberducky(createdbyX.Wang).Whenthecenterof gravityoftherubberducky,CG ,isbelowthecenterofbuoyancy,CB ,the rubberduckyisstable.Itwillrestoretoitsuprightpositionwhenitis tilted,thatis,thegravitywillweightheheavierbasedownwardwhilethe buoyancywillliftthelightertopupward. 155

Fig.8.15

Acanoeistinacanoe,wherethecenterofgravityisabovethecenterof gravity(createdbyX.Wang).Itis(A)neutrallystablewhenthe meta-center,M,coincideswiththecenterofgravity,G,(B)stablewhen themeta-centerisabovethecenterofgravity,and(C)unstablewhenthe meta-centerisbelowthecenterofgravity.

Fig.9.1 Streamlines(leftfigure),streaklines(middlefigure),andpathlines(right figure)aroundacircularcylinderatReynoldsnumberbasedonthe cylinderdiameterof500(createdbyX.Wang).Forsteadyflow,the streamline,streakline,andpathlineareidentical.

Fig.9.2 Describingastreamlineintermsofthevelocitycomponentsinasteady, two-dimensionalflow(createdbyX.Wang).Overashortperiodoftime, Dr.JASmovesfromPoint1withcoordinates(x,y)toPoint2with coordinates(x+dx,y+dy).ThischangeinDr.JAS’positionisrealizedby thevelocityvectorV,whosexcomponentisuandycomponentisv.

Fig.9.3 Bernoulli’swigasastreamtube(createdbyK.Esmaeilifoomani,editedby D.Ting).Eachstrandofhairisastreamline,throughwhichnofluid crosses.Forsteadyflows,thestreamlinesarefixedlinesinspace.For unsteadyflows,thestreamlineschangewithrespecttotime.Atany momentintime,themasspassingthroughanycross-sectionofa streamtuberemainsconstant.

Fig.9.4

AstraightforwardderivationoftheBernoulliequationfora two-dimensionalstreamline,basedonNewton’ssecondlawofmotion, F = ma(createdbyX.Wang).Theforcesactingontheinfinitesimal streamlineelementarethepressureforcesactingnormaltothetwoends andtheweightofthefluidelement.Thesumoftheseforcesisequaltothe massoftheelementtimesitsacceleration.

Fig.9.5 TheBernoulliequationcanbeviewedaspressures,wherethetotal pressureisthesumofstaticpressure,dynamicpressure,and“hydrostatic pressure”onmovingfluid(createdbyX.Wang).Staticpressure,PS , representsthepressureofthefluidwhenmovingatthesamevelocityas thefluid.Thedynamicpressure, 1 2 ρ U2 ,isthekineticenergyperunit volumeofthemovingfluid.The“hydrostaticpressure”onthemoving fluid, ρ gz,accountsforchangesintheelevation.

Fig.9.6

Pitot-statictubeoperationisbasedontheBernoulliprinciple(createdby X.Wang).Thedifferencebetweenthestagnationpressure,P0 ,andthe staticpressure,PS ,isthedynamicpressure, 1 2 ρ U2 ,fromwhichthe velocitycanbedetermined.Thespecifics,suchasstagnationportsize, numberandlocationsofthestaticports,andthedistancebetweenthe90° bend,havebeenoptimizedtoprovidethemostaccuratemeasurements thatareleastsensitivetosmallmisalignmentsoftheprobe.

156

162

164

165

166

169

170

Fig.9.7 Commonvolumetricflow-ratemeasurementmeters:(A)venturi,(B) nozzle,and(C)orificeflowmeters(createdbyA.Raj).Thesmooth contractionfollowedbyagradualexpansionofaventuriflowmeter disturbstheflowmarginallyand,thus,resultsinminimalpressuredrop. Anorificeinterfereswiththeflowabruptly,leadingtoasubstantial pressuredrop.

Fig.9.8 Anillustrationofstaticandflowingfluidheads,totalingtheBernoulli Head(createdbyO.Imafidon).Intheabsenceoflossesorgainsthetotal (Bernoulli)headisconserved.(A)Demonstratesaflowalongthesame elevation,wheretheincreaseinvelocityheadwithdecreasing cross-sectionalareaofthepipeisequaltothedecreaseinthepressure head.Forthefixedcross-sectionpipein(B),thevelocityheadremains unchangedduetocontinuity.Thepressureheaddecreasesasthepipeis elevatedbutthehydraulicgradelineremainsfixedintheidealfrictionless flow.

Fig.9.9 Thevariationoffluidheadalongtheflowpassageofarealfluid(created byO.Imafidon).Withfiniteviscosity,wehavefinitelosses;therefore,the totalheaddecreasesalongtheflowpassage.Fortheuniformcross-section straightpipe,(A),thetotalheaddecreaseslinearlywithpipelength.(B) showsthatareductioninpipecross-sectionincreasesheadloss,along withincreasingflowvelocity.(C)showsthatthepumpinputsenergyinto thefluidandhence,increasesthefluidhead.

Fig.9.10 Energygradelinefromalowerelevationtanktoahigheroneviaa uniformpipeequippedwithapump(createdbyF.Kermanshahi).

Fig.10.1 Animalmetabolicrateversusbodymass(createdbyY.Yang).Dataare takenfromtheappendixof McNab(2008).Withinthescatterofthedata, thelog–logrelationshipbetweenthemetabolicrateandbodymassof mammalsextendsfromthetinyEtruscanshrews,whereanaverageadult hasabodymassoflessthan2g(Animalia,2021),tothegreatWeddell sealsthatweighbetween400and500kgwhenfullygrown(Antarctica, 2021).

Fig.10.2

Fig.10.3

Fig.10.4

Nondimensionalstridelengthversusrunningspeedofvariousanimals (createdbyY.Yang).Dataaretakenfromvarioussources;see,for example,(Alexander,1989, 2004).Asexpected,thelongerthenormalized stridelength,thehigherthenormalizedrunningspeed.Studies,including thoseconductedby Montanari(2017), Sellersetal.(2017),and Celine (2021),indicatethatdinosaurs,suchasTyrannosaurusrex,cannotoutrun humans.Wecaninferthisfromtherelation,Lstride /Lleg ∝ [U/(Lleg g)] 1 2 , thatthisisbecausethemuchlongerlegs,Lleg ,ofthedinosaursdonotlead toaproportionalincreaseinthestridelength,Lstride .Itfollowsthatthe speed,U,doesnotincreaseinproportiontoLleg .

Nondimensionalvortexsheddingfrequency,StrouhalnumberSt = fs D/U, asafunctionofReynoldsnumberforacircularcylinder(createdbyO. Imafidon).NotethatforReynoldsnumberbetween200and100,000the Strouhalnumberremainsapproximatelyunalteredat0.2.

Laminarrisingsmoketransitionsintoturbulentsmokeasitrises(created byX.Wang).Thebuoyantacceleration,whichisofequalmagnitudeto thegravitationalacceleration,causesthelaminarsmoketobecomea turbulentplumebeforetheaccelerationeventuallyslowsasthesmoke losesheattothesurroundings.Thesmokeontheleftiscoolerthantheone ontheright.Withasmallertemperaturedifferencebetweenthesmokeand theambientair,theleftsmokeislargelylaminar.Fortherightsmoke,the

172

175

176

179

184

185

189

largertemperaturedifferencepowersittoacceleratesupwardrapidlyand, hence,transitionsintoaturbulentsmokequickly. 190

Fig.11.1 Laminar,transitional,andturbulentflowregimesforpipeflow(createdby Y.Yang).Typically,theflowissteadyandlaminarforRe < 2100,itis transitionalfor2100 < Re < 4000,anditbecomesfullyturbulentforRe > 4000. 202

Fig.11.2 Thedevelopmentofpipeflowwithauniformvelocityattheentrance (createdbyY.Yang).Theboundarylayerisdefinedbythelayerfromthe wallwherethevelocityislessthan99%thefreestreamvelocity.Theflow becomesfullydevelopedwhentheboundarylayerreachesthecenterof thepipe.Theparabolicprofilesignifiesthattheflowislaminar;a turbulentprofileisfullerorflatter.

203

Fig.11.3 Thevariationofpressuredropandwallshearforadevelopinghorizontal pipeflow(createdbyY.Yang).Therateofpressuredropwithdistance decreasesintheentranceregion.Itreachesaconstantvalueoncetheflow isfullydeveloped.Thecorrespondingwallshearremainsconstantbeyond theentrancelength. 207

Fig.11.4 Fullydevelopedflowinahorizontalpipe(createdbyX.Wang).Notethat thevelocityprofileremainsunchangedalongthepipe.Thesmooth, parabolicprofilecorrespondstolaminarflowatRe = 500,whiletheflatter oneisturbulentatRe = 3000.

Fig.11.5 ForcesactingonacylindricalfluidelementoflengthL(createdbyO. Imafidon).Thenetforceiszerobecausethefluidismovingataconstant velocity,thatis,theaccelerationiszero,accordingtoNewton’ssecond lawofmotion.

Fig.11.6 ForcesactingonacylindricalfluidelementoflengthLataninclination angle, θ (createdbyO.Imafidon).Comparedtothehorizontalcase,the specificweightofthefluid, γ = ρ g,istheadditionalterm.

Fig.11.7 Energyperunitmassofamovingfluidinapipe(createdbyD.Ting).The threecomponentsarepressureenergy,kineticenergy,andpotentialenergy.

Fig.11.8 Turningorguidevanesforreducingminorheadloss(losscoefficient,KL ) ina90°bend(createdbyX.Wang).Theguidevaneseliminateorlessen theformationofrecirculatingflowand,hence,theassociatedlosses.

Fig.11.9 Thesetupformeasuringthelosscoefficientofanairfilter(createdbyF. Kermanshahi).Therearewellestablishedstandardstospecifyexactly howthemeasurementsshouldbeconducted,includingthedefinite locationstoflushmountthepressuretaps.

Fig.11.10 MoodychartorMoodydiagram(createdbyY.Yang).Notethatforfully developedlaminarpipeflow,thefrictionfactor,f = 64/Re.

Fig.11.11 Waterdeliveryfromatank(createdbyF.Kermanshahi).Theentranceinto thepipe,thefour90°elbows,thevalve,andtheexitintotheatmosphere contributetominorlosses.

Fig.12.1 Atwo-dimensionalairfoilwhereliftanddragaredescribed(createdbyS. Khademi).Theflow(friction)alwaystriestodragtheobjectalong.Liftis producedbythepressuredifference;pressureisnegativeontheupper surfaceandpositiveonthelowersurfaceand,thus,pushestheairfoil upward,creatinglift.

Fig.12.2 Boundarylayeroverathinplateat(A)averylowfreestreamvelocity and/orhighviscosityand(B)averyhighfreestreamvelocity(createdby O.Imafidon).Whenyourideonaslow-movingfluidparticlealongthe streamlinethatwillmeettheleadingedgeheadon,youwillslowdown aheadoftheleadingedge,asmanyfluidparticlesaheadofyoualsoslow

209

210

212

215

217

218

220

222

230

Fig.12.3

Fig.12.4

Fig.12.5

downtoastopatthestagnationpointatthepointededge.Ontheother hand,ifyourideonafast-movingfluidparticleaheadofthepointededge, you,likeallotherfast-movingparticlesaheadofyou,aremovingsofast thatyoudonotslowdownuntilviscositywithintheformingboundary layeronthetoporlowersurfacedragsyoudown.

Disturbanceboundarylayer(createdbyN.Bhoopal).Thedisturbance boundarylayerisdefinedbyU = 0.99U∞ .Interestedreaderswouldenjoy watching Lesics(2021),especiallyfrom4:20min.intothevideoclip.

Boundarylayerdevelopment,fromlaminartotransitiontoturbulent,over aflatplate(createdbyO.Imafidon).Duetoinherentimperfections,such asdisturbancesintheflowandsurfaceroughness,thecriticalReynolds number,Rec ≈ 5 × 105 inpractice.

Dr.JAS’flat-bottomcanoefordemonstratingfrictiondrag(createdbyA. Raj).Thepressuredragisminimizedviastreamlining.Specifically,the incomingflowisguidedalongagraduallydecliningsmoothplateandthe flowleavestheendofthecanoesmoothlyoveraplatewithasmallincline.

Fig.12.6 Boundarylayeraroundacircularcylinderinsteadyflow(createdbyO. Imafidon).Theflowseparatesfromthesurfaceofthecylinderduetoan adversepressuregradient.Thisissomewhatlikesomeoneridingonafluid particlerollercoasteralongthecurvedstreamlinearoundthesideofthe cylinderand“flyingoff”thetrackattheseparationpoint.

Fig.12.7

Flowregimesofatwo-dimensional,circularcylinderinsteadyflowfor Re = 1to1 × 104 (createdbyY.Yang).Regime1:creepingflow(Re 5);Regime2:closednear-wake,standingvortexpair(5 Re 45); Regime3:periodiclaminarvortexstreet(45 Re 190);Regime4: transitioninshearlayers(190 Re 3 × 105 );Regime5:criticalregime (3 × 105 Re 3 × 106 );Regime6:postcriticalregime(Re 3 × 106 ).

Fig.12.8 AmapofabuoyantvortexringintermsofRe,Bo,andWe(createdbyX. Yan).Atthelowend,itindicatesthatsomeminimuminertialand/or gravitationalforceisrequiredforthecreationofabuoyantvortexring.At thehighend,itsuggeststhattoomuchdragand/orinertiawillleadto disintegrationoftheturbulentvortexring.

Fig.12.9

Dragcoefficient,CD ,andStrouhalnumber,St,versustheReynolds, number,Re,forcommonbluffbodiessuchasasmoothsphereanda smoothcircularcylinder(createdbyO.Imafidon).Notethatoverawide rangeofReynoldsnumbersbetween103 and105 ,bothCD andStremain largelyunchanged.

Fig.13.1 Steadyheatconductionthroughahomogeneoussolid,Fourier’slawof heatconduction(createdbyD.Ting).Wemayenvisiontheflowofheat similartolavafallingdownthemountain,thesteepertheslope,thehigher theflowrate.

Fig.13.2 Thermalconductivityandthermalqualityofwintercoats(createdbyX. Wang).Ifbothwintercoatsresistheattransfersothattheresultingheat transferrateisthesame,thenthethinnercoatwithalowerthermal conductivityisabetter-qualityovercoat.

Fig.13.3 One-dimensional,steadyheatconductionthroughapassivehomogeneous wall(createdbyD.Ting).Thewallispassivebecauseitisneither generatingheat(notaheatsource)norisitabsorbingheat(notaheat sink).Itishomogeneousinthesensethatthethermalproperties,suchas thethermalconductivity,areuniformthroughoutthewall.

232

233

233

236

241

242

245

246

256

258

259

Fig.13.4

Fig.13.5

Fig.13.6

Fig.13.7

Thermalresistantconceptofheattransfer(createdbyD.Ting). Temperaturepotentialisanalogoustoelectricvoltage,andthethermal energyflowrateisakintothecurrentflowrate.

One-dimensionalradialheatconductionthroughthewallofalong cylindricalpipe(createdbyD.Ting).Notethattheavailableheattransfer areaincreaseswithradius.Therefore,insulatingatasmallerradial circumferenceismoreeffectivecomparedtoinsulatingatalargerradial location.

One-dimensionalheatconductionthroughathree-layerwall(createdby D.Ting).Understeady-stateconditions,theheatthatisconductedthrough thefirstlayerpassesthesecondandthirdlayers.Itfollowsthattheheat transferrateatanypointalongthepathisthesame.

Thermalcontactresistance(createdbyX.Wang).Theimperfectcontact hasvoidsthataretypicallyofsignificantlylowerthermalconductivity.For thatreason,thetransferofheatissloweddown,andthisismanifestedasa temperaturedrop, Tcontact = T1,R T2,L ,fromthewarmerlayertothe coolerone.

260

Fig.13.8

Fig.13.9

Fig.13.10

Fig.14.1

Heattransferviatheparallel-pathmethod(createdbyY.Yang).The parallel-pathmethodassumesperfectlyone-dimensionalheatflow, resultinginlowerandhigherheattransferratesthroughthepassage consistingoflessandmoreconductivematerials,respectively.Forthe caseshown,Q stud /Astud islargerthanQ insul /Ainsul

Aschematicofawood-framewallsectionofatypicalresidentialbuilding inNorthAmerica(createdbyD.Ting).Thermalenergytravels considerablyfasterthroughthesupportingstructures,suchasstuds,as comparedtothe“pink”insulation.Forthisreason,someofthethermal energyintheproximityofthestudstravelsthroughthestudsinsteadof themorerestrictivepathmadeofinsulation.

Equivalent-circuitdiagramfortheisothermal-planemethod(createdbyY. Yang).Theisothermal-planemethodassumesthatthetemperatureatany cross-sectionalongthedecreasingtemperatureheat-transferpathisatthe sametemperature.

Acold-bloodedcreaturesuchasalizardisatthesametemperatureasits environment(createdbyO.Imafidon).Treatingthelizardasalumped systemimpliesthattheentirebodyofthelizardisatahomogeneous temperatureasthelizardadjuststochangesinitsenvironment.This lumpedsystemassumptionisvalidonlywhenthechangeinthe environmentaltemperatureissufficientlyslow.Thisistrueinreallife, exceptinsituationssuchaswhentheenvironmentbecomesunbearably hotsuchasunderscorchingsuninadesert,thelizarddivesintothesand toavoidbeingtoasted.

Fig.14.2 Duetoitsexcellentwaterconductivity,abambootreecanbeconsidered asaone-dimensional(vertically)lumpedsystemintermsofwater distribution(createdbyN.Bhoopal).Likewise,wecanapproximatea copperrodasalumpedsystemintermsofheatdistribution,becauseofits superiorthermalconductivity.

Fig.14.3 Theenergybalanceofathermocouplejunctionintheformofabead (createdbyF.Kermanshahi).Therateofenergyincreaseinthebeadis equaltothenetrateofheatgain.Thisincreaseinenergycontent,dE/dt,is reflectedintemperatureriseaccordingtodE/dt = mcP dT/dt.

261

264

266

268

269

271

276

278

279

Fig.14.4

Fig.14.5

Fig.14.6

Plotoftheresponse,T(t) T∞ = [T0 T∞ ]exp{ hAt/(mcP )} = [T0 T∞ ]exp( t/τ ),ofathermocouplejunctionsubjectedtoastep changefromT0 = 22°CtoT∞ = 88°C(createdbyX.Wang).

Asinglezonebuildingmodeledintermsofacapacitorandaresistor (createdbyX.Wang).Thecapacitance,C,describesthethermalmassof thebuilding,whiletheresistance,R,representstheoverallheat transmissionresistanceofthebuildingenvelope.Inthesummertime,Q’is negative,indicatingtherateofcooling,thatis,heatremovalrate.

Biotnumberillustrated(createdbyX.Wang).Whenthe within-the-systemthermalconductionresistanceissmallcomparedtothe surfaceconvectiveresistance,anychangeinsurfacetemperatureis promptlytransmittedthroughtheentiresystemand,hence,thesystemhas ahomogeneoustemperature.Withthatinmind,thissmall-Bicondition grantstheutilizationofthelumpedparameterassumption.

280

Fig.14.7

Fig.14.8

One-dimensionaltransientheatconductionthroughthethicknessofa largeplatewithbothsidesexposedtoachangeinthesurrounding temperature(createdbyX.Wang).Fortheparticularcaseshown,theplate isinitiallyatequilibriumwiththeambientatT0 ,andattimet = 0,the ambienttemperaturedropstoT∞ ,andtheplatestartstorespondtothat stepchange.Thechangeinthetemperaturedistributioninsidetheplate withincreasingtime,t,isofsignificantpracticalimportance.

Asemi-infinitewallsubjectedtoachangeinambientand,thus,surface temperature(createdbyX.Wang).Thewallissothickthatthe temperatureatlargexremainsfixedatT0 .

Fig.14.9 Solutionforasemi-infinitewallsubjectedtoachangeinsurface temperature(createdbyX.Wang).(A)Errorfunction,erf,versus similarityvariable,x/ (4α t),whereuisavariable.(B)Nondimensional temperature, θ ,asafunctionofthesimilarityvariable,x/ (4α t), accordingtothecomplementaryerrorfunction,erfc.

Fig.15.1 Aflockofbirdsridingonathermal(createdbyS.Akhand).Thefigure equallyillustratesmultiplesnapshotsofonevulturerisingonathermalin aroughlycircularmotion.

Fig.15.2 AbeautifuldisplayofcumuluscloudsabovetheDetroitriver(phototaken byX.Wang).

Fig.15.3 Asphericalvolumeofhotairinacooler,stagnantenvironment(created byD.Ting).Intheidealcase,weassumethevolumeofhotairstaysasa spherewithauniformtemperature.

Fig.15.4 Buoyanthotair,heatedviaanelectricresistor,beingopposedbyits viscousstagnantsurroundings(createdbyD.Ting).Thebuoyantforceof theheatedlighterairhastobegreaterthantheviscousforceimposedby thesurroundingstagnantairbeforethevolumeofhotaircanrise.

Fig.15.5 AsnapshotofRayleigh–Bérnardconvectionbasedonatwo-dimensional simulationofairina0.2mhighand0.5mwidecavity(createdbyX. Wang).Thebaseisat20°Cwhiletheairisat10°C.

Fig.15.6 Arectangularenclosure(orcavity)withshorterdimensionLS andlonger dimensionLL (createdbyD.Ting).Thelowerhorizontalplaneisheated untiltheRayleighnumberislargerthanthecriticalvaluetoformlaminar Rayleigh–Bérnardcells.FurtherincreaseintheRayleighnumberbeyond thelaminar-to-turbulentcriticalvalueleadstorandomturbulentmotion drivenbyintensenaturalconvection.

Fig.15.7 Acontinuousthermalplumeofair(createdbyX.Wang)generatedfroma 0.01mdiametercylinderat380Kin293Kambientairmovingupwardat

281

283

285

291

292

297

298

300

301

305

306

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Thermofluids: from nature to engineering ting - Download the entire ebook instantly and explore ever by Education Libraries - Issuu