Thermal and optical remote sensing john o odindi - Download the ebook now and own the full detailed

Page 1


Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Optical Remote Sensing of Land Surface. Techniques and Methods 1st Edition Nicolas Baghdadi

https://ebookmass.com/product/optical-remote-sensing-of-land-surfacetechniques-and-methods-1st-edition-nicolas-baghdadi/

ebookmass.com

Bio-optical Modeling and Remote Sensing of Inland Waters 1st Edition Edition D.R. Mishra

https://ebookmass.com/product/bio-optical-modeling-and-remote-sensingof-inland-waters-1st-edition-edition-d-r-mishra/

ebookmass.com

Remote sensing digital image analysis Sixth Edition John Alan Richards

https://ebookmass.com/product/remote-sensing-digital-image-analysissixth-edition-john-alan-richards/

ebookmass.com

Three Single Wives Gina Lamanna

https://ebookmass.com/product/three-single-wives-gina-lamanna-3/

ebookmass.com

Novelty: A Stalker Romance (A Dollhouse Novel Standalone Book 3) Albany Walker

https://ebookmass.com/product/novelty-a-stalker-romance-a-dollhousenovel-standalone-book-3-albany-walker/

ebookmass.com

Strategy through Personal Values Scott Lichtenstein

https://ebookmass.com/product/strategy-through-personal-values-scottlichtenstein/

ebookmass.com

Effective Writing for Healthcare Professionals: A Pocket Guide to Getting Published, 2nd Edition Megan-Jane Johnstone

https://ebookmass.com/product/effective-writing-for-healthcareprofessionals-a-pocket-guide-to-getting-published-2nd-edition-meganjane-johnstone/

ebookmass.com

How To Thrive in the Virtual Workplace Robert Glazer

https://ebookmass.com/product/how-to-thrive-in-the-virtual-workplacerobert-glazer/

ebookmass.com

Peruvian Cinema of the Twenty-First Century: Dynamic and Unstable Grounds 1st ed. Edition Cynthia Vich

https://ebookmass.com/product/peruvian-cinema-of-the-twenty-firstcentury-dynamic-and-unstable-grounds-1st-ed-edition-cynthia-vich/

ebookmass.com

https://ebookmass.com/product/manual-of-critical-care-nursing-nursinginterventions-and-collaborative-management-7th-edition-mariannesaunorus-baird/

ebookmass.com

Thermal and Optical Remote Sensing

www.mdpi.com/journal/remotesensing

Edited by

John O. Odindi, Elhadi Adam, Elfatih M. Abdel-Rahman and Yuyu Zhou

ThermalandOpticalRemoteSensing: EvaluatingUrbanGreenSpacesand UrbanHeatIslandsinaChanging Climate

Editors

JohnO.Odindi

ElhadiAdam

ElfatihM.Abdel-Rahman

YuyuZhou

Editors

JohnO.Odindi

UniversityofKwaZulu-Natal SouthAfrica

ElhadiAdam Universityofthe Witwatersrand SouthAfrica

ElfatihM.Abdel-Rahman InternationalCentreofInsect PhysiologyandEcology (ICIPE) Kenya

YuyuZhou IowaStateUniversity USA

EditorialOffice MDPI

St.Alban-Anlage66 4052Basel,Switzerland

ThisisareprintofarticlesfromtheSpecialIssuepublishedonlineintheopenaccessjournal RemoteSensing (ISSN2072-4292)(availableat:https://www.mdpi.com/journal/remotesensing/ special issues/RS Urban Green UHI).

Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas indicatedbelow:

LastName,A.A.;LastName,B.B.;LastName,C.C.ArticleTitle. JournalName Year, VolumeNumber, PageRange.

ISBN978-3-0365-6275-9(Hbk) ISBN978-3-0365-6276-6(PDF)

CoverimagecourtesyofGettyImages

©2023bytheauthors.ArticlesinthisbookareOpenAccessanddistributedundertheCreative CommonsAttribution(CCBY)license,whichallowsuserstodownload,copyandbuildupon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications.

ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND.

Contents

AbouttheEditors vii

Prefaceto”ThermalandOpticalRemoteSensing:EvaluatingUrbanGreenSpacesand UrbanHeatIslandsinaChangingClimate” ix

XiangyuLi,GuixinZhang,ShanyouZhuandYongmingXu Step-By-StepDownscalingofLandSurfaceTemperatureConsideringUrbanSpatial MorphologicalParameters

Reprintedfrom: RemoteSens. 2022, 14,3038,doi:10.3390/rs14133038 1

WenhaoZhu,JiabinSun,ChaobinYang,MinLiu,XinliangXuandCaoxiangJi HowtoMeasuretheUrbanParkCoolingIsland?APerspectiveofAbsoluteandRelative IndicatorsUsingRemoteSensingandBufferAnalysis

Reprintedfrom: RemoteSens. 2021, 13,3154,doi:10.3390/rs13163154 ................. 19

Tshilidzi Manyanya, Janne Teerlinck, Ben Somers, Bruno Verbist and Nthaduleni Nethengwe

Sentinel-Based Adaptation of the Local Climate Zones Framework to a South African Context

Reprintedfrom: RemoteSens. 2022, 14,3594,doi:10.3390/rs14153594 35

TerenceDarlingtonMushore,OnisimoMutangaandJohnOdindi DeterminingtheInfluenceofLongTermUrbanGrowthonSurfaceUrbanHeatIslandsUsing LocalClimateZonesandIntensityAnalysisTechniques

Reprintedfrom: RemoteSens. 2022, 14,2060,doi:10.3390/rs14092060

AliS.Alghamdi,AhmedIbrahimAlzhraniandHumudHadiAlanazi LocalClimateZonesandThermalCharacteristicsinRiyadhCity,SaudiArabia

Reprintedfrom: RemoteSens. 2021, 13,4526,doi:10.3390/rs13224526

MeilingZhou,LinlinLu,HuadongGuo,QihaoWeng,ShisongCao,ShuangchengZhang andQingtingLi

UrbanSprawlandChangesinLand-UseEfficiencyintheBeijing–Tianjin–HebeiRegion,China from2000to2020:ASpatiotemporalAnalysisUsingEarthObservationData

59

81

Reprintedfrom: RemoteSens. 2021, 13,2850,doi:10.3390/rs13152850 99 KangningLi,YunhaoChenandShengjunGao ComparativeAnalysisofVariationsandPatternsbetweenSurfaceUrbanHeatIslandIntensity andFrequencyacross305ChineseCities

Reprintedfrom: RemoteSens. 2021, 13,3505,doi:10.3390/rs13173505 ................. 117

BaohuiMu,XiangZhao,JiachengZhao,NaijingLiu,LongpingSi,QianWang,NaSun,etal. QuantitativelyAssessingtheImpactofDrivingFactorsonVegetationCoverChangeinChina’s 32MajorCities

Reprintedfrom: RemoteSens. 2022, 14,839,doi:10.3390/rs14040839 135 AbdelaliGourfi,AudeNusciaTa¨ıbi,SalimaSalhi,MustaphaElHannaniandSaidBoujrouf TheSurfaceUrbanHeatIslandandKeyMitigationFactorsinAridClimateCities,Caseof Marrakesh,Morocco

Reprintedfrom: RemoteSens. 2022, 14,3935,doi:10.3390/rs14163935 157

TerenceMushore,JohnOdindiandOnisimoMutanga “Cool”RoofsasaHeat-MitigationMeasureinUrbanHeatIslands:AComparativeAnalysis UsingSentinel2andLandsatData

Reprintedfrom: RemoteSens. 2022, 14,4247,doi:10.3390/rs14174247 ................. 179

ThuThiNguyen,HarryEslick,PaulBarber,RichardHarperandBernardDell CoolingEffectsofUrbanVegetation:TheRoleofGolfCourses

Reprintedfrom: RemoteSens. 2022, 14,4351,doi:10.3390/rs14174351

AbouttheEditors

JohnO.Odindi

JohnO.OdindiholdsaPhDinEnvironmentalGeographywithfocusonterrestrialremote sensing.HeisafullprofessorandformerHeadofDisciplineofGeographyandEnvironmental SciencesattheUniversityofKwaZulu-Natal,SouthAfrica.Hismaininterestsareurbangreenspaces andurbanmicroclimateusingoptical,thermalandRadardatasets,remotesensingofaboveground biomass,localandregionalcarbonmodelling,remotesensingofrangelandnutritivevalueandcrop yield,remotesensingofplantinvasivespeciesandcropdiseasemodelling.Hiscurrentprojects include;Dronebasedhighspatialresolutioncropphenotyping,Datascienceforglobalhealth andclimatechange,Earthobservationbigdatascience,Ecosystem/urbanheatislandnexususing remotelysenseddatasets,TheintegratedpestmanagementstrategyforfoodsecurityinEastern Africa(FAW-IPM)andtheAfricanreferencelaboratory(withsatellitestations)forthemanagement ofpollinatorbeediseasesandpestsforfoodsecurity.ProfessorOdindihasbeenpreviouslyselected asoneofthe52AfricanresearcherswithoutstandingcontributiontoGeo-informationandEarth Observationonthecontinent.HeisaBrownInternationalAdvancedResearchInstitute(BIARI) fellowoftheWatsonInstitute,BrownUniversity,RhodeIsland,USA.

ElhadiAdam

ElhadiAdam(Professor)holdsaPhDinEnvironmentalSciencewithaspecificfocuson hyperspectralremotesensing.Hisexpertiseliesintheapplicationsofremotesensinginapplied environmentalscienceandprecisionagriculture.Heisinterestedinvegetationmappingand monitoringbyintegratingfield-based,airborneandspace-bornehyperspectralremotesensorsfor detectingsubtlepatternsinnaturalvegetationandcrops.Hefocusesonbiochemicalconcentration, invasivespeciesmapping,wetlandhealth,herbaceousbiomassdistributionandcharacterizationof heterogeneouslandscapes.Hiscurrentresearchprojectisdevelopingasupportinformationsystem toprovideabroaderrangeofagronomically-relevantinformationaboutcropbiophysicalstatusand leafbiochemistryusingremotesensingtechniquesandmachinelearningalgorithms.ProfAdam’s currentresearchalsofocusesondetectingandmappingdiseaseoncropsandquantifyingforest fragmentationanditsimpactonbiodiversityandecosystemservices.

ElfatihM.Abdel-Rahman

ElfatihM.Abdel-Rahman(ResearchScientist)holdsaPhDinEnvironmentalScienceswith over14yearsofexperienceinworkingwithmultidisciplinaryteamsofEnvironmentalScientists, Agronomists,Entomologists,PlantPathologists,VectorScientists,MathematicalModelers,Computer Scientists,Engineers,GeographersandSocialScientists.Heusesremotesensing,Earthobservation andgeospatialmodellingtoolstoimprovethemanagementofcomplexagro-naturalandurban systemsandtoenhancecroprisksmonitoring,forecastingandearlywarningsystems.Thisextensive experience,coupledwithhisbackgroundasanAgronomistandauniversityAssociateProfessor, giveshimanexcellentfoundationtocarryoutvariousremotesensingandgeospatialmodelling taskstodevelopadvisorytoolsforimprovingthehealthofhuman,plant,animal,andenvironment. Hiscurrentresearchanddevelopmentprojectsfocusonassessingtheeffectoflandscapedynamics andclimatechangeonagriculturalpests,malariaandtsetsevectors,cropyieldusingsatellitedata, datascienceandmachinelearningalgorithms.HeisamemberoftheEditorialAdvisoryBoardof ISPRSJournalofPhotogrammetryandRemoteSensingandtheEditorialBoardsoftheInternational

JournalofTropicalSciences,andFrontiersinMulti-andHyper-SpectralImaging.Dr.Abdel-Rahman ranksamongthebest10%scientistswhoapplyremotesensingandGISinagricultureinAfrica.He isaBrownInternationalAdvancedResearchInstitute(BIARI)fellowoftheWatsonInstitute,Brown University,RhodeIsland,USA.

YuyuZhou

YuyuZhouisanAssociateProfessorintheDepartmentofGeologicalandAtmosphericSciences atIowaStateUniversity,USA.HeholdsaBachelorofSciencedegreeinGeographyandMasterof SciencedegreeinRemoteSensingfromBeijingNormalUniversityandaPh.D.inEnvironmental SciencesfromtheUniversityofRhodeIsland.DrZhou’sgeneralfocusisthequantificationof spatiotemporalpatternsofenvironmentalchangeanddevelopingmodelingmechanismstobridge thedrivingforces(bothnaturalandsocioeconomicfactors)andconsequencesofenvironmental changesothattheimpactsofhumanactivitiesonenvironmentcanbeeffectivelymeasured,modeled, andevaluated.Specifically,hisresearchfocusesandinterestincludetheapplicationofremote sensing,GIS,IntegratedAssessmentModelling,andspatialanalysisinecosystem,environmental, andsocialsciences,includinginterdisciplinaryareas:Energysources,demand,climatechange impact,highspatialandtemporalenergyandemissionsmodelling,hydrologyandecosystem modelling.HewasawardedaNASALand-CoverLand-UseChange(LCLUC)ResearchGrantfor EarlyCareerScientisttostudyglobalurbanexpansioninthecontextofclimatechange.Hepreviously workedasaGeographicalScientistattheJointGlobalChangeResearchInstitute,apartnershipofthe PacificNorthwestNationalLaboratory(PNNL)andtheUniversityofMaryland.

Prefaceto”ThermalandOpticalRemoteSensing: EvaluatingUrbanGreenSpacesandUrbanHeat IslandsinaChangingClimate”

Urbanization,typifiedbyland-use-land-covertransformationisamajorcauseofbio-physical, thermodynamic,surfaceenergyandmicro-andmacroclimateperturbations.Thesechanges commonlyresultinenvironmentaldeteriorationthatinturnadverselyaffectsbio-physicalprocesses andqualityofurbanlife.Amajorconsequenceofurbanizationisthehigherthermalvalues comparedtothesurroundingperi-urbanandruralareas,causingtheUrbanHeatIsland(UHI) effect.Inrecentdecades,above-averageheatduringsummerhasbecomeprevalentinglobalcities, atrendthatisexpectedtocontinue.ItisanticipatedthattheintensifyingUHIeffect,inconcert withincreasinganthropogenicactivities,willexacerbatethevulnerabilityofurbanlandscapesto climate-relateddisasterssuchasfloodsandheatwaves.Hence,UHIshavebecomeaninvaluable themeinenvironmentalresearch.Arecentproliferationofopticalandthermalremotelysensed datasetsoffersgreatpotentialforunderstandingtherelationshipbetweentheurbanizationprocesses andtheirrespectivebio-physicalandclimaticimplications.Thisbookfocusesonthetheoretical principlesandpracticaladoptionofremotesensingapproachesanddatasetsinunderstandingthe nexusbetweenurbanization,naturallandscapes,urbanmicro-climate,andclimatechange.This bookprovidesabasisforunderstandingurbanecologicalandnaturalpatterns,criticalforthe managementofurbanphysical,ecologicalandsocialprocesses.Specifically,understandingpast, current,andfutureLandSurfaceTemperature(LST)patternsanddriversiscriticalfor,among others,urbanenvironmentalmanagement,urbanspatialplanning,theoptimalandsustainableuseof urbanlandscapesandclimatechangemitigation.Thebook’sfirsttwochaptersexplorethepotential ofdownscalingremotelysenseddataandimprovedfeatureextractiontodeterminetheeffectof urbansurfacetypesonthermalcharacteristics.ChapteroneadoptsaStep-by-StepRandomForest Downscaling-Morphological(SSRFD-M)modeltorelatenaturalsurfacestoLST,whilechaptertwo proposestheabsoluteandrelativeindicatorsforthedetailedderivationoflandscapefeaturesand thermalvaluesusingGeofen2(GF-2)andLandsat8ThermalInfra-Red(TIR),respectively.Chapter threetofiveadoptthestandardizedLocalClimateZone(LCZ)typologytorelateurbanlandscape featuretypestothermalcharacteristics.ChapterthreeandfourusetheWorldUrbanDatabaseand AccessPortalTool(WUDAPT)andtheLCZframeworkinSouthAfrica(CapeTown,Thohoyandou andEastLondon)andZimbabwe(Bulawayo),respectively,whilechapterfiverelatesseasonalLCZ todaytimeLSTinRiyadh,SaudiArabia.Chaptersixtonineinvestigatemulti-cityurbanLULC andthecontributionoftheclimate,urbanizationandCO2 toUHIinmultiplecities.Chaptersix proposesaLandsatimagerytimeseriesapproachinGoogleEarthEngineplatformtomapbuilt-up areasin305cities,whilechaptersevencomparesSurfaceUrbanHeatIsland(SUHI)inrelationtothe SUHIfraction’skeydriversin305Chinesecities.Chaptereightdeterminesacriticalcompetitive pointofArtificialSurfaces(AS)andUrbanBlue-GreenSpace(UBGS)onLSTin28cities,while chapterninerelatestheGlobalLandSurfaceSatellite(GLASS)FractionalVegetationCover(FVC) toCO2 ,urbanization,andclimatein32majorcities.Chaptertentotwelveinvestigatearangeof UHI-mitigationapproaches.Chapter10exploresthevalueofurbangreenspacesinmitigatingUHI inMarrakesh,Morocco,whilechaptereleveninvestigatestheroleroofcoloursinassimilatingsurface temperature.Usingvegetation’smorphologicalSpatialPatterAnalysis(MSPA),chaptertwelve adoptsArborCamTM multispectralhigh-resolutionimagerytodeterminetheroleofgolfcoursesin

assimilatingurbanLST.Thisbookshouldbeofinteresttobothspecialistsandgeneralistsinterested in,amongothers,urbanplanning,ecologicalconservation,theurbanmicro-climate,atmospheric science,environmentalmanagement,andclimatechange.

remote sensing

Article

Step-By-StepDownscalingofLandSurfaceTemperature ConsideringUrbanSpatialMorphologicalParameters

XiangyuLi 1 ,GuixinZhang 2, *,ShanyouZhu 1 andYongmingXu 1

Citation: Li,X.;Zhang,G.;Zhu,S.; Xu,Y.Step-By-StepDownscalingof LandSurfaceTemperature ConsideringUrbanSpatial MorphologicalParameters. Remote Sens. 2022, 14,3038.https:// doi.org/10.3390/rs14133038

AcademicEditors:YuyuZhou, ElhadiAdam,JohnOdindiand ElfatihAbdel-Rahman

Received:21May2022

Accepted:21June2022

Published:24June2022

Publisher’sNote: MDPIstaysneutral withregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffiliations.

Copyright: ©2022bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).

1 SchoolofRemoteSensingandGeomaticsEngineering,NanjingUniversityofInformationScience andTechnology,Nanjing210044,China;lxyxzs@nuist.edu.cn(X.L.);zsyzgx@nuist.edu.cn(S.Z.); xym30@nuist.edu.cn(Y.X.)

2 SchoolofGeographicalSciences,NanjingUniversityofInformationScienceandTechnology, Nanjing210044,China

* Correspondence:001631@nuist.edu.cn

Abstract: Landsurfacetemperature(LST)isoneofthemostimportantparametersinurbanthermal environmentalstudies.Comparedtonaturalsurfaces,thesurfaceofurbanareasismorecomplex,and thespatialvariabilityofLSTishigher.Therefore,itisimportanttoobtainahigh-spatial-resolution LSTforurbanthermalenvironmentalresearch.Atpresent,downscalingstudiesaremostlyperformed fromalowspatialresolutiondirectlytoanotherhighresolution,whichoftenresultsinloweraccuracy withalargerscalespan.First,astep-by-steprandomforestdownscalingLSTmodel(SSRFD)is proposedinthisstudy.Inourwork,the900-mresolutionSentinel-3LSTwassequentiallydownscaled to450m,150mand30mbySSRFD.Then,urbanspatialmorphologicalparameterswereintroduced intoSSRFD,abbreviatedasSSRFD-M,tocompensateforthedeficiencyofremote-sensingindicesas drivingfactorsinurbandownscalingLST.TheresultsshowedthattheRMSEvalueoftheSSRFD resultswasreducedfrom2.6 ◦ Cto1.66 ◦ Ccomparedtothedirectrandomforestdownscalingmodel (DRFD);theRMSEvalueoftheSSRFD-Mresultsinbuilt-upareas,suchasGulouandQinhuai District,wasreducedbyapproximately0.5 ◦ C.WealsofoundthattheunderestimationofLSTcaused byconsideringonlyremote-sensingindicesinplacessuchasflowerbedsandstreetswasimprovedin theSSRFD-Mresults.

Keywords: step-by-stepdownscalingofLST;landsurfacetemperature;urbanspatialmorphology

1.Introduction

Asanimportantphysicalvariabledrivingtheenergyexchangebetweenthesurface andtheatmosphere,thesurfacetemperature(LST)isoneofthekeyparametersfor studying theenergybalanceofthesurfaceatglobalorregionalscales.Currently,LSTiswidely usedto assesssurfacemoistureanddroughtlevels[1–4],calculateurbanheatislandintensity [5–7] andsimulatesurfaceenergyexchange[8–11].Inurbanareas,thespatialandtemporal heterogeneityofurbansurfacetemperatureisobviousduetotheextremelycomplex surface,thestrongdifferencesinthree-dimensionalspatialgeometryandthevarietyof surfacecomponentsandtypes.Therefore,studiesoftheurbanthermalenvironmentand otherurban-relatedresearchfieldsusuallyrequireLSTdatawithahigherspatiotemporal resolution.

TheLSTdataobtainedbythermalinfraredremote-sensingtechnologygenerallyhave theproblemofconflictingspatialandtemporalresolutions.Forexample,theModerate ResolutionImagingSpectroradiometer(MODIS)LSTproducthasahightemporalresolution,butthespatialresolutionisonly1000m;Sentinel-3operatesthroughabinaryorbit withatemporalresolutionoffewerthan0.9days,butthespatialresolutionoftheLST productisalso1000m;thelandsurfacetemperatureproductretrievedfromLandsatTIRS hasaspatialresolutionof100m,buttherevisitperiodisaslongas16days.Togetherwith theinfluenceofclouds,theavailablevalidLandsatLSTdataareevenfurtherdiminished.

High-temporal-resolutiondataaredifficulttogenerateforrefinedsurfacetemperature studiesatanurbanscaleduetotheirlowspatialresolution,whilethehighspatialresolution LSTdataareunabletostudythevariationpatternofLSTintimeduetotheirlowtemporal resolution.Tosolvethecontradictionofspatialandtemporalresolutionsofremote-sensing thermaldata,scholarshaveproposedalargenumberoftechnicalmethodsfromvarious perspectives,suchasimageprocessingandstatisticalregression,toobtainlandsurface temperaturedatawithhighspatialandtemporalresolutions.

ThestatisticalregressionmethodhasgainedwideapplicationinLSTdownscaling studiesduetoitslowcomputationalcomplexityandsatisfactorydownscalingresults.The applicationofthismethodhasbecomerelativelymatureinsuburbanandmountainousareaswithsimplelandcoversatalargespatialscale[12,13].However,therearetwoproblems thatcannotbeignoredwhenapplyingthestatisticalmethodtourbanareaswithcomplex landsurfacetypes.Firstly,thelargerthespatialresolutionspanofthedownscaling,the lowertheaccuracytendstobe.Fromtheavailablethermalinfraredremote-sensingdata, therearelotsofLSTproductswithahighertemporalresolutionatabout1000-mspatial resolution.Whentheyaredownscaledtothe100-mleveloreventhe10-mlevel,thespatial resolutionofthedownscaledLSTdiffersfromtheoriginalresolutionbyafactorof10or even100,andthedownscaledaccuracydecreasesasthespatialresolutionincreases.The mainreasonforthisproblemisthattheassumptionofa“constantspatialscalerelationship” betweenLSTandthedrivingfactordoesnotholdwhentheresolutiondifferenceislarge. Secondly,thetraditionaltwo-dimensionalremote-sensingspectralindicesandsurface parametersarenotsufficienttoaccuratelydescribethespatialpatternofanurbansurface. Currently,commonlyusedremote-sensingindicesfordownscalingmodels,suchasthe normalizeddifferencevegetationindex(NDVI),normalizeddifferencemoistureindex (NDMI),normalizeddifferencewaterindex(NDWI)andnormalizeddifferencebuilding index(NDBI)[14]usesurfaceparametersincludingtheDEM,slope,slopedirection,latitude,longitudeandsurfacecovertype[15,16],aswellasmultispectraldata[17]describing thevegetationcover,moisturestatusandtopographicreliefofthelandsurfacefromthe two-dimensionalperspective.Incontrast,citiesaredominatedbybuildingsandimperviouspavements,buttheinfluenceofthethree-dimensionalmorphologicalstructureon locallandsurfacetemperatureislessconsidered.Infact,alargenumberofstudieshave demonstratedthaturbanspatialmorphologicalparameterssuchastheskyviewfactor (SVF),frontalareaindex(FAI)andbuildingdensity(BD)arecloselyrelatedtoLST[18–21], meaningtheyneedtobeconsideredindownscalingmodels.

Toaddresstheabovetwoproblems,thisstudyaimedtodevelopastep-by-stepLST downscalingmethodbyfurtherconsideringurbanspatialmorphologicalparametersto obtaintheurbanlandsurfacetemperatureataspatialresolutionof30mwithhighaccuracy. ThepapertakesthecentralurbanareaofNanjing,JiangsuProvince,Chinaasthestudyarea, andselectsmulti-sourceremote-sensingdata,three-dimensionalspatialdistributiondata ofurbanbuildingstodownscaletheSentinel-3LSTwiththespatialresolutionof1000m totheresolutionsof450,150and30mstep-by-stepusingsurface2Dand3Dparameters asdrivingfactors.ThedownscalingresultsareevaluatedbyLandsatTIRSLSTatthe resolutionof30m.Then,theinfluenceofurbanspatialmorphologicalparametersonland surfacetemperaturedownscalingisdiscussed.Thestep-by-stepLSTdownscalingmethod changesthetraditionalstudiesthatdirectlydownscaleLSTfromalowspatialresolutionto ahighone,selectingseveralspatialresolutionsfortheintermediatedownscalingprocess. Theintermediatedownscalingprocessisequivalenttosupplementingthemodelwiththe landsurfaceinformationandreducingthedifferenceinspatialresolution,thusensuring thatthestatisticalregressionmodelvarieslesswiththespatialscale.

2.ResearchReview

Alotofresearchhasbeencarriedoutonlandsurfacetemperaturedownscalingby scholarsaroundtheworld.ThemainmethodsusedforLSTdownscalingcanbedividedinto twocategories:image-basedspatiotemporalfusionandkernel-drivendownscalingmethods.

Theimagefusionmethodobtainsahighspatialandtemporalresolutionlandofsurface temperaturebyconstructingamodeltogeneratefusedimages,basedonthecombined weightofspectral,temporalandspatialinformation,byselectingsimilarimagesinthe spatiotemporalneighborhoodtobefused.Unlikethestatisticaldownscalingmethod,the imagefusionmethoddoesnotdirectlymodeltherelationshipbetweenlandsurfacetemperatureandinfluencingparametersatlow-spatial-resolutionscales.Classical algorithmsareas follows.Wengetal.[22]improvedtheSTARFMmodel toestablishtherelationship between MODISandTMradiometricbrightnessbylinearspectralmixinganalysis,andproposeda spatiotemporaladaptivefusionalgorithm(SADFAT)forlandsurfacetemperaturedownscaling.Wuetal.[23]proposedaspatiotemporalintegratedtemperaturefusionmodel(STITFM) forestimatinghigh-spatiotemporal-resolutionLSTfrommulti-scalepolarandgeostationary orbitingsatelliteobservations.Theimagefusion-basedapproachesassumethattheradiative brightnessforsimilarpixelsbehavesconsistentlyatanyspatialresolution,whileinpractice, theradiativebrightnesswillinevitablyvaryinspaceandtime.So,thisapproachgenerally performspoorlyinurbanareaswithhigh-spatial-heterogeneitycharacteristics.

Kernel-drivendownscalingmethodscanbeclassifiedintophysicalmodelsandstatisticalregressionmethodsaccordingtowhetherthemodelisphysicallymeaningfulor not.PhysicaldownscalingmethodsestablishtherelationshipbetweenLSTandauxiliary databyusingthephysicalmechanismofamixturepixelandthethermalradiationprinciple.Inthisway,low-spatial-resolutionpixelsaredecomposedtomultiplesubpixelsto obtainthehigh-spatial-resolutionLST.Forexample,L.JandMoore[24]developedthe pixelblockintensitymodulation(PBIM)methodtoimprovethespatialinformationin thelow-spatial-resolutionthermalinfraredbandbyusingmultispectraldatawithahigh spatialresolution.Nichol[25]proposedtheemissivitymodulation(EM)modeltoimprove thespatialresolutionofthermalradiationbyusinglandsurfaceemissivityandlandcover data.Wangetal.[26]downscaledMODISLSTtoa30-mresolutionbasedonthethermal decompositionequation.However,thedesignofphysicalmodelsisusuallydifficultand themodelsarecomputationallycomplexandtime-consuming.

Thebasicprincipleofastatisticalregressionmethodistoassumethattherelationship betweenlandsurfacetemperatureanddrivingfactorsdoesnotchangewiththespatial scale.Astatisticalregressionmodelisbuiltusingthelow-spatial-resolutionLSTandthe drivers, afterwhichthehigh-spatial-resolutiondriversareaddedtothemodeltopredictthe high-spatial-resolutionLSTs.Uptonow,thestatisticalregressionmethodisthemostwidely usedmethodinLSTspatialdownscalingstudies.Basedonthenumberofdrivingfactors, statisticalregressionmethodscanbedividedintosingle-andmulti-factormodels.For example,DistradmodelsusedNDVIasthedriver[27],andtheTsHARPmodelused vegetationcoverinsteadofNDVI[28].Inaddition,Anthonyetal.[29]developedahigh-resolution urbanthermalfusion(HUTS)techniquetodownscaleLandsatTIRSto30mbasedonNDVI andsurfacealbedo.Lacerdaetal.[30]usedtheTsHARPmodelto downscaletheMODIS LSTtoahighspatialresolutionof10m.Vaculiketal.[31]downscaledthe GOES-RLST withtheresolutionof2000mto30mbyestablishingalinearrelationshipbetweenNDVI andLST.J.M.etal.[32]modifiedtheTsHARPalgorithmtodownscaleMODISLSTdata coveringoneSpanishfarm.However,single-factormodelsareonlyapplicabletoaregion withhighvegetationcover;theydonotperformwellinurbanoraridareas,limitedbythe predictorvariables.Multi-factormodelswithmultipleremote-sensingindicesandland surfaceparametersasdrivingfactorsweregraduallyproposedandapplied.Forexample, Liuetal.proposedtheG_DistradmodelbyaddingNDBIandNDWItothetraditional Distradmodel[14].Pereiraetal.[33]proposedageographicallyweightedregressionmodel (GWRK)byusingNDVIandmultispectraldatatodownscaletheASTERthermalinfrared dataforthenaturalregionsandurbanareasofPantanal,Brazil.Consideringthecomplex nonlinearrelationshipsbetweenlandsurfacetemperatureandvariousgeophysicalparametersinurbanareas[12,13],thethree-layerstructural(TLC)model[34],neuralnetwork[35], supportvectormachines[6],randomforests[36]andothermultivariatenonlinearstatistical modelshavebeencontinuouslydevelopedandappliedtourbanLSTdownscalingstudies.

RandomforestmodelshavebeenwidelyusedinurbanLSTdownscalingstudiesinrecent yearsbecauseoftheirlowmodelcomplexity,fasttrainingspeedandabilitytoeffectively avoidoverfittingproblems.Lietal.[36]comparedthreemachinelearningalgorithms, randomforest(RF),supportvectormachine(SVM)andartificialneuralnetwork(ANN),to thetraditionalTsHARPmethodinbothurbanandsuburbanareasofBeijing,andfound thattheLSTdownscalingaccuracyofthemachinelearningalgorithmwashigherthan thatoftheTsHARPalgorithm.Wangetal.[37]comparedthedownscalingresultsfrom amultiplelinearregressionmodel(MRL),TsHARPmodelandrandomforest(RF),and foundthattheRFmodelismoresuitableforheterogeneoussurfacessuchasurbanareas. Ebrahimyetal.[38]usedanadaptiverandomforestregressionmethodtodownscale MODISLSToverIranto30mintheGEEplatform.Njuketal.[39]proposedanimproved downscalingmethodforlow-resolutionthermaldatabasedonminimizingthespatial meanbiasofrandomforest,andtheresultsdemonstratedthatthemethodreducesthe inherentmeanbiasintheLSTdownscalingprocessandismoresuitableforLSTdownscalingapplicationsincomplexenvironments.Here,wecomprehensivelyanalyzedmost landsurfacetemperaturedownscalingmethodsandbuiltglobalmodelsandassumedthat thestatisticalrelationshipswerespatiallyinvariant,however,globalmodelsmayproduce largeerrorsinlocalareaapplications.Inrecentyears,manyscholarshavedevotedtheir worktousinglocalmodelstocapturethespatialnon-stationarycharacteristicsofland surfacevariables,andthenestablishedthelocalrelationshipsbetweenLSTandinfluencing factorstoimprovetheaccuracyofLSTdownscaling[15].

3.MaterialsandMethods

3.1.StudyArea

ThecentralurbanregionofNanjing,JiangsuProvince,Chinawaschosenasthestudy areabecauseitcontainsavarietyofunderlyingsurfacetypessuchasbuildings,vegetation andwaterbodies,whichhelpstocarryoutlandsurfacetemperaturedownscalingstudiesof complexgroundcovertypes.Figure 1 presentsatrue-colorimageandbuildingdistribution mapofthestudyareaataspatialresolutionof10m.

Figure1. Sentinel-2true-colorcompositeimageandbuildingdataofthestudyarea(blueline representsthemainurbanareaofNanjing;redlinesrepresentthestudyareaboundaries).

Thestudyareaincludesseveralurbanadministrativedistricts,includingtheQixia, Xuanwu,Gulou,QinhuaiandJianyeDistricts,withanareaofapproximately18 × 18km2 ThestudyareaislocatedinthecentralregionofthelowerYangtzeRiver,withgeographic coordinatesbetween31◦ 14 Nand32◦ 37 Nand118◦ 22 Eand119◦ 14”E.Thetotalbuilt-up areaisapproximately823km2 .Althoughthestudyareaisnearahillyarea,thetopography isflat,andtherearemanylowhillsandgentlehills.Nanjinghasahumidsubtropical climatewithfourdistinctseasons,abundantrainfallandsignificanttemperaturedifferences betweenwinterandsummer.Theaverageannualprecipitationis1106mm,andtheaverage annualtemperatureis15.4 ◦ C.Nanjinghadapopulationof10,312,200attheendof2019, witharesidentpopulationof8.5million,including7.072millioninurbanareas,andan urbanizationrateof83.2%.Nanjingisoneoftheeconomic-centercitiesinChina,witha regionalGDPof$1.6billionin2021.

3.2.Data

TheSentinel-3LSTproductata1000-mspatialresolutionfordownscalingand Sentinel-2 multispectralimagedataweredownloadedfromtheESAwebsite(https://scihub.copernicus. eu/dhus/#/home,accessedon14May2022).TheLandsatLSTproductata30-mspatial resolutionforvalidationofdownscalingresultswasdownloadedfromtheUSGSwebsite (https://earthexplorer.usgs.gov/,accessedon30December2021).Sentinel-2visiblelight andshortwaveinfraredbands(B2–B4,B8,B11andB12)wereusedtocalculatenormalized remote-sensingspectralindices.Nanjingdowntownbuildingandwinddatawereusedto calculateurbanspatialmorphologicalparameters.Nanjingwinddatafrom2016to2020 wereusedtocalculatethewinddirectionfrequency,whichweredownloadedfromthe ChinaAirQualityOnlineMonitoringandAnalysisPlatform(https://www.aqistudy.cn/ historydata/,accessedon14May2022).Thedetailsofallthedatainvolvedinthisstudy arepresentedasfollows.

3.2.1.LandsatLSTProduct

LandsatLSTproductsweregeneratedbyEROSbasedonasingle-channelinversion algorithm,byusingtheLandsatC2L1thermalinfraredbandandotherancillarydata[40,41]. LandsatLSTproductswereresampledfrom100to30mforreleasetousersbyEROSusing thenearest-neighborresamplingmethod.TheLandsatLSTimagesusedinthisstudywere imagedat10:37a.m.on4October2021,withorbitalrow/columnnumbers120/038[42].

3.2.2.Sentinel-3LSTProduct

TheSentinelseriesisanEarthobservationsatellitemissionoftheEuropeanCopernicus program.Sentinel-3carriesavarietyofpayloads,suchasOLCI(seaandlandcolorimeter) andSLSTR(seaandlandsurfacetemperatureradiometer),whicharemainlyusedfor high-precisionmeasurementsoftheseasurfacetopography,seaandsurfacetemperatures, oceanwatercolorandsoilproperties[43].Both3Aand3Bsatellitesinorbithaverevisit periodsoflessthanonedayforareaswithin30◦ latitudeoftheequator.SLSTRhassix solarreflectionbands(S1–S6)andfourthermalinfraredbands(S7–S9,F1,F2)withspatial resolutionsof500and1000m,respectively.TheSentinel-3LSTproductsareproduced byasplit-windowalgorithmusingthreebandsofS7–S9andotherauxiliarydata,and theproductsareaccurateto1K.TheLSTproductofSentinel-3BSLSTRwasselectedfor thisstudy,withanimagingtimeof10:04amon4October2021.TheSentinelLSTwas resampledtoaspatialresolutionof900mbyusingthebilinearinterpolationmethodfor downscalinginthisstudytomatchthereferenceLSTwithaspatialresolutionof30m.

3.2.3.Sentinel-2MultispectralData

Sentinel-2isamultispectralhigh-resolutionimagingsatellitewithtwosatellitesin orbit,2Aand2B,witharevisitperiodoffivedays[44].Eachsatellitecarriesamultispectral imager(MSI),whichcancover13spectralbandswithgroundresolutionsof10,20and 60mandanamplitudeof290km.Theblue,green,red,andnear-infraredbandsneededfor

thisstudyaretheB2,B3,B4andB8bandsoftheSentinel-2satellite,eachwitharesolution of10m.B11andB12areshortwaveinfraredbandswitharesolutionof20m,resampledto 10mtomatchthevisiblebands.

3.2.4.UrbanBuildingData

ThebuildingdatausedinthisstudywereprovidedbyUrbanDataCorps,obtainedin around2012.UrbanDataCorpsisrankedinthetop10inthebig-datafieldaccordingtothe 2017ChinaBigDataDevelopmentReportpublishedbytheNationalInformationCenterof China.UrbanDataCorpscanprovideavarietyofhigh-precisiondataforurbanresearch.

Thebuildingvectordatacontainthepolygonofthebuildingdistribution,building floordataandbuildingheightdatainashapefileformatwiththeWGS-84coordinate system.Comparingtheurbanbuildingdistributiondatawithsatelliteimagesin2012, wefoundthatthebuildinglocationandoutlinehighlyoverlapwiththesatelliteimages, andthebuildingfloornumberisalsoveryconsistentwiththefieldsurveyresults,which indicatesthehighaccuracyofthebuildingdistributiondata.Thefieldsurveyfoundthat thegroundcovertypesinmostofthestudyareas,suchasGulouDistrictandQinhuai District,didnotchangesignificantlybetween2012and2021,exceptforQixiaDistrict. Inthisstudy,thebuildingvectordataintheshapefileformatwerefirstlyconvertedto rasterdataintheTIFformatwithaspatialresolutionof10m.Afterthat,theurbanspatial morphologicalparameterswerecalculatedbasedonthebuildingrasterdataandother auxiliarydatausingcorrespondingformulas.

3.3.CalculationoftheDownscalingDrivingFactor

3.3.1.CalculationoftheRemote-SensingSpectralIndex

TheL2A-levelsurfacereflectancedatafromSentinel-2Bwereselectedforthisstudyto calculateremotelysensedspectralindicesthatarecloselyrelatedtosurfacetemperature, includingthemodifiednormalizeddifferencewaterindex(MNDWI),normalizeddifferencebuildingindex(NDBI),normalizeddifferencebuilt-upandsoilindex(NDBSI)[28], normalizeddifferencemoistureindex(NDMI),normalizeddifferencevegetationindex (NDVI)andsoiladjustedvegetationindex(SAVI).Thecalculationprocesswasperformed usingSNAP8.0,aprofessionalpieceofsoftwarefordata-processingintheSentinelseries. ThecalculationformulaisshowninTable 1

Table1. Remote-sensingspectralindicesrequiredfordownscalingandcalculationformulas.

Var.DescriptionEquations MNDWI Improvethenormalizeddifferencewaterbodyindextohighlightwater bodyinformation

NDBI Normalizethedifferencebuildingindextohighlightbuilding information

NDBSIIndicatethedegreeofdrynessofthegroundsurface[45]

NDMIIndicatethevegetationmoisture

NDVIHighlightvegetationinformation

SAVI Reducethesensitivityofvegetationindicestochangesinreflectanceof differentsoils

Notes: ρ1–ρ12denotethesurfacereflectanceofSentinel-2bands1–12.

3.3.2.CalculationofUrbanSpatialMorphologicalParameters

ThebuildingvectordataofNanjingwereconvertedtorasterdatawitha10-mresolutiontocalculateurbanspatialmorphologicalparametersincludingthebuildingdensity (BD),frontalareadensity(FAD),floorarearatio(FAR),meanheight(MH)andskyview

2022, 14,3038

factor(SVF).TheSVFwascalculatedbytherasteralgorithm.Theinfluenceofbuildings withinaradiusof100mwasconsideredwhencalculatingtheSVFofeachpixel.FADwas calculatedusingthebuildingrasterdataandthewinddirectionfrequencydatabyaselfdevelopedrasteralgorithmwithaplotareaof100 × 100m2 .Otherspatialmorphological parameters,suchasBD,FARandMH,werecalculatedusing10-mbuildingrasterdataand thecorrespondingequationsinTable 2 withaplotareaof100 × 100m2 .

Table2. UrbanspatialmorphologicalparametersrequiredforLSTdownscaling.

Var.DescriptionEquations

BDBuildingDensity

FADFrontalAreaDensity

= ∑ n

Ai A T Aiindicatesthe ithbuildingareaandATindicatesthecalculatedplotarea

λf(z) indicatestheweightedfrontalareadensity(FAD); A ( θ ) proj ( z ) indicatestheprojectedareaatacertainheight z inthewinddirection θ, Pθ ,i indicatesthefrequencyofthewinddirection θ , i =1,...,16

FARFloorAreaRatio FAR = ∑ n i 1 Fi × Ai A T Fi indicatesthei thbuildingfloornumberand A i indicatesthe ithbuildingarea

MHMeanHeight

MH = ∑ n i 1 Hi n

Hi indicatesthe ithbuildingheightand n indicatesthenumberofbuildings

SVFSkyViewFactor Ψ sky = 1 360/ α ∑ i =1 sin2 β × ( α /360) β = tan 1 ( H / X )

ψsky indicatesSVF, β indicatesthebuildingheightangle, H indicatesthebuilding height, X indicatesthecalculatedradiusandissetto100minthisstudy

Note:ExceptforSVF,theplotareaATcalculatedbyallotherparameterstakesthevalueof100 × 100m.

3.4.DownscalingLSTMethodBasedonRandomForest

Thecoreideaofsurfacetemperaturedownscalingistheinvarianceoftherelationship betweenLSTanddrivingfactorsatdifferentspatialresolutionssothatthestatistical relationshipbetweenLSTandtheregressionkernelatalowresolutioncanbeappliedto ahighspatialresolutiontocompletethedownscalingprocess.Thespecificformulasare asfollows:

where varc denotesthelow-resolutionexplanatoryvariable, varf denotesthehigh-resolution explanatoryvariable, Tc denotesthelow-resolutionLST, Tc ’denotesthepredictedlowresolutionLST, Δ T denotesthesimulationresidualand Tf ’denotesthepredictedhighresolutionLST.

ThisstudyusedtherandomforestalgorithmtoconstructtheLSTdownscalingmodel. Randomforestisanintegrateddecisiontree-basedlearningalgorithmproposedbyBreiman in2001asasupervisedlearningalgorithm[32].Thealgorithmusesthebootstrapresamplingmethodtorandomlyselectsamplesfromthetrainingsampleset.Theextracted bootstrapsamplesaretrainedseparatelyforeachdecisiontree,andanalgorithmforrandomlyselectingasubsetoffeaturesisintroducedintheprocessofsplittingthenodesof thedecisiontree.Thepredictionresultsofeachdecisiontreearecountedandvotedon toobtainthefinalpredictionresultsoftheinputdata.Therandomforestalgorithmhas strongernoiseimmunitythanotheralgorithmsbecauseoftheintroductionofrandomly selectedtrainingsamplesandrandomlyselectedfeaturesubsetsthatmakethecorrelation

amongeachdecisiontreesmaller.Therandomforestalgorithmisbetterathandlingnonlinearproblemsthantraditionalstatisticalregressionalgorithms.Aslongasthenumberof decisiontreesissufficient,therandomforestalgorithmcaneffectivelyavoidtheoverfitting problem,andthetrainingspeedisfaster.Therandomforestalgorithmcanexaminethe interactionbetweenfeaturesduringthetrainingprocessandoutputthefeatureimportance, whichisareferenceforanalyzingthedegreeofinfluenceoffeatures.Inthisstudy,the experimentaldatasetwasdividedintotrainingandvalidationdatasetsaccordingtothe ratioof8:2.Themainparametersthatneedtobesetmanuallytobuildarandomforest downscalingmodelusingthePycharmplatformincludethenumberofdecisiontrees (n_estimators)andthemaximumnumberoffeatures(max_features).n_estimatorsrefersto thenumberofdecisiontreesbuiltintherandomforest,whichwassetto700aftertestingin thisstudy.max_featurereferstothemaximumnumberoffeaturesselectedwhenbuilding eachdecisiontree,whichwassettolog(n_estimators)inthisstudy.Otherparameterswere settodefaultvalues.

3.5.Step-By-StepRandomForestDownscalingMethod(SSRFD)

Whenthespatialresolutionspansalargerrange,thedownscalingresultscannot accuratelycharacterizethespatialdistributionofLST,whichtendstounderestimatethe surfacetemperatureinbuildingareasandoverestimateitforwaterbodiesandvegetated areas.Thisstudyproposedastep-by-stepdownscalingLSTmethodbasedontherandom forestmodel(SSRFD),whichachievesasignificantincreaseinthespatialresolutionof LSTwithoutexcessivelossofaccuracythroughmultiple,small-scalespatialresolution downscalingprocesses.DuringtheSSRFDmodel’swork,eachintermediatedownscaling addsadditionalandfinersurfaceinformationtothemodel.Inthisway,modelsaretrained toaccuratelyexpresstherelationshipbetweenlandsurfacetemperatureanddrivingfactors.

Inthisstudy,thedirectrandomforestdownscaling(DRFD)methodwasperformedto directlydownscale900-mSentinel-3LSTtoa30-mresolution,andthentwodownscaling methodswereconductedusingtheproposedSSRFDmethod.Thefirstmethod,named SSRFD,downscaledthe900-mSentinel-3LSTto30mafter450mand150msequentially, wheretheSSRFDwasdrivenbythesixremote-sensingindicesmentionedabove.Thesecondmethod,namedSSRFD-M,downscaled900-mSentinel-3LSTto30mbythesame processthroughSSRFD,wherefiveadditionalurbanspatialmorphologicalparameters wereaddedastheSSRFDdriverfactors.Afterthat,LSTdownscalingresultsofDRFD, SSRFDandSSRFD-Mwerecomparedata30-mspatialresolution,whichwereallevaluatedbyusingthe30-mLandsat-8LSTasthereference.Moreover,theinfluenceofurban spatialmorphologicalparametersonLSTwasanalyzedbasedonSSRFD-Mata30-m spatialresolution.

3.6.AccuracyEvaluationMethods

Pearson’scorrelationcoefficient(r),themeanabsoluteerror(MAE)androotmean squareerror(RMSE)wereusedtocomprehensivelyevaluatethedownscalingresults. Meanwhile,themaximum/minimum,mean(Mean)andstandarddeviation(SD)were calculatedtoevaluatethespatialvariabilitycharacteristicsofLSTimagesbeforeandafter downscaling.TheSDcanreflectthespatialvariabilityofthermalfeatures.

4.Results

4.1.ComparisonoftheResultsObtainedwithSSRFDandDRFD ToreducedatadifferencescausedbydifferentsensorsandLSTinversionalgorithms andincreasethecomparabilityandverifiabilitybetweenLandsat-8andSentinel-3LST products,asimplelinearcorrectionwasappliedtoSentinel-3LSTbeforethedownscaling work.Afterperformingthelinearitycorrection,themaximum,minimumandmeanvalues ofSentinel-3LSTchangedfrom38.80,27.57and35.18 ◦ Cto41.25,30.84and37.90 ◦ C, respectively,whichwereclosertoLandsatLSTintherangeofvalues.TheRMSEofthe

twoLSTproductschangedfrom3.22to1.59 ◦ C,indicatingthatthesystematicdifferences betweenSentinel-3LSTandLandsatLSTwerereducedtosomeextent.

ComparativeplotsofthedownscalingresultsaregiveninFigure 2,wherethe900-m Sentinel-3LSTwasdownscaledto30musingtheDRFDmethodandSSRFDmethod.ComparingFigure 2b,cwithFigure 2a,bothresultscapturedfinerspatialdiscrepancycharacteristicsandtexturefeatures,andtheresultingLSTdistributionisbasicallyconsistentwith LandsatLST.However,accordingtoFigure 2b,therearelargeareasofhigh-temperature regionsinthestudyarea.TheresultsobtainedwithDRFDasawholearesignificantly overestimated.Forexample,theregionsalongthenorthwesterncoastoftheYangtze River,XuanwuLakeandZijinshanMountainshowobvioustemperatureoverestimation errors.Thedifferencecharacteristicsbetweenthehigh-temperatureregionandthesub-hightemperatureregionarelessclearlyexpressedthanLandsatLSTinFigure 2a.Incontrastto Figure 2b,theresultsobtainedwithSSRFD(Figure 2c)capturedthespatialdistribution differencesandtexturalcharacteristicsmoreaccurately.Thedistributioncharacteristicsof boththebuildinghigh-temperaturezoneandthewaterandvegetationlow-temperature zoneareingoodagreementwithFigure 2a.Overall,theresultsobtainedwithDRFDshow anoverallunderestimationofthehigh-temperatureregionandanoverestimationofthe low-temperatureregion,whichcannotaccuratelydepictthespatialdistributionpatternof LSTinthestudyarea.

Figure2. SpatialdistributionofLSTat30-mspatialresolution.(a)LandsatreferenceLST.(b)DownscaledLSTresultsofDRFD.(c)DownscaledLSTresultsofSSRFD.

Thestatistics(Table 3)showthattheresultsfromDRFD,withanSDof2.64,are0.82 lowerthanLandsatLST,buttheirmeanvalueis1.41 ◦ ChigherthanLandsatLST.Thisis consistentwiththeperformanceoftheDRFDresultsinFigure 2b,whichfurtherillustrates theoverallhighsurfacetemperaturepredictedbyDRFD.Incomparison,themaximum, meanandSDoftheresultsfromSSRFDare50.76,36.78and3.73 ◦ C,respectively,which onlydifferfromthecorrespondingindexofLandsatLSTbyapproximately0.3 ◦ C.In summary,thedownscalingresultsofSSRFDaremoreaccurate,whichisalsodemonstrated inFigure 3

Table3. StatisticalvaluesofLSTdownscaledfromDRFD,SSRFDmethodsandLandsatreference LSTdataata30-mresolution.

Figure3. HistogramofdownscaledLSTandLandsatLSTat30-mresolution(blackcubesreferto LandsatLST,redcirclesrefertodownscaledLSTobtainedbytheSSRFDmethod,bluetrianglesrefer todownscaledLSTobtainedbytheDRFDmethod).

AccordingtoFigure 3,ThehistogramcurvesofSSRFDresultsfitbetterwiththatofthe LandsatLST,astheybothhaveclear“peak”valuesbetween27.5–29and37–39 ◦ C,which indicatesthattheSSRFDresultsarereasonableoverall.TheDRFDresultsdiffersignificantly fromtheLandsatLSTintermsofhistogramshapecharacteristics,datadistributioninterval anddatavaluerange,e.g.,the“peaks”oftheresultsfromDRFDaredistributedbetween 40and41 ◦ C.Overall,Figure 3 showsthatthedensetemperatureintervaloftheimage elementdistributionofDRFDishigherthanthatofSSRFDLSTandLandsatLST. Furthermore,thecorrespondingscatterplotsofthetwodownscalingresultsfrom SSRFDandDRFDwithLandsatLSTaregiveninFigure 4a,b,respectively.Accordingto Figure 4,thecorrelationrvaluebetweentheDRFDresultsandLandsatLSTis0.6,while theSSRFDresultsimprovethisto0.81.TheMAEandRMSEvaluesoftheDRFDresultsare 2and2.6 ◦ C,respectively,whiletheSSRFDresultsdecreaseto1and1.66 ◦ C,respectively. ThisindicatesthatusingtheSSRFDmethodcanobtainahigher-accuracyLSTthanthe DRFDmethodwhenthespatialresolutionspansalargerange.

(a) (b)

Figure4. ScatterplotsofthecorrelationanalysisbetweendownscaledLSTandLandsatreferenceLST ata30-mresolution.(a)DownscaledLSTofSentinel-3fromDRFDmethod.(b)DownscaledLSTof Sentinel-3fromSSRFDmethod.

4.2.InfluenceofUrbanSpatialMorphologicalParametersonDownscalingLST

4.2.1.AnalysisoftheOverallDownscalingResultsintheStudyArea

ToevaluatetheinfluenceofurbanspatialmorphologicalparametersonLSTdownscaling,thefivespatialmorphologicalparameterscalculatedinTable 2 wereintroduced intothedrivingfactorsofSSRFDtodownscaleSentinel-3LSTfromaspatialresolutionof 900to30m.ThedownscalingresultswerealsovalidatedbyLandsatLST.

Figure 5a,bshowsthecorrelationplotsofLandsatLSTwiththeresultsfromSSRFD andSSRFD-M,respectively,ata30-mspatialresolution,whererimprovesfrom0.81to0.85 andRMSEdecreasesfrom1.66to1.44 ◦ Cafteraddingthespatialmorphologicalparameters. ThestatisticalhistogramsofLandsatLSTanddownscalingresultsaregiveninFigure 6. ComparedtotheSSRFDresult,SSRFD-MismorematchedwithLandsatLSTindistribution shape,especiallybetween35and40 ◦ Cwherebuildingsandconcretepavementsaremainly distributed.Otherwise,thefeatureswithtemperaturesbetween28and35 ◦ Caremainly vegetationandwaterbodies.Thecurvesofthetwodownscalingresultsinthisinterval arehigherthanLandsatLST,indicatingthattheremaybesomeLSToverestimationin downscalingresultsforvegetationandwaterbodyareas.Combinedwiththeanalysisof Figure 5,weconcludethattheSSRFD-MmodelperformsbetterthanSSRFD,especiallyfor densebuildingareas.

Figure5. ScatterplotsofthecorrelationanalysisbetweendownscaledLSTandLandsatLSTonthe overallregionata30-mresolution.(a)SSRFDresult.(b)SSRFD-Mresult.

Figure6. HistogramofdownscaledLSTandLandsatLSTata30-mresolution(blackcubesreferto LandsatLST,redcirclesrefertotheSSRFDresultsandbluetrianglesrefertotheSSRFD-Mresults).

4.2.2.AnalysisofRegionalDownscalingResultsintheStudyArea

InSection 4.2.1,wefoundthatthespatialmorphologicalparametershavesome favorableeffectsontheLSTdownscaling,especiallyforbuildingareas.However,we remainedunawareofhowtheurbanspatialmorphologicalparametersaffecttheLST downscalingresultsfordifferentlocationswithinthestudy.Inthissection,weintend todiscussthedownscalingresultsforfivesubregionsata30-mresolutiontofurther analyzetheroleofurbanspatialmorphologicalparametersinthedownscalingprocess. ThedistributionofcorrelationsbetweenthedownscalingresultsandLandsatLSTfor fivesubdistricts,Qixia,Gulou,Xuanwu,QinhuaiandJianye,aregiveninFigure 7.The influenceofurbanspatialmorphologicalfeaturesonLSTdownscalingcanbefurther verifiedbecauseofthecomplexityoftheurbangroundcovertypesconsidered.

Figure7. ScatterplotofcorrelationanalysisbetweendownscaledLSTandLandsatLSTataspatial resolutionof30m(downscaledLSTsobtainedfromSSRFDandSSRFD-Mcorrespondtotheleftand rightpanelsin a–e).

Figure 7a–cshowsthatthervalueoftheSSRFD-MdownscalingresultsfortheGulou, QinhuaiandJianyeDistrictsimprovesfrom0.44,0.51and0.34to0.61,0.68and0.45,respectively,whiletheRMSEvaluedecreasesfrom1.73,1.69and1.81 ◦ Cto1.22,1.21and 1.41 ◦ C,respectively.Accordingtothestatisticalanalysisofdifferentareas,allthreeareas arelocatedinadenseareaofmiddle-risebuildings[33],wherebuildingsandimpervious surfacesdominateandthevegetationdistributionisrelativelylowandsparse.There-

fore,theLSTdistributioniscloselyrelatedtothespatialmorphologicalcharacteristicsof buildings.ThesefiguresallexhibitthatthedownscalingresultsofSSRFDunderestimated theLSTforsomeregionsbetween35and40 ◦ C.AccordingtoFigure 7d,randRMSE valueschangedfrom0.78and1.30 ◦ Cto0.83and1.14 ◦ Cbeforeandafterconsidering spatialmorphologicalparametersinXuanwuDistrict,respectively,withaslightlysmaller improvementinaccuracyrelativetotheGulouandQinhuaiDistricts.Statistically,among theXuanwuDistrictcoveredbythestudyarea,non-built-upareassuchasZhongShan ScenicAreaandXuanwuLakeaccountforapproximately50%ofthedistrict.Therefore, theinclusionofspatialmorphologicalparametershaslessinfluenceonthedownscaling resultsoftheseareas.IfthedownscalingresultsofbuildingareasinXuanwuDistrictare countedseparately,theRMSEofSSRFD-Mdecreasesfrom1.96to1.17 ◦ Ccomparedto theSSRFDresults,whichprovesthatSSRFD-Mcaneffectivelyimprovethedownscaling effectindensebuildingareas.Figure 7eindicatesthattheSSRFD-MresultsforQixia onlyimproved/decreasedrandRMSEvaluesby0.02/0.06 ◦ C,respectively,comparedto SSRFD.ThereasonforthisismainlythedifferenceinyearsbetweenSentinel-3LSTdata andbuildingdata.ThetypeoflandsurfacecoverinsomeregionsofQixiahaschanged significantly.Forexample,theeasternsideofNingluoExpresswayandthenorthernsideof QixiaAvenuehavechangedfromnaturalsurfacestobuildingandroadtypes.Thebuilding datausedcannotaccuratelyexpressthespatialmorphologicalcharacteristicsoftheseareas andcannoteffectivelyimprovetheaccuracyofLSTdownscaling.Inaddition,wefound thataspatialresolutionof30mmaynotbesufficienttoshowthesurfacetemperature distributionpatterninsidecomplexbuildingareas.

Wefurtherselectedfivebuilding-denseareasnearthewesternsideofXuanwuLake, Xinjiekou,NanjingMuseum,NanjingForestryUniversityandtheOlympicSportsCenter, fordownscalingresultscomparison,asshownbyA,B,C,DandEinFigure 8a,respectively. Acomparativeanalysisofthedownscalingresultswithandwithoutincludingspatial morphologicalparameterswascarriedout,andtheresultsareshowninFigure 8b.When comparingthelocaldownscalingresultsofSSRFDwithSSRFD-M,itcanbefoundthat theregionalLSTofthevegetation-coveredregionsinthebuilt-upareachangedafter consideringthespatialmorphologicalparameters.AccordingtotheSSRFDresultsof A1–E1,vegetation-coveredareasnearbuildings,suchasstreetsplantedwithtreesand flowerbeds,showedaclearlow-temperaturezone(approximately30–33 ◦ C),whichwas5–8 ◦ Clowerthanthesurfacetemperatureofnearbybuildingareas(approximately 35–40 ◦ C). Incontrast,thetemperatureinthecorrespondingregionsillustratedbyA2–E2wasonly approximately3–5 ◦ Clowerthanthatofthenearbybuildings.Noobviouslow-temperature regionsappearedinA2–E2,whichweremoreconsistentwiththeLandsatLST.Therefore, thisstudyinfersthattheunderestimationofLSTgeneratedbytheSSRFDusingonly remote-sensingspectralindiceswaspartiallyeliminatedinSSRFD-M.

4.3.ParameterImportanceAnalysisofLSTDownscaling

Theimportanceofeachdriverat90-,450-,150-and30-mresolutionscalculatedby therandomforestmodelisshowninFigure 9.AccordingtoFigure 9a,theNDBIhasthe highest importanceata900-mresolutionwithoutspatialmorphologicalparameters,which indicatesthattheNDBIissignificantlycorrelatedwithLSTinurbanareas.Withthe increaseinspatialresolution,theimportanceoftheNDBItendstodecrease,anditdrops tothelowestvalue(25%)ata30-mresolution.Vegetationmoistureisanimportantfactor affectingLSTinurbanareasatanyspatialresolutionbecausetheimportanceoftheNDMI ismaintainedat28–30%asthespatialresolutionchanges.TheimportanceoftheMNDWI increasesfrom11to15%,andtheNDVIincreasesfrom8%to11%,whichindicatesthatthe contributionofwaterbodiesandvegetationtoLSTincreasesastheresolutionincreases. Thereasoncouldbethatsomesmallerlakes,greenareasandnarrowriversareidentified atahighspatialresolution.Figure 9bshowsthattheoverallimportanceoftheremotesensingindexdidnotchangesignificantlyintheSSRFD.Amongthespatialmorphological parameters,theimportanceofBD,FAD,FARandMHdecreasedwithincreasingspatial

resolution,whiletheSVFincreasedfromapproximately3%toapproximately6%.The reasonforthisisthattheregionalspatialmorphologicalparameters,suchasBD,FAD andFAR,calculatedbyasinglesize(100 × 100m),cannotrepresentfinerarchitectural information.Therefore,theregionalspatialmorphologicalparametersarelessrelevantto LSTastheresolutionincreases.AsshowninFigure 9a,b,comparedtootherremote-sensing indices(allvariationswereinarangeof1–3%),therewasasignificantdecreaseinthe importanceoftheNDBIatlowerresolutionsof900and450m,from30and29%inFigure 9a to22and23%inFigure 9b,respectively.Thespatialmorphologicalparametersatalow resolutiontosomeextentcompensatedforthedeficiencyoftheNDBIinthedescriptionof thespatialmorphologicalfeaturesofbuildings.

Figure8. SpatialdistributionofthedownscaledLSTattheresolutionof30minfivelocalitiesofthe studyarea(in b,A1–E1refertothedownscaledLSTfromSSRFD,andA2–E2refertothedownscaled LSTfromSSRFD-M).(a)LandsatLST.(b)thedownscaledLSTforrepresentative5localarea.

Figure9. Importanceofeachdriveratspatialresolutionsof900,450,150and30m.(a)Nospatial morphologicalparametersadded.(b)Spatialmorphologicalparametersadded.

5.Discussion

Withrespecttothescaleeffectofthelandsurfacetemperaturedownscalingmodel, Puetal.[46,47]concludedthatthe“constantscalerelationship”betweenLSTanddriving factorsdoesnotholdundercertainconditions.ComparingFigure 2awithFigure 2bfor

(a) (b)

themainurbanareaofNanjing,whenthespatialresolutionspans30times,thedirect downscalingresultscannotaccuratelyrepresentthespatialdistributionoflandsurface temperature,andtherootmeansquareerrorofthetraditionalDRFDmodelis2.6 ◦ C (Figure 4a).ThisissimilartoLSTdownscalingresultsindifferentregionssuchasthat coveredbyNjukietal.[39]inKenya,Valdesetal.[13]inanaridAntarcticrivervalley, Zhuetal.[15]inBeijingandEbrahimyetal.[38]inIran.WhentheSentinel-3LSTwas downscaledto450,300,150and30musingtheDRFDmethod,respectively,theresearch processrevealedaphenomenonwherergraduallydecreaseswhileRMSEincreasesasthe spatialresolutionspanincreasesstep-by-step,whichisconsistentwith Zhuetal.(2020)[14] andCao(2020)[48].Usingthestep-by-stepdownscalingmodel(SSRFD),therootmean squareerroroftheLSTdownscalingforthewholestudyareadecreasesto1.66 ◦ C,and theaccuracyimprovesbyabout1 ◦ C(Figure 4b).Tangetal.[16]conductedasecond downscalingprocedureusingtheLSTspatialfeaturesextractedfromtheinitialdownscaling resultsandobtainedahigheraccuracyofdownscalingresult,similartotheresultsofthis study.Thestep-by-stepdownscalingmethodreducesthespatialresolutiondifference beforeandafterdownscalingbyaddinganintermediateLSTdownscalingprocessbetween low(e.g.,1km)andhighresolutions(e.g.,30m),fromwhichwecanapproximatethatthe statisticaldownscalingmodeldoesnotchangewithsmallerscales.TheSSRFDcanobtain ahigheraccuracyforLSTdownscalingandismoresuitablefordownscalingstudiesin urbanareaswithcomplexsurfacecoverageandhigh-LSTspatialheterogeneity.However, 900mwasusedastheinitialresolutioninthestudy,andthestep-by-stepdownscalingof resolutionwasperformedsubjectivelybyintegermultiplesof2,3and5.Toobtainbetter LSTdownscalingresults,furtherstudiesmaybeneededtodeterminetheoptimalspatial resolutionchangeduringstepwisedownscaling.

Inrecentyears,duetothecontinuousdevelopmentofspatialdata-acquisitiontechnology,urban3Dspatialdistributiondataarebecomingmoreandmorerefinedandcanbe betterusedtocalculatevariousurbanspatialmorphologicalparametersatdifferentscales. Therearemoreandmorestudiesselectingurbanmorphologicalparameterstoanalyzethe urbanthermalenvironment.Forexample,Middeletal.[19]validatedtheeffectsofurban morphologyandlandscapetypeonlocalmicroclimatezonesinthesemi-aridregionof Phoenix,Arizona;Qaidetal.[20]furtherexploredtheeffectofSVFonthethermalenvironmentofstreetswithdifferentorientations;Wongetal.,Lietal.andNicholetal.studiedthe characteristicsofurbanspatialmorphologyinKowloonPeninsula,HongKongandconfirmedthattheurbanspatialmorphologyprofoundlyaffectstheurbanmicroclimate[49]. Basedontheresultsofthesestudies,itappearsthatthespatiotemporalvariabilityofthe urbanthermalenvironmentiscloselyrelatedtothespatialmorphologicalparameters,and theinfluentialroleofthesethree-dimensionalparametersneedstobeconsideredin-depth inurbanLSTdownscalingstudies.Inthisstudy,basedonthetraditionaltwo-dimensional surfaceparametersofthedownscalingmodel,fivespatialmorphologicalparameters,SVF, FAD,FAR,BDandMH,wereaddedtodownscaletheSentinel-3LSTtoahighspatial resolutionof30m.Itwasfoundthattheurbanspatialmorphologicalparametersdidaffect thespatialdistributionofLST,especiallyforthebuilt-upareas.

Thedownscalingerrorsinthefivebuilding-denseareasdecreasedby0.51,0.48,0.4, 0.16and0.06 ◦ C(Figure 7).Analysisoftheimportanceofthedrivingfactorsshowedthat theimportanceoftheurbanspatialmorphologicalparameterswaslowerthanthatofthe 2Dremote-sensingspectralindex(Figure 9).ThereasonmaybethatthefactorsforBD, FAD,FARandMHwerecalculatedthroughamovingwindowof100 × 100m,makingit difficulttoaccuratelydescribethe3Dspatialfeaturesatahighspatialresolutionof30m. Comparedtotheotherfourspatialmorphologicalparameters,SVFcanbecalculatedpixel bypixel,anditsimportancegraduallybecomeslargerasthespatialresolutionincreases, whichgenerallyindicatesthattheroleofurbanspatialmorphologicalparameterscannot beneglectedforLSTdownscalingathigherspatialresolutionsthan30m.Lietal.[17] andLiuetal.[50]alsomentionedthenecessityofconsideringurbanspatialmorphological parametersinurbanLSTdownscaling.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Thermal and optical remote sensing john o odindi - Download the ebook now and own the full detailed by Education Libraries - Issuu