The global carbon cycle and climate change: scaling ecological energetics from organism to the biosp

Page 1


https://ebookmass.com/product/the-global-carbon-cycle-andclimate-change-scaling-ecological-energetics-from-organismto-the-biosphere-1st-edition-david-e-reichle/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Carbon Dioxide through the Ages: From wild spirit to climate culprit Han Dolman

https://ebookmass.com/product/carbon-dioxide-through-the-ages-fromwild-spirit-to-climate-culprit-han-dolman/

ebookmass.com

Escaping Nature: How to Survive Global Climate Change Orrin H Pilkey

https://ebookmass.com/product/escaping-nature-how-to-survive-globalclimate-change-orrin-h-pilkey/

ebookmass.com

Climate Change Science: Causes, Effects and Solutions for Global Warming 1st Edition David S-K. Ting (Editor)

https://ebookmass.com/product/climate-change-science-causes-effectsand-solutions-for-global-warming-1st-edition-david-s-k-ting-editor/

ebookmass.com

Inequality in the Developing World Carlos Gradín

https://ebookmass.com/product/inequality-in-the-developing-worldcarlos-gradin/

ebookmass.com

Women of Substance in Homeric Epic: Objects, Gender, Agency Lilah Grace Canevaro

https://ebookmass.com/product/women-of-substance-in-homeric-epicobjects-gender-agency-lilah-grace-canevaro/

ebookmass.com

Transformative Climate Governance: A Capacities Perspective to Systematise, Evaluate and Guide Climate Action 1st ed. Edition Katharina Hölscher

https://ebookmass.com/product/transformative-climate-governance-acapacities-perspective-to-systematise-evaluate-and-guide-climateaction-1st-ed-edition-katharina-holscher/ ebookmass.com

A Game of Malice and Greed Caroline Peckham & Susanne Valenti

https://ebookmass.com/product/a-game-of-malice-and-greed-carolinepeckham-susanne-valenti/

ebookmass.com

Introductory Chemistry: An Atoms First Approach 2nd Edition Julia Burdge

https://ebookmass.com/product/introductory-chemistry-an-atoms-firstapproach-2nd-edition-julia-burdge/

ebookmass.com

American Democracy Now Brigid Callahan Harrison

https://ebookmass.com/product/american-democracy-now-brigid-callahanharrison/

ebookmass.com

Principios

https://ebookmass.com/product/principios-de-neurologia-11th-editionadams-and-victor/

ebookmass.com

TheGlobal CarbonCycleand ClimateChange

ScalingEcologicalEnergeticsfrom OrganismtoBiosphere

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright 2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-820244-9

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionEditor: MarisaLaFleur

EditorialProjectManager: EmeraldLi

ProductionProjectManager: PremKumarKaliamoorthi

CoverDesigner: ChristianBilbow

TypesetbyTNQTechnologies

Listoffigures

Figure3.1 EnergyexchangeoftheEarthandatmosphereforthenorthernhemisphere (100units ¼ 0.485calcm 2 min 1)baseduponasolarconstantvalueof 1.94calcm 2 min 1 17

Figure3.2 Globalmapofglobalhorizontalradiationontheearth’ssurface,kWm 2 19

Figure3.3 Radiationexchangeforaleaf. 19

Figure3.4 Theboundarylayerbetweenaleafanditsenvironment. 25

Figure3.5 TheoakforestofVirelles-Blaimontenergybalancefrom25Mayto24 October,1967(calcm 2). So,extraatmospheresolarradiationona horizontalsurface(shortwaves); aSo,extraatmosphericsolarradiation reflectedbyEarth-atmospheresystem; Soabs,solarradiationabsorbedby atmosphere; S,directsolarradiationonahorizontalsurface; U, extraatmosphericupwardradiation(longwaves); D,diffusescattered radiationonahorizontalsurface(shortwaves); G,globalradiationona horizontalsurface(S þ D)(shortwaves); Te,terrestrialradiation(long waves); A,atmosphericradiation(longwaves); aS,reflectedsolar radiation; aD,reflecteddiffuseradiation, aG,reflectedglobalradiation; aNA,reflectedatmosphericradiation; apG,globalradiationutilizedinnet photosynthesis; Q1,short-waveradiationbalance(G - aG); Q2,long-wave radiationbalance(A - Te); Q,short-andlong-waveradiationbalance (G - aG þ A - aNA - Te); QG,sensibleheatfluxinsoil; QV,sensibleheat fluxinvegetation; K,sensibleheatturbulentflux; V,latentheatin evapotranspiration; QR,latentheatinwatercondensation; Qh,advective sensibleheat; Qprec,sensibleheatfluxinprecipitationwater.Parametersof thestand(perha):biomass,156ton;netprimaryproduction(ground),14.6 ton.Exchangeaerialsurfaces(haha 1):foliage(2faces)oftrees,14;bark oftrees,2;herblayer,2;litter,1.5;totalexchangesurfaces(exceptlitter, 18haha 1).Figuresinbracketsareestimatedvalues(metricton ¼ 106 g).

Figure3.6 Energyexchangeforalizardinitsnaturaldesertenvironment,showingthe energyflowstothedesertsurfaceandtothelizard.

Figure3.7 Core-shell(two-layer)modelforalizardandaschematicrepresentationof thethermalenergyflowswithitsenvironment(Porteretal.,1973).

Figure3.8 Modelpredictedseasonalbehaviorpatternsforthedesertiguana, Diposaurusdorsalis, comparedtobehavioralobservationsshownas solidbars.

Figure4.1 Electromagneticwavelengthdistributionofradiantenergy.

Figure4.2 Schematicofachloroplastfromaplantcell.

Figure4.3 PhotosystemII,thephotolysisofH2O,andPhotosystemI,producerof ATPandNADPH,bothoccurringinthethylakoidmembraneofthe chloroplast.

Figure4.4 TheCalvincycle.Atomsare:black-carbon,white-hydrogen, red-oxygen,pink-phosphorus.

Figure4.5 ADP-ATPcyclefueledbytheglycolysisofaglucosesubstrate.

35

37

39

40

44

46

47

48

50

Figure5.1 Relationshipbetweenenthalpy(H),freeenergy(G),andentropy(S). 56

Figure5.2 Summaryofanaerobicrespiration:themetabolicpathwayofglycolysis. 60

Figure5.3 ThecitricacidorKreb’scycle. 61

Figure5.4 Radioactiveeliminationcurvefortwocryptozoanspecies(Parcoblatta sp , thewoodroach,and Sphaeroderusstenostomus,asnail-feedingcarabid groundbeetle)fedwith 134Csisotope-taggedfood. 70

Figure5.5 Idealizedrelationshipbetweenthemetabolicrateofamouseand environmentaltemperature. BMR,basalmetabolicrate; MR,maximal rate; Tlc,lowercriticaltemperature; Tuc,uppercriticaltemperature; Tb, bodytemperature. 75

Figure5.6 Energyflowinanorganismshowingthecategoriesofenergyallocation andloss. 76

Figure6.1 Chemicalreactionrateplottedagainsttemperature, C,change. 81

Figure6.2 Comparisonofrespirationandphotosynthesiswithtemperature. 82

Figure6.3 Responseofectothermsandendothermstoincreasingtemperature. 83

Figure6.4 Thephenology,leafexpansionandsenescence,andbiomassgrowth componentsofasoybeansimulationmodelinteractdynamicallyand demonstratehoweachareinfluencedbyweathervariables. TDM,Total abovegrounddrymatter, RDM,Belowgrounddrymatter, LDM,Leafdry matter, STDM,Stemdrymatter, SDM,Seeddrymatter, CG,Cropgrowth, SG,SeedGrowth, MG,Relativematuritygroup, StemTerm,Stem terminationtype(IndeterminatevsSemi-determinate), RH,Relative humidity, ET,Referenceevapotranspiration, Irrig.,Irrigation. 90

Figure6.5 Floweringphenophasesinatemperatedeciduousforest. 91

Figure6.6 Phenologicaldegree-daysummationpredictingfloweringfor133species ofvascularplantsinanoak-hickoryforestatOakRidge,Tennessee. 92

Figure7.1 Schemeofmatterand/orenergyflowforafoodchainortrophiclevel.MR, totalmaterialremovedbytheorganismorpopulation;NU,material removed,butnotconsumed;C,consumption;FU,rejecta;F,egesta;U, excreta;A,assimilation;D,digestedenergy/material;P,production;Pg, productionduetobodygrowth;Pr,productionduetoreproduction;R, respiration; DB,changesinmassoftheindividualorpopulation;E, elimination. NomenclatureafterPetrusewiczandMacfadyen,1970. 98

Figure7.2 Thetimedelaysbetweenpeaksofradioactivityconcentrationsintrophic levelsreflectthetemporaldelayinthefluxofenergyalongfoodchains. 99

Figure7.3 Fluctuationofbiomassandnumbersofahypotheticalpopulationintime. Assumptionsare:alifespanof3years,onelitterperyear,maturationin 1year,completionofgrowthofyoungin4months,andastable populationandreproductiveratefromyeartoyear.Theinsertshows partitioningofbiomassfornetproductionperyear.Thenetproduction exceedsthebiomasspeakbecauseoftheproductionofanimalsdyingprior tothetimeofbiomasspeak.BO,biomassofcurrentgeneration;B1,2 n, cumulativebiomassfromearliergenerations;EO,eliminationandMR, materialremovedbypredation.

104

Figure7.4

Foodwebshowingtheinteractionsbetweenorganismsacrosstrophic levelsintheLakeOntarioecosystem.Primaryproducersareoutlinedin green,primaryconsumersinorange,secondaryconsumersinblue,and tertiary(apex)consumersinpurple.Arrowspointfromanorganismthatis consumedtotheorganismthatconsumesit.

Figure7.5 Astylizedtrophiclevelpyramidwiththeareaineachlevelrepresenting biomassorchemicalenergycontent.

105

108

Figure7.6 Ecologicalpyramidscomparingbiomassandenergyfortrophiclevels fromdifferentaquaticecosystems.Notation:C1,primaryconsumer;C2, secondaryconsumer;C3,tertiaryconsumer;P,Producer;S,saprotroph. 109

Figure7.7 Heterotrophbiomassasafunctionofprimaryproductionperunit plantbiomass.Thesixpointsrepresentecosystemtypes:Cs,conespring; Df,deciduousforest;Po0,pond;Sm,saltmarsh;Tu,tundra;Tf,tropical forest. 114

Figure8.1 Oxygenproductionduringthelightbottle:darkbottleexperiment. 125

Figure8.2 Adiagrammaticrepresentationofthepathwaysofenergyandcarbonflux inafreshwaterecosystem:SilverSprings,Florida.Carbonvaluesgivenin Table8.1.

Figure8.3 Conceptualrepresentationsofstreamspiralinganduptakelength affectingcarbonmetabolisminflowingwaters.

Figure8.4 Thebiogeochemicalcycleofcarbonintheoceanecosystem.

Figure8.5 ThecarboncycleinamesicdeciduousforestinTennessee.Trees,leftto right,representunderstory,dominant Liriodendrontulipifera,andallother overstorytrees.Decomposersareseparatedbysurfacelitterandsoilzones. Heterotrophsareinvertebratesonlyforbothherbivoresandcarnivores; valuesdonotincludevertebrates.AllvaluesareingCm 2 forbiomass (boxes,upperleftstandingcrop;lowerright,annualincrement)andingC m 2 yr 1 forfluxes(arrows).

Figure8.6 Approximateturnovertimesinyearsrepresentativeforcarbonin majorworldecosystemtypes:vegetationingreenandsoils/sedimentsin brown,approximateaveragetimesinyearsderivedfromthesources below.

131

134

137

141

153

Figure9.1 Theglobaldistributionofbiomes,or“ecofloristiczones”mappedbythe UnitedNationsFoodandAgriculturalOrganization.Source:Rueschand Gibbs,2008. 159

Figure9.2 Ecofloristiczones(biomes)asdeterminedbymeanannualtemperature andannualprecipitation. 160

Figure9.3 IPCCTier-1GlobalBiomassCarbonMap(aboveandbelow-ground)for theYear2000inmetrictonscarbonperhectare(100gm 2). 174

Figure9.4 Patternsofoceancirculation.

Figure10.1 Thenaturalglobalcycleofcarbonshowingthemajorreservoirs(pools) andpathways(fluxes)ofcarbonflowinthebiosphere,asillustratedin thestructureofanearly,multidimensionalboxmodel.

Figure10.2 InterannualfluctuationsinatmosphericCO2concentrationsreveal the“breathing”ofthebiosphereacrosstheseasonsoftheyear.

177

185

186

Figure10.3 Contoursofsoilcarbon(kgCm 2)plottedonaHoldridge(1967) life-zonechart. 201

Figure10.4 Acompartmentmodeloftheglobalcarboncyclewithcouplingstoother elements.Themodelconstructincorporatesrapidecologicalprocesses(A) withslowgeologicprocesses(B)averagedoverthelatterportionofpostCambriantime.(A)LandscapesisearlyHolocene(recent)timehad approximatelyequalquantitiesofrapidlycycling(mostlyphotosynthetic) tissuefromwoodyandnonwoodypartsofplants.Thelatterprobablywere ofnegligiblemassbeforethelateSilurianPeriodabout400millionyears ago.EstimatedvaluesanduncertaintiesaregiveninTable10.7.(B) Summaryofoceanicandlithosphericcycles.Note:1molcarbon dioxide ¼ 12gcarbon. 202

Figure11.1 GlobalatmosphericCO2 versusMaunaLoaCO2.MeasurementsatMauna Loareflecttheglobalaveragederivedfrommanyworldwidemonitoring stations. 212

Figure11.2 AtmosphericCO2 levels(partspermillion,ppm)overthepast10,000 years.BluelinefromTaylorDome,Antarcticaicecores.Greenline fromLawDome,Antarcticaicecores.Redlinefromdirectatmospheric measurementsatMaunaLoa,Hawaii. 213

Figure11.3 GlobalsatellitemeasurementsofatmosphericCO2 concentrationsinJuly 2008fromtheNASAAtmosphericInfraredSounder(AIRS)ontheAqua satellite. 214

Figure11.4 TheGreenhouseEffect. 215

Figure11.5 ComparisonofglobaltemperatureandatmosphericCO2 concentrations from1880to2010,withtemperaturedeviationsfromhistoricnorms. 216

Figure11.6 Anestimatein1990ofworldwidegreenhousegasemissions.Valuesare 1012 gCO2-eq.

Figure11.7 Fossilfuelconsumptionbytheworld.

218

223

Figure11.8 Breakdownofannualworldwidegreenhousegasemissionsbyindustrial sectorin2010.Valuesare1012 gCO2-eq. 223

Figure11.9 Theworld’scarboncycleatthebeginningofthe21stcenturyasinfluenced byhumanactivities,showinghowcarbonatomsflowbetweenvarious reservoirsintheEarthsystem.ReservoirsizesareinGt(1015 g)C;fluxes areinGtCyr 1.Therednumbersandarrowsshowtheadditionalfluxes andreservoirchangescausedbyhumans,suchastheburningoffossil fuelsandlandusechanges,averagedover2000 2009.

228

Figure11.10 TheairborneCO2 fractionshowingglobalcarbondioxideemissions (asgigatonsofcarbonwithoutoxygenmolecularweightadded)from1960 through2012,andtheamountofemittedCO2 thathasremainedinthe atmosphere.

Figure11.11 Thebiologicalpumpofcarbonintheocean.

Figure11.12 FutureatmosphericCO2 levelsasprojectedforthefourRCPemission scenarios(IPCCSRESReport,2007).Allforcingagents’atmospheric CO2-equivalentconcentrations(inparts-per-million-by-volume(ppmv)) accordingtofourRCPs.

Figure11.13 Radiative-forcingcomponentsusedbytheIPCCin2007inthecalculation ofclimateoutcomesfromfourdifferentrepresentativeconcentration pathways(RCPs)dependentuponpossiblefuturelevelsofgreenhousegas emissions.

Figure11.14 The10hottestyearsglobally.

Figure11.15 Despitetechnologicalimprovementsthatincreasecornyields,extreme weathereventshavecausedsignificantyieldreductionsinsomeyears.

Figure12.1 Schematicdiagramillustratingcurrentand/orprojectedimpactsofclimate changesonmajorcomponentsofmarineandcoastalecosystems.

Figure12.2 Pastandfutureoceanheatcontentchanges(OHC).Annualobservational OHCchangesareconsistentwitheachotherandconsistentwiththe ensemblemeansoftheCMIP5models(Tayloretal.,2012)forhistorical simulationspre-2005andprojectionsfrom2005to2017,giving confidenceinfutureprojectionsto2100(RCP2.6andRCP8.5)(seethe supplementarymaterials).ThemeanprojectedOHCchangesandtheir 90%confidenceintervalsbetween2081and2100areshowninbarsatthe right.TheinsetdepictsthedetailedOHCchangesafterJanuary1990, usingthemonthlyOHCchangesupdatedtoSeptember2018(Chengetal., 2017),alongwiththeotherannualobservedvaluessuperposed.

Figure12.3 Worldwidegreenhousegasemissionin2005.

Figure12.4 Carbonflowsintheenergysystemandsourcesofemissionsinthe UnitedStatesin1995inmillionsofmetrictons(1012 gC).

Figure12.5 Carbonintensityofelectricity:historyandforwardtrendsnecessary toreachazero-carbonelectricitygridbymid-century.

Figure12.6 Theworld’seconomiesvaryconsiderablyinhowefficientlytheir GDPsutilizecarbon-basedfuels.

231

236

237

238

241

245

254

256

260

265

282

283

Listoftables

Table2.1 Unitsofmeasureforenergyinitsvariousformsandtransformations. 6

Table3.1 Transmission(langleysmin 1)ofdirectsolarradiationthroughacanopyof redpineplantation. 20

Table3.2 Totalemissivity, ε,allwavelengthsandshort-waveabsorptivityofcommon bodiesoccurringinthenaturalenvironment(HandbookofChemistryand Physics). 23

Table3.3 Typicalalbedovaluesforenvironmentalsurfacesonearth. 24

Table3.4 Typicalthermalconductivitiesofenvironmentalmedia,biological constituents,andotherreferencematerialsatordinarytemperatures.

Table3.5 Convectioncoefficients(calcm 2 min 1oC)forfreeconvectioninlaminar flow. DTisthetemperaturedifferencein oCbetweenthesurfaceoftheobject andthesurroundingair.Listhedimensionoftheplateinthedirectionof flow.

Table3.6 Ratesofheattransfer(cal cm 2min 1)forforcedconvectionacrossaflat plateasamodelforaplantleafintheenvironment.Values (cal cm 2min 1)areafunctionofthetemperaturedifferentialbetween surfaceandair,dimensionofthesurface,andwindspeed.

Table4.1 Theenergyvalueofdifferentwavelengthsofsolarradiation.

Table4.2 Efficienciesofphotosyntheticradiantenergyconversionintobiomassby plants.

Table5.1 Summaryofaerobicrespiration:TheefficiencyofATPproductionby glycolysis.

Table5.2 Thermalequivalents(kcalL 1)fordifferentcompounds.

Table5.3 HeatsofcombustiontoH2O(L)andCO2 (g)at25 Candconstantpressure.

Table5.4 Energyvaluesforplantpartsandanimaltaxa.

Table5.5 Foodassimilationfordifferentfoodsandbydifferenttrophiclevel consumersreportedinthescientificliterature.

Table5.6 Valuesforthebodyweightexponentialfunction,b,fordifferentanimal types.

Table5.7 Therelationshipbetweenfoodenergyandheatproduction,thecalorigenic effectorspecificdynamicaction(SDA),inadogfed100kcalday-1 of leanmeat(protein)[columns1-4],comparedwiththefoodenergyandheat productionequivalentstobeobtainedfromapurefat[columns5-6]or carbohydrate[columns7-8]diet.

Table5.8 Comparisonofdietaryenergyutilizationinthedomesticpigandcow(values are%foodenergyingested).

Table5.9 Rateofproductionandproductionefficiencyinrelationtodietaryenergy intakeinfarmedanimals.

25

26

27

45

53

62

64

66

68

69

72

73

77

78

Table6.1 Thedevelopmenttimeofseaurchineggsasafunctionoftemperature demonstrateshowenergy(heat)affectsbiologicalprocesses,andhow acclimationtowarmersummertemperatures,orcoolerwintertemperatures, affectsdevelopment.NaturalpopulationsofParacentrotuslividusrange between13 C 28 C. 85

Table6.2 Someexamplesofadaptivestrategiesofplantsandanimalstotheirenergy environment. 86

Table6.3 Someaspectsofanenergybudgetforhummingbirds.

Table7.1 Comparisonofproductivitybetweenmouse,deer,andelephant.

Table7.2 Ecologicalenergeticefficiencies.

Table7.3 Valuesreportedforecologicalenergeticefficienciesfordifferenttrophic levels.

88

104

110

112

Table7.4 Calculatedingestion,production,respiration,andegestionbyheterotrophsin agrasslandecosysteminkcalm 2 yr 1 per100kcalm 1 yr 1 netannual primaryproduction. 113

Table7.5 Ecologicalenergeticefficienciesforthreedifferentecosystems (calcm 2 yr 1).

Table8.1 Comparisonofthecarbonbudgetsoffiveaquaticecosystems:SpartinaSalt Marsh,GA(Teal,1962);SilverSprings,FL(Odum,1957);oligotrophic LakeEckarfjarden,Sweden(AnderssonandKumblad,2006);Lake Washington,WA(Eggersetal.,1978);eutrophicLakeLawrence,MI (WetzelandRich,1973).Unitsare:fluxesinkgCm 2 yr 1,standingcropin kgCm 1).

Table8.2 MeanvaluesandrangesforGPP,RE,andNEPforaquaticecosystemsValues aregO2 m 2 day 1).

Table8.3 Comparisonofthecarbonbudgetsofeightterrestrialecosystems:Spruce Forest,Sweden(Karlbergetal.,2007);MesicTulipPoplarforest,TN (Reichleetal.,1973);Oak-Pineforest,NY(WoodwellandBotkin,1970); TropicalRainForest,Thailand(Tanetal.,2010);ShortgrassPrairie,CO (Andrewsetal.,1974);Tundra(afterReichle,1975);Agricultural ecosystemsvaluesfromL.Ryszkowski(Reichle,1981).Unitsare:fluxesin kgCm 2 yr 1,standingcropinkgCm 2).

Table8.4 Comparativemetabolicparametersforsixdifferentforestecosystems.All valuesabovethedottedlineareinkgCm 2 andkgCm 2 yr 1;values belowthedottedlinearedimensionlessindices.

116

132

142

143

147

Table8.5 Comparisoncarbonfluxesoffiveforestecosystemusingeddycovariance: WB¼WalkerBranch;TN,MMSF ¼ MorganMonroeStateForest,IN; HF¼HarvardForest,MA;UMBS¼UniversityofMichiganBiological Station,MI;WC¼WillowCreek,WI.Unitsare:fluxesinkgCm 2 yr 1 , standingcropinkgCm 2 . 150

Table9.1 Conversionfactorsofunitsofmeasureformassandenergyvalues. 159

Table9.2 Summaryofglobalarea,annualnetprimaryproduction(NPP),plantcarbon content,andsoilcarboncontentinbroadlycategorizedterrestrial ecosystems. 162

Table9.3 Primaryproductionandbiomassestimatesforthebiosphere. 164

Table9.4 Netprimaryproductivityintheocean. 167

Table9.5 Secondaryproduction(NSP)byconsumersindifferentecosystems.Values areforspecificconsumergroups,exceptwhereindicatedby “A” ¼ productivityfortheentireanimaltrophiclevel. 170

Table9.6 Variousestimatesoftotalglobalproductionincarbonandenergyunits. 172

Table9.7 Rankingofthenetprimaryproductivityofthebiomesbaseduponthevalues reportedbythereferencescitedinChapter8andTables9.2and9.3. 173

Table9.8 Biomassofecosystemsofthemainbiomeseachwithdistinctvegetative structure.Metrictonha 1 (¼ 102 gm 2).

176

Table10.1 Values,anduncertaintiesofparameters,intheglobalcarboncycle. 189

Table10.2 Unitsofmeasurefortheglobalcarboncycle. 191

Table10.3 Atmosphericcarbondioxidefluxes(GtCyr 1 or1015 gCyr 1).Errors represent standarddeviationofuncertaintyestimatesandnotinterannual variabilitywhichislarger.Theatmosphericincrease(firstline)resultsfrom fluxestoandfromtheatmosphere:positivefluxesareinputstothe atmosphere(emissions);negativefluxesarelossesfromtheatmosphere (sinks);andnumbersinparenthesesareranges.Notethatthetotalsinkof anthropogenicCO2 iswellconstrained.Thus,theocean-to-atmosphereand land-to-atmospherefluxesarenegativelycorrelated:ifoneislargertheother mustbesmallertomatchthetotalsink,andviceversa. 194

Table10.4 Estimatedoceaniccarbonpools. 195

Table10.5 Carboninmajorpoolsofthebiosphere.Contemporaryestimatesusing Whittaker&Likens,1973andIPCC2014inparentheses.Percentagesof totalcarbonpools(columns2and3)arebaseduponReiner’s1973 calculationusingBolin’s1970values.

Table10.6 Carbonbalanceinterrestrialdetritusbybiome(Schlesinger,1979).

198

200

Table10.7 Simplifiedglobalcarboninventoryandbudgetestimatesforrecent,early Holocenetimes.Valueshereare1015 gCyr 1 203

Table11.1 Internetsourcesofdatarelativetotheissueofclimatechange. 211

Table11.2 Methanesourcesandsinks,bothnaturalandanthropogenic(Schlesinger, 1997;afterPratheretal.,1995).Unitsare1012 gCH4 yr 1 219

Table11.3 Warmingincreases( C)projectedbytheradiativeforcingfunctionsresulting fromdifferentassumptionsofGHGemissionscenarios.

242

Table11.4 EstimatedglobalNPPbyterrestrialecosystems. 242

Table11.5 Futuresealevelrise(inmeters)projectedfromdifferentradiativeforcing functionscenariosfromassumptionsofdifferentGHGemissions. 248

Table12.1 Historicaltimelineofmilestonesinestablishinginternationalclimatepolicy. 261

Table12.2 CumulativeCO2 emissionslimitsfroma2011emissionsbaselinenecessary tolimitglobalwarmingto <1.5 Cand <2 C,withassociatedprobabilities. 263

Table12.3 Thelifecyclecarbonintensityofelectricitysources:greenhousegas emissionsperkilowatt. 266

Table12.4 Thepotentialofdifferentterrestrialbiomestosequestercarbonthatmightbe sustainedovera25 50yearperiod. 270

Table12.5 Relativeconcentrationpathways(RCPs)withpathwaydescriptionsand integratedassessmentmodelsusedbyIPCCfortheyear2100. 277

Table12.6 Futuresealevelrise(inmeters)projectedfromdifferentradiativeforcing functionscenariosfromassumptionsofdifferentGHGemissions. 279

Table12.7 Projectedannualeconomicdamageestimates(in2015$)intheUnitedStates by2090. 280

Table12.8 Estimatedglobalmacro-economiccostsin2030relativetothebaselinefor least-costtrajectoriestowarddifferent,long-termstabilizationlevels. 281

AuthorBio

DavidE.Reichle wastheAssociateLaboratoryDirectoroftheOakRidgeNationalLaboratoryforEnvironmental,Life,andSocial Sciences,andtheformerDirectorofits EnvironmentalSciencesDivision.Hewasalso anadjunctProfessorofEcologyattheUniversityofTennessee.Hehasauthoredover 100scientificarticlesonradionuclidesinthe environmentandthemetabolismofecosystems,editedfourbooksonproductivityand carbonmetabolismofecosystems,andled developmentofseveralseminalgovernment reportsongreenhousegasreductiontechnologiesandcarbonsequestration.Hehasserved onmanyscientificadvisoryboardsfortheDepartmentofEnergy,theNational ScienceFoundation,theEnvironmentalProtectionAgency,theNational AcademyofSciences,andotheracademicinstitutionsandbusinessorganizations.HeisafellowoftheAmericanAssociationfortheAdvancementof ScienceandrecipientoftheScientificAchievementAwardfromtheInternationalUnionofForestResearchOrganizations,aDistinguishedService AwardfromtheU.S.DepartmentofEnergy,andtheMuskingumUniversity DistinguishedAlumniServiceAward.Healsoservedonthenationalboardof governorsoftheNatureConservancyandasChairmanofTNC’sTennessee statechapter.

Foreword

Bioenergeticshaslongbeenasubjectofresearchinanimalhusbandryand ecologicalresearch,whereitservedasanorganizingprincipleinearly ecosystemresearch(Odum,1959).Themetabolismofecosystemsand ecologicalenergeticsaresubjectareasthatIalwaysfoundtobefascinating, andonesthatwereresearchedintenselyattheOakRidgeNationalLaboratory (ORNL),inOakRidgeTennessee.IwasrecruitedtoORNLasanewPhD fromNorthwesternUniversityin1964tostudythebehaviorofradionuclides infoodchains uptake,bioaccumulation,andpotentialpathwaysleadingto humanexposure.Mypostdoctoralfellowshipwassponsoredbywhatwasthen theUSAtomicEnergyCommission(nowtheUSDepartmentofEnergy).One ofthelittle-knownfactsinthehistoryofAmericanscienceisthattheAEC wasthefirstsignificantsponsorofmodernecologicalresearchintheUnited States,thisroleonlyseveraldecadeslaterbeingassumedbytheNational ScienceFoundation(Egerton,2017).TheManhattanProject’s1943Clinton Laboratories,managedbytheUniversityofChicago’sMetallurgicalLaboratory,wasthepredecessorofORNL;UnionCarbideCorporationassumedresponsibilitiesin1947.BythetimethatIhadarrived,WWIIwasoverand researchhadshiftedtothepeacefulusesofatomicenergy.Myjobtitlewas “biophysicist”intheRadiationEcologySectionoftheHealthPhysicsDivision;theSectionwaslatertobecometheinternationallyrenownedEcological SciencesDivisionatORNL(Auerbach,1993).Ourresearchteam’sscope quicklygrewfromexaminingthefateandeffectsofradionuclidesinfood chainsleadingtohumanstostudyingthenaturalbiogeochemicalcyclesthat governedthemovementofradionuclidesintheenvironment allofwhich wereultimatelyregulatedbythemetabolismofecosystems.

Fewinthescientificcommunity,muchlessinthegeneralpublic,knew whatecologywaswhentheUSAtomicEnergyCommissionbeganits ecologicalresearchprogramsintheearly1950s(ReichleandAuerbach, 2003).Theseprograms,whichantedatedmajorsupportforecosystemresearch bytheNationalScienceFoundationbyseveraldecades,werethefoundation formodernecosystemresearchintheUnitedStates(Coleman,2010).Since ecologistsatORNLhadbeenresearchingecosystemcarbonmetabolism,we becametheUSR&Dcenterforforestecologyandecosystemmodelingwhen USparticipation(1964 74)beganintheInternationalBiologicalProgram (Smith,1968;NAS,2019).Internationalcollaborationcontinuedformany yearsthereafter,andresultsofresearchonthedeciduousforestbiome

culminatedwithpublicationof DynamicPropertiesofForestEcosystems (Reichle,1981).Thisresearchexperiencewasanimportantreasonwhythe AEC’ssuccessor,theEnergyResearchandDevelopmentAdministration,and latertheUSDepartmentofEnergy(DOE),becamealeadingUSagency studyingtheglobalcarboncycle.

ThemissionofDOEanditsnationallaboratorieswastopromotethesafe developmentofallenergytechnologies.Boththescientificexperiencegained fromstudyingthecarbonmetabolismofecosystems(ReichleandAuerbach, 1972)andthedevelopmentofclimatemodelstofollowglobalfalloutfrom weaponstestingandtheconcernabouta“nuclearwinter”fromnuclear weaponsdeployment,thenationallaboratoriesbecameearlyleadersinclimate changeresearch.Thescientificexperiencegainedinearlyenvironmental studiesofthenuclearindustrycamefullcircleinthe1980stoexaminethe environmentalconsequencesofafossilfuel basedenergyeconomy.

Ecologicalenergeticsisthestudyofthemetabolismofplants,animals, microbes,andecosystems.Knowledgeaboutthefunctioningofecological systemsisnecessaryforourunderstandingofthemetabolismofthebiosphere, essentialinadressinghuman-inducedclimatechange,andquitepossibly criticaltoprotectingourglobalenvironment.Thisbookistheproductofa courseinecologicalenergeticsthatIofferedintheearly1970sinthethen GraduatePrograminEcologyattheUniversityofTennessee.Ihadintended thesyllabustobethebasisforatextbookinbioenergetics,butsomehownever foundthetimetowritethebook.Now45yearslaterinretirement,Ihavethe time,thefieldofecologyhasmatured,andbioenergetics,whileaninteresting chapterinbasicecologytextsofthe1950 70s,hasnowassumednewsocietal relevance.Ecologicalenergeticsisthefoundationforbothunderstandingthe metabolismofthebiosphereandalsothebasisforaddressingthepotential futureenvironmentalimpactsofclimatechange.

Thisbookisajourneyintime,scale,andcomplexity.Itwillbeajourney followingthefluxofsolarenergyfromthesun,andcarbonfromtheatmosphere,throughthelivingsystemsonearth.Itwillbeajourneyinscale from milligramstogigatons,fromsecondstoyears,fromsquarecentimetersto hectares,andfromthecelltothebiosphere.Thisjourneyhasruleswhichwill governourpassage theprinciplesofthermodynamics,biochemistry, physiology,andecology.Letusbegin.

SUGGESTEDREADING

Coleman,D.C.,2010.BigEcology:TheEmergenceofEcosystemScience.Univ.Calif.Press, Berkeley-LosAngeles-London,p.236. https://epdf.pub/big-ecology-the-emergence-ofecosystem-science.html

Egerton,F.N.,2017.HistoryofEcologicalSciences,Part59:Niches,Biomes,Ecosystems, andSystems. https://www.researchgate.net/publication/320227603_History_of_Ecological_ Sciences_Part_59_Niches_Biomes_Ecosystems_and_Systems/.

Foreword xxv

Odum,E.P.,1959.FundamentalsofEcology,2ndEd.W.B.SandersCo.,PhiladelphiaandLondon, p.546.

Reichle,D.E.,Auerbach,S.I.,2003.U.S.RadioecologicLResearchProgramsoftheAtomic EnergyCommissioninthe1950s.ORNL/TM-2003/280.OakRidgeNationalLaboratory,Oak Ridge,TN. http://www.osti.gov/bridge/.

Smith,F.E.,1968.Theinternationalbiologicalprogramandthescienceofecology.Proc.Nat’l Acad.Sci.USA60(1),5 11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC539127/

Acknowledgments

Mycareerinecologyhasbeenstimulatedbyalargenumberofindividuals:my graduateschoolprofessor,OrlandoParkofNorthwesternUniversity,oneof theauthorsof“TheGreatApes,”Alee,EmersonPark,Park,andSchmidt’s PrinciplesofAnimalEcology(1949), oneofthefirstandperhapsbestecology textsfromthe“ChicagoSchool”ofecology;StanleyAuerbach,founderofthe EcologicalSciencesDivision(ESD)attheOakRidgeNationalLaboratory (ORNL),andmentorsandcolleaguesinESD:DacCrossley,JerryOlson, GeorgeVanDyne,FrankHarris;earlyleadersinecologicalenergetics: HowardOdum,GeneOdum,GeorgeWoodwell,BobWhittaker,DickWiegert, DavidGates,JerryFranklin;EuropeanecologistsJohnPhillipson,Amian Macfadyen,JohnSatchel,KasimierzPetrusewicz,LechRyszkowski,Paul Duvigneaud,andHelmutLiethinfluencedmeprofoundly,bothpersonallyand throughtheirseminalpublications.Thebookhasitsorigininacoursein ecologicalenergeticsthatIofferedintheGraduatePrograminEcologyatthe UniversityofTennessee,decadesofresearchatORNL,andhasbeennurtured throughtheencouragementandpatienceofmywife,Donna.BrendaWyatt providedinvaluabletechnicalrecordsassistance,andIamgratefultoORNL forprovidingaccesstoITlibraryresources.

Anintroductiontoecological energeticsandtheglobal carboncycle

1.1RecommendedReading 3

EnergyisessentialforlifeonEarth.Anorganismwithapositiveenergy balanceisgenerallyasuccessfulorganisminnature.Organismsandecosystemshave,consequently,evolvedashighlyefficientthermodynamicsystems. Bioenergeticsdealswiththeenergyrequirementsandtheprocessingofenergy byorganisms.Thetermismostoftenusedinreferencetoanimals,butalso appliestoplants.Plantshaveevolvedtheuniquephotosyntheticprocess,using sunlighttosplitwatermoleculesandmanufactureorganiccarbonmolecules fromatmosphericCO2, thusconvertingradiantenergyintochemicalenergyto supporttheirmetabolicrequirements.Inanimalsystemsbioenergeticsencompassestheprocurementofthechemicalenergyinfood,thedigestionof food,subsequentmetabolism,andtheeventualenergyexpendituresrequired forlivingandreproducing.Bioenergeticsinvolves,therefore,manyaspectsof theorganism’sphysiology,thermalrelationships,andbehavior,andbecomes verycomplexandcomplicatedtoquantify.Bioenergeticshasbecomeavery sophisticatedtoolinanimalhusbandry,foritdealswiththeefficiencyby whichanimalproteincanbeproducedeconomically.Bythe1960s,bioenergeticsasappliedtofree-livinganimalshadbifurcatedintotwofieldsof study,oneapproachemphasizingbehavioralbiologywheretheanimal’sactivitypatternswerestudiedinrelationtoitsenergybalancewithitsenvironment,andanotherphysiologicalapproachdealingwiththemetabolismofthe free-livingorganism.Inactualityboththeseapproachesarenecessarytounderstandthethermodynamicsoforganismsinnature(Reichleetal.,1975).

Bythe1970sthegrowingfieldofecologybegantoutilizebioenergeticsto understandthefunctioningofentireecosystems.Thus,thestudyofecological, orecosystem,energeticsdeveloped.Ecosystemenergeticsaddressestheenergybalanceoftheentireecosystemandallitstrophiclevels.Itconsistsofthe ecosystem’smetabolism itsprimaryproductivity,trophiclevelexchanges,

turnoveranddecompositionofdetritus,growth,andreproduction.Sincebiologicallyutilizedenergyistheenergystoredincarbonmolecules,ecosystem metabolismnecessarilydealswiththecarbonbalanceoftheentireecosystem (Lindeman,1942;Odum,1957;Smalley,1960;Teal,1962;Macfadyen,1964; Phillipson,1966;WoodwellandBotkin,1970;Reichleetal.,1973).Besides plantphotosynthesisandtrophiclevelenergetics,understandingthecarbon metabolismoftheentireecosystem,aboveandbelowground,includesdeath anddecompositiontocompletetheecosystem’scarbonbalance(netecosystem production)withtheenvironment.Thisacademicallyintriguingsubjectsuddenlytookontremendoussocietalrelevancebeginninginthe1980s,withthe growingconcernoverthecombustionoffossilfuelsandtheresultingCO2 emissionstotheatmosphere,leadingtothegreenhouseeffectandglobal warming.

Whatdidweknowabouttheglobalcycleofcarbon?And,whendidwe knowit(Rich,2018)?Ecosystemcarbonbalancesfordifferenttypesofecosystems,whenusedwiththegeographicdistributionofecosystemtypes,or biomes,formedthebasisforearlyglobalcarbonbalancecalculations(Craig, 1957;RevelleandSuess,1957;Bolin,1970).Asthemodelingofecosystem bioenergeticsadvanced,itbecamepossibletoconstructdynamicglobalcarbon modelsofthebiosphere,whichwerefunctionallybasedandcould,consequently,permitquestionstobeaskedaboutthebiosphere’sresponseto changingatmosphericCO2 levelsorrisingtemperaturesorchanginglanduse coverorfeedbackloopssuchasoxidationofArctictundra,glacialmelting, oceanoutgassing,etc(Trabalka,1985;TrabalkaandReichle,1986).These questionsremainverypertinentandcentraltothedebatetodayontheconsequencesofclimatechange.

ThistextbeginswithanintroductiontoecologicalenergeticsinChapter1. Chapter2definesenergyterms,introducesthephysicallawsofenergy,and discusseshowthebasicprinciplesofthermodynamicsgovernbiologicalas wellasphysicalsystems.Chapter3isaprimeronenergyrelationshipsbetweenorganismsandtheenvironment.Chapter4coversthebiologicalenergy transformationsofphotosynthesisandenergyconversionefficiencies.In Chapter5theenergyprocessingbyanimals,theirmetabolism,andenergy budgetsareexamined.Chapter6examineshowspeciesadaptthermallyto theirenvironments.Chapter7addressestheenergyexchangebetweenplants andanimals,ecologicalenergetics,foodchains,andthetrophiclevelconcept. TheninChapter8,thecomplexitiesofenergyflowinecosystemsarecovered. Subsequently,Chapter9examinestheconceptofecosystemproductivity;and theninChapter10theglobalcarboncycleandthebiospherearereviewed. Chapter11examineshowtheanthropogenicemissionsofCO2 andlanduse changehavealteredthenaturalglobalcarboncycleandhaveinfluenced climatechange.Ultimately,humankindwillhavepolicydecisionstomake aboutfossilenergyusetoavoidthenegativeclimaticconsequencesofhaving changedthebiosphere’scarboncycle(Chapter12). 2 TheGlobalCarbonCycleandClimateChange

Anintroductiontoecologicalenergetics Chapter|1 3

Beforecontinuing,Ineedtomakeseveralbriefcommentsaboutreferences. Muchoftheecologicalenergeticsandproductivitydatafromthedecadesofthe mid-1960stothemid-1980s,particularlyduringtheInternationalBiological Program,arecontainedintheproceedingsofinternationalconferences,which arenownearlyinaccessibletomany.Ihaveidentifiedthesepublicationsand extractedpertinentinformationfromthesesourcessothatitcanremaininthe mainstreamofscientificliterature.Secondly,Ihavesoughtpermissionto reproduceselectgraphsandillustrationscontainedinbenchmarkpublications undercopyrightbypublishersofbooksandscientificjournals,sothattheyare availabletothosewithouttheprivilegesofaccesstothesesourcesthrough institutionallibraryITagreements.Andlastly,whenpossible,Ihavereferenced keydatawhenevertheywerepublishedingovernment-sponsoredsymposiaand reports;andsincetheyareinthepublicdomain,Ihaveprovidedtheirurlsfor convenient,directITaccessbythereader.

1.1RecommendedReading

Bolin,B.,Degens,E.T.,Kempe,S.,Ketner,P.(Eds.),1979.TheGlobalCarbonCycle.SCOPE,13. JohnWileyandSons,NewYork,p.491. https://www.researchgate.net/publication/40170880_ The_Global_Carbon_Cycle_SCOPE_Report_13/

Odum,H.T.,1957.TrophicstructureandproductivityofSilverSprings,Florida.Ecol.Monogr.25, 55 112. https://doi.org/10.2307/1948571.

Phillipson,J.,1966.Ecologicalenergetics.St.Martin’sPress,NewYork,p.57. https://www. worldcat.org/title/ecological-energetics/oclc/220312888/.

Reichle,D.E.,O’Neill,R.V.,Harris,W.F.,1975.PrinciplesofEnergyandMaterialExchangein Ecosystems.In:W.H.vanDobbenandR.H.Lowe-McConnell(Ed.),UnifyingConceptsin Ecology.W.JunkPub,TheHague,pp.27 43,302pp. https://link.springer.com/chapter/10. 1007/978-94-010-1954-5_3/

Chapter2

Thephysicalandchemical basesofenergy

2.1Energy,work,andpower

CaloriesandJoules

2.2Thedifferentformsofenergy

Chemicalenergy

Radiantenergy

Heatenergy

2.3TheLawsofThermodynamics

TheFirstLawofThermodynamics

Work

Enthalpy

TheSecondLawofThermodynamics

Entropy

2.4Gaiahypothesis

2.5Carbonandenergy

Theformsofcarbon

Measuresofcarbon

Carbonchemistry

2.6Recommendedreading

Thereisnobetterwaytobeginthestudyofecologicalenergeticsthanby startingwithanunderstandingofthepertinentdefinitionsandterminologyof physicsandphysicalchemistry.Learnthisterminologyearly,become comfortablewiththeunitsofmeasure,knowthebasicconcepts,andbioenergeticswillcomealoteasier.

2.1Energy,work,andpower

Energyisthecapacitytodowork.Theunitofmeasureforenergyistheerg, whichistheworkperformedwhenaforceofonedyneactsthroughadistance ofonecentimeter.Theunitofforce,thedyne,yieldstoamassofonegramthe accelerationofonecentimeterpersecond(cms 1).Sinceanergofenergyis suchasmallquantity,alargerunit,thejoule,whichisequalto107 ergs,becomesamoreconvenientunitofmeasure.Aunitofheatusedfrequentlyin

physicalchemistryisthecalorie(¼ 4.184J).Thecalorieistheheatenergy requiredtoraisethetemperatureofonegramofwaterfrom14.5 oCto15.5oC. Thecalorieisdefinedasbeingequalto4.1840absolutejoules.Thecalorieisa relativelysmallunitofmeasure,andformostchemicalandbiologicalcalculationsthekilocalorie(103 calories)isused.Thekilocalorie(kcal)istheunit whichistypicallyusedindiscussingdietaryintakeandisoftenwrittenas Calorie.ACalorieequals103 calories,orakcal.

CaloriesandJoules. Acalorieistheenergyneededtoraisethetemperatureof 1gofwaterthrough1 C(alsoexpressedas4.1868J,theunitofenergyinthe InternationalSystemofUnits).Ajouleistheenergyexpendedwhen1kgis moved1mbyaforceof1Newton(N).Useofjoulesisnowrecommendedby internationalconventionandisthepreferredstandardunittomeasureheat (FAO,2003).Nutritionistsandfoodscientistsconcernedwithlargeamountsof energygenerallyusekiloJoules(kJ ¼ 103 J)ormegaJoules(MJ ¼ 106 J).For manydecades,foodenergyhasbeenexpressedincalories,andstudiesinthe fieldofecologicalenergeticshavetraditionallyusedcaloriesasthemeasurefor energy.Inordertoretainconsistencywithresearchreportedinthescientific literature,valuesusedforenergyinthisbookareincalories.Theconversion factorsforjoulesandcaloriesare:1cal ¼ 4.184Jand1J ¼ 0.239cal.

2.2Thedifferentformsofenergy

Energycanexistinvariousforms,butthoseofgreatestimportancetoliving organismsaremechanical,chemical,radiant,andheatenergy(Table2.1). Mechanicalenergyhastwoforms:kineticandpotential.Kineticenergy,or freeenergy,canbedescribedasthe“usefulenergy”whichabodypossessesby

TABLE2.1 Unitsofmeasureforenergyinitsvariousformsand transformations.

EnergyIntensityCapacity

Mechanical(ergs)Force(dynes)Changeindistance(cm)

Kinetic(ergs)Velocity(cms-1) 1/2 Mass(g)

Potential(ergs)Heightxaccereraltion(cms-2)Mass(g)

Chemical(calories)Heatofcombustion(calg 1)Mass(g)

Radiant(calories)Radiationflux(calcm 2)Surfacearea(cm2)

Heat(calories)Differenceintemperature(o C)Heatcapacity(calper oC)

Vol.expansion(ergs)Pressure(dynescm-2)Changeinvolume(cm3)

Electrical(joules)Differenceinpotential(volts)Coulombs(ampsxsec.)

Surface(ergs)Surfacetension(ergscm 1)Changeinarea(cm2)

Thephysicalandchemicalbasesofenergy Chapter|2 7

valueofitsmotion,andismeasuredbytheamountofworkwhichisdonein bringingthatbodytorest.ExampleswouldbeamovingballortheBrownian movementofmolecules.Potentialenergyisstoredenergy,whichisonly potentiallyusefuluntilitsconversionintothekineticorfreeenergywhereit becomesavailabletoaccomplishwork.Energymaybestoredinasystemby virtueofposition,asforexample,astoneabovetheEarth’ssurface,asteel springundercompression,orbyvirtueofchemicalpropertiesduetothe arrangementofatomsandelectronswithinamolecule.Conversionofenergy fromthepotentialformtothekineticforminvolvesmovement,i.e.,motion.

Chemicalenergy. Allorganismsmustworktolive,andtheyrequireasource ofpotentialenergywhichcanbeutilizedinordertoperformthelifeprocesses. Thisenergycanbefoundintheformofthechemicalenergyofbiomassused asfood.Energycanalsobeintheformofthechemicalenergyofinorganic moleculesutilizedasanalternativeenergysourcetoradiantenergybychemotrophs.Assembliesofatomsinmattercanberearrangedintodifferent groups;thus,bythemovementofatomsandthecreationofdifferentatomic bonds,chemicalenergyisliberated.Thecombustion(oxidation)ofcoalina furnaceorfoodbytherespiratoryprocessesinacellreleasesenergywhichcan beusedtoaccomplishwork.Bothoftheseprocessesillustratetheconversion ofchemicaltomechanicalenergy.LifeprocessesonthisEarthhaveevolved aroundcarbonchemistry,andmostchemicalenergysourcesarederivedfrom organiccompounds.However,asweshallseeshortly,therearesomenotable exceptions.

Radiantenergy. Thesun,avastincandescentsphereofgas,releasesenergy bythenucleartransmutationofhydrogentohelium,anditisuponthisenergy sourcethatlifeonEarthdepends.Radiantenergyistheenergyofelectromagneticradiation.Becauseelectromagneticradiationcanbeconceptualized asastreamofphotons,radiantenergycanbeviewedasphotonenergy. Alternatively,EMradiationcanbeviewedasanelectromagneticwave,which carriesenergyinitsoscillatingelectricandmagneticfields.Thesetwoviews arecompletelyequivalentandarereconciledtooneanotherinquantumfield theory.Solarradiationisenergyintheformofelectromagneticwaves involvingarhythmicexchangebetweenpotentialandkineticenergy.Electromagneticradiationcanhavefrequencies,orwavelengths,ofdifferentenergycontentandinteractions(e.g.,absorptivities)withmatter.

Heatenergy. Thisisaveryspecialformofenergyresultingfromtherandom movementsofmolecules,whichbyvirtueoftheirmotion,possesskinetic energy.Heatisevolvedwhenallotherformsofenergyaretransformedand workisperformed.Allwork,includingthegrowthandreproductionofliving organisms,representthetransformationofenergyandultimatelyresultsinthe productionofheat.Forexample,whenananimalduringrespirationreleases thepotentialenergyofglucose,approximatelytwo-thirdsofitisconverted

intomechanicalenergytobeusedforwork(activityandgrowth)andonethirdsisgivenoffasheat.

Thereareinstancesofworkwhereheatisabsorbed(endodermicprocesses):thecoolingunitofarefrigeratororthefixationofatmosphericnitrogen bycertainbacteriaareexamples;but,theseprocessesarenotself-supporting energetically.Nitrogenfixationisalwaysaccompaniedbytheexothermic breakdownoforganicsubstrates.Heatenergyreleasedbyanexothermic processisneverusedwithcompleteefficiencybytheendergonicprocess,and sowheneverworkisdonethetrendisalwaystowardheatproduction.In naturalprocesses,changesfromoneformofenergytoanother(excepttoheat) arenormallyincomplete,becausethemovement,alreadyshowntobenecessaryforenergyconversion,involveseitherfrictionorheatproduction.

Temperature istherelativemeasurewhichisusedtocharacterizethe amountofheatpresentinasystem.Severalcommonsystemsareused,only twoofwhichconcernus:theCelsiusandtheKelvinscales.TheCelsius (centigrade)scale(oC)establisheszero(0 )asthefreezingpointofwaterand 100degreesastheboilingpointofwater.TheKelvinscaleisanabsolute measurewhichestablisheszeroatthetemperature( 273 C)atwhichall molecularmotionceases.Becausefreezingandboilingpointslimitlifeprocesses,wewillconventionallyutilizetheCelsiusscale.Heatmaybecharacterizedbythepropertiesoftwophases:sensibleheatandlatentheat. The significanceofeachofthesephaseswillshortlybecomeapparent.Sufficeat presenttodistinguishbetweenthetwophasesasfollows:sensibleheatisthat whichcanbemeasuredbyanincreaseintemperatureofabody,forexample, thewarmingactionofsunlightirradiatingametalplate.Latentheatistheheat absorptionbyabodywithoutanequivalentincreaseintemperature,suchas theheatsoffreezingorvaporizationofwater(heatofvaporizationof water ¼ 539calat100 C).Energyflowisexpressedastheproductoftwo factors:(1)anintensityfactor(orgradient),and(2)acapacityfactor(amount).

Energy,work,andheatareallexpressedinthesameunits:calories,joules, orergs.Itshouldbeevidentthatthedifferentenergiesmaybecompared,but thatnorelationshipexistsbetweenthecapacityfactorsalone.Forexample, electricenergymaybeconvertedintoheatenergy,buttheriseintemperature cannotbecalculatedfromthevoltage,unlessthenumberofcoulombsandthe heatcapacityofthesystemareknown.Itisalsoclearthatthesamequantityof workcanbeaccomplishedbyasmallquantityofwaterpassingthrougha turbinefromagreatheightasbyalargequantityofwaterpassingthrough fromashortdistance.

Thus,arisesoneofthefundamentalprinciplesofthermodynamics the interconvertibilityofenergyformsaswellasthe“trade-offs”betweenthe intensityandcapacityfactors.Allformsofenergyareinterconvertible;when conversionsdooccur,theydosoaccordingtorigorouslawsofexchange. ThesearetheLawsofThermodynamics.

2.3TheLawsofThermodynamics

TheFirstLawofThermodynamics. TheFirstLawofThermodynamicsis alsoknownastheLawofConservationofEnergy,sinceitdefinesthatthesum ofallenergiesinanisolatedsystemisconstant.Inotherwords,energymaybe transformedfromonestatetoanother,butitcanneitherbecreatednor destroyed.Thetotalenergyinuniverseremainsconstant,butitiscontinuously becomingmorediffusethroughouttheuniverse.

Rememberthatthecapacityfactorformechanicalandchemicalenergyis mass(m).Thus,Einsteinshowedthatifthereisachangeinmass, Dm, Energy ¼ Dmc2,(2.1) where:

cisthevelocityoflight(3 1010 cms 1).

Therefore,1gofwaterisequivalentto9 1020 ergsofenergy.Itshouldbe evidentthattheLawofConservationofEnergyandtheLawofConservation ofMassareessentiallythesame,andthatnoviolationofthermodynamics occurswhenenergyisconvertedintomassormassisconvertedintoenergy. However,achangeinenergyofasystemwillbebroughtaboutifthesystem doeswork,orifitabsorbsorevolvesheat.Thus,whenachangeofanykind occursinaclosedsystem(wheretheamountofmatterisfixedbutenergyis abletoenterorleave)anincreaseordecreaseoccursintheinternalenergy (E)ofthesystemitself;heat(q)isevolvedorabsorbed,andwork(w)isdone:

Work. Theworkperformedbyasystemistheenergytransferredbythe systemtoitssurroundings.Thenegativevalueofworkindicatesthatapositive amountofworkdonebythesystemhasledtoenergybeinglostfromthe system.

TheFirstLawofThermodynamicsalsoencompassesthemorespecific relationshipofconstantheatsums,whichisofconsiderableimportanceto biologistsinterestedinenergytransformations.Itstatesthatthetotalamount ofheatproduced,orabsorbed,fromachemicalreactionwhichtakesplacein stagesisequaltothetotalamountofheatevolved,orconsumed,whenthe reactionoccursdirectlyinonestep.Theevolutionoflivingsystemshasutilizedbiochemicalmechanismsbywhichchemicalcompoundscanbereduced insteps,thusenablingmoreefficientenergycaptureandutilizationtooccur.A goodbiologicalexampleisthemetabolicoxidationofglucosetocarbondioxideandwater:

Directreaction(combustion)

Two-stagereaction(fermentation)

(a) C6H12O6 /2C2H5OH þ 2CO2 þ 18kcalofenergy

(b) 2C2H5OH þ 6O2 /6H2O þ 4CO2 þ 655kcalofenergy

(a) þ (b) C6H12O6 þ 6O2 /6H2O þ 6CO2 þ 673kcalofenergy

Thus,nomatterwhichpathwayaparticularreactionfollows,thetotal amountofheatevolved,orabsorbed,isalwaysthesame.Therewillbemore discussionaboutthebiologicalsignificanceofthisphenomenonlater.Several otherenergyrelationshipsarealsopertinenttobioenergetics.

Enthalpy. Enthalpyisthetotalpotentialenergyofasystem.Inmanycasesthe onlywork“w”doneonasystemresultsinchangeincalorificvalueofthe availablemass.Inotherwords:

Therefore,theheatabsorbed(q)inaprocess,measuredunderconditionsof constantvolume,isequaltotheinternalenergyincrease.Accordingtothis equation,ifnooutsideworkisdone,theenergyabsorbedbythesystemis equaltothepotentialinternalincrease.Abiologicalexampleofthiswouldbe thereverseofthepreviouschemicalreaction,orphotosynthesis:

6CO2 þ 6H2O þ 709kcal / C6H12O6 þ 6O2,{caloricdifference ¼ change invol.ofCO2 versusO2}

Enthalpyisdefinedastheheatcontentofasystem.Bondenergyisamount ofenergyrequiredtobreakachemicalbond.Thetotalbondenergyisequivalent tothetotalpotentialenergyofthesystem,aquantityknownasenthalpy(H). Theheatabsorbedinaprocessatconstantpressureisequaltothechangein enthalpy, DH.Sinceachangeinenthalpycanoccurthroughbothachangein pressureorvolume,aswellasinternalenergy,anothertermisintroducedto describetheheatcapacityofasubstance:

Thespecificheatofasubstanceisdefinedasthequantityofheatrequired toraisethetemperatureof1gofsubstanceby1 Celsius.Thisisanextremely importantrelationshipforbiologicalsystems.Itexplainstheimportanceof waterasa“thermalbuffer,”sincewhencomparedtoothersolventswater possessesrelativelyhighheatsofvaporizationandfreezing.

TheSecondLawofThermodynamics.

Weareallfamiliarwiththefactthat manyenergeticprocessesoccurspontaneously.Forexample,waterruns downhill;gasesexpandfromregionsofhighpressuretoregionsoflow pressure;chemicalreactionsproceedtoequilibrium;andheatflowsfrom warmbodiestocoolerbodies.TheSecondLawofThermodynamicsstatesthat processesinvolvingtransformationswillnotoccurspontaneously,unlessthere isadegradationofenergyfromanonrandom(ordered)formtoarandom

DH ¼ DE þ D (pv)(2.4)

(disordered)form.Innaturalsystems,spontaneousenergytransformations resultinthedegradationoftheenergystateofthesystemfromausefulformto adissipatedandlessusableformofheat.Obviously,asspontaneousprocesses occurinasystemthesystemlosestheabilitytodowork.

Living(biological)systemshaveevolvedtoexploitthesenaturalenergytransformationsandtoutilizeenergyasitpassesfromorderedtorandomstates.

Allsystemstendtoapproachstatesofequilibrium inthermodynamic properties;thismeanscompleterandomnessorenergydegradationofthe system.Asameasureoftheextenttowhichthisequilibriumhasbeenreached, anotherthermodynamicterm,entropyisintroduced.

Entropy. Entropyisameasureofthedisorder,orrandomness,ofasystem. Organized,usableenergyhaslowentropy,whereasdisorganizedentropysuch asheathashighentropy.Themorethemoleculesinasystemaredistributedin adisorderedorrandommanner,themoreprobableisthearrangementandthe greateristheentropy.TheFirstLawofThermodynamicsrecognizesthe interconvertibilityofallformsofenergy,butitdoesnotpredicthowcomplete theconversionswillbe.Thisappliestoallenergyconversions,exceptthe transformationtoheat,whichisapropertyofmoleculesmovingaroundat random.Bycontrast,allotherformsofenergyresultfromanordered, nonrandomarrangementoftheelementaryparticlesofmatter.Heatistheonly fromofenergyduetodisorderorrandommovement,anditisthemostlikely energyformtooccur.

2.4Gaiahypothesis

TheGaiaHypothesisproposedbyJamesLovelock(1972)suggeststhatliving organismsontheplanetinteractwiththeirsurroundinginorganicenvironment toformasynergeticandself-regulatingsystemthatcreated,andnowmaintains,theclimateandbiochemicalconditionsthatmakelifeonEarthpossible. Gaiabasesthispostulateonthefactthatthebiosphere,andtheevolutionor organisms,affectsthestabilityofglobaltemperature,salinityofseawater,and otherenvironmentalvariables.Forinstance,eventhoughtheluminosityofthe sun,theEarth’sheatsource,hasincreasedabout30%sincelifebeganalmost fourbillionyearsago,thelivingsystemhasreactedasawholetomaintain temperaturesatalevelsuitableforlife.Cloudformationovertheopenoceanis almostentirelyafunctionofoceanicalgaethatemitsulfurmoleculesaswaste metaboliteswhichbecomecondensationnucleiforrain.Clouds,inturn,help regulatesurfacetemperatures.

LovelockcomparedtheatmospheresofMarsandEarth,andnotedthatthe Earth’shighlevelsofoxygenandnitrogenwereabnormalandthermodynamicallyindisequilibrium.The21%oxygencontentoftheatmosphereisan obviousconsequenceoflivingorganisms,andthelevelsofothergases,NH3

andCH4,arehigherthanwouldbeexpectedforanoxygen-richatmosphere. BiologicalactivityalsoexplainswhytheatmosphereisnotmainlyCO2 and whytheoceansarenotmoresaline.GaiapostulatesthatconditionsonEarth aresounusualthattheycouldonlyresultfromtheactivityofthebiosphere (LovelockandMargulis,1974).

2.5Carbonandenergy

Aftertheoriginoftheuniversesome13 18billionyearsagowiththeBig Bang,acondensingsunbegantocollapseandincreasingpressureallowed heliumto“burn”toformcarbon.

4He þ 4He 4 8Be(2.5) 8Be þ 4He / 12C(2.6)

Hydrogen,H,andhelium,He,weretheoriginalbuildingblocksofthe universe.Approximately3.8billionyearsagowhensurfacetemperatures cooledto100 C,watercondensedoutoftheatmospheretoformtheprimitive oceans.Watervaporandcarbondioxide bothdegassingfromtheEarth’s crust servedasanearlygreenhouse.Thisprimordialatmospherekeptearly Earthfromfreezing.WithoutthepresencetodayofwatervaporandCO2 inthe atmospherethatcreatesasignificantgreenhouseeffect,theEarthwouldbe about33 Ccoolerandcoveredbyice(Ramanathan,1988).

Theformsofcarbon. Carbonoccursinmanydifferentmaterialsinmany differentforms.Inbioenergetics,oneisinterestedinthecarboncontentof organicmolecules.Carboncontentmaybecategorizedas:

TotalCarbon(TC) allthecarboninthesample,includingboththe inorganicandtheorganiccarbon,

TotalInorganicCarbon(TIC) oftenreferredtoasinorganiccarbon (IC),carbonate,bicarbonate,anddissolvedcarbondioxide(CO2),

TotalOrganicCarbon(TOC) materialderivedfromdecayingvegetation, bacterialgrowth,andmetabolicactivitiesoflivingorganismsorchemicals, and

ElementalCarbon(EC) charcoal,coal,andsoot.Resistanttoanalytical digestionandextraction,ECcanbeafractionofeitherTICorTOCdepending upontheanalyticalapproach.

Carbonmassmaybecalculatedfromtheproportionalcompositionof carboninthesubstrateifitsmoleculecompositionisknown,i.e.,

proportionalmassofelement ¼ massofelementincompound totalmassofcompound (2.5)

Therefore,theproportionofcarbontimestheweightofthecompoundyields themassofcarbonpresent.MeasurementofCO2,aswellasO2 andCH4,gas

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.