Thermal physics of the atmosphere 1 (developments in weather and climate science 1) 2nd edition maar

Page 1


https://ebookmass.com/product/thermal-physics-of-theatmosphere-1-developments-in-weather-and-climatescience-1-2nd-edition-maarten-h-p-ambaum/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Weather, macroweather, and the climate : our random yet predictable atmosphere Lovejoy

https://ebookmass.com/product/weather-macroweather-and-the-climateour-random-yet-predictable-atmosphere-lovejoy/

ebookmass.com

Science of Weather, Climate and Ocean Extremes (Volume 2) (Developments in Weather and Climate Science, Volume 2) 1st Edition John E. Hay

https://ebookmass.com/product/science-of-weather-climate-and-oceanextremes-volume-2-developments-in-weather-and-climate-sciencevolume-2-1st-edition-john-e-hay/

ebookmass.com

Glad We Met: The Art and Science of 1:1 Meetings Steven G. Rogelberg

https://ebookmass.com/product/glad-we-met-the-art-and-scienceof-11-meetings-steven-g-rogelberg-3/

ebookmass.com

Hacking Darwin: Genetic Engineering and the Future of Humanity Jamie Metzl

https://ebookmass.com/product/hacking-darwin-genetic-engineering-andthe-future-of-humanity-jamie-metzl/

ebookmass.com

Practicum and Internship: Textbook Resource Guide for Counseling – Ebook PDF Version

https://ebookmass.com/product/practicum-and-internship-textbookresource-guide-for-counseling-ebook-pdf-version/

ebookmass.com

Waffen-SS Soldier vs Soviet Rifleman: Rostov-on-Don and Kharkov 1942–43 Chris Mcnab

https://ebookmass.com/product/waffen-ss-soldier-vs-soviet-riflemanrostov-on-don-and-kharkov-1942-43-chris-mcnab/

ebookmass.com

Computational Methods for Nonlinear Dynamical Systems: Theory and Applications in Aerospace Engineering Xuechuan Wang

https://ebookmass.com/product/computational-methods-for-nonlineardynamical-systems-theory-and-applications-in-aerospace-engineeringxuechuan-wang/ ebookmass.com

Financial Accounting for Decision Makers 10th Edition Book and MyLab Accounting Pack Peter Atrill

https://ebookmass.com/product/financial-accounting-for-decisionmakers-10th-edition-book-and-mylab-accounting-pack-peter-atrill/

ebookmass.com

Calculus and Its Applications 11th Edition – Ebook PDF Version

https://ebookmass.com/product/calculus-and-its-applications-11thedition-ebook-pdf-version/

ebookmass.com

Book 10) Sanjay Kumar

https://ebookmass.com/product/universal-gravitation-concepts-andproblems-in-physics-book-10-sanjay-kumar/

ebookmass.com

ThermalPhysics oftheAtmosphere

SecondEdition

ThermalPhysics oftheAtmosphere

SecondEdition

MaartenH.P.Ambaum DepartmentofMeteorology UniversityofReading Reading,UnitedKingdom

Serieseditor

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021RoyalMeteorologicalSociety.PublishedbyElsevierInc.incooperationwithThe RoyalMeteorologicalSociety.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-824498-2

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

ForinformationabouttheRoyalMeteorologicalSociety anditspublicationsvisit rmets.org/

Publisher: CandiceJanco

AcquisitionsEditor: AmyShapiro

EditorialProjectManager: LeticiaM.Lima

ProductionProjectManager: BharatwajVaratharajan

Designer: MatthewLimbert

FrontcoverphototakenbyImogenAmbaum

TypesetbyVTeX

5.3 Humidityvariables................................101

5.4 Dewpointtemperature..............................102

5.5 Wet-bulbtemperature...............................104

5.6 Moiststaticenergy .................................106

5.7 ThePenmanequation. .............................109 Problems........................................112

CHAPTER6Verticalstructureofthemoistatmosphere 115

6.1 Adiabaticlapserateformoistair......................115

6.2 Entropyofmoistair................................118

6.3 Finiteamplitudeinstabilities .........................124

6.4 Verticalstructureinthermodynamicdiagrams. ...........125

6.5 Convectiveavailablepotentialenergy ...................130 Problems........................................132

CHAPTER7Clouddrops .................................... 133

7.1 Homogeneousnucleation:theKelvineffect... ...........133

7.2 Heterogeneousnucleation:theRaoulteffect... ...........138

7.3 Köhlertheory ....................................140

7.4 Charge-enhancednucleation .........................144

7.5 Dropgrowthbydiffusion............................148

7.6 Dropgrowthbycollisionandcoalescence ...............156 Problems........................................158

CHAPTER8Mixturesandsolutions 161

8.1 Chemicalpotentials................................161

8.2 Idealgasmixturesandidealsolutions ..................164

8.3 Raoult’slawrevisited...............................166

8.4 Boilingandfreezingofsolutions.. ....................168

8.5 Affinityandchemicalequilibrium. ....................170 Problems........................................174

CHAPTER9Thermalradiation .............................. 177

9.1 ThermalradiationandKirchhoff’slaw ..................177

9.2 TheStefan–BoltzmannandWiendisplacementlaws .......180

9.3 Globalenergybudgetandthegreenhouseeffect ...........182

9.4 Climatefeedbacksandthehydrologicalcycle. ...........186

9.5 Thermodynamicsofaphotongas.. ....................189

9.6 DerivationofthePlancklaw .........................193

9.7 Energyflux,andtheStefan–Boltzmannintegral ...........198 Problems........................................202

CHAPTER10Radiativetransfer 205

10.1 Radiativeintensity................................205

10.2 Radiativetransfer.................................207

10.3 Zenithangles ....................................211

10.4 Radiative–convectiveequilibrium. ....................214

Preface

Shouldweviewclassicalphysicsasatooltounderstandphenomenainatmospheric science,orshouldweviewatmosphericscienceasanappliedbranchofclassical physics?Ofcoursebothviewpointsaremostlyaccurate,relevant,andevenoverlapping.However,byfocussingonthefirstviewpointwemaymissoutontheprofound senseofuniversality,oforganisationthatclassicalphysicsbringstoourunderstandingoftheworld.Herewewillfocusonthesecondviewpoint.Thisbookisanattempt topresentatmosphericscienceasoneofthegreatmodernapplicationsofclassical physics,inparticularofthermodynamics.

Thepresentsecondeditionof ThermalPhysicsoftheAtmosphere hasbeenrevisedandexpandedthroughoutcomparedtothefirstedition.Therevisionfollows fromyearsofteachingthismaterialtopostgraduatestudents.Manystudentshave toldmeoftheirsenseofachievementandsatisfaction—andofrelief!—onfinishing amasterslevelphysicstopic,oftentheirfirstexpositiontoadvancedphysicsmaterial.Istillexperiencethesamesenseofwonder,discoveringandexploringthemyriad waysinwhichwecanusethermodynamicstounderstandandpredictsomanydifferentphenomenaintheatmosphere.Ihopethereaderwillsharethissenseofwonder.

Reading,UnitedKingdom

October2020

MaartenAmbaum

Idealgases

Inthischapterweintroducetheconceptofanidealgas,agasofnon-interacting molecules.Anidealgasisanaccuratemodelofdilutegasessuchastheatmosphere.

Wefurtherintroducethenotionofmacroscopicvariables,amongstthemsuch familiaronesastemperatureandpressure.Thesemacroscopicvariablesmustberelatedtosomepropertyofthemicroscopicstateofthemoleculesthatmakeupthe substance.Forexample,forthesystemsweconsiderhere,temperatureisrelatedto themeankineticenergyofthemolecules.Thelinkingofthemacroscopicandmicroscopicworldsisthesubjectofstatisticalmechanics.Inthischapterwegivean elementaryapplicationofittoidealgases.

1.1 Thermodynamicvariables

Consideravolumeofgas.Ausefulmentalpictureisthatofagasinaclosedcylinder withapiston,similartothedrivingcylinderofasteamengine,see Fig. 1.1.Inthis waywecancontrolcertainpropertiesofthegas,suchasitsvolumeortemperature, andperformexperimentsonit.Suchexperimentsarenormallythoughtexperiments, althoughinprincipletheycanbeperformedinthelaboratory.

Atthemacroscopiclevel,thegashassomefamiliarproperties:

•volume V (units:m3 )

•mass M (units:kg)

•density ρ = M/V (units:kgm 3 )

•temperature T (units:K,Kelvin)

•pressure p (units:Pa = Nm 2 ,Pascal).

Thegasismadeupofmoleculeswithindividualmass M1 ,sothetotalmassofgasis M = NM1 , (1.1)

with N thenumberofmolecules.Thenumberofmolecules N isoftenexpressedas amultipleoftheAvogadronumber NA , NA = 6.022 × 1023 . (1.2)

TheAvogadronumberwasuntilveryrecentlydefinedasthenumberofmoleculesin 12gofcarbonisotope 12C,butisnowdefinedastheexactinteger6 02214076 × 1023

ThermalPhysicsoftheAtmosphere. https://doi.org/10.1016/B978-0-12-824498-2.00008-2 Copyright©2021RoyalMeteorologicalSociety.PublishedbyElsevierInc.incooperationwithTheRoyalMeteorologicalSociety.Allrights reserved.

FIGURE1.1

Gasinacylinderwithpiston.

Thenumberofmoleculesisthendefinedasamultiple n of NA

N = nNA , (1.3)

where n isthenumberof moles.Withthisdefinitionofthemol,themassofthegas canbewrittenas

M = nμ (1.4)

with μ = NA M1 the molarmass.Sothemolarmassof 12Cis12gmol 1 .(Although the‘mol’isnotstrictlyspeakingaphysicalunit,itisdefinedbywritingtheAvogadro numberas NA = 6 02214076 × 1023 mol 1 .)

Thetemperaturecanbedefinedas‘thatpropertywhichcanbemeasuredwitha thermometer’.Thisdefinitionsoundscircularbutitcanbeshowntobeaperfectly validdefinition.TheSIunit1 fortemperatureistheKelvin(K).Temperatureisoften denotedindegreesCelsius, ◦ Cwith T/◦ C = T/K 273 15,orindegreesFahrenheit, ◦ Fwith T/◦ F = 1 8 T/◦ C + 32,see Fig. 1.2.Temperaturecanneverbelowerthan0K, orabsolutezero;thetemperatureinKelvinisalsocalledthe absolutetemperature

FIGURE1.2

NomogramforCelsius–Fahrenheitconversion.

Figure 1.3 illustratesthetypicalmeantemperaturesencounteredthroughthedepth oftheEarth’satmosphere.Thisfigureusesthelogarithmofpressureasaverticalcoordinatebecausethisisapproximatelyproportionaltothealtitudeintheatmosphere.

1 SIstandsfor SystèmeInternationald’Unités,theinternationallyagreedsystemofunitsforphysical quantities.

Temperature,in ◦ C,asafunctionofheight.Tropicalannualmean(thickline),extratropical wintermean(mediumsolidline)andextratropicalsummermean(mediumdashedline). ThetropicsherecorrespondtothelatitudesbetweenthetropicsofCancerandCapricorn; theextratropicsherecorrespondtothelatitudesbeyond45◦ ineitherhemisphereforthe correspondingseason.BasedondatafromRandel,W.etal.(2004) JournalofClimate 17, 986–1003.

Goingupinaltitude,thetemperaturefirstdecreases(troposphere),increases (stratosphere),andthendecreasesagain(mesosphere).Themesosphereendsatabout 90 kmaltitude,abovewhichthetemperaturestartstoincreaseagain(thermosphere).These atmosphericlayersareseparatedbythetropopause,stratopause,andmesopause, respectively.

Thetemperatureincreaseinthestratosphereisduetothephoto-dissociationofozone,O3 , whichabsorbsthesolarenergyintheUVpartofthespectrum(wavelengthsshorterthan about 320 nm).Indeed,theozoneitselfisformedbyphoto-dissociationofmolecular oxygen,O2 ,whichoccursatwavelengthsshorterthan 240 nm.Themaximumozone concentration(‘theozone-layer’)isatabout 25 kmaltitude.

Thetemperatureinthetropospherehasamaximuminthetropics,whileinthe stratosphereithasamaximuminthesummerhemisphereandaminimuminthewinter hemisphere.Thislatitudinaltemperaturegradientisreversedinthemesosphere.Notealso thatthetropopauseiscoldestandhighestinthetropics.

Thethermosphere(outsidethisplot)isheatedbyabsorptionofUVradiationand subsequentionizationofthemolecularconstituents,thusformingtheionosphere.Atthese altitudesthedensityissolowthatenergydoesnotgetthermalizedeffectivelyandlocal thermodynamicequilibriumisnotfullyattained.Thethermospheregiveswaytospacein theexosphere.

FIGURE1.3

Pressureistheforceagasexertsonitsboundingwallsperunitarea.Thisdoes notmeanthatgasonlyhasapressuredefinedattheboundingwalls:theinternalpressureofagascaninprinciplebemeasuredbyinsertingsomeprobeandmeasuring theforceperunitareaontheprobe.Thereareseveralunitsofpressureinuse,each withitsspecificareaofapplication.TheSIunitforpressureisthePascal(Pa)which isequivalenttooneNewtonpersquaremetre.InatmosphericapplicationswenormallyusethehectoPascal(hPa;bydefinition,1hPa = 100Pa)ormillibar(mbar;with 1mbar = 1hPa).

Apressureof1013.25hPaisalsocalled oneatmosphere,thenotionalmeanvalue ofmeansealevelpressureonEarth.Sowehave1atm = 101325Pa.Thispressure unitisalmostexclusivelyusedinhighpressureengineeringapplicationsand,despite itsname,doesnotusuallyfindapplicationinatmosphericscience.Arelatedpressure unitisthe bar with1bar = 105 Pa,fromwhich,ofcourse,themillibarisderived.

Pressureandtemperaturedonotcorrespondtoapropertyofindividualmolecules. Theyarebulkpropertiesthatcanonlybedefinedasastatisticalpropertyofalarge numberofmolecules.Thiswillbediscussedinthenextsection.

Thereareseveralothermacroscopicvariablesthatcanbeusedtodescribethe stateofasimplegas;theseareknownas thermodynamicvariables.Ifweknowall therelevantthermodynamicvariables,weknowthefullthermodynamicstateofthe gas.Allthesevariablesareinterrelatedanditturnsoutthatforasimplesubstance(a substancewithafixedcomposition,suchasdryair)weonlyneedtwothermodynamic variablestodescribeitsthermodynamicstate.2

Formorecomplexsystemsweneedmorevariables.Forexample,inamixtureof varyingcompositionweneedtoknowtheconcentrationsoftheconstituents.Moist airissuchamixture.Thenumberofwatermoleculesintheairishighlyvariable andthesevariationsneedtobetakenintoaccount.Forseawaterweneedtoknow thesalinity—theamountofdissolvedsalts—becauseithasimportantconsequences forthedensity.Finally,forclouddropsweneedtoknowthesurfaceareaaswellas theamountofdissolvedsolute,bothofwhichhaveprofoundconsequencesforthe thermodynamicsofthedrops.

Thermodynamicvariablesareeither:

• extensive,proportionaltothemassofthesystem,or

• intensive,independentofthemassofthesystem.

Volumeandmassareextensivevariables,temperatureanddensityareintensivevariables.Formostvariablesitisobviouswhethertheyareextensiveorintensive.

2 Thenumber N ofthermodynamicvariablesrequiredtodefinethestateofanysystemisgivenbythe Gibbs’phaserule, N = 2 + C P,

with C thenumberofindependentconstituentsand P thenumberofcoexistingphases(gas,liquid,solid) inthesystem.

Extensivevariablescanbedividedbythemassofthesystemtobecomeintensive; suchnewvariablesarethencalled specific variables.Specificandextensivevariables willbedenotedbythesameletter,butwiththespecificvariablewritteninlowercase anditsextensiveequivalentinupper.Forexample,thevolume V ofasystemdivided bythemass M ofthesystembecomesthespecificvolume v with v = V/M .Note that

where ρ isthedensity.Specificvolumeisoften,confusingly,denotedbyaGreek letter α ,anapparentlyarbitrarynotationwhichwewillnotfollowhere.Laterwe willcomeacrossotherextensivevariables.Forexample,theentropy S ofasystem isanextensivevariable,sowecandefine s = S/M asthespecificentropy.Although temperature T isanintensivevariableitisnormallydenotedbyanuppercaseletter, aconventionweadopthereaswell.

Wehaveignoredinternalvariationsinthevolumeofgasormaterialunderconsideration.Forexample,weassumethereisnointernalmacroscopicmotionofthe gas,whichwouldbeassociatedwithpressurevariationsandinternalkineticenergy. Clearlythisisnotthecasefortheatmosphereasawhole.Thepressureanddensity varyenormouslythroughtheatmosphere,usuallymostdramaticallyinthevertical: at10kmheightthepressureisaboutaquarterofitssurfacevalue.

Weassumethatwecandefinetheintensivethermodynamicvariableslocallyand thattheyhavetheirusualequilibriumthermodynamicrelations.Wethensaythatthe gasisin localthermodynamicequilibrium.Localthermodynamicequilibriumisvalid ifthereisalargeseparationbetweenthespatialandtemporalscalesofmacroscopic variationsandthoseofmicroscopicvariations.Thespatialscaleofmacroscopicvariationsneedstobemuchlargerthanthe meanfreepath ofmolecules,themean distanceamoleculetravelsbetweencollisionswithothermolecules.Thetemporal scaleofmacroscopicvariationsneedstobemuchlargerthanthemeantimebetween molecularcollisions.NeartheEarth’ssurfacethemeanfreepathintheatmosphereis about0 1µm(about30timestheaveragemoleculardistance)withtypicalmolecular velocitiesofseveralhundredsofmetrespersecond,solocalthermodynamicequilibriumissatisfied.Itturnsoutthataboveabout100kmheight,localthermodynamic equilibriumbreaksdown:thedensityandcollisionrateissolowthatthermalequilibriumcannotbeachievedonshortenoughtimescales.

Asmallvolumeofgasintheatmosphere,forwhichtheinternalmotioncanbe ignoredandwhichhaswell-defineddensity,temperature,andsoon,iscalledan air parcel.Becauseanairparcelis,bydefinition,inlocalthermodynamicequilibrium, itsthermodynamicvariablessatisfyalltherelationshipsthatarefoundinequilibriumsystems.Atthelevelofanairparcelweneednotworryaboutnon-equilibrium effects.

1.2 Microscopicviewpoint

Fromthemicroscopicviewpoint,temperatureisdefinedastheaveragekineticenergy ofthemolecules,

with (U , V , W ) thethree-dimensionalvectorvelocityofthemolecule.Thebrackets denotetheaverage,atimeaverageforasinglemolecule,theaverageoverall molecules,ortheaverageoveranensembleofgasesinthesamemacroscopicstate. Akeyassumptionofstatisticalmechanicsisthatalltheseaveragesleadtothesame result.Theconstant kB istheBoltzmannconstant,

Instatisticalphysicsaswellasmacroscopicthermodynamics,energyisthefundamentalquantity.Temperatureisaderivedquantitywhichhasbeengivenitsown unitsbecauseitismeasuredwithathermometer.TheBoltzmannconstantismerelya proportionalityconstantbetweenenergyandabsolutetemperature.Thefundamental pointisthatstatisticalmechanicscanbeformulatedsuchthatthemicroscopicdefinitionoftemperatureintermsofthemeankineticenergyofthemoleculescorresponds tothethermodynamicdefinitionoftemperature.

BeforeMay2019theKelvinwasdefinedas exactly 1/273.16ofthetemperatureat thetriplepointofwater.Thestandardoftemperaturewasatriplepointcell,aclosed vesselofglasswhichcontainsonlypurewater,keptatthetemperaturewherethe watercoexistsinitsthreephases.Underthatdefinition,theBoltzmannconstantwas determinedbymeasuringhowmuchenergyamoleculegainsforagiventemperature change.FromMay2019theBoltzmannconstanthaschangedfromameasuredquantitytoadefinedfixedconstant exactly equalto1.380649 × 10 23 whenexpressedin theunitJK 1 .ThisdefinitionthentiesthevalueoftheKelvintothevalueofthe Joule,whichisdefinedindependentlyintermsofotherfundamentalphysicalconstants.Thetemperatureofwateratitstriplepointisnowameasuredquantity.Of courseitisstillmeasuredtobe273.16Kbutnowwithanuncertaintyof0.0001K.

Thefactor3/2inthemicroscopicdefinitionoftemperaturereflectsaclassicresult inthemechanicsofsystemswithmanycomponents,namelythateach degreeoffreedom contains,onaverage,thesameenergy.Adegreeoffreedomisanindependent variableinwhichthesystemcanvary.Asinglemoleculecarriesthreetranslational degreesoffreedom:motioninthe x , y ,and z-directions.Therecanalsobeinternal degreesoffreedomcorrespondingtorotationsandvibrationsofthemolecule.The equipartitiontheorem statesthateachaccessibledegreeoffreedom3 carriesonaveragethesameenergy,andthisenergyequals kB T/2.Addingtheaveragekinetic

3 Notallavailabledegreesarenecessarilyaccessible.Quantizationofenergylevelsimpliesthatthereisa minimumenergyrequiredtoexcitehigherenergylevelsinanydegreeoffreedom.

FIGURE1.4

Transferofmomentumbyamoleculecollidingwiththewall.Thetotalmomentumtransfer istwicethemomentuminthe x -directionofthemolecule.

energiesinthethreespatialdirectionsthengivestheresultofEq. (1.6).Theproofof theequipartitiontheoremisgiveninSection 4.7.

Pressureistheresultofmanycollisionsofindividualmoleculesagainstthewalls ofavesseloraprobe.Ifamoleculeapproachesthewallwithavelocity U and elasticallycollideswiththewall,thenthemolecule’smomentuminthedirectionof thewallchangesby2M1 U ,from M1 U to M1 U .Thismomentumistransferredto thewall.ByNewton’slaws,theamountofmomentumtransferredperunittimeisthe forceonthewall,see Fig. 1.4.Foraninteriorpointwecandefinethelocalpressure asthemomentumfluxdensitythroughsomeimaginarysurfaceintheinteriorofthe fluid.

Sohowmanymoleculescollidewiththewall?Letthenumberdensityof molecules,thatisthenumberofmoleculesperunitvolume,bedenotedwith ˜ n.We cannowwritethenumberdensityofmoleculeswith x -velocitiesbetween U and U + dU as nU ,whichisrelatedtothetotalnumberdensity n by

Overatime δt ,thosemoleculeswithpositivevelocitybetween U and U + dU that arelocatedwithinadistance U δt ofthewallwillcollidewiththewall.Therefore, thenumberofsuchmoleculesthathavecollidedwiththewallwillbe ˜ nU U δtA, with A theareaofthewall.Togetthemomentumtransferperunittime,simply multiplythisnumberbythemomentumtransferpermolecule,2M1 U ,anddivide bythetimetaken, δt .Thisistheforce FU exertedonthewallbymoleculeswith positivevelocitiesbetween U and U + dU ,

Tofindthepressureweneedtodivideby A andintegratetheforceoverallpositive velocities, U > 0,becausemoleculeswithnegativevelocitieswillnotcollidewith

thewallandthuswillnotcontributetothepressure,

Bysymmetry,therewillbeanequalnumberofmoleculeswithpositiveandnegative U .Wecanthereforeintegrateoverallvelocities U ,positiveandnegative,anddivide theresultbytwo.Theexpressionforthepressurethenbecomes

with ˜ n thetotalnumberdensity.Theequipartitiontheoremstatesthat M1 U 2 = kB T sothatthepressuresatisfies

= NkB T, (1.12)

wherewehavesubstituted ˜ n = N/V .Thisisthe idealgaslaw. Bywritingthetotalnumberofmolecules N as nNA ,theidealgaslawcanbe written

where R iscalledthe universalgasconstant,

Beforethemicroscopicdefinitionsoftemperatureandpressurewereknown,itwas alreadyhypothesizedbyAvogadro,andlaterconfirmedtobetrue,thattheconstant R isthesameforalltypesofgases,andthereforeindeeduniversal.

Theidealgaslawimpliesthatforaparticularnumberofmolecules nNA held insomevolume V atsometemperature T ,thepressureisindependentofthetype ofmolecules.Thiscanbeunderstoodfromtheobservationthatboththekineticenergy(andthereforetemperature)andthemomentum(andthereforepressure)ofa moleculescalewiththemassofthemolecule.

Anotherformoftheidealgaslawfollowsbydividingbythemass M = nμ ofthe gastofind pv = RT, or p = ρRT, (1.15) where R istheso-called specificgasconstant, R = R /μ. (1.16)

Thisistheformoftheidealgaslawthatisnormallyusedinatmosphericscience. Confusingly,theconventionistouseacapital R forthespecificgasconstanteven thoughitisaspecificquantity.Notealsothatinmostphysicsandchemistryliterature theletter R standsfortheuniversalgasconstant;itshouldbeclearfromthecontext

whichismeant.Thisisoneofthoseinstanceswheretheconventionusedinatmosphericscienceliteratureisnotparticularlyhelpful.Althoughtheidealgaslawinthe formofEq. (1.13) ismoregeneral,thebigadvantageoftheformofEq. (1.15) isthat itisformulatedintermsofspecificquantities:wedonotneedtodefinethesizeof thesystemwearedescribing.

Theidealgaslawencompasses:

• Boyle’slaw: atconstanttemperature,theproductofpressureandvolumeisconstant

• Gay-Lussac’slaw: atconstantvolume,thepressureofagasisproportionaltoits temperature.

Figure 1.5 illustratestheselawsindiagrams.Theselawswereoriginallydetermined experimentally.Theyareonlystrictlyvalidforidealgases.

TheleftpanelillustratesBoyle’slawandthemiddlepanelGay-Lussac’slaw.Therightpanel illustratesthat,foranidealgasatfixedpressure,thevolumeofagasisproportionaltoits temperature;thisissometimesknownas Charles’slaw

Inderivingtheidealgaslaw,wehavenotconsideredsubtletiessuchasinelastic collisions,whereenergytransferbetweenthegasandthewalloccurs,ortheconsiderationthatthewallisnotamathematicalflatplanebutmadeupofmolecules.These complicationsdonotalterthebasicresult.

Wehavealsonotconsideredinteractionsbetweenthemoleculesandinteractions atadistancebetweenthemoleculesandthewall.This does makeadifferenceand itdefinesthedifferencebetweenrealgasesandidealgases.Idealgasesaremadeup ofnon-interactingmolecules,vanishinglysmallmoleculesthatareunaffectedbythe presenceofanyothermolecules.

Weassumethatmoleculesinanidealgasdonotinteractwitheachotherandalso thatthemoleculesareinthermalequilibrium.Strictlyspeakingtheseassumptionsare inconsistent,asagascanonlyachievethermalequilibriumthroughmanycollisions betweenthemolecules.Thecollidingmoleculesdistributetheenergyamongstallthe accessibledegreesoffreedomandthusachieveequipartition.Thisprocessofenergy distributioniscalled thermalization.Agasisinlocalthermodynamicequilibrium ifalltheavailableenergyisthermalized.Ifcollisionsarerare,energycannotbe thermalizedeffectivelyandthegascannotachievelocalthermodynamicequilibrium.

FIGURE1.5

Thisoccursathighaltitudesintheatmosphere(higherthanabout100km)wherethe energyinputfromradiationisnotthermalizedduetothelownumberofcollisions.

Theidealgaslawisanexampleofan equationofstate.Realgasesarenotideal andwillthereforehaveadifferentrelationshipbetweenpressure,densityandtemperature.Forexample,theequationofstateforrealgasesismoreaccuratelydescribed by vanderWaals’equation,

with a and b constantsthatdependontheparticulargas.Theterm nb represents thereductioninavailablevolumeduetothefiniteeffectivesizeofthemolecules.

Theterm a(n/V)2 isrelatedtotheaverageinteractionenergybetweenmolecules (whichiswhythetermisquadraticinthenumberdensity)anditcontributesasan effectivepressure;therelationbetweenpressureandenergydensitywillbeexplained inSection 2.2,andaderivationofvanderWaals’equationwillbepresentedinSection 3.8.VanderWaals’equationismoreaccurateforgasesathighdensities,and approximatelydescribessuchimportantprocessesasphasetransitions.

DensitiesofgasesintheatmospherearesuchthattheidealgaslawgivesessentiallythesameresultsasvanderWaals’equation,sowesticktothemuchsimpler idealgaslaw.Indeed,forlowdensitiesvanderWaals’equationreducestotheideal gaslaw,

Conversely,forlargepressures,

Sothehighpressure,incompressibleliquidisalsoalimitingcaseofvanderWaals’ equation.

Ingeneral,anequationofstateissomerelationshipbetweenthevariablesofthe system,

where a1 ,a2 representanyothervariablesthatinfluencethestateofthesystem, suchashumidityinair,orsalinityinwater.Theequationofstateisdependenton theprecisenatureofthesystemandresultsderivedusinganequationofstateare thereforeonlyvalidforthatparticularsystem.Wewillseethatmanyoftheresultsin thisbookarederivedwithoutreferencetoanequationofstateandwillthereforebe validforanysubstance.

Eq. (1.17) → pV = nR T if n/V → 0 (1.18)
Eq. (1.17) → V = nb if p →∞ (1.19)

1.3 Idealgasmixtures

Idealgasesaredefinedasgaseswherethemoleculesthemselveshavenegligiblevolumeandhavenegligibleinteractionswitheachother.Soifwemixseveralidealgases atthesametemperatureinasinglevolumetheydonot‘feel’eachother’spresence. Thismeansthateachconstituentgascontributesindependentlytothepressure.The contributionofeachconstituenttothetotalpressureiscalledthe partialpressure.So ni molsofconstituent i willhaveapartialpressure pi equalto

Thefactthatthesepartialpressuresindependentlymakeupthetotalpressureofthe mixtureiscalled Dalton’slaw:

Dalton’slawisonlystrictlytrueforidealgases.Fornon-idealgases,partialpressures cannotbeeasilydefinedingeneral.

AnotherwayofexpressingDalton’slawis

wherethemolarfraction yi ofconstituent i isdefinedby

with n = i ni thetotalnumberofmolesinthemixture. FromDalton’slawitfollowsthat

with Ri thespecificgasconstantforconstituent i and wi themassfractionofconstituent i —thatis,thefractionconstituent i contributestothetotalmassofthe mixture(seealsoProblem 1.6):

Thespecificgasconstantofthemixtureisrelatedtoaneffectivemolarmassofthe mixture μ whichisdefinedby

Table 1.1 liststhemainconstituentsofair.Thedryairconstituentsarewellmixed andlong-livedwhichmeansthatthebulkcompositionofdryairisfixedthroughout

FIGURE1.6

Massfraction(leftaxis,inpartspermillion)andmolarmixingratio(rightaxis,inpartsper million)ofCO2 asmeasuredatMaunaLoaObservatory,Hawaii.Inset:meanannualcycle ofCO2 ,withscalesasinthemaingraph.Thisannualcycleisdominatedbyvegetation growthandresultingCO2 captureintheNorthernHemispheresummer.DatafromDr. PieterTans,NOAA/ESRL(www.esrl.noaa.gov/gmd/ccgg/trends/)andDr.RalphKeeling, ScrippsInstitutionofOceanography(scrippsco2.ucsd.edu/).SeealsoKeeling,C.D.etal. (1976) Tellus 28,538–551.

theatmosphereuptoveryhighaltitudes.Thereisalong-termupwardtrendinCO2 concentrationovertimeduetohumanactivitybutthishasonlyaminoreffecton theidealgaspropertiesofdryair,see Fig. 1.6.However,theCO2 trenddoeshave aprofoundeffectontheradiativepropertiesoftheairanditisthemainagentof human-inducedclimatechange.

Usingthenumbersin Table 1.1 itisstraightforwardtoverifythattheeffective molarmass μd fordryairis

andthespecificgasconstant R fordryairis

Table1.1 Mainconstituentsofair.

FIGURE1.7

Nomogramexpressingtheidealgaslawfordryair, p = ρRT (with R = 287 Jkg 1 K 1 ).

Thenomogramworksbylayingaruleracrossthenomogramtodefineanindexline;forany straightindexlinecrossingthethreegraduatedscales,thecorrespondingvaluesfor ρ , p , and T willsatisfytheidealgaslawfordryair.

Thisvalueof R canbeusedintheidealgaslaw,Eq. (1.15),whichthenrelatesthe pressure,density,andtemperaturefordryair. Figure 1.7 isanomogramexpressing thisrelationgraphically.

Nowwecanalsocalculatetheeffectofwatervapourontheidealgaslaw.The amountofwatervapourintheaircanbequantifiedbyitsmassfraction.Forwater vapourthismassfractioniscalledthe specifichumidity,usuallydenoted q .This meansthatthemassfractionofdryairmustbe1 q .FromEq. (1.26) itthenfollows

thatthespecificgasconstantforthemoistairis

(1 q) R μd + q R μv = R 1 + μd μv 1 q , (1.31)

with μd and μv themolarmassesfordryairandwater,respectively,and R thespecificgasconstantfordryair,Eq. (1.30).Itiscommonusagetoabsorbthefactorwith thedependencyonspecifichumidityinaredefinedtemperature,the virtualtemperature, Tv .Sotheidealgaslawformoistairis

pv = RTv or p = ρRTv , (1.32)

wherethevirtualtemperature Tv isdefinedas

μd /μv beingequalto1.61.Soitturnsoutthatmoistunsaturatedaircanbetreated asdryairaslongaswereplacethetemperatureintheequationofstatebythevirtual temperature.

Thevirtualtemperatureincreaseswithspecifichumidity.Overhumidtropical areasthespecifichumiditycanbeabout30gkg 1 ,leadingtoavirtualtemperature thatisabout2%abovethetemperature(about6◦ C).Overcolderareasthespecific humidityisalwaysmuchless,soherethevirtualtemperatureandthetemperatureare alwayslessthan1◦ Capart.

Problems

1.1 Howmanymoleculesarethereinalitreofairatstandardpressureandtemperature?Whatisthevolume,inlitres,ofonemoleofidealgasatstandardpressure andtemperature?

1.2 Usethemicroscopicdefinitionoftemperature,Eq. (1.6),tofindatypicalrootmean-squaremolecularvelocityforair.

1.3 Considerthetrajectoryofamoleculeofmass m inasphericalvesselofradius r .Themoleculemoveswithspeed c andcollideselasticallywiththewallsof thevessel.Themoleculestrikesthevesselwallatanangle θ withtheradial direction,asin Fig. 1.8

(i)Showthatthemoleculeateverysubsequentcollisionstrikesthevesselwall atthesameangle θ withtheradialdirection.

(ii)Showthatthemomentumexchangedoutwardduringasinglecollisionis 2mc cos θ .

(iii)Showthatthemomentumexchangedoutwardperunittimeforthismolecule equals mc 2 /r

FIGURE1.8

Trajectoryofmoleculeinsphericalvessel.

(iv)Combinethisresultwiththemicroscopicdefinitionoftemperature, Eq. (1.6),toshowthatanidealgasinthesphericalvesselmustobeytheideal gaslaw,Eq. (1.12).

1.4 (i)Calculatethedensityofdryairatatemperatureof15◦ Candapressureof 1000hPa(orusethenomogramin Fig. 1.7).

(ii)Calculatethedensityifwenowassumethatthisairhasaspecifichumidity of3gkg 1 .

(iii)Calculatethedensityofairatavirtualtemperatureof15◦ Candapressure of1000hPa.

1.5 ThemassfractionsofthemajorconstituentsoftheatmosphereonMarsaregiven inthefollowingtable.Calculatetheeffectivemolarmassandthespecificgas constantfortheMartianatmosphere.

1.6 Usetherelationbetweenmassandmolenumber, Mi = μi ni ,tofindanexpressionrelatingmassfraction wi tomolarfraction yi .

1.7 Saturn’slargestmoon,Titan,hasanatmospheremainlymadeupofnitrogen (N2 ).ThetemperatureatTitan’ssurfaceisabout94Kandthepressureisabout 1460hPa.Whatisthedensityatthesurface?Themainvaryingconstituenton Titanismethane(whichhasamolarmassof16gmol 1 ).Whatisthevirtualtemperature,withrespecttomethane,atthesurfaceifthemolarfractionofmethane is y = 1.5%?SeealsoProblem 5.9.

Thefirstandsecondlaws

Inthischapterwewilldiscussthethermodynamicversionofthelawofconservation ofenergyandthelawrelatingheattoentropy.Theselawsarecalledthefirstlawand thesecondlawofthermodynamics,respectively,andtheyarepartoftheaxiomatic frameworkofthermodynamics.

Tomaketheaxiomaticframeworkofthermodynamicscompletewealsoneed thethirdlaw,statinghowthermodynamicpropertiesbehavenearabsolutezero.The thirdlawdoesnotplayanimportantroleinatmosphericapplicationsandwewill notfurtherexpandonit.Wealsoneedthezerothlaw,whichstatesthatifsystem AisinthermalequilibriumwithsystemBandsystemBisinthermalequilibrium withsystemCthensystemAhastobeinthermalequilibriumwithsystemC.The zerothlawmakesphysicalsenseandisusuallytakenforgranted,althoughinastrictly axiomaticdevelopmentitneedstobestatedexplicitly.

Thesecondlawhasaparticularlyprofoundinterpretationinthatitdescribesthe irreversibilityofmacroscopicsystemsandthusprovidesthedirectionoftimein macroscopicsystems.Italsoprovidesthelinkbetweenthemacroscopicworldof thermodynamicsandthemicroscopicworldofmoleculardynamics,inthatentropy measuresthemicroscopicuncertaintyofamacroscopicsystem.

2.1 Work

Fromclassicalmechanicsweknowthatifweexertaforce F F F onabodyinorderto displaceitoveradistance r r r ,weputinanenergy W equaltotheinnerproductof theforceandthedisplacement: W = F F F · r r r .Thisenergyofdisplacementwitha forceiscalled work (unitsJ,Joule).Theforcemaybeafunctionoflocationsothat itisbettertotakeinfinitesimaldisplacementsdr r r forwhichinfinitesimalamountsof workdW arerequired:

Soforafinitedisplacementwethenfindthatthetotalwork W requiredis

where F F F canbeafunctionof r r r ThermalPhysicsoftheAtmosphere.

FIGURE2.1

Workdoneduringexpansionofagas.

Asimilarsetupoccursinthermodynamics:ifweputagasinacylinderwitha pistonthenthegasexertsapressure p onthecylinderwalls,see Fig. 2.1.Movingthe pistonthereforerequiresaforceofmagnitude F = pA (positivewhencompressing thegas).Weassumeherethatthemovementofthepistonisfrictionlesssonowork isrequiredtoovercomethefriction.Theworkdoneonthegasincompressingthe pistonoveradistancedx isthereforeequalto pA dx .Thiscanbewrittenasthework dW putintothegas,

W =−p dV,

withdV =−A dx ,thechangeinvolumeofthegas;anexpandinggas(dV> 0) performspressurework on itssurroundingsandtheworkinput,dW ,isnegative. Itisagainagoodideatouseinfinitesimaldisplacements;Boyle’slawprovidesan exampleofhowpressurecanbeafunctionofthevolumeofthegas,justasinEq. (2.1) theforcecanbeafunctionoflocation.Dividingbythemass M ofthesystemwefind thespecificformoftheaboveequation,

Thisequalityisonlytrueforsystemswithoutfrictionorotherdissipativeprocesses. Ifthereisfriction,someoftheworkdW requiredtocompressavolumeofgasis usedtoovercomethefrictionandwillthereforebelargerthan p dV ;similarly,for expansion,theworkdeliveredbythegasispartlyusedtoovercomefrictionandwill thereforeproducelessexternalwork.Inbothcaseswehave

ThisisthegeneralizationofEq. (2.3) forsystemswithfrictionordissipation;for frictionless,non-dissipativesystems,theaboveequationreducestoEq. (2.3).Below wewilldiscussthisresultinthecontextofthesecondlawofthermodynamics.

Theabovedefinitionofworkdoneonagasunderpressureisnotonlytruefor gasesinacylinder:anamountofgas(oranysubstance)inanyshapewillexperience acertainpressure p onitsboundary.Assumeitssurface A ismadeupofdifferent areaelements Ai ,whicharedisplacedoutwardbyadistancedni .Thetotalwork

d
dw =−p dv.
dW ≥−p dV.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.