The volcanoes of mars james r. zimbelman - Discover the ebook with all chapters in just a few second

Page 1


https://ebookmass.com/product/the-volcanoes-of-mars-james-r-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Ghost Stories of an Antiquary M. R. James

https://ebookmass.com/product/ghost-stories-of-an-antiquary-m-r-james/

ebookmass.com

Box Hill Adam Mars-Jones

https://ebookmass.com/product/box-hill-adam-mars-jones/

ebookmass.com

Biochemistry, 7th ed: The Molecular basis of life 7th Edition James R. Mckee

https://ebookmass.com/product/biochemistry-7th-ed-the-molecular-basisof-life-7th-edition-james-r-mckee/

ebookmass.com

Global Dance Cultures in the 1970s and 1980s: Disco Heterotopias 1st Edition Flora Pitrolo (Editor)

https://ebookmass.com/product/global-dance-cultures-inthe-1970s-and-1980s-disco-heterotopias-1st-edition-flora-pitroloeditor/

ebookmass.com

The Oligarch: Rewriting Machiavelli’s The Prince for Our Time 1st Edition James Sherry (Auth.)

https://ebookmass.com/product/the-oligarch-rewriting-machiavellis-theprince-for-our-time-1st-edition-james-sherry-auth/

ebookmass.com

When All Light Fails Randall Silvis

https://ebookmass.com/product/when-all-light-fails-randall-silvis-2/

ebookmass.com

A Guide to Assessments That Work 2nd Edition John Hunsley (Editor)

https://ebookmass.com/product/a-guide-to-assessments-that-work-2ndedition-john-hunsley-editor/

ebookmass.com

The Asian Hot Pot Cookbook : Family-Friendly One Pot Meals Amy Kimoto-Kahn

https://ebookmass.com/product/the-asian-hot-pot-cookbook-familyfriendly-one-pot-meals-amy-kimoto-kahn/

ebookmass.com

The New Alpha: Join the Rising Movement of Influencers and Changemakers Who Are Redefining Leadership Danielle Harlan

https://ebookmass.com/product/the-new-alpha-join-the-rising-movementof-influencers-and-changemakers-who-are-redefining-leadershipdanielle-harlan/

ebookmass.com

https://ebookmass.com/product/pax-economica-left-wing-visions-of-afree-trade-world-palen/

ebookmass.com

TheVolcanoesofMars

TheVolcanoesofMars

JamesR.Zimbelman

SeniorGeologistEmeritus,CenterforEarthandPlanetaryStudies, NationalAirandSpaceMuseum,SmithsonianInstitution, Washington,DC,UnitedStates

DavidA.Crown

SeniorScientist,PlanetaryScienceInstitute,Tucson,AZ,UnitedStates

PeterJ.Mouginis-Mark

EmeritusResearcher,Hawai’iInstituteGeophysicsandPlanetology, UniversityofHawai’i,Honolulu,HI,UnitedStates

TracyK.P.Gregg

AssociateProfessor,DepartmentofGeology,UniversityofBuffalo, Buffalo,NY,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-822876-0

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionsEditor: PeterJ.Llewellyn

EditorialProjectManager: RubySmith

ProductionProjectManager: KumarAnbazhagan

CoverDesigner: MatthewLimbert

TypesetbySPiGlobal,India

Abouttheauthors

JamesR.Zimbelman isaSeniorGeologistEmeritusattheCenterforEarthandPlanetary StudiesintheNationalAirandSpaceMuseumattheSmithsonianInstitution,wherehe studiesplanetarygeologyincludingthegeologicanalysisofremotesensingdataofMars, geologicmappingofMarsandVenus,thestudyoflonglavaflowsontheterrestrialplanets, andfieldstudiesofvolcanic,aeolian,andpluvialfeatures.In2013hereceivedtheRonald GreeleyAwardforDistinguishedService,andin2020theG.K.GilbertAward,bothfrom thePlanetaryGeologyDivision(PGD)oftheGeologicalSocietyofAmerica(GSA).Heisa fellowofGSA,hasservedassecretaryoftheAmericanGeophysicalUnion’sPlanetary Sciencessection,anofficerinPGD,andchairoftheNASMCenterforEarthandPlanetary Studies.

DavidA.Crown isaSeniorScientistatthePlanetaryScienceInstitute(Tucson,AZ), withprofessionalinterestsinplanetarygeology,physicalvolcanology,remotesensing, andscienceeducation.Hisresearchstudiesfocusonunderstandingthegeologichistories oftherockyplanetarybodiesinthesolarsystemandincludegeologicmappinginvestigationsofthesurfacesofMars,Venus,Io,andCeres,useofspacecraftandairborneremote sensingdataforgeologicanalysesofplanetarysurfacefeatures,fieldinvestigationsofvolcanicdeposits,andthedevelopmentandapplicationofmodelsforgeologicflows.Hehas publishedninegeologicmapsofMarsto-date,eightofwhichexaminedthegeologyofthe Hellasregion.HehasconductedfieldstudiesofvolcanicterrainsinthewesterncontinentalUS,Hawai’i,Mexico,andintheCentralAndesofBolivia.

PeterJ.Mouginis-Mark isanEmeritusResearcherattheHawai’iInstituteofGeophysicsandPlanetology(HIGP),UniversityofHawai’i(UH).Formorethan40years,hehas studiedvolcanoesinthesolarsystemandonEarth.Hehasconductedfieldworknotonly inHawai’ibutalsosuchdiverseplacesastheGalapagosIslands,ReunionIsland,Chile, Java,Iceland,Nicaragua,andthePhilippines.Hehasservedasgeologyprogrammanager atNASAHeadquartersandthedirectorofHIGPandassociatedeanforResearch,College ofEngineering,bothatUH.Hewasprincipalinvestigatorforaninternational14-year NASAstudytousesatellitestostudyactivevolcanoesonEarthandhasbeenaleader for13NASAweek-longplanetaryvolcanologyfieldworkshopsinHawai’i.Petehaspublishedmorethan125peer-reviewedresearchpapers,ofwhich35havefocusedonMartian volcanism.

TracyK.P.Gregg isanAssociateProfessorintheDepartmentofGeologyattheUniversityofBuffaloinBuffalo,NY.Herprimaryresearchinterestislavaflows,andsheisnot particularaboutwheretheyareortheircomposition.Shehasdonefieldworkonlavaflows inIdaho,Peru,Iceland,andHawai’i,aswellasstudiedvolcanicmorphologiesonMars,the

Moon,Venus,andJupiter’smoonIo.ShehaspersonallyinvestigatedlavasattheEast PacificRiseandtheGalapagosSpreadingCenter,morethan2500mbelowsealevel,from thesafetyofthesubmersible Alvin.ShesupervisedtheNASAPlanetaryGeologyandGeophysicsUndergraduateResearchProgram(PGGURP)for20yearsandisnowhelpingto runitssequel[SummerUndergraduateProgramforPlanetaryResearch(SUPPR)].Tracy isafellowoftheGeologicalSocietyofAmerica(GSA)andwasawardedtheRonaldGreeley AwardforDistinguishedServicefromtheGSAPlanetaryGeologyDivision.

Preface

Thetitleofthisbookmaysoundlikeatopicforsciencefiction,butperhapsevenmore remarkableistherealizationthattheinformationpresentedhereistheresultofdecades ofdetailedscientificstudiesofthegeologyofMarsfrommultiplespacecraftmissions.We arefortunatetobelivingwhenroboticspacecrafthaveprovidedhumanitywithitsfirst knowledgeoftheincrediblediversitywithinthesolarsystemingeneralandofthebeguilingRedPlanetinparticular.Wearechallengedtoexplainhowaplanethalfthesizeof EarthproducedseveralvolcanoesthataremanytimeslargerthananyvolcanoonEarth. Thisbookservesasanintroductiontothebreadthanddiversityofvolcanismasithas beenexpressedthroughoutMartianhistory.Wewantthereadertorealizethatthiseffort representsonlysomeofthereasonswhytheMartianvolcanoeshaveintrigued,challenged,“stumped,”andbewitchedallofusfordecades—andcontinuetoenthrall humanity.

Thebookisprimarilyintendedforusebyundergraduate-levelstudents,butwehave alsostriventomakethetextaccessibletotheinterestedreaderinthegeneralpublic,as wellasausefulreviewforplanetaryscientistsatthegraduatelevelandabove.Descriptionsarewrittenprimarilyforanonspecialistreader,butsomechaptersassumemore ofabackgroundingeologythanothers.Termsareshownin bold wherefirstintroduced ordescribedineachchapter.Thereisextensivecitationofthepublishedliterature throughoutsothatanyonewhoisintriguedbyaparticularsubjectcanseekgreaterdetail fromprimarysourcesfoundinbothscientificjournalsandbooks,aswellasfromreputablesourcesontheInternet.Manychaptershighlighttheimportanceofgeologic mappingtodocumentthesequenceofgenerationandemplacementoftherocksand landformsvisiblefromorbitontheMartianvolcanoes;geologicmappingisaninvestigativetoolthathasbeenwidelyusedbytheauthors.Mostchaptersareprefacedbyan exampleofageologicmapfortheareaofinterest.Wehopethatasonegoesthrough thechapters,thereaderwillgetasenseofthewonderandexcitementstimulatedby theimpressivevolcanoesthatarewidelydistributedacrossMars.

Thisbookcouldnothavehappenedwithouttheeffortsofseveralpeoplewhodonot appearintheauthorlistsforeachchapter.MarisaLeFleurapproachedustoconsiderthe topicforapossiblebookprojectwithElsevier,andMichaelLutzandRubySmithhelpedto bringthemanuscriptthroughthemanystagesinvolvedinbringingittoasuccessfulconclusion.Wethankthecolleagueswhoprovidedinputtovariousversionsofthechapters, especiallyHapMcSween(UniversityofTennessee)forhisinsightfulcommentson Chapter8.WealsoofferourdeepgratitudetoJakeBleacher(NASA)andBrentGarry(NASA Goddard)whowereinstrumentalinthegenesisofthisbook.Threeofusbenefitedgreatly

fromtheknowledgeandguidanceprovidedbyRonaldGreeleyduringgraduatestudiesat ArizonaStateUniversity.Interactionswithfriendsandcolleagueshavecontinuedtostimulateadesiretoincreaseourunderstandingoftheforcesthatproducedtheremarkable volcanoesofMars.Asisthecasewithanybook-lengthproject,wecouldnothavecompletedthetaskwithoutthesupportandforbearanceofbothourfamilyandfriendswhile wewereoftencloisteredinouroffices.

a SmithsonianInstitution,Washington,DC,UnitedStates b PlanetaryScienceInstitute ,Tucson,AZ,UnitedStates c UniversityofHawai’i,Honolulu,HI,UnitedStates d UniversityofBuffalo,Buffalo,NY,UnitedStates

∗ CorrespondingAuthor.E-mailAddress:zimbelmanj @si.edu

Onthecover

TheHighResolutionStereoCameracapturedthisimpressiveviewofvolcanicMars(looking obliquelytothesoutheast)onJune29,2014,duringorbit13,323ofthe MarsExpress orbiter. OlympusMons,thetallestvolcanoonMars,isatlowerright.ThreeslightlysmallerTharsis Montesvolcanoes(AscraeusMons,PavonisMons,ArsiaMons,lefttoright)arevisiblecloser tothehorizon.Twoothervolcanoes(UlyssesPateraandBiblisPatera,lefttoright)arein betweenthefourlargervolcanoes.ThethinMartianatmosphereisvisibleabovethecurve ofthelimbofMars(ESA/DLR/FUBerlin/JustinCowart).

FIG.1.1Pre-spacecraftMars.Portionofatelescope-basedmapofMarspublishedshortlybeforeMariner4revealed thecraterednatureoftheMartiansurface.Mapsectionshownincludesmanylineardarkfeaturesassociatedwith PercivalLowell’s“canals,”plus“NixOlympica”(nowOlympusMons;see Fig.1.2). U.S.AirForce(1965)/Lunarand PlanetaryInstitute.

Introduction:WelcometoMars!

,DavidA.Crownb,W.BrentGarryc, andJacobE.Bleacherc a SMITHSONIANINSTITUTION,W ASHINGTON,DC,UNITEDSTATES b PLANETARYSCIENCEINSTITUTE,TUCSON,AZ,UNITEDSTATES c NASAGODDARDSPACEFLIGHTCENTER ,GREENBELT,MD,UNITEDSTATES * CORRESPONDINGAUTHOR.E- MAILADDRESS:ZIMBELMANJ @SI.EDU

1.1Introduction

Peoplehavewatchedared“wandering”objectinthenightskyformillennia,wondering whatitcouldbe.Itsdistinctiveorange-red(ochre)color(Fig.1.1)mademanycultures associatethismoving“star”withwarfare,andMarsisnamedaftertheRomangodof war.Today,weknowthatallofthese“wandering”starsareplanetsorbitingtheSunjust asEarthdoes,butMarscontinuestobetheplanetthatmostoftencapturesourattention andourimagination(asinthewell-knownstoriesbyH.G.Wells,E.R.Burroughs,andR. Bradburyorincountlesssciencefictionmoviessincethe1930s).Increasinglysophisticatedspacecrafthavebecomehumanity’sroboticemissariestothe“RedPlanet,”taking ourfascinationwithMarsoutoftherealmofsciencefictionintothatofsciencefact.These spacecraftdatahaverevealedabundantevidencethatMarsishometosomeofthemost dramaticandamazingvolcanoesinoursolarsystem,thesubjectofthisbook.

HowdidaplanethalfthesizeoftheEarthproduceenormousvolcanicmountainslike OlympusMons (Fig.1.2),somethingmanytimesthesizeofthelargestvolcanoesonEarth? WhyaretheMartianvolcanoeslocatedwheretheyare?Dovolcanoesincloseproximityhave thesameeruptivehistoriesandweretheyactiveatthesametime,orweretheredifferenteruptionstylesinthesameregionindifferentgeologicepochs?Questionssuchastheseareexamplesofthemanyissuescurrentlybeinginvestigatedunderthebroadumbrellarepresentedby theterm comparativeplanetology.Today,wehavesomeunderstandingofalloftheplanetsin thesolarsystem,thankstothemanyspacecraft missionslaunchedfromEarthduringthelast halfcentury.Theseexplorationshavediscoveredthatvolcanismisaubiquitousgeologicprocessacrossthe terrestrial (rocky)planetsandeventoanextremeonthebizarremoonofJupiternamedIo.Intheoutersolarsystem,watertakestheplaceofmoltenrock,aprocesscalled cryovolcanism.However,amongallofthesevolcanicworlds,therelativelydiminutiveplanet Marshassomeofthelargestvolcanoestobeseenanywhere.Throughthisbook,wewilltake you,thereader,onafantasticjourneyofexplorationtothemanyvolcanoesofMars.

Thejourneybeginswithabriefreviewofhowscientistsandengineershavesteadilyobtained increasinglydetailedinformationaboutMars.Subsequentchapterswillfocusonthevolcanic

FIG.1.2OlympusMonsvolcano.ShadedreliefrenditionsofOlympusMonsonMars(NASAMarsOribterLaser Altimeterdata)andtheBigIslandofHawai’i(upperleft;NASAShuttleRadarTopographyMissiondata).Both imagesareshownatthesamescale.

historyoftheRedPlanetbydiscussingseveraldistinctvolcanicprovinces,emphasizingboth familiaranduniqueaspectsofeachregion.The goalisforthiscompilationofinformation toprovideacurrentsynthesisofourknowledge ofMartianvolcanoesandtoallowthereader tocompareandcontrastMartianvolcanoeswith themanyvolcanoesthathavebeenstudiedin greatdetailhereonEarth,aswellastovolcanoesnowknownthroughoutthesolarsystem.

1.2LearningaboutMars

Theancientswerekeenobserversofthenightsky.Over2500yearsago,BabylonianastronomersregularlyrecordedhowMarsmovedamongtheseemingly“fixed”stars,andChineseastronomersdocumentedthatMarsoccasionallymovedina retrograde direction (thereverseofitsnormalmotion)forweeksatatimebeforereturningtoitsmoreregular motion(Bakich,2000,pp.169–171).Exoticideasweredevelopedtoexplainthisperplexing behavior,whichbothJupiterandSaturnalsoexhibited,buttoalesserdegreethanthat demonstratedbyMars.CarefulmeasurementsofMarsbyTychoBraheallowedJohannes Keplertodevisehisfamousthree“laws”ofplanetarymotionin1600,thefirstofwhich statesthatplanetsfollow elliptical (noncircular)orbitswiththesunatonefocusofthe ellipse,thefirstmathematicaldescriptionofaplanetaryorbit. ScientificinvestigationofMarsbeganinearnestfollowingGalileo’s1610publication thatlettheworldknowthatthetelescopewasawonderfulnewtoolforexploringthe heavens.TelescopessoonrevealedthepresenceoflighteranddarkerregionsonMars, butperhapsevenmoreimportant,Marsdidnotexhibitphasessimilartothoseseen

monthlyforEarth’sMoon,unlikewhatGalileo’stelescopealsorevealedforVenus.These earlytelescopicobservationsprovidedobservationalsupportforCopernicus’modelof thesun-centeredsolarsystem,withVenusclosertotheSunandMarsfurtherfromthe SunthanwastheEarth.Astelescopesbecameevermorepowerful,Marsshowedvariations initssurfacefeaturesthatrepeatedduringthenearly2EarthyearsittakesforMarstomake onerevolutionaroundtheSun.Eventually,brightpolarcapsweredetectedontheplanet, includingpartsthatremainedyear-round,whileotherpolardepositsgrewandshrank throughouttheMartianyear.Inthe1780sSirWilliamHerschel(theastronomerwhodiscoveredtheplanetUranus)usedsuchobservationstosuggestthatMarsexperiencedseasonssimilartothoseofEarth(Bakich,2000,p.183).OccasionallythewholeglobeofMars becameauniformochrecolorwithnosurfacedetaildiscernable;thiswaseventually attributedtomassiveduststormsthatattimesobscuredtheentiresurfaceformanyweeks.

TelescopicobservationsofMarsarebestobtainedaboutevery26Earthmonths,when Marsisat opposition (directlyoppositefromtheSunasviewedfromtheEarth),butthe apparentsizeofMarsattheseoppositionsvariessystematicallybecausetheorbitofMars ismoreellipticalthantheorbitofEarth.The1877oppositionwasaparticularlygoodone, andGiovanniSchiaparellimadeadetailedmapofMarsthatincludednumerousstraight darklinesacrossthebrightregions.Hismapwaspublishedin1890withthelineslabeled “canali”(meaninganaturalchannelorgrooveinItalian),butthiswordwaslooselytranslatedintoEnglishas“canals,”whichimpliedfeaturesconstructedbyintelligentbeings (Bakich,2000,p.183).PercivalLowellexpandedontheconceptofMartiancanalsin his1895booktitled Mars,championingtheideathatMartiansgloballyengineeredthe planettobringwaterfromthepolarregionstoparchedequatorialdeserts(Fig.1.3).

FIG.1.3LowellMarsglobe.Marsglobe(500 diameter)withhand-drawnobservationsrecordedbyPercivalLowell in1901.GlobewasonloanfromLowellObservatorywhileondisplayattheNationalAirandSpaceMuseum.

Untilhisdeathin1916,LowellusedhispersonalobservatoryinFlagstaff,Arizona(which remainsanactiveresearchcentertoday),tomakemapsoftheextensiveMartiancanal system,andhepublishedmorebookstopopularizehisinterpretationthatadvancedintelligentlifeexistedonMars.Thecanalsremainedunseenbymostothertelescopic observers,butLowellwasundeterred.ThepossibilityofadvancedlifeonMarsremained popularuntilthefirstspacecrafttoflypastMars(Mariner4,in1965)returned22imagesof amostlycrateredsurfacereminiscentofEarth’sMoon.

VolcanoesenteredtheMarsstoryin1971when Mariner9 becamethefirstspacecraftto orbitanotherplanet.ThespacecraftarrivedatMarsduringthemostintenseglobaldust stormindecades,butcommandsfromEarthkeptitfromstartingitsglobalmappingmissionuntilthedustbegantoclear.AsthedustpallgraduallysettledoutofthethinMartian atmosphere,fourdarkspotsappearedinMarinerimagestakentomonitortheprogressof theduststorm(Fig.1.4).Withcontinueddustsettling,thespotssoonresolvedintoelevatedregionseachwithcomplexcratersattheirsummits.Itdidnottakescientistslong todeducethattallmountainswithcratersattheirsummitsweremostlikelyvolcanoes. Oncetheatmospherefullycleared, Mariner9 mappedtheentireMartiansurfaceataspatialresolutionfarexceedingwhatwaspossiblewiththelargesttelescopesonEarth,giving humanitythefirstdetailedlookatthescopeofthegeologyofMars.Thisglobalmapping effortrevealedthatthefour“spots”werethesummitsofthelargestvolcanoesthenknown, aswellasfindingmanyothervolcaniccentersscatteredacrosstheplanet(Mutchetal., 1976,pp.36–39).SubsequentspacecraftorbitingandlandingonMarshaveprovided increasinglydetailedinformationabouttheMartiansurface;thisincrediblewealthofdata formsthebasisformuchofwhatisdescribedinthisbook.

FIG.1.4Mars’volcanoesrevealed.Four“darkspots” (arrowed) werethefirstsurfacefeaturesseeninMariner9 imagesastheglobalduststormof1971begantodissipate.Thespotsarethesummitsoffourenormous volcanoes.At upperleft isOlympusMons(see Fig.1.2);thethreealigneddarkspotsaretheTharsisMontes. Extremecontraststretchingoftheseimagescausedthewhite“echoes”aboveandbeloweachdarkspot.Subtle dustcloudstructuresareevidentthroughoutthisimagemosaic. NASAhttps://www.hq.nasa.gov/office/pao/History/ SP-4212/ch9-4.html.

1.3Geology

Interestinvolcanoesandvolcanismhasalonghistorybecausemanycultureswantedaway toexplainwhyriversofmoltenrockoccasionallyappearedfromtheEarth(Macdonald, 1972,pp.26–41).OneofthebetterknownlegendsinvolvestheHawai’iangoddessoffire, Pele,whotraveledfromislandtoisland(startingatNi’ihauandmovingsoutheast),eventuallysettlingintotheHalemaumaucrateratthetopofKilaueavolcanoontheBigIslandof Hawai’i(Beckwith,1970;Cashman,2004;Westervelt,1916;Roberts,2018).Thedirectionof Pele’sislandmigrationisconsistentwithmoderndatingofvolcanicrocksonthedifferent islands;today,weexplainthisobservationthroughthemotionofEarth’srocky lithosphere aboveadeep-seated“hotspot”(see Section1.7).However,beforedelvingintomodernconceptsofvolcanism,weshouldfirstconsiderseveraldifferenttypesofrocksthatareimportanttounderstandingthestorybehindvolcanoes.

Geology isthescienceoftheEarth,arelativenewcomertogeneralscienceslike physics,chemistry,andbiology.Foralongperiodoftime,thecollectionofrockswasconsideredtofallwithintherealmofthehobbyist.In1669NicolasStenoformulatedtheprincipleof superposition,whichstatedthatrockswereemplacedinatemporalsequence withtheolderrocksbeneaththeyoungerones(PressandSiever,1974,p.46).James Hutton,andlaterCharlesLyell,usedtheobservedsequenceofemplacementinferred fromobservationsofwhichrockslieontopofotherrockstodeducethatgeologicevents occurred“uniformly”throughtime,whichLyellpublicizedastheprincipleof uniformitarianism (PressandSiever,1974,pp.61–62).Thisrelationshipbecameinadequatewhen itwasrecognizedthatsomelayeredrocks,assumedtohaveoriginallyformedinahorizontalorientation,weretodaytiltedtodifferentdegrees,eventothepointthatsomerocks wereturnedcompletelyupsidedown.

Whenfossilswererecognizedtoberemnantsofpastlifepreservedintherocks,they becameacrucialtoolfordefiningstratigraphicsequencesofrocks.Fossil-bearingstrata areasubsetofthemoregeneral sedimentary rocktype.Sediments(fineparticles)are depositedaftersettlingoutofeitherwaterorair,bothmediumsthatcantransport sedimentslongdistancesfromtheirsources.Sedimentaryrockscoverabout75%ofthesurfaceofthecontinentsontheEarth(HamblinandChristiansen,1998,p.106),sotheyare likelytherocksthatmostpeoplethinkoffirst(whentheythinkaboutrocksatall,a situationthatwehopewillbemuchencouragedbyreadingthisbook).TheGrandCanyon (Arizona)isoneofthebest-knownexposuresofsedimentaryrocksonEarth,wherethe upper800mofthecanyonexposesastratigraphicsequencerepresentingmorethan300 millionyearsofEarth’shistoryandthelowerpartofthecanyonextendstimebacknearly 2billionyears,althoughmanyofthoselowerrocksarenotsedimentaryrocks.

TwoimportantsystemsaffecttheEarthtodepositorchangetherocksnearitssurface: the hydrologic system(acomplexcyclethroughwhichwatermovesfromtheoceansto theatmospheretothelandandbacktotheoceans)andthe tectonic system(themovementofsolidrockneartheEarth’ssurface)(HamblinandChristiansen,1998,pp.32–42). Sedimentaryrocksresultfromseveraldifferentmechanismsworkingwithinthe

hydrologicsystem,andthetilting,folding,andfaultingofsedimentarystrataaretheresult offorcesactingwithinthetectonicsystem.Sometectonicforcescanburyrockstovarious depthswithinthecrustwhereincreasedheatandpressure,alongwithchangesinthe compositionoffluidsthatmaymovethroughthoserocks,alterthemineralsintheoriginal rocktogenerate metamorphic rocks.Thethirdmajorrocktype, igneous,formsfrom magma (amoltenmixtureofliquidrockmaterial,gas,andsolidcrystals);ifmagmasolidifieswhilebeneaththesurface,itformsa plutonic (intrusive)rock;ifthemagmareaches thesurface,itbecomesa volcanic (extrusive)rock,theprimaryfocusofthisbook.Tectonic forcescanopencracksandfissureswithinthecrustthroughwhichmagmareachesthe surfacetoproducevolcanicrock.Igneousrocksrepresentafundamentalcomponent oftheEarth’scrustasthevolcanicoriginofmostoftheoceanfloorrocksbecameknown. Whensubjectedtoweatheringanderosion,igneousrockscontributeparticlesthatsubsequentlybecomeincludedinbothsedimentaryandmetamorphicrocks.

1.4Volcanism

WhenrockwithinEarth’sinteriorishotterthanthemeltingtemperatureofitscomponents,thisliquidrockbecomesthesourcematerialforigneousrocks(magma).Magma tendstorisewithinthecrustbecauseitislessdense(morebuoyant)incomparisonwith thesurroundingrock.ChangingtemperatureandpressureconditionsbeneaththeEarth’s surfacecanalterthechemistryofmagmaasbothsolids(crystalsthatsolidifyoutofthe coolingmelt)andgases(volatilesoriginallydissolvedintheliquid)escapefromtheevolvingliquid.Asequenceofspecificmineralsformsasthetemperatureofthemagmadrops, withmineralsheavier(moredense)thanthemagmasettlingtothebottomofthemagma poolandmineralslighter(lessdense)thanthemagmarisingtothetopofthemagmapool. Thedepartingmineralsremoveelementsfromthemagmathroughtheprocessof fractionalcrystallization,thebasicmechanismforchangingthechemistryofthemagma. Asfractionalcrystallizationprogresses,itproducesdifferentkindsofigneousrocks.

Themajorrocktypesgeneratedfromevolvingmagmathroughthisfractionationprocessare,inorderofdecreasingtemperature,volcanicrocksthatrangefrom komatiite, basalt,andesite,dacite, to rhyolite andtheirintrusiveequivalentsrangefrom peridotite, gabbro,diorite,granodiorite, to granite (see Section8.2).Thedominantmineralswithin eachvolcanictype,indecreasingorderofabundance,areolivineandpyroxeneinkomatiite;plagioclase,pyroxene,andolivineinbasalt;plagioclase,pyroxene,andamphibolein andesite;andpotassiumfeldspar,plagioclase,quartz,andbiotiteindaciteandrhyolite (see Fig.8.2).Variationsintheorderofthecrystallizationandtherelativeabundance ofmineralcomponentsoccurwithintheintrusiveequivalentsofeachvolcanicrock,as prolongedconditionsatdepthallowfordiversechemicalseparationstotakeplace.The aforementionedisagreatlysimplifiedrenderingofacomplexsequenceofevents;interestedreadersarereferredtoHamblinandChristiansen(1998,pp.77–100)foraveryreadableelaborationonthegenerationofvolcanicrocks.Seismicstudieshaveshownthatthe uppermostpartoftheEarthisdividedbetweenanoutercrust(consistingofbothdense

FIG.1.5LavatexturesonHawai’ianbasaltflows.(A)Smooth,glassypahoehoe,witha50-cm-widesheetflow extrudingbeneaththecooledcrustofanearlierflow.Thenewlyexposedlavarapidlychills,formingagrowing glassycrust.PortionofthePKKflowonKilauea,Feb.20,2005;USGS/HVOphoto20050220-0584_CCH.(B)Clinkery ’a’aflowmarginemplacedonanearlierpahoehoeflow,withthehotinteriorcoreexposed.Heatingofthe atmospheredistortstheimagefocusabovetheflow.EastbranchofthePKKflowonKilaueaatPulamaPali, scenewidth8m,Feb.25,2005;USGS/HVOphoto20050225-0786_TO.

oceanic[basaltic]andlightercontinental[granitic]rock),alloverlyingtheupperpartof Earth’spartiallymoltenmantle(PressandSiever,1974,p.24).

Whenvolcanicrocksareeruptedontothesurface,thateruptioncantakeplaceeither effusivelyorexplosively.Effusiveeruptionsform lava,withdifferentvolcaniclandforms resultingfromthedifferingchemistryandtherelated viscosity (the“stickiness”ofthe flowingliquid)ofthesourcemagma.Withinlavaflows,thesolidifiedrockprovidesclues totheconditionofthemagmawhenitwaserupted.InHawai’i,itispossibletowatch activelavaflowsduringtheiremplacement.Consequently,Hawai’ianwordsdescribe thetwodominantflowsurfacetexturesusedinthevolcanicliterature. Pahoehoe lava hasasmooth,glassycrustproducedbylow-viscositymoltenrockthatisslowlyextruded ontothesurface(Fig.1.5A).’A‘a lavahasaroughsurfaceproducedbycountless“clinkers,” eachwithfineglassspinesorshardscoveringtheirexteriors(thissharpglassrapidly chewsuphikingboots!);attheirfronts,’a‘a’flows(Fig.1.5B)movefasterthanpahoehoe flows.Differencesbetween’a‘aandpahoehoederivefromtherateoferuptionofthelava, withpahoehoeassociatedwithlowvolumeperseconderuptionsanda‘ahighervolume persecond(RowlandandWalker,1990).ThetwotexturetypesrepresentedbytheHawai’iantermshavetheirequivalentsinothercultureslivingonvolcanicterrain(e.g.,inIceland “helluhraun”and“apalhraun”aretheequivalentofpahoehoeanda‘a,respectively; Gudmundsson,1996).Flowsofmoreviscousandesiticorrhyoliticlavascanform blocky flows,wherethelavaisbrokenintoangularblocksrangingfrommanytensofcentimeters tometersinsizewiththickerflowsandamoredomicalflowshapeduetothehigherviscosity.Aswiththechemistrysummarizedearlier,therearemanyvariationsonthebasic flowtexturesjustdescribed;theinterestedreaderisreferredto Macdonald(1972,pp. 71–98)and Gregg(2017) formoredetail.

FIG.1.6Volcanicconstructs.Profilesofacompositevolcano(stratovolcano),a(small)calderaonavolcano,ashield volcano,andfourexamplesofpyroclasticcones,allshownat2 verticalexaggeration. Modifiedfrom Siebert,L.,Simkin,T.,Kimberly,P.,2010.VolcanoesoftheWorld,3rded.UniversityofCaliforniaPress.

Lavaflowsbuildupintoconstructsaroundtheirsourcevent,someofwhichcanattain enormousdimensions.KomatiitesarequiterareonEarth,butwheretheyarefound,their productswereextremelyfluid,forminglongthinflowsratherthanlargenear-ventconstructs.BasaltsarethemostabundantvolcanicrockontheEarth(oceanfloorsareprimarilybasalt,coveredbymud),forminglongtopographicridgesonoceanfloors,aswellas basalticlavaflowsandmanyvolcanoesonEarth’scontinents.Whenbasaltseruptat thesurfacefromalong-activesourcevent,theycanproduceabroadmountainaround thecentralventwithflankslopesgenerally <5° andwithanoverallshapesimilartothat ofanoldVikingshield,hencethename shield volcano(Fig.1.6).TheHawai’ianandGalapagosIslandsformedfromcoalescingshieldvolcanoes,makingthemamongthelargest volcanoesonEarth,butbothislandcomplexesaredwarfedbytheenormousbulkofthe OlympusMonsshieldvolcanoonMars(Fig.1.2).

Shieldvolcanoesrepresentonetypeoflargevolcanicconstruct(onethatiswell expressedonMars),butthereareothervolcanoesthatalsoenterintothediscussionof thevolcanoesonMars.OnEarth,iftheeruptinglavaismorechemicallyevolvedthan basalt(acompositioncalledandesite)andtheflowsareintermixedwithpyroclastic deposits,thevolcanohassteepslopes(around10°),steeperthantheslopesonashield volcano,producingtheconicalshapethatmostpeopleassociatewithvolcanoes.Thistype ofconstructresultsfrommoreviscousextrudedlavaflowscombinedwithexplosiveeruptionsthatgenerateanabundanceofvolcanicparticlesofvarioussizes(includingfinegrained ash);theresultisa composite volcano,alsocalleda stratovolcano (Fig.1.6).While smallerinvolumethanshieldvolcanoes,someofthebest-knownvolcanoesonEarth, suchasFujiinJapanandVesuviusinItaly,arecompositevolcanoes.Inthefollowing, wewillseethatthesevolcanoesoccuratgeologicsettingsthatarenotcommononMars. Ifthemagmachamberfeedingeruptionsatthesummitofthevolcanobecomessufficientlyemptied,thesurfaceofthevolcanocancollapsetoformalarge,generallycircular depressioncalleda caldera (Fig.1.6).Largecalderascanalsobeproducedbecauseofvery largeexplosiveeruptions,oftenfrommagmasmoresilicicthanthesourceofbasaltflows; see Francis(1993,pp.291–321)formoredetailaboutthecomplexitiesofcalderasandgeneralinformationaboutexplosivevolcanism.Whenthemagmabecomeschemically

evolved(andalsocontainsmorevolatiles)beyondwhatproducesanandesiticcomposite volcano,massiveexplosiveeruptionscanproducethicksheetsofrhyolitic pyroclastic (see nextparagraph)depositsaroundlarge(>10kmdiameter)calderas,depositsthatareso largethattheydonothavemuchreliefoutsideofthecaldera.Suchexplosiveeruptions causesomeofthemostvoluminousvolcanicdepositsonEarth,likethoseassociatedwith theTobaeruptioninSumatra,Indonesia(Zielinskietal.,1996).Thereiscontinuingdebate astotherolethatsuchlarge-volumeexplosiveeruptionsplayedonMars(see Section7.4). BeforetheadventofspacecraftmissionstoMars,someresearchersusedtelescopicobservationstosuggestthattheshapesandseasonalchangestothedark(lowalbedo)regionsof Marsweretheresultofwindblownvolcanicash(McLaughlin,1955).Ifandesiteorrhyolite lavadoesnoteruptinlargeexplosions,thenavolcanic dome composedofthick sequencesofhigh-viscositylavacanresult.

Whenthevolumeoferuptedmaterialislessthanthatassociatedwithshieldorcompositevolcanoes(whichformoveramultitudeoferuptivecycles),smallvolcanicconstructsare generated.Smallvolcanicconstructscanoccurinisolatedsettings,oncalderafloors,on volcanoflanks,oringroupsassociatedwithlavaflows.Theproductofexplosiveeruptions, regardlessofthecompositionofthesourcemagma,iscalleda pyroclastic (“fire-broken”) deposit;thesecanbeemplacedasacoherentflowoverthesurfaceorviaballisticemplacementfromorthroughsettlingofparticlesoutoftheatmosphere.

Themostcommontypeofsmallvolcanoisa scoriacone (Fig.1.6),(alsoreferredtoasa cindercone)whereasingleeruptionspreadsvolcanic scoria (typicallyrangingfrom graveltocobblesize)aroundtheeruptivevent;theeruptedscoriafollowsballistictrajectorieswhileflyingthroughtheairandafterlandingpilesupalongaslopeclosetotheangle ofrepose(theangleabovewhichgranularparticlescascadedownslope).Consolidated pyroclasticdepositsarecalled tuff (Macdonald,1972,p.134).Wheneruptinglavainteractswithnear-surfacegroundwaterwithoutexcavatingintothebedrock,acindercone-like tuffcone orabroadlow-profile tuffring results(Fig.1.6),dependingonhow muchwatergetsmixedinwiththeeruptinglava(Francis,1993,pp.342–345).Ifsuch aneruptionoccursalongacoastline,whereoceanwaterinteractswiththeeruptinglava, theresultisa littoralcone.Whenlavainteractswithgroundwater,theresultingsteam builtupgeneratesalocalizedvolcanicexplosionringcalleda maar,whichoftenexcavates intotherockunderlyingtheexplosivedeposit(Fig.1.6)(Francis,1993,pp.341–347).When lavaflowsoverwetground,suchasaroundthemarginofalake,a pseudocrater canresult, alow-profile“rootlessvent,”sonamedbecausetheexplosionsoccurwherethesteamis generatedbeneaththeflowratherthanattheventwherelavareachedthesurface(Francis, 1993,pp.151–152).

1.5Platetectonics

OurunderstandingofEarthhistoryunderwentahuge“paradigmshift”inthe1960swhen geologicalandgeophysicalinformationfrommanydifferentsourcescouldfinallybe placedwithinabroadconceptualframeworkthattodayisknownasthetheoryof plate

tectonics (PressandSiever,1974,pp.24–31).Thedevelopmentofthistheoryisacomplex story(see HamblinandChristiansen,1998,pp.442–469,fordetails),butitemergedfrom anearlierconceptthatmetwithgreatresistancefromthescientificestablishment,anidea termed“continentaldrift.”Almostassoonasmappingtechniquesbecamepreciseenough toaccuratelyshowtheoutlineoftheworld’scoastlines,manyearlynaturalhistorians(the scienceofgeologydidnotyetexist)notedthattheAtlanticcoastsofAfricaandSouth Americahadverysimilarshapes.Afewwentsofarastosuggestthatthesetwocontinents werejoinedatsomepointinthepast.

TheGermanmeteorologistAlfredWegenerpublished(in1915)anexhaustivecollectionofdatatosupporttheideathatcontinentswerepreviouslyjoined,includingseveral inadditiontoAfricaandSouthAmerica,butnobody(includingWegener)proposedaviablemechanismtoexplainhowthecontinentscouldbemoved.Thissituationchanged quitesuddenlywhenabundantevidencefrommultipledisciplines,includingpaleontology(thestudyofancientlife),geology(thedistributionofrocktypesandstructures),glaciology(depositsfrommultipleepisodesofcontinentalglaciation),paleoclimatology(the recordofpastclimatespreservedinrocksandsediments),seismology(thestructureof Earth’sinteriorobtainedfromearthquakerecords),oceanography(thefirstsystematic mappingoftheoceanfloors),andpaleomagnetism(orientationsofEarth’smagneticfield preservedinrocksofdiverseages),couldbestbeexplainedbythemovementofbroad sectionsofEarth’scrustascoherentpackagescalled plates,consistingofboththechemicallydistinctcrustandtherigidupperportionofthemantle(togethercalledthe lithosphere).Themechanismbehindthiscrustalmovementfinallycouldbeexplainedas theinteractionbetweentheslowcirculationwithinthepartiallymoltenmantleandthe lithosphereridingalongontopofthesebroadinternalcirculationpatterns.

Crucialnewevidenceforthemovementoflargecrustalplatescamefrommappingthe patternof polarity (indicatedbythedirectiontowardmagneticnorth)preservedinthe rocksonbothsidesofenormousmountainridgesdiscoveredonthefloorofseveralocean basins,includingthelongest mid-oceanridge locatedintheAtlanticOceanbasin.Careful mappingofthemagneticpolaritypreservedinrocksectionsfromseveralcontinents clearlydemonstratedthatEarth’smagneticfieldreverseditspolaritymanytimesintemporallyvariablebutgeographicallyconsistentways;thissamepolaritypatternwaspreservedsymmetricallyonbothsidesofmid-oceanridges.Theagesoftheoceanfloor rockswerealsoshowntosteadilyincreasesymmetricallyawayfromtheridgesonboth sides.Themostreasonableexplanationforalltheseobservedpatternsisthatnewcrust formedatthemid-oceanridgesandthenprogressivelymovedawayfromthem.

Ifnewcrustwasbeingformedatmid-oceanridges,crusthadtodisappearsomewhere elsetopreserveEarth’smassandvolume.Deep oceantrenches werediscoverednearthe marginsofseveralplates,withcompositevolcanoesoftenfound60–100kmawayfromthe trenches,onthesideofthetrenchawayfromthenearestmid-oceanridge.Theareasnear thetrenchesbecameknownas convergent marginswhereacrustalplatedisappearedinto themantleata subduction zone,whilethemid-oceanridgespreadingcenterswerecalled divergent margins.Insomeplacestheplatesslippedpasteachotherwithinzonesof

FIG.1.7Volcanoesandplatetectonics.Volcanoesresultingfromdifferingplatetectonicsettings. ModifiedfromaUS GeologicalSurveydiagraminSimkin,T.,Tilling,R.I.,Vogt,P.R.,Kirby,S.H.,Kimberly,P.,Stewart,D.B.,2006.This dynamicplanet:worldmapofvolcanoes,earthquakes,impactcraters,andplatetectonics.U.S.Geol.Surv.Map I-2800,scale1:30,000,000.https://volcano.si.edu/learn_dynamicplanet.cfm.

enhancedseismicactivity,suchasalongtheSanAndreasfaultinsouthernCalifornia; theselocationswerecalled transcurrent (orstrike-slip)faultmarginswhereneithercrust growthnorcrustdestructionwastakingplace.Themarginsofthecrustalplatescorrespondcloselytothemajorityofseismicallyactivezonesidentifiedaroundtheplanet, asdomostoftheworld’sactive(orrecentlyactive)volcanoes.Platetectonicscantherefore explainmuchofwhathadpreviouslyseemedtobeunrelatedgeologicfeaturesscattered aroundtheplanet,particularlytheassociationofmanyvolcanoeswithplatetectonic settings(Fig.1.7).

Neithersubductionzonesnorspreadingcenterridgesareconfinedtotheedgesofcontinents.Wheretwooceanicplates(lackingcontinentalcrust)collide,asubductionzone occursnearanarcofvolcanicislands,leadingtothename islandarc.Thevolcanoesassociatedwithislandarcs,suchastheAleutianIslandssouthwestofAlaska,aretypically andesitecompositecones,muchlikethechainofactivevolcanoescomprisingtheCascadesinwesternNorthAmericaandtheAndesalongthewesternedgeofSouthAmerica. Spreadingcenterscansometimesoccuroncontinents,suchasalongtheEastAfricanRift Valley,wherevolcanismisabundant.

Notallactivevolcanoesoccuralongplatemargins.Inparticular,somevolcaniccenters showaclearageprogressionalongonedirection.Withincreasedprecisioninthetracking ofplatemotions,theseseeminglyisolatedvolcaniccenterswereshowntobeexpressions oftheplatesmovingabovea hotspot whoselocationwasstablerelativetothedeepinterioroftheplanet(Fig.1.7).BoththeHawai’ianIslands(withtheassociatedHawai’ianEmperorseamountchain)andtheGalapagosIslandsareexamplesofhotspotvolcanic systemswherethemostrecentvolcanicactivityoccursclosesttothedeep-seatedsource ofthehotspot(Poland,2014).Hotspotvolcanoesalsocanoccuroncontinents,suchas theprogressivelyyoungervolcanismleadingtotheYellowstonevolcaniccenter,withits

abundantgeothermalgeysers.Icelandrepresentsauniquesituationwhereahotspot happenstobelocatedbeneathamid-oceanridge;itistheonlyplaceweknowofwhere mid-oceanridgevolcanismoccursabovesealevelandcanbeeasilydocumented (Gudmundsson,1996).

PlatetectonicsformsaunifyingtheoryforEarth,butdoesitrelatetovolcanismon Mars?EvidenceforplateboundarieswassearchedforasMarsgeologywasrevealed throughsteadilyimprovingglobalimaging,butnocompellingcasecouldbemadefor widespreadplatetectonicshavingtakenplaceonMars.AnexceptionistheartfulinterpretationofvolcanismandtectonisminandaroundthelownorthernplainsofMars, whichwasinterpretedtoindicateoldplatetectonicprocesses(Sleep,1994),butthis hypothesishasnotbeenvalidatedbysubsequentresearchers.Gravitymeasurements forMars,obtainedfromorbitingspacecraftwithsteadilyimprovedradiotrackingcapabilities,providedarobustindicationofthecrustalthicknessacrosstheplanet;thenorthernlowlandsdohavesomeofthethinnestcrustonMars,butitisstilltensofkilometers thickthere,andcrustalthicknesselsewhereis >80km(Zuber,2001; Neumannetal.,2004).

AthalfthediameterofEarth,Marslostitsheatmuchfasterthandidourhomeplanet; unlikeMars,Earthhadsufficientinternalheatresourcestosupportactiveplatetectonics forbillionsofyears.Marscanbeviewedasa“singleplateplanet,”withageophysicalsettingthatisfardifferentfromthatoftheactiveEarth.Theongoing InSight missiontoMars seekstoidentifywhetherMarsisstilltectonicallyactiveviatheplacementofanextremely sensitiveseismometerontothesurfaceofMars(Banerdt,2020).

1.6SamplesfromMars

Mostpeopledonotrealizethatwehave >260samplesfromMars,noneofwhichwere obtainedasaresultofaspacecraftmission(see Section8.6).Auniquegroupofmeteorites isnamedafterthreeindividualmeteoritefallsthatrepresentdistinctchemicalandtexturalsubsetsofthegroup: Shergotty, Nakhla,and Chassigny;hencetheterm SNC is appliedtotheentiregroup(McSween,1994).HowdoweknowthattheSNCmeteorites camefromMars?Innovativemeasurementsmadeononeoftheserocks,EETA79001,a shergottitecollectedfromAntarcticain1979(Fig.1.8),demonstratedthatgasestrapped withinglassyportionsoftherockwereunlikeanythingobtainedfromothermeteorites, norliketheatmosphereofEarth,norsimilartoanygasesderivedfromrocksorsoilscollectedontheMoon,buttheliberatedgasesfromthemeteoritewereexactlylikewhatthe VikinglandersmeasuredintheatmosphereofMars(BeckerandPepin,1984).

TheshergottitemembersoftheSNCsarebasalticinchemistryandvolcanicintexture, similartosomethingyoumightfindonalavaflowinHawai’i(HartmannandNeukum, 2001),exceptthattheSNCsmostlyrangeinagefrom0.17to1.4Ga,lessthanathird theageofessentiallyallothermeteorites(McSween,1994,2008;Nyquistetal.,2001).This wasakeypieceofevidencealongwiththetrappedgases,becausemostotherpotential sourcesformeteoriteswouldnothavebeenvolcanicallyactiveatthis“recent”timein thehistoryofthesolarsystem.TheSNCsalsolacksomethingpresentinmanyother

FIG.1.8Martianmeteorite.Sawedfaceofabasalticshergottitemeteorite,thefirstmeteoriteidentifiedhaving Martianatmospheretrappedinsidetheglassyportionsofthemeteorite.1cmcube,at lowerleft.Recoveredfrom ElephantMoraineinAntarcticaduringthe1979collectingseason. NASAphotoS80-37631.

commonmeteorites:smallroundfeaturescalled chondrules,amongtheoldestmaterials availablefromtheearlysolarsystem(Norton,2002,pp.166–174).TheuniquetrappedvolatilechemistryconvincedthesciencecommunitythattheSNCsdidcomefromMars,but wedonotknowforsurewhereontheplanettheycamefrom.

PossibleimpactcratersaspotentialsourcesforsomeoftheSNCgrouphavebeenidentifiedusingorbitaldata(e.g., Tornabeneetal.,2006;Werneretal.,2014),butthesedata cannotyetconfirmalinktospecificmeteorites(see Section3.8).The Opportunity rover studiedonerock(BounceRock)thatischemicallyverysimilartothelithologyBpartof EETA79001aswellastoQUE94201,bothcollectedfromAntarctica(Zipfeletal.,2011). Unfortunately,BounceRockisnotinplace(i.e.,itwasejectedfromsomewhereelseon Mars);19-km-diametercraterBopoluis75kmsoutheastofwhereBounceRockwasexamined,butdefinitiveconnectionofBopolupropertiestobothBounceRockandtothe Martianmeteoritessimilartoitremainselusive(Zipfeletal.,2011).

OneSNCisdistinctfromtheothersinthegroupanddeservesbriefdiscussion.ALH 84001isanorthopyroxenitecumulaterock,meaningthatitiscomposedofcrystalsthat accumulatedinamagmabodythatsolidifiedwithinthenear-surfacecrust.Itistheoldest oftheSNCmeteoritesat4.5Ga,makingitasamplefromtheancientMartiancrust (Nyquistetal.,2001).Thisrockgainedworldwidenotorietywiththepublicationofapaper sayingthatthemeteoritecontainedpossiblefossilizedevidenceofmicrobiallifeonMars (McKayetal.,1996).Thisconclusionwascontroversialformanyyears;today,most researchersdonotconsidertheevidencesupportiveofancientMartianlife(Sawyer, 2006;Treiman,2004).Inspiteofthis,carbonateveinsinALH84001,wheretheputative microbialfeatureswerefound,aredefinitiveevidencethatliquidwaterflowedthrough cracksintheancientMartiancrust.

1.7Chronology

Howdoesonedeterminethe“age”ofarock?OnEarth,fossilsintherocksthemselves,as wellasinsurroundingrocklayers,providearobustmeanstoconstraintheageofrocks thatweredepositedsincethetimethatmulticellularlifeformsleftmacroscopicevidence oftheirexistence,butthisisnotpossibleforMartianrocks(asfarasweknow). Relative age canbedeterminedfromhowadjacentrockunitsareincontact;iflocalverticalcanbe establishedforwhentherockswereemplaced,thensuperpositionindicatesyounger rocksontopofolderones;wherefaultsarepresent,crosscuttingrelationshipscanoften bedetermined,revealingarelativeagesequence;erosionaldegradationcanprovidean indicationofhowlongtherockshavebeenexposedtotheerodingenvironment.None oftheserelativeagestellusaboutthe absoluteage,thequantifiedtimesinceformation (inyears).Thenucleusofradioactiveelementsemitsparticleslikeprotonsandneutrons, alteringtheatomicweightandthusthecompositionofthehostatoms,withdifferenttime scalesforthevariousdecaypaths.Precisemeasurementoftheabundanceofparentand offspringmaterialsallowsarocktobedatedthroughthisprocess,somethingcalled geochronology (PressandSiever,1974,pp.68–77).Makinguseofgoodrockagesrequiresthat weknowpreciselywherethesampledrockcamefrom,andsofar,wedonothavethat informationforanyavailableMartiansamples.

Lackingradiometricagesfromwell-documentedsamples,scientistsconstrainagesby countingimpactcratersonplanetarysurfaces;thelongerthesurfacehasbeenexposed, themorecraters(perunitarea)arepresent(Mutchetal.,1976,pp.123–138).Modelsfor therateandsizedistributionofimpactingobjectshittingMarsallowcraterrecordstobe relatedtoabsoluteages(HartmannandNeukum,2001; Neukumetal.,2001),butevenso, suchageswillremain“modelages”untildocumentedsamplesfromMarscancalibrate themodelcrateringcurves.Afirststeptowardthatgoaloccurredwhenthe Curiosity rover useditsmassspectrometertodeterminetheradiometricage(4.21 0.35Ga)ofamudstone(sedimentary)rockthattheroversampledonthefloorofGalecrater(Farley etal.,2014).Martianagescitedthroughoutthisbookshouldbetakenasthebestestimate currentlyavailableuntilmanyradiometricagesfordocumentedMartiansamplescan calibratetheMartiancrateringrecord.

1.8Outlineofthebook

TheremainderofthisbookwillleadthereaderthroughadiscussionofourcurrentunderstandingofthevolcanichistoryofMars.Eachchaptercanstandonitsown,buteach includesmanyreferencestosectionsinotherchapters.Thevolcanoesaredescribedusing aregionalapproachtoplaceindividualvolcanoeswithintheregionalcontextofeachvolcanicprovince;thisapproachdiffersfromamoretraditionaltreatmentofvolcanoesbased onagroupingofconstructtype,buttheuniquesettingofeachMartianvolcanicprovince ledtotheorganizationalplanadoptedhere.Followingarebriefdescriptionsofthesubsequentchapterstoshowthereaderwhereweareheaded:

Chapter2:Areography. ThegeographyofMars(replacing“geo”forEarthwith“areo” forMars),withparticularemphasisondescribingtheregionalsettingforthevolcanic provinces.

Chapter3:TheTharsisProvince. Theprovincecoveringthegreatestareaandhaving thelargestcentralvolcanoes,alongwithmanysmallervolcanicconstructs.

Chapter4:TheElysiumProvince. ThesecondlargestvolcanicprovinceonMars, whichincludessomeconstructssteeperthantheTharsisvolcanoes,andthuslikely withdifferentcompositionoreruptivehistory.

Chapter5:TheCircum-HellasProvince. Theoldestvolcanicprovince,withvolcanoes verydifferentinshape,andthereforeemplacementconditions,fromthosefoundin TharsisandElysium.

Chapter6:TheSyrtisMajor/HighlandsProvince. Oneofthelargestvolcanoesby surfacearea(andintheregionoftheMars2020landingsite),plusisolatedvolcanic ventsscatteredthroughouttheMartianhighlands.

Chapter7:TheMedusaeFossaeformation. Anenormousdepositsubjecttointense winderosion,potentiallyaresultofvoluminouspyroclasticeruptions(althoughthis hypothesisremainsunconfirmed).

Chapter8:IgneousComposition. InformationaboutMartianrocksobtainedfromthe roversandthestudyofMartianmeteorites,withongoingmodelingeffortstoputthis informationintoaglobalcontext.

Chapter9:Volcanic“Cousins.” ComparisonofMartianvolcanoeswithvolcanic featuresobservedonotherplanetsandmoonsthroughoutthesolarsystem.

Chapter10:Thefuture. What’snext?Implicationsofwhatwehavelearnedsofarfor whatweshouldlearninthenearfuturefromvariousmissionstoMars.

References

Bakich,M.E.,2000.TheCambridgePlanetaryHandbook.CambridgeUniversityPress,Cambridge, England,336p.

Banerdt,W.B.,etal.,2020.InitialresultsfromtheInSightmissiontoMars.Nat.Geosci.13,183–189.

Becker,R.H.,Pepin,R.O.,1984.ThecaseforaMartianoriginoftheshergottites:nitrogenandnoblegases inEETA79001.EarthPlanet.Sci.Lett.69(2),225–242.

Beckwith,M.,1970.HawaiianMythology.UniversityofHawaiiPress,Honolulu,HI. Cashman,K.V.,2004.VolcanoesonEarth:ourbasisforunderstandingvolcanism.In:Lopes,R.M.C., Gregg,T.K.P.(Eds.),VolcanicWorlds:ExploringtheSolarSystem’sVolcanoes.SpringerScience&BusinessMedia,pp.5–42.

Farley,K.A.,etal.,2014.InsituradiometricandexposureagedatingoftheMartiansurface.Science 343,1247166. https://doi.org/10.1126/science.1247166. Francis,P.,1993.Volcanoes:APlanetaryPerspective.Clarendon/OxfordUniv.Press,Oxford,UK,443p. Gregg,T.K.P.,2017.Patternsandprocesses:subaeriallavaflowmorphologies:areview.J.Volcanol. Geotherm.Res.342,3–12. https://doi.org/10.1016/j.volgeores.2017.04.022.

Gudmundsson,A.T.,1996.VolcanoesinIceland:10,000YearsofVolcanicHistory.Vaka-Helgafell, Reykjavik,Iceland,136p.

Hamblin,W.K.,Christiansen,E.H.,1998.Earth’sDynamicSystems,8thed.Prentice-Hall,UpperSaddle River,NJ,740p.

Hartmann,W.K.,Neukum,G.,2001.CrateringchronologyandtheevolutionofMars.In:Kallenbach,R., Geiss,J.,Hartmann,W.K.(Eds.),ChronologyandEvolutionofMars,Proc.ISSIWorkshop,10–14April, Bern,Switzerland.SpaceSci.Rev.96,KluwerAcademicPub.,pp.165–194. Lowell,P.,1895.Mars.Houghton,Mifflen,andCo.,NewYork,180p. Macdonald,G.A.,1972.Volcanoes.Prentice-Hall,InglewoodCliffs,NJ,520p.

McKay,D.S.,Gibson,E.K.,Thomas-Keprta,K.L.,Vali,H.,Romanek,C.S.,Clemett,S.J.,Chillier,X.D.F., Maechling,C.R.,Zare,R.N.,1996.SearchforpastlifeonMars:possiblerelicbiogenicactivityinMartianmeteoriteALH84001.Science273(5277),924–930. https://doi.org/10.1126/science.273.5277.924 McLaughlin,D.B.,1955.ChangesonMars,asevidenceofwinddepositionandvolcanism.AstronomicalJ. 261–270.

McSween,H.Y.,1994.WhatwehavelearnedaboutMarsfromSNCmeteorites.Meteoritics29,757–779. McSween,H.Y.,2008.Martianmeteoritesascrustalsamples.In:Bell,J.F.(Ed.),TheMartianSurface:Composition,Mineralogy,andPhysicalProperties.CambridgeUniv.Press,Cambridge,UK,pp.383–395.

Mutch,T.A.,Arvidson,R.E.,Head,J.W.,Jones,K.L.,Saunders,R.S.,1976.TheGeologyofMars.Princeton UniversityPress,Princeton,NJ,400p.

Neukum,G.,Ivanov,B.A.,Hartmann,W.K.,2001.Crateringrecordsintheinnersolarsysteminrelationto thelunarreferencesystem.In:Kallenbach,R.,Geiss,J.,Hartmann,W.K.(Eds.),Chronologyand EvolutionofMars,Proc.ISSIWorkshop,10–14April,Bern,Switzerland.SpaceSci.Rev.96,Kluwer AcademicPub,pp.55–86.

Neumann,G.A.,Zuber,M.T.,Wieczorek,M.A.,McGovern,P.J.,Lemoine,F.G.,Smith,D.E.,2004.Crustal structureofMarsfromgravityandtopography.J.Geophys.Res.Planets109,E08002. https://doi. org/10.1029/2004JR002262

Norton,O.R.,2002.TheCambridgeEncyclopediaofMeteorites.CambridgeUniv. Press,Cambridge, UK,354p.

Nyquist,L.E.,Bogard,D.D.,Shih,C.-Y.,Greshake,A.,Stoffler,E.,Eugster,O.,2001.Agesandgeologic historiesofMartianmeteorites.In:Kallenbach,R.,Geiss,J.,Hartmann,W.K.(Eds.),Chronologyand EvolutionofMars,Proc.ISSIWorkshop10–14April,Bern,Switzerland.SpaceSci.Rev.96,Kluwer AcademicPub,pp.105–164.

Poland,M.P.,2014.ContrastingvolcanisminHawaiiandtheGalapagos.In:Harpp,K.S.,Mittelstaedt,E., d’Ozouville,N.,Graham,D.W.(Eds.),TheGalapagos:ANaturalLaboratoryfortheEarthSciences.AGU GeophysicalMonograph204,Washington,D.C.,pp.5–26.

Press,F.,Siever,R.,1974.Earth.W.H.FreemanandCo,SanFrancisco,CA,945p. Roberts,2018.TheLegendbehindHawaii’sGoddessofFire(posted8-6-18). https://www.robertshawaii. com/blog/legend-behind-hawaiis-goddess-fire/ . Rowland,S.K.,Walker,G.P.L.,1990.PahoehoeandaainHawaii:volumetricflowratecontrolsthelava structure.Bull.Volcanol.52,615–628.

Sawyer,K.,2006.TheRockFromMars:ADetectiveStoryonTwoPlanets.RandomHouse,NewYork,394p. Siebert,L.,Simkin,T.,Kimberly,P.,2010.VolcanoesoftheWorld,3rded.UniversityofCaliforniaPress, Berkeley,CA,551p.

Simkin,T.,Tilling,R.I.,Vogt,P.R.,Kirby,S.H.,Kimberly,P.,Stewart,D.B.,2006.Thisdynamicplanet:world mapofvolcanoes,earthquakes,impactcraters,andplatetectonics.U.S.GeologicalSurveyGeologic InvestigationsSeriesMapI-2800,1two-sidedsheet,scale1:30,000,000.

Sleep,N.H.,1994.Martianplatetectonics.J.Geophys.Res.99,5639–5655.

Tornabene,L.L.,Moersch,J.E.,McSween,H.Y.,McEwen,A.S.,Piatek,J.L.,Milam,K.A.,Christensen,P.R., 2006.Identificationoflarge(2–10km)rayedcratersonMarsinTHEMISthermalinfraredimages: implicationsforpossibleMartianmeteoritesourceregions.J.Geophys.Res.Planets.111,E10006. https://doi.org/10.1029/2005JE002600

Treiman,A.H.,2004.SubmicronmagnetitegrainsandcarboncompoundsinMartianmeteorite ALH84001:inorganic,abioticformationbyshockandthermalmetamorphism.Astrobiology.3(2) https://doi.org/10.1089/153110703769016451

U.S.AirForce,1965.MEC-1Prototype(Marsmap),AeronauticalChartandInformationCenter(available at www.lpi.usra.edu/resources/mars_maps/MEC-1/index.html).

Werner,S.C.,Ody,A.,Poulet,F.,2014.ThesourcecraterofMartianShergottitemeteorites.Science 343(6177),1343–1346. https://doi.org/10.1126/science.1247282 Westervelt,W.D.,1916.Hawaiianlegendsofvolcanoes.ChapterII.HowPelecametoHawaii.EllisPress, Boston,MA,pp.4–13.

Zielinski,G.A.,Mayewski,O.A.,Meekr,L.D.,Whitlow,S.,Twickler,M.S.,1996.Potentialatmosphericimpact oftheTobamega-eruption 71,000yearsago.Geophys.Res.Lett.23(8),837–840.

Zipfel,J.,etal.,2011.BounceRock—ashergottite-likebasaltencounteredatMeridianiPlanum.Mars. MeteoriticsPlanet.Sci.46(1),1–20. https://doi.org/10.1111/j.1945-5100.2010.01127.x.

Zuber,M.T.,2001.ThecrustandmantleofMars.Nature412,220–227.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
The volcanoes of mars james r. zimbelman - Discover the ebook with all chapters in just a few second by Education Libraries - Issuu