The fossil fuel revolution: shale gas and tight oil daniel j. soeder - Get the ebook in PDF format f

Page 1


https://ebookmass.com/product/the-fossil-fuel-revolution-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Sustainable Shale Oil and Gas. Analytical Chemistry, Geochemistry, and Biochemistry Methods 1st Edition Vikram Rao

https://ebookmass.com/product/sustainable-shale-oil-and-gasanalytical-chemistry-geochemistry-and-biochemistry-methods-1stedition-vikram-rao/ ebookmass.com

Public Responses to Fossil Fuel Export Hilary Boudet

https://ebookmass.com/product/public-responses-to-fossil-fuel-exporthilary-boudet/

ebookmass.com

Unconventional Shale Gas Development: Lessons Learned Rouzbeh G. Moghanloo

https://ebookmass.com/product/unconventional-shale-gas-developmentlessons-learned-rouzbeh-g-moghanloo/

ebookmass.com

The Christmas Wish Sala

https://ebookmass.com/product/the-christmas-wish-sala-3/

ebookmass.com

Un amor inesperado para Sharon (Las viudas de Cherish Hill nº 1) (Spanish Edition) Elizabeth Urian

https://ebookmass.com/product/un-amor-inesperado-para-sharon-lasviudas-de-cherish-hill-no-1-spanish-edition-elizabeth-urian/

ebookmass.com

Catalytic Kinetics. Chemistry and Engineering 2nd Edition

Dmitry Yu Murzin

https://ebookmass.com/product/catalytic-kinetics-chemistry-andengineering-2nd-edition-dmitry-yu-murzin/

ebookmass.com

Vector Calculus - Solutions 4th Edition Susan Jane Colley

https://ebookmass.com/product/vector-calculus-solutions-4th-editionsusan-jane-colley/

ebookmass.com

The House in the Pines: A Novel Ana Reyes

https://ebookmass.com/product/the-house-in-the-pines-a-novel-anareyes/

ebookmass.com

LA

CIENCIA DEL

ÉXITO

Napoleon Hill

https://ebookmass.com/product/la-ciencia-del-exito-napoleon-hill/

ebookmass.com

Understanding and Negotiating Construction Contracts: A Contractor's and Subcontractor's Guide to Protecting Company Assets 2nd Edition Kit Werremeyer

https://ebookmass.com/product/understanding-and-negotiatingconstruction-contracts-a-contractors-and-subcontractors-guide-toprotecting-company-assets-2nd-edition-kit-werremeyer/ ebookmass.com

TheFossilFuelRevolution: ShaleGasandTightOil

Director,EnergyResourcesInitiative,DepartmentofGeologyand GeologicalEngineering,SouthDakotaSchoolofMinesandTechnology, RapidCity,SD,UnitedStates

ScyllerJ.Borglum,Ph.D.

ResearchEngineer,RESPEC,Inc.,RapidCity,SD,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2019ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformation ormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhom theyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-815397-0

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionEditor: AmyShapriro

EditorialProjectManager: EmeraldLi

ProductionProjectManager: SelvarajRaviraj

CoverDesigner: MilesHitchen

TypesetbyTNQTechnologies

“Toourrespectiveparents,whoneverstoppedsupportinguseventhough theyoftenwonderedwhatweweredoing.”

Listof figures

FIGUREI.1 ShalegasproductiontrendsintheUnitedStates1

FIGUREI.2 TightoilproductiontrendsintheUnitedStates2

FIGUREI.3 Illustrationofthecombinationofhorizontaldrillingandstagedhydraulicfracturing technologyusedforshalegas.Nottoscale7

FIGUREI.4 Trendsinworldoilandgasproductionbytopproducers10

FIGURE1.1 PhotographofcontactbetweentheblackClevelandShaleandtheunderlyinggrayChagrin ShaleinadrillcorefromOhio16

FIGURE1.2 Rock-EvalplotofhydrogenindexversusTmaxshowingdifferentareasofthegraph occupiedbydifferenttypesofkerogen.ThesamplesplottedarefromtheNiobrara FormationinSouthDakotaandindicateimmatureTypeIIkerogenwithabitofTypeIII21

FIGURE1.3 VanKrevelendiagramofhydrogenindex(HI)versusoxygenindex(OI)fromRock-Eval pyrolysisdata.TypeIandTypeIIkerogens(oilandgasprone)arereadilydistinguishable fromTypeIIIkerogen(coaly,gasprone)andtheinertTypeIV.DatafromtheNiobrara FormationinSouthDakota 22

FIGURE1.4 ProductiontrendsofconventionalversusunconventionalnaturalgasintheUnitedStates25

FIGURE1.5 Illustrationofunconventionalhydrocarbonsbeingproduceddirectlyfromtheshalesource rockversusconventionaloilandgasthatmigratedintopermeable,porousrockandwas trappedbystructureorstratigraphy27

FIGURE2.1 Theresourcetriangleillustratingthedistributionofmostnaturalresources,including hydrocarbons,whenquantityisplottedagainstquality34

FIGURE2.2 Vehicleslinedupwaitingforgasolineduringthe1973 74energycrisis39

FIGURE2.3 VisualizationofthephysicalparametersusedtodefineDarcy’slawofpermeability42

FIGURE2.4 ScanningelectronmicrographofafreshlybrokensurfaceonMarcellusShaleperpendicular tobedding.Scalebaris10 mm.Clayfabricandstructureareclearlyvisible,butthe “pores” areactuallyvoidscreatedbytheremovalofpreexistinggrains46

FIGURE2.5 ScanningelectronmicrographofaBarnettShalesurfacemilled flatusingafocusedion beam(FIB).Scalebaris1 mm.Porosityisvisiblewithinorganicmaceral,asare nanometer-scaleporesinmatrix47

FIGURE2.6 Alarge, “triple” hydraulicdrillriginstallingalateralintotheNiobraraFormationat adepthofapproximately8000ft(2.4km)intheDenver JulesburgBasin,EasternColorado. Scaleisindicatedbythestairwayandentrancedoorofthe “doghouse” officetrailerattached tothesideoftheplatformandusedtooperatetherig.Asecondrigisvisibleinthe backgroundatleft 48

FIGURE2.7 PolycrystallinediamondcompositedrillbitusedontheNiobraraFormationinthe Denver JulesburgBasin,EasternColorado.Jetsinthehubaredesignedto flushmudoff thecuttingteeth.Coininthecenterforscaleis2cmindiameter50

FIGURE2.8 HydraulicfracturingoperationunderwayontwoMarcellusShalewellheadsin southwesternPennsylvania.Pumptrucksareontheright,blenderandmanifoldincenter, proppantsandinleftbackgroundwithtwomenontank,monitoringandcontroltrailer toleft.Watersupplywasinalargeimpoundmentbehindphotographer51

FIGURE2.9 ShalegasandtightoilplaysinNorthAmerica.Muchofthecurrentfocusisonstacked playsintheAppalachian,Permian,andPowderRiverbasinsandonliquids-richplayslike theEagleFord,Bakken,andUtica53

FIGURE2.10 Aslickensidedfaultsurfacecuttingacrossa3.5inch(9cm)diameterEGSPshalecore54

FIGURE2.11 Orthogonaljointsona flatbeddingplaneoftheMarcellusShale,exposedinthebed ofOatkaCreek,Leroy,NY.Thecompasspointstothenorth55

FIGURE3.1 MapofproductionwellsintheBarnettShaleintheFortWorthbasinofTexas69

FIGURE3.2 NumerousBarnettShaleproductionwellpads(arrowed)interspersedamongthehousing developmentsofsuburbanFortWorth,Texas,southwestofDFWAirport70

FIGURE3.3 MapofstructuresintheFortWorthbasinofTexas,includingisopachsoftheBarnettShale thicknessinfeet.Theshalethickensanddeepenstothenorth71

FIGURE3.4 Northtosouthgeologiccross-sectionthroughtheFortWorthbasinshowingthelocation oftheBarnettShaleaboveanunconformityontopoftheEllenbergerlimestone.Theshale becomesmoreshallowandthinstothesouth,terminatinginoutcropsontheLlanoUplift72

FIGURE3.5 OutcropofweatheredBarnettShalewithledge-forminglimestonebedsontheLlanoUplift nearSanSaba,Texas 73

FIGURE3.6 ThemassivelybeddedEllenbergerlimestoneexposedatthebaseofanoutcroponthe LlanoUpliftnearSanSaba,Texas,overlainbyaboutameterofChappellimestonebeneath theweatheredslopesofthebasalpartoftheBarnettShale74

FIGURE3.7 ThermalmaturityintheBarnettshaleexpressedasvitrinitereflectance(Ro)76

FIGURE3.8 ContactbetweentheFayettevilleShaleandtheoverlyingPitkinlimestoneinaroadcutin northwestArkansas.ArkansasGeologicalSurveyphoto78

FIGURE3.9 ConcretionzonenearthebaseoftheFayettevilleShaleinArkansas.ArkansasGeological Surveyphoto 78

FIGURE3.10 FayettevilleShaledevelopmentregionsinArkansas.ArkansasGeologicalSurveymap79

FIGURE3.11 RedstripedareashowinglocationofHaynesvilleShaledevelopmentintheArkansas, Texas,andLouisianaborderregionknownastheArkLaTex.TexasBureauofEconomic Geologymap 83

FIGURE3.12 NaturalgasproductionfromtheHaynesvilleShaleinmillionsofcubicfeetperday (MMCFD)from2009to201884

FIGURE3.13 Schematiccross-sectionoftheAppalachianBasin,showingMiddleandUpperDevonianrocks. TheMarcellusShaleisatthebaseofathickalternatingsequenceoforganicrichandlean shaleswithafewlimestones.Coarsersedimentstotherightareclasticsfromthe Catskilldelta 88

FIGURE3.14 BasalcontactoftheMarcellusShaleabovetheOnondagaLimestone,SenecaStone quarry,SenecaFalls,NY 91

FIGURE3.15 TiogaAshbedsinanoutcropoftheUnionSpringsMemberoftheMarcellusShalenear Bedford,Pennsylvania.Rockhammerforscaleis13inches(33cm)inlength91

FIGURE3.16 CherryValleyLimestonememberoftheMarcellusShaleexposedinaquarrynearOriskany Falls,NY 92

FIGURE3.17 OatkaCreeknorthofLeroy,NY.ThestreambedhereiscomposedoftheOatkaCreek MemberoftheMarcellusShale.Ball-likeobjectsinthestreamaresideriteconcretions93

FIGURE3.18 PermitsforMarcellusShalegaswellsissuedinPennsylvaniaasof2012showcore productionareasinthenortheasternandsouthwesternpartsofthestate.Thesouthwestern productionareaextendsintoWestVirginia.PennsylvaniaDepartmentofConservationand NaturalResourcesmap 94

FIGURE3.19 CrudeoilfromtheBakkenFormation floatingonproducedwater.Ahandsampleof Bakken-equivalentshalefrombeneaththeLodgepolelimestoneisshownintheforeground96

FIGURE3.20 TripledrillrigontheBakkenplayintheParshallField,MountrailCounty,NorthDakota98

FIGURE3.21 LocationmapofUSandCanadianproductionfromtheBakkenFormationinthe WillistonBasin 99

FIGURE3.22 SatelliteimageoftheUnitedStatesatnight,takenin2017.TheilluminationfromBakken flaresislabeled.NASAimage100

FIGURE3.23 UpperblackshalememberoftheBakkenFormationinacoreslab,showingpyritelaminae, fossilshells,andmultiplefractures.Coinforscaleis2cmindiameter101

FIGURE3.24 Middlelimestone/sandstonememberoftheBakkenFormationinacoreslab,showing sedimentarystructures.Coinforscaleis2cmindiameter102

FIGURE4.1 WellscompletedintheWoodfordShaleinOklahomabetween2004and2012.BlueDark squaresareverticalwellsandstarsarehorizontal.TheplayrunsfromtheArkomabasin intheeasttotheArdmorebasininthesouth,andthennorthwestintotheAnadarkobasin109

FIGURE4.2 Bitumen- filledfracturesinaWoodfordShaleoutcropinMcAlesterCemeteryQuarry, Oklahoma.Coinforscaleis17mmindiameter110

FIGURE4.3 NiobraraFormationisdistributedwithinthe browndashedline (lightgrayinprintversion).Easternbiogenicaccumulationsofgasanddeeper,thermogenic hydrocarbonsareseparatedbythedot-dashedredline.Oilproductionisshownin green (grayinprintversion)andgasin red (darkgrayinprintversion)112

FIGURE4.4 Dr.FosterSawyerofSDMinesatthecontactbetweenthechalkyNiobraraFormation andtheoverlyingPierreShaleatElm-CreekneartheMissouriRiverinSouthDakota113

FIGURE4.5 Geologicwest-to-eastcross-sectionofthehighlyasymmetricDenver-Julesburg(D-J) basininColoradoshowingbasin-centeredgasaccumulationsindeeplyburiedCretaceous rocksformingtheWattenbergGasField114

FIGURE4.6 NiobraraformationoutcropatSlimButte,OglalaLakotaCounty,SouthDakota.Despite thelightcolor,TOCcontentmeasuredinthelayerbelowtherockhammeratleftwas nearly6% 115

FIGURE4.7 ThinsectionphotomicrographoftheNiobraraFormationfromGraves#31coreshowing amixofgrayclay,blackorganiccarbon,andwhitecalcareousmicrofossils.Stainonthe rightidenti fiescalcite;scalebaratupperleftequals0.5mm116

FIGURE4.8 Organic-richPierreShaledrillcorefromPresho,SDwithanammonitefossilon apartingsurface 116

FIGURE4.9 Prominent,yellowvolcanicashbedswithintheblackPierreShaleonanoutcropatBuffalo Gap,SD.Peopleinthebackgroundprovidescale117

FIGURE4.10 Viewingthecontact(justabovehardhatofpersonpointingtooutcrop)betweenthe DolgevilleandoverlyingIndianCastlemembersoftheUticaShalealongtheNewYork ThruwaynearLittleFalls,NY118

FIGURE4.11 UticaShalestratigraphiccorrelationfromcentralKentuckytocentralNewYork120

FIGURE4.12 FissileandmoderatelyorganicUtica PointPleasantshalebelowtheslabby,calcareous KopeFormationataroadcutinKentuckyneartheOhioRiver120

FIGURE4.13 MapoftheEagleFordshaleplayinTexas,showingzonesofdifferenthydrocarbon productionasafunctionofthermalmaturityanddepth122

FIGURE4.14 EagleFordShaleinoutcrop,showingthealternatingslabbylimestoneandcalcareousclay shalebeds 122

FIGURE4.15 MapofthePermianbasinshowingstructuralboundariesandmajortightoilplays124

FIGURE4.16 OilproductionhistoryinthePermianbasin125

FIGURE4.17 MapofsmallMesozoicriftbasinsalongtheUSEasternSeaboardindicatingthoseassessed forshalegasandcondensateresourcesbytheUSGS130

FIGURE5.1 Worldwidesedimentarybasinscontainingassessedorsuspectedtightoiland/orshale gasresources 137

FIGURE5.2 PotentialshalegasinGreatBritain142

FIGURE5.3 LithofaciesandisopachmapoftheBazhenovFormationintheWestSiberianBasin,Russia. Scalebaris200km(124miles)146

FIGURE5.4 MapoftheKarooBasininSouthAfricashowingEccaGroupshalesandigneousintrusions153

FIGURE5.5 SedimentarybasinsinArgentinacontainingprospectiveshalegasresources156

FIGURE5.6 LocationsofshalegasassessmentsinthePeople’sRepublicofChina158

FIGURE5.7 BlocksofLongmaxiShaleawaitingrockpropertiestestingattheChineseAcademy ofSciencesinWuhan,China160

FIGURE5.8 Australiangovernmentmapofoilandgasbasinsandinfrastructure164

FIGURE5.9 BasinsinMalaysiawithprospectiveshalegasandtightoil167

FIGURE6.1 A flammablekitchenfaucetcausedbynaturalgasenteringawatersupplywellin Pennsylvania.Somepeoplehavelinkedthistofracking179

FIGURE6.2 HeightsofhydraulicfracturesontheMarcellusShalemeasuredwithmicroseismicdata plottedagainstthedepthofthedeepestfreshwateraquiferineachcounty(bluezones attopofgraph) 188

FIGURE6.3 Photographofablacksubstanceidenti fiedasdrillingmudoozingoutoftheground fromanerodedstreambankbelowadrillpadandintoIndianRuninHarrisonCounty, WestVirginia,in2010 192

FIGURE6.4 Carbondioxidelevelsintheatmospheremeasuredsince1957atMaunaLoainHawaii203

FIGURE7.1 TheNorthRampoftheExploratoryStudiesFacility(ESF)tunnelunderYuccaMountain, Nevada.ThisU-shapedtunnelintoandoutofthemountainis fivemiles(8km)inlength and25ft(7.6m)indiameter215

FIGURE7.2 TheShippingportAtomicPowerStationontheOhioRiverwestofPittsburgh,PA,the first commercialnuclearreactorintheUnitedStates.USDepartmentofEnergyphotograph234

FIGURE7.3 TheGeysersgeothermalpowerplantinCalifornia.CaliforniaStateEnergyCommission photograph 239

FIGURE7.4 CrescentDunessolarpowertowersurroundedby10,347heliostatmirrorsintheNevada desertnearTonopah 242

FIGURE8.1 USliquefiednaturalgas(bcf)importsandexports,1985 2017258

FIGURE8.2 USexportsofliquefiednaturalgas2017over2016258

FIGURE8.3 USpetroleumconsumption,production,imports,exports,andnetimports259

FIGURE8.4 USprimaryenergyconsumptionbysourceandsector,2017260

FIGURE8.5 Crudeoilproduction,millionbarrelsperday,2017261

FIGURE8.6 Naturalgasproductionbytype,trillioncubicfeet261

FIGURE8.7 Lower48onshorecrudeoilproductionbyregion,referencecase262

FIGURE8.8 Shalegasproductionbyregion,trillioncubicfeet262

FIGURE8.9 USenergyconsumptionandoutlookyearend2007263

FIGURE8.10 Energyconsumptionbyfuel,quadrillionBritishthermalunits263

FIGURE8.11 USnaturalgasconsumption,dryproduction,andnetimports,1950 2017265

FIGURE8.12 USannualenergyconsumptionandenergy-relatedCO2 emissions265

FIGURE8.13 USenergy-relatedcarbondioxideemissions,1980 2019266

FIGURE8.14 PetroleumAdministrationforDefenseDistricts(PADD)267

FIGURE8.15 LocationsandrelativesizesofUSrefineries,2012269

FIGURE8.16 DensityandsulfurcontentofcrudeoilbyPADDandUSaverage,2011269

FIGURE8.17 USatmosphericcrudedistillationcapacity,2009 18270

FIGURE8.18 UScrudeproduction,netimports,andgrossinputstorefineries,2009 17270

FIGURE8.19 DOEShaleGasR&Dcomparedtoproduction271

FIGURE8.20 Productsupplyoverview:Midwest(PADD2)andRockyMountain(PADD4)Generalized FlowofTransportationFuels273

FIGURE8.21 NaturalgaspipelinecapacityintotheSouthCentralUnitedStates,2000 18274

FIGURE8.22 StrategicReserveinventoriesandplannedsales,2017 28275

FIGURE9.1 Carbondioxideconcentrationintheatmosphereoverthepast400,000years280

Listoftables

TABLE3.1 Petroleumresourceclassificationsystem65

TABLE3.2 The10majorU.S.shaleplays67

TABLE7.1 Estimatedlevelizedcostofelectricity($/MW-h)224

TABLE7.2 USelectricitygenerationbysource,amount,andshareoftotalin2017227

TABLE8.1 Thesevenelementsofenergysecurity256

TABLE8.2 Crudeoilinter-PADDpipelinemovements2010and2017268

Introduction

Itisvirtuallyimpossibletooverstatetheimportanceofthesuccessfuldevelopmentof shalegasandtightoiltotheenergyeconomyoftheUnitedStates.Accordingtodata trackedbytheUSEnergyInformationAgency(EIA),by2009,shalegashadledtheUnited Statesfromnaturalgasshortagestobecomingthelargestproducerofnaturalgasinthe world(USEIA,2018).Liquefiednaturalgas(LNG)terminalsconstructedontheUSEast Coastatthestartofthe21stcenturyforenergyimportswereconvertedlessthanadecade latertoexportLNGtoEuropeandelsewhere.TheMarcellusShaleintheAppalachian basinisnowthemostproductivenaturalgasformationintheUnitedStates(Fig.I.1).

Liquidproductionfromlow-permeabilityshalesandlimestones,knownas“tightoil,” hasexperiencedasimilarboom.Massiveoilimportsfromthe1970sthroughthefirst decadeofthe21stcenturybroughtinmorethanhalfoftheannualUSoilsupplyfrom overseas.By2013,tightoilmadeAmericatheworldleaderincrudeoilproduction (USEIA,2018).

ThesetwostunningfactshavenotonlychangedtheenergypictureintheUnited Statesbuthavedisruptedtheenergyeconomyoftheentireworld.Thebusinessplansof manyinternationalandstate-ownedoilcompaniesweredependentuponexportstothe UnitedStates,oneoftheworld’slargestconsumersofpetroleum.Thankstoabundant tightoilproductionfromtheBakkenShale,thesecondlargestoil-producingstateinthe

FIGUREI.1 ShalegasproductiontrendsintheUnitedStates. U.S.EnergyInformationAdministrationreportsand webpages.

UnitedStatesispresentlyNorthDakota,exceedingotherformeroilgiantslikeAlaska, Oklahoma,Louisiana,California,andColorado.IttrailsonlyTexas,whichretainsfirst placebecauseofequallyprolificliquidhydrocarbonproductionfromtheEagleFord ShaleandagroupoftightoilformationsinthePermianBasin(Fig.I.2).

FIGUREI.2 TightoilproductiontrendsintheUnitedStates. EIAderivedfromstateadministrativedatacollected byDrillingInfoInc.DataarethroughJuly2016andrepresentEIA’sofficialtightoilestimates,butarenotsurvey data.Stateabbreviationsindicateprimarystate(s).

Althoughthedevelopmentofshalegasandtightoilcreatedarevolutioninfossil fuels,ithasalsosparkedarevolutioninthepoliticalsenseoftheword.Likemostpoliticalrevolutions,thereareardentsupportersandadedicatedandvehementopposition.Intheearlydays,theoilandgas(O&G)industryusedtheslangterm“frack”to describetheprocessofhydraulicfracturing.ThistechnologywasinventedinKansasby FloydFerrisofStanolindOilin1947toimprovehydrocarbonproductionfromlow permeabilityor“tight”reservoirs(MontgomeryandSmith,2010).Itistheprimary technologyappliedtoshalestostimulateproduction.Shalegasopponentsadopted “fracking”asatriggerwordtoserveasaprotestandacalltoarms,andproudlyselfidentifiedthemselvesas“fracktivists.”Thefracktivistsusedthewordtorefertothe entireshalegasdevelopmentprocess,fromthearrivalofthefirstdrillrigonsitetothe productionof“frackedgas”fromacompletedwell.

TheO&Gindustry,ontheotherhand,restrictsusageofthetermfrackingtodescribe onlytheactualhydraulicfracturingstimulationprocessitself.Todistinguishtheoriginal intentoftheexpressionfromthenegativeconnotationsofthetermco-optedby fracktivists,industrydroppedthe“k”andchangedthespellingto“frac.”This,however, doesnotworkverywellascolloquialEnglish,leadingtospellingslike“frac’ed,”“fracced” or“frac’ing.”Nevertheless,usageoftheterm“frac”versus“frack”iscriticaltosome people,asithasbecomeawaytoquicklyidentifywhichsideoftheshalegasrevolution someoneison.

Weremindreadersthatthisisamade-upwordwithnostandardspellingandargue that“frack”spelledwiththe“k”hasagreatdealincommonwiththespellingsforreal, similar-soundingwordslike“back”or“crack.”Assuch,wehavechosentousethe

spelling“frack”inthisdocumentforphoneticreasons.However,wealsoagreewiththe O&Gindustrythatthetermshouldbeusednarrowlytoreferonlytothehydraulic fracturingstimulationprocess.Describingtheactionofabulldozerclearingoffawell padas“fracking”isbothincorrectandabsurd.Statingominouslythatapipelinewillbe carrying“frackedgas”makesnosensewhenthereisnodistinguishabledifferencebetweenfrackedgasandanyotherkindofgas.

Disagreementsovershaledevelopmentgrewmoreintenseasthemassiveeconomic promiseoftheresourcecollidedhead-onwithfearsanduncertaintiesaboutthepotentialenvironmentalrisks.Withnoactualdataonenvironmentalimpacts,fracktivists couldconjureupmonstersunderthebedofeverystripeandcolor.Likewisewithno actualdata,theO&Gindustrytriedtoreassurepeoplethattheyknewwhattheywere doing,thesafetyofthepublicwasparamount,andeveryoneshouldjusttrustthemas theexperts.Unfortunately,intermsoftrust,sociologicalstudieshaveshownthatthe onlyindustryAmericansconsidertobelesstrustworthythanoilandgasisbigtobacco (Theodori,2008).Thus,whentheO&Gindustryrespondedtoenvironmentalconcerns raisedbyfracktivistswith“trustus,alliswell,remaincalm,”itwasmetwithalmost universalskepticismbytheAmericanpublic.

Theissuesoonbecameexplosive.Disagreementsbetweenshalegasproponentsand opponentsattownhallsandothercivicmeetingsescalatedintovirulent,fierceargumentsfoughtmoreintenselythananythingontheworstrealityTVshows.Muchofthis dramawasdutifullyrecordedanddisseminatedbythenewsmedia,resultingindeep concernsamongthegeneralpublicaboutthesupposedrisksoffracking.Publicrelations peopleintheO&Gindustrygenerallyhandledtheseissuespoorly,whentheyresponded atall.Certainfracktivistsweremotivatedtofantheflamesofconcernbybookdealsand filmproductions.Somepoliticiansrespondedtotheworriedpublicbyimposingbanson frackinginplaceslikeNewJerseyandVermont,whichcostnothingbecausethereislittle ornoshalegasinthegeology.

NewYorkisastatethatdoeshaveshalegasresourcesinboththeMarcellusandUtica shales,andstrongdisagreementsoverfracking.Itbecametheepicenterformanyofthe mostcontentiousdebates.Thestatewasstronglydividedbetweenthosewhothought frackingwouldbeanunacceptablerisktotheenvironment,versusthosewhoconsidered shalegasdevelopmenttobeimportantforthedepressedNewYorkeconomy,especially upstate.

TheNewYorkStateDepartmentofEnvironmentalConservationcarriedoutan exhaustiveenvironmentalimpactstudyontheMarcellusShale,producingamassive, 1500-pageSupplementalGenericEnvironmentalImpactStatement(SGEIS)in2009that wasrevisedin2011inresponsetothousandsofpubliccomments(NewYorkState DepartmentofEnvironmentalConservation,2011).Rigorousanalysespresentedinthe NewYorkSGEISdemonstratedthatnosignificantadverseimpactstoairorwaterresourceswerelikelytooccurfromprojectedMarcellusShaledevelopment.TheSGEIS alsoprovideddetailedrecommendationsformitigationmeasuresthatcouldbeimplementedtoavoidanypotentialproblems.

Despitethefindingsofhisownenvironmentalagency,thegovernorofNewYork imposedabanonfrackingshalegaswellsin2014,citingunacceptableenvironmental risk(Kaplan,2014).Ithasbeenestimatedthattheultimatecostofthisbantothestate willbe$1.4billioninlosttaxrevenuesandupto90,000directandindirectjobs (Considineetal.,2011).

FrackinghasalsobeenbannedinMarylandandintheCanadianprovinceofQuebec, bothofwhichhavesomesmallshalegasresources,andbanshavebeendiscussedbut notimplementedinColoradoandCalifornia.TheNewYorkbantaughttheO&Gindustrythatproperlyaddressingenvironmentalconcernsupfrontisnecessaryfor communitiestobeabletoweightherisksandbenefitsofgrantinga“sociallicense”for thedevelopmentofshalegasandotherresources.

Researchoverthepastdecadehasreducedtheuncertaintiesbehindmanyofthe concerns,showingforexamplethathydraulicfracturesdonotextendupwardhigh enoughtocontaminateshallowaquifersfrombelow,andthat99.5%ofshalewellsare typicallycompletedwithoutanyreportableenvironmentalincidents(Soederetal., 2014).Theshrillnessofthedebatehasbackedoffsomewhatinrecentyearsbutmany hardfeelingsstillremain.

In2010,theUSCongressaskedtheEnvironmentalProtectionAgency(EPA)to investigatetherisksthathydraulicfracturingmightposetoundergroundsourcesof drinkingwater.Theagencyheldaseriesofworkshopstogatherexpertopinions,ran severalretrospectivefieldstudies,andsynthesizedtheresultsina1000-pagefinalreport (U.S.EnvironmentalProtectionAgency,2015).Thereportconcludedthatwhilethere wereoccasionalaquifercontaminationincidentsfromsurfacespills,nosystemic contaminationofdrinkingwateraquifersfromshalegasdevelopmentorfrackinghad beenfound.ManyfracktivistsfoundtheseresultstobedisappointingandtheEPA ScienceAdvisoryBoardcriticizedthereportforreachingsuchbroad,sweepingconclusionsbasedonminimaldata.Thereportwasrevisedwiththeconclusionstoneddownsomewhat,butthebasicfindingsremainthesame.

Thisdiscussionisnotmeanttoimplythattherearenoenvironmentalrisks.Stray gasandsurfacespillsofchemicalscancontaminatestreamsandgroundwater, methaneleaksandparticulatesmaypollutetheair,andwellpadsandroadsoften affectbothterrestrialandaquaticecosystems(Soederetal.,2014).Moredetailsabout thepotentialenvironmentalimpactsofshalegasdevelopmentwillbeexploredinlater chaptersofthisbook.

Sowhataretheoriginsoftheshalerevolution?Inlessthanadecade,O&Gproduction intheUnitedStateswentfromlargelyconventionalonshoreandoffshoreresourcesto beingdominatedby“unconventional”shalegasandtightoil.Tosome,itfeltlikeabolt fromtheblue.Inreality,ittooknearly3decadesofhardworkandmanyfailuresto developandapplythepropertechnologytoeconomicallyproducetheseresources (Soeder,2018).

ThefirstcommercialAmericangaswellwashand-duginFredonia,NewYorktoa depthofabout10m(28ft)intotheUpperDevonianDunkirkShalebyanentrepreneur

namedWilliamHartin1821tosupplyfuelforagristmill,atavern,andthevillagestreet lighting(Curtis,2002).Hartreportedlyinvertedhiswife’swashtuboverthetopofthe openholetocreateaprimitivewellheadofsortstocontainthegas.Small-scalegas productionfromsimilarDevonianShaleunitsalongthesouthshoreofLakeErie continuedthroughoutthe19thandearly20thcenturies,asdidthelimitedexplorationof shaleselsewhere.Thenotionthatorganic-richor“black”shalesmaycontainnaturalgas hasbeenunderstoodhistorically.

Themoderndevelopmentofshalegasasasignificantdomesticenergyresourcecan betracedtotheaftermathoftheso-called“energycrisis”intheUnitedStatesduring the1970s.This“crisis”wasactuallytwoseparateevents.Thefirstresultedfroma MiddleEastwarinOctober1973betweena numberofArabcountriesandIsrael. BecausetheUnitedStateswassupportingIsrael,oilministersfromtheOrganizationof PetroleumExportingCountries(OPEC)led byLibyaimposedanembargoonAmerican oildeliveriesthatlasteduntilthespringof1974(Yergin,1991 ).Atthetime,significantly lessthanhalfoftheoilusedintheUnitedStateswasimported,buttheactionstill resultedinafour-foldincreaseingasoline prices,severeshortages,consumerpanic, andlonglinesatservicestationswhenfue lwasavailable.Asecondoilshockfollowed laterinthedecadewhenIranianexportswerebrieflydisruptedduringtheIslamic revolutionof1979.Theseenergyshortageswereunexpectedandprofoundlyshocking atthetime,significantlyinfluencingtheUSforeignpolicyfordecadestocome (Yergin,1991).

In1975,soonaftertheOPECembargo,theUSEnergyResearchandDevelopment Administration(ERDA)beganaprojecttoassessthenaturalgasresourcepotentialof Devonian-ageblackshalesintheAppalachianbasinaswellassimilarrockunitsinthe adjacentMichiganandIllinoisbasins(Soeder,2012).ERDAwasincorporatedintotheUS DepartmentofEnergy(DOE)whenitwascreatedbytheCarterAdministrationin1977 andtheinvestigationbecameknownastheEasternGasShalesProject(EGSP).Theproject consistedofthreemajoreffortsunderDOE:1)resourcecharacterization,2)development ofproductiontechnology,and3)thetransferofthattechnologytoindustry(Cobband Wilhelm,1982).Cooperativeagreementswithoperatorswereusedtoobtaindrillcores fromtheDevonianShalestratigraphicsectionintheAppalachianbasinrangingfromthe MiddleDevonianMarcellusShaletotheUpperDevonianClevelandMemberoftheOhio Shale.ThecoreswerealsocollectedfromtheUpperDevonianAntrimShaleinthe Michiganbasinandthesimilar-ageNewAlbanyShaleintheIllinoisbasinproviding samplesfromatotalof44wellsfortheproject(Bolyard,1981).Thecoreswerecharacterizedforlithology,frequencyandorientationofnaturalfractures,colorandotherunusualfeatures,thenphotographedandscannedforgammaradiationreadings.Rock samplesandsubcoreswerecollectedforthevarioustestinglabs,governmentagencies, anduniversitiesthathadrequestedthem.Thedrillcoreswereeventuallytransferredtothe stategeologicalsurveyinthestatewhereeachhadbeenobtained.

Innovativewellloggingtechniques,directionaldrillingtechniques,assessmentsof reservoiranisotropy,newhydraulicfracturingprocesses,andothercutting-edge

technologiesweretriedoutongasshalesduringthecourseoftheEGSP.Oneofthefirst experimentalhorizontaltestwellsinagasshalewasdrilledbytheEGSPinDecember 1986(Dudaetal.,1991).LaboratorymeasurementsonEGSPcoresfoundthatthe MarcellusShalecontainedalargercomponentofadsorbedgasthanpreviouslythought, implyingthatthegas-in-placeresourcewasmoresignificantthantheassessedvalues acceptedatthetime(Soeder,1988).Amajorthrustofthefield-basedengineeringexperimentswasanattempttocreateanetworkofhigh-permeabilityflowpathsinthe shalebylinkingtogetherexistingnaturalfracturesusingavarietyofstandardandnovel hydraulicfracturingtechniques(Horton,1981).Manyoftheresultswerehit-or-miss, andthebasicproblemdiscoveredmuchlaterwasthatverticalboreholesthroughshale simplydonotcomeintocontactwithenoughrock.

Transferoftheseandothertechnologiestoindustrywasaccomplishedbyperiodic workshopsjointlysponsoredbyDOEandtheSocietyofPetroleumEngineers(SPE).The EGSPresearchprovedtobeextremelyvaluabledecadeslaterinassistingtheO&Gindustrywiththecommercialdevelopmentofshalegas,andthemodestDOE/SPEtechnologytransferworkshopshavesinceevolvedintothegiant,annualUnconventional ResourcesTechnologyConference,orURTeC.Theterm“unconventional”isdefinedby DOEasaresourcethatrequiressomeformofengineeringtreatmentlikefrackingtobe economicallyproductive(Soeder,2017).Incontrast,“conventional”O&Gresourcescan usuallybeproduceddirectlywithsimplewellcompletions.

Creditfortheactual,successfulapplicationofnewtechnologytothecommercial developmentofshalegasgoestothelateGeorgeP.Mitchell,cofounderwithhisbrother JohnnyofTexas-basedMitchellEnergy(Soeder,2017).Mitchellhadbeeninvolvedwith shalegassincetheearlydaysoftheEGSP,drillingseveralAppalachianbasinshalewells incooperationwithDOE(CobbandWilhelm,1982)andmaintaininganongoinginterest inproducinggasfromtheBarnettShaleintheBendArch FortWorthbasinofTexas (HickeyandHenk,2007).GeorgeMitchelltriednumerousexperimentaldrillingtechniquesandreservoirstimulationproceduresintheBarnettoveraperiodof18yearswith manytechnicalfailuresandafewtechnicalsuccessesthatweresimplynoteconomical (Montgomeryetal.,2005).

MitchelleventuallydiscoveredthattheproductionofeconomicalquantitiesofnaturalgasfromtheBarnettShalerequiredtheapplicationoftwokeytechnologies:1)long, horizontalboreholesor“laterals”thatmaintainedkilometersofcontactwiththetarget formationand2)theuseofa“slickwater”hydraulicfracturingformulationthatconsistedofmostlywaterwithafrictionreduceradded,verylittlesandforproppant,and avoidedthethickgelsandgumsusedinconventionalfracking(e.g., Moritis,2004; Mason,2006;Pickett,2008).Mitchellfoundthatunlikeverticalboreholes,whereasingle frackwillpropagateoutwardintwovertical“wings”alongthedirectionofleastprincipal stress,lateralboreholescouldsupportmultiplefracksperformedinstagesatevenlyspacedintervals.Horizontalwellsalsocanbedrilledindirectionsthatcrossmultiple setsofnaturalfractures,whichtendtobeorientedverticallyandaredifficulttocapture inaverticalborehole(Hilletal.,1993).

Thus,thetwotechnologiesthatmadeshalegasandtightoilsuccessfulashydrocarbonresourcesintheUnitedStatesweredirectionaldrillingandstagedslickwater hydraulicfracturing.Applicationofthesefinallyallowedhigh-permeabilityflowpaths intoashalegaswelltomakecontactwithasufficientvolumeofrocktoproduce economicalamountsofgasoroil(Fig.I.3).Itisimportanttonotethatneitherofthese technologieswasactuallyinventedbyGeorgeMitchell;hisgeniuswasinapplying existingtechnologytotheBarnettShaleandachievingsuccess.

FIGUREI.3 Illustrationofthecombinationofhorizontaldrillingandstagedhydraulicfracturingtechnologyused forshalegas.Nottoscale. ModifiedfromSoeder,D.J.,Kappel,W.M.,2009.WaterResourcesandNaturalGas ProductionfromtheMarcellusShale,U.S.GeologicalSurveyFactSheet2009 3032,6p.

Directionaldrillinghadbeeninventedinthe1930swiththeintroductionofa flexiblelengthofdrillpipecalleda“whipstock”thatwasdesignedtopreventthedrill stringfromshearingoffasitwentthrough abend.However,turningtheentiredrill stringfromthesurfaceandsteeringthebitthroughcurvesoftenresultedindeviated boreholesorbrokendrillpipeevenwhenawhi pstockwasused.Downholenavigational apparatuswithacompassandgyroscopewas alsoquiteprimitive,commonlyleaving drillerswithnopreciseideaaboutwherethebottomoftheholewaslocated (Mantle,2014).

Technologicaladvancesindirectionaldrillingcameaboutinthe1990s,drivenby venturesintoincreasinglydeeperwaterbythemajoroilcompaniesinvolvedinoffshore oilproduction(Soeder,2018).Semi-submersible,tension-legdrillingplatformsanchored inseveralkilometersofwaterarerisky,expensive,andtime-consumingtomovearound fromprospecttoprospect.Therewasadesiretoreachmultiplereservoircompartments incomplexstructureslikesaltdomesinextremelydeepwaterwithouthavingtomove theplatform(Crombetal.,2000).Themajorsputsignificantfundingandresearch

resourcesintodevelopingadvanceddirectionaldrillingtechnologythatwouldallow multiplewellstobeinstalledfromasinglelocation.Tension-legplatformsarecurrently abletodrilldozensofwellswithoutmoving.

Directionaldrillingimprovementsincludedadownholehydraulicmotorandbottomholeassemblythatgreatlyimprovedsteeringandnavigationofthedrillbit.Without havingtoturntheentiredrillstringfromthesurface,thedrillpipewasmuchmore flexibleandcouldturntightercorners.Someadvancedbottomholeassemblieshave thrustbearingsthatprovideprecisedirectionalcontrol.Improvementsindownhole positionmeasurementbasedoninertialnavigationandreal-timetelemetryofdataback tothesurfacenowallowtheuseof“geosteering”topreciselyplaceandaccurately monitorthedownholelocationofthedrillbitandtheconfigurationoftheborehole (Mantle,2014).

GeorgeMitchellremainedconvincedthattheBarnettShalehadhydrocarbonpotential(Kinleyetal.,2008)andadaptedthedirectionaldrillingandstagedhydraulic fracturingtechnologytoshalethroughaseriesoffieldexperimentsinTexasuntil eventuallyfindingacombinationthatwaseffectiveontheBarnettatalowercostthan otherapproaches.Anincreaseingaspricesinthemid-1990simprovedtheeconomics. By1997,MitchellEnergyhadperfectedtheslickwaterfracktechniqueinverticalBarnett wellsandstartedtryingitinhorizontalwells.ThecompanybegansuccessfullyproducingcommercialamountsofgasfromtheBarnettShaleinthelate-1990s,using horizontalboreholesandstagedhydraulicfracturing,andstartedthemodernshalegas revolution(Martineau,2007).

MitchellEnergywasacquiredin2002byDevonEnergyfor$3.1billion(Sideland Cummins,2001).GeorgeP.MitchellreceivedaLifetimeAchievementAwardfromthe GasTechnologyInstituteonJune16,2010forhispersistenceindevelopingshalegasinto aneconomicresource.HediedonJuly26,2013attheageof94.

LikeHollywoodmoviesequels,theO&Gindustryiswell-knownforcopyingsuccess. SouthwesternEnergynoticedthattheFayettevilleShaleinnorthernArkansaspossessed manyofthecharacteristicsoftheBarnettandquietlyboughtupleases.By2004,they hadadaptedtheMitchelltechniquesforFayettevilleproduction.ChesapeakeEnergy followedontheHaynesvilleShaleintheArkansas Louisiana Texasborderregion.In 2006,EOGandContinentalResourceshadbothbegunusinghorizontaldrillingand stagedfrackingtosuccessfullyproducetightoilfromtheBakkenShaleintheWilliston basininMontanaandexpandeditintotheParshallfieldofNorthDakotaafewyears later.AfterstrugglingtoadapttheMitchelltechniquestotheAppalachianbasin,Range ResourcessuccessfullybroughttheirGulla#9horizontalMarcelluswellonlinein2007at aninitialproduction(IP)rateof4.9millioncubicfeetofgasperday(MMCFD),asocalled“barn-burner”previouslyunheardofinAppalachianbasinshales(Soeder,2017).

Shalegasdevelopersbecamevictimsoftheirownsuccess,withtheproliferationof gaswellsdrivingdownprices.Operatorsbegantomoveawayfrom“drygas”andfocus insteadonresourcescontainingnaturalgasliquids(NGL)or“condensate”andoil.NGLs typicallyexistinavaporphaseunderdownholepressuresandtemperaturesandcanbe

producedasavaporwiththenaturalgas.Thecompoundsthencondenseintoliquids likepropane,butane,andethaneundercoolerconditionsandlowerpressuresatthe surface(Soeder,2017).NGLaresignificantlymorevaluablethandrygasandfetcha correspondinglyhigherprice.In2008,PetrohawkEnergybegandevelopmentofthe liquids-richEagleFordShaleinTexas,andafewyearslaterAnadarkoPetroleumand WhitingPetroleumbeganproducingcondensatefromtheNiobraraFormationinthe Denver JulesburgbasinofColorado.TheUticaShale,alsoknownasthePointPleasant FormationinOhio,isanotherlarge,liquids-richshaleplaydevelopedbymultipleoperatorsbeginningin2011(Hohnetal.,2015).Themostsignificanthydrocarbonproductionofalliscomingfromastackofsixunconventionalformationsbeingdeveloped inthePermianBasinofTexas,whichareproducingoil,NGL,andgas(USEIA,2018). Cumulativeproductionnumbersin2016(themostrecentdata)publishedbytheEIAfor tightoilplayswere864millionbarrelsfromTexas(PermianBasinandEagleFord),375 millionbarrelsfromNorthDakota(Bakken),and27millionbarrelsfromOklahoma (Woodford).

PotentialfutureshaledevelopmentmayincludetheRogersvilleShaledeepinthe AppalachianbasintheMontereyShaleinmultiplesmallbasinsinCalifornia,andeven someofthethick,organic-richshalesfillinganumberofTriassic-ageriftbasinsalong theUSeasternseaboard(Milicietal.,2012).Otherfuturedevelopmentmayincludetight limestonessuchastheMississippiLimeinOklahomaortheTuscaloosaTrendin MississippiandLouisiana.

Thisbookisintendedtoserveasareferenceandresourceonshalegasandtightoil forabroadspectrumofO&Gindustrypersonnel,undergraduateandgraduatestudents, engineers,geoscientists,andothers.Unconventionaloilandgasisauniquetypeof petroleumextraction,requiringcomplexengineeringforsuccessfulproduction.Itplays asingularroleinboththeUnitedStatesandworldeconomy.Eachmajorshaleformation isuniqueintermsofthetechnologyneededtoproduceitandtheregulatoryandeconomicforcesgoverningitsdevelopment.Wehaveattemptedtoprovideexplanationsof thehistoryandthephysicsofshalegasproduction,alongwithdescriptionsanddefinitionsforeachofthemajorshaleplays.Shalegasandtightoilresourcesinothernationsarealsoaddressed,alongwithdiscussionsaboutenvironmentalconcerns, economics,energysecurity,energypolicy,andfossilfuelsustainability.

Somereadersmayfeelweareoverstatingtheimportanceofshalegasandtightoilto theenergyeconomyoftheworld,andthatperhapswearenotjustifiedincallingita fossilfuel“revolution.”Inresponse,wesummarizethefollowinginformationgleaned fromtheU.S.EIA:Shaleresourcesbegansignificantdevelopmentintheearlyyearsof the21stcentury,andunconventionalhydrocarbonshaveincreasednaturalgasand petroleumproductionintheUnitedStatesbynearly60%since2008.TheUnitedStates surpassedRussiain2009asthetopproducerofnaturalgasintheworldandexceeded SaudiArabiaasthetopoilproducerin2013(Fig.I.4).ShalehastakentheUnitedStates fromadependenceonenergyimportstobecomingthelargestfossilenergyproducerin theworld.Ifarevolutionisdefinedasacompleteparadigmshift,thisqualifies.

FIGUREI.4 Trendsinworldoilandgasproductionbytopproducers. ReproducedfromU.S.EnergyInformation Administrationwebpage(https://www.eia.gov/todayinenergy/detail.php?id¼36292)datedMay21,2018.

References

Bolyard,T.H.,1981.ASummaryandEvaluationoftheEasternGasShalesProgramCoredWellsinthe AppalachianBasin:ReportpreparedforU.S.DepartmentofEnergyundercontractDE-AM2178MC08216,byScienceApplications,Inc.,Morgantown,WV,September1981,32p.

Cobb,L.B.,Wilhelm,M.,1982.EasternGasShalesProject:Appalachian,IllinoisandMichiganBasin Coring,Logging,andWellEvaluationProgram.U.S.DepartmentofEnergyreportDOE/MC/083821247,135p.

Considine,T.J.,Watson,R.W.,Considine,N.B.,2011.TheEconomicOpportunitiesofShaleEnergy Development:EnergyPolicy&theEnvironmentReportNo.9.ManhattanInstituteforPolicy Research,Inc.,CenterforEnergyPolicyandtheEnvironment,NewYork,36p.

Cromb,J.,Pratten,C.,Long,M.,Walters,R.,2000.Deepwatersubsaltdevelopment:directionaldrilling challengesandsolutions:SocietyofPetroleumEngineerspaper59197.In:PresentedatIADC/SPE DrillingConference,NewOrleans,Louisiana,February,2000.

Curtis,J.B.,2002.Fracturedshale-gassystems.AmericanAssociationofPetroleumGeologistsBulletin86 (11),1921 1938.

Duda,J.R.,Salamy,S.P.,Aminian,K.,Ameri,S.,1991.Pressureanalysisofanunstimulatedhorizontal wellwithtypecurves.JournalofPetroleumTechnology988.

Hickey,J.J.,Henk,B.,2007.LithofaciessummaryoftheMississippianBarnettshale,Mitchell2T.P.Sims well,Wisecounty,Texas.AmericanAssociationofPetroleumGeologistsBulletin91,437 443.

Hill,R.,Middlebrook,M.,Peterson,R.,Johnson,E.,McKetta,S.,Wilson,G.,Branagan,P.,1993. HorizontalGasWellCompletionTechnologyintheBarnettShale AnalysisoftheMitchell EnergyCorporationT.P.SimsBNo.1.WiseCounty,Texas:GasTechnologyInstitutereportGRI-93/ 0282,68p.

Hohn,M.,Pool,S.,Moore,J.,2015.Uticaplayresourceassessment.In:Patchen,D.G.,Carter,K.M.(Eds.), AGeologicPlayBookforUticaShaleAppalachianBasinExploration,FinalReportoftheUtica ShaleAppalachianBasinExplorationConsortium.WestVirginiaUniversity,Morgantown,WV,pp. 159 183.

Horton,A.I.,1981.AComparativeAnalysisofStimulationsintheEasternGasShales.U.S.Departmentof EnergyreportDOE/METC145,120p.

Kaplan,T.,2014.CuomoBansfracking,sayingriskstrumpeconomicpotential.NewYorkTimes. December18,2014,PageA1oftheNewYorkedition.

Kinley,T.J.,Cook,L.W.,Breyer,J.A.,Jarvie,D.M.,Busbey,A.B.,2008.Hydrocarbonpotentialofthe Barnettshale(Mississippian),Delawarebasin,westTexasandsoutheasternNewMexico.American AssociationofPetroleumGeologistsBulletin92,967 991.

Mantle,K.,2014.Definingdirectionaldrilling:theartofcontrollingwellboretrajectory.Schlumberger OilfieldReview25(4),54 55.

Martineau,D.F.,2007.HistoryofthenewarkEastfieldandtheBarnettshaleasagasreservoir.American AssociationofPetroleumGeologistsBulletin91,399 403.

Mason,R.,2006.Horizontal,directionaldrillingtakingoffin‘NewFrontier’ofunconventionalgas. AmericanOil&GasReporter49(7),56 67.

Milici,R.C.,etal.,2012.AssessmentofUndiscoveredOilandGasResourcesoftheEastCoastMesozoic BasinsofthePiedmont,BlueRidgeThrustBelt,AtlanticCoastalPlain,andNewEnglandProvinces, 2011:U.S.GeologicalSurveyFactSheet2012 3075,2p.

Montgomery,C.T.,Smith,M.B.,December2010.Hydraulicfracturing:historyofanenduringtechnology.JournalofPetroleumTechnology62(12),26 32.

Montgomery,S.L.,Jarvie,D.M.,Bowker,K.A.,Pollastro,R.M.,2005.MississippianBarnettshale,Fort Worthbasin,north-centralTexas:gas-shaleplaywithmulti-trillioncubicfootpotential.American AssociationofPetroleumGeologistsBulletin89(2),155 175.

Moritis,G.,2004.HorizontalwellsshowpromiseinBarnettShale.Oil&GasJournal102(3),58.

NewYorkStateDepartmentofEnvironmentalConservation,2011.SupplementalGeneric EnvironmentalImpactStatementontheOil,GasandSolutionMiningRegulatoryProgram:Well PermitIssuanceforHorizontalDrillingandHigh-VolumeHydraulicFra cturingtoDevelopthe MarcellusShaleandOtherLowPermeabilityGasReservoirs,RevisedDraft.Albany,NY,1537p. http://www.dec.ny.gov/data/dmn/rdsgeisfull0911.pdf .

Pickett,A.,2008.HorizontaldrillingtechnologyplayingkeyroleindevelopmentofgiantBarnettgas shale.AmericanOil&GasReporter51(8),74 83.

Sidel,R.,Cummins,C.,2001.DevonenergytoacquireMitchellin$3.1billioncash-and-stockdeal.The WallStreetJournal.August14,2001.

Soeder,D.J.,1988.PorosityandpermeabilityofeasternDevoniangasshale.SPEFormationEvaluation3 (2),116 124.

Soeder,D.J.,2012.ShalegasdevelopmentintheUnitedStates.In:Al-Megren,H.A.(Ed.),Advancesin NaturalGasTechnology.InTech,Rijeka,Croatia,p.542.

Soeder,D.J.,2017.Unconventional:TheDevelopmentofNaturalGasfromtheMarcellusShale:GSA SpecialPaper527.GeologicalSocietyofAmericaBooks,Boulder,CO,143p.

Soeder,D.J.,2018.ThesuccessfuldevelopmentofgasandoilresourcesfromshalesinNorthAmerica. JournalofPetroleumScienceandEngineering163,399 420.

Soeder,D.J.,Kappel,W.M.,2009.WaterResourcesandNaturalGasProductionfromtheMarcellusShale, U.S.GeologicalSurveyFactSheet2009 3032,6p.

Soeder,D.J.,Sharma,S.,Pekney,N.,Hopkinson,L.,Dilmore,R.,Kutchko,B.,Stewart,B.,Carter,K., Hakala,A.,Capo,R.,2014.Anapproachforassessingengineeringriskfromshalegaswellsinthe UnitedStates.InternationalJournalofCoalGeology126,4 19.

Theodori,G.L.,2008.Publicperceptionofthenaturalgasindustry:insightsfromtwoBarnettShale counties:paperSPE159117-MS.In:PresentedatSocietyofPetroleumEngineersAnnualTechnical ConferenceandExhibition,21 24September,Denver,Colorado,5p.

U.S.EnergyInformationAdministration,2018.U.S.CrudeOilandNaturalGasProvedReserves, Year-end2016;Report,Washington,D.C.,46p.seealso: https://www.eia.gov/todayinenergy/detail. php?id¼26352.

U.S.EnvironmentalProtectionAgency,June2015.AssessmentofthePotentialImpactsofHydraulic FracturingforOilandGasonDrinkingWaterResources(ExternalReviewDraft):ReportEPA/600/R15/047.EPAOfficeofResearchandDevelopment,Washington,DC,998p.

Yergin,D.,1991.ThePrize:TheEpicQuestforOil,Money,andPower.Simon&Schuster,NewYork,NY, USA,ISBN0671502484,912p.

Geologyoftightoilandgas shales

Shalesareclasticsedimentaryrocksformedfrommud.Theyweredepositedinquiet-water environments,andaretypicallycomposedoftinyflakesofclay,extremelysmallquartz grains,varyingamountsofcarbonateminerals,andoftensignificantquantitiesoforganic matter(Soeder,2017).Theorganiccarboninshaleprimarilycomesfromdecayedplant materialsuchasalgaedepositedwiththesediment.Theplantmattercanbederivedfrom eitheraquaticorterrestrialsources,andeachpossessesadistinctgeochemicalcharacter (Chenetal.,2015).Organiccarbonisafavoritefoodsourcefororganisms,andisfrequently consumedbybacteriaandanimalssuchaswormslivingwithinthesediment.Thenumber andtypesoforganismsthatcansurviveinthesedimentarelimitedinthepresenceofanoxic bottomwaters,andorganicmaterialtendstobepreservedintheseenvironments.Organicrichmudsareoftenblackincolor,andwhenlithifiedintoarock,becomeblackshales.

Whenorganicmaterialispreservedinarock,itcantransformintopetroleum,coal,or naturalgasovergeologictime,dependingonthetypeofplantmaterialpreserved,andthe thermalhistoryoftherock.Thisisthemostbasicconceptofpetroleumgeology thatfossil fuelswerecreatedprimarilyfromancientplantmaterials(notdeaddinosaurs)thathavebeen preservedandtransformedintosedimentaryrocks(Selley,2014).Anotherimportantconcept isthattheenergyoffossilfuelsisderivedfromancientsunlight.Photosynthesisbyplantsin ancientseasoronlong-agolandscapesusedtheenergyofsunlighttotransformwaterand carbondioxideintocellulose,lipids,carbohydrates,andotherplantmaterials,whichwere thentransformedtohydrocarbonspossessingchemicalenergy.

Althoughthedependenceofhumancivilizationonenergyfromfossilfuelscertainlyhas manyenvironmentaldownsidesrangingfromgreenhousegas-drivenanthropogenicclimate changetogroundwatercontaminationfromleakingundergroundgasolinetanks,thehigh energydensityoffossilfuelshasallowedhumanitytodevelopatechnologicalcivilization. Electricalpowergeneration,transportationbyroad,railroad,airorsea,andmassiveconstructionprojectslikesuspensionbridgesandskyscraperswouldeitherbemuchsloweror notpossibleatallwithoutfossilenergy.Chemicalfeedstockforeverythingfromplasticbags topolyesterclothing,lubricants,fertilizers,andmanyotherusesaresuppliedbypetroleum. Evenifhumanityswitchedto100%renewableenergy,orcommercializednuclearfusion,or foundsomeotherformofexoticenergy,therewouldstillbeademandforpetroleumand naturalgas.

Anotherimportanthistoricalnoteontheearlydevelopmentoffossilfuels,andpetroleum inparticular,isthatitwasspurredbythedesiretosavethewhales.Notinanenvironmental sense backin1859whenColonelEdwinDrakedrilledthefirstcommercialoilwellin

Titusville,Pennsylvania,therewerenotmanypeopleconcernedabouttheenvironmentand ecology.Thiswasmuchmoreaboutmoney.Intheerabeforeelectricity,oillampswere widelyusedforlighting,andthesupplyoflampoilatthetimewasobtainedprimarilyfrom spermwhales.Thespecieshadbeenhuntednearlytoextinction,romanticizedbyHerman Melvillein Moby-Dick,andthepriceofwhaleoilskyrocketed.ColonelDrakehadthe intentionofobtainingmineraloilinquantitiessufficienttorefineintokerosene,andmarketingthisnew,muchcheaperfuelasareplacementforcostlywhaleoil.Withinafewshort years,kerosenedominatedthelampoilmarket,andwhalehuntingbecameextinct,insteadof thewhales.

Thechaptersinthisfirstsectionwilldiscussthegeologyofunconventionaloilandgas resources,includingsomegeneralpetroleumconcepts,thedifferencesbetweenconventional andunconventionalresources,andtheproductionchallengesofshalegasandtightoil.This willbefollowedbydescriptionsofthemajorshalehydrocarbonresourcesintheUnited Statesandworldwide.Othersectionswilladdressindustryoperations,economics,policy,and environmentalissues.

Petroleumgeologyconcepts

Originsofblackshales

AfterthefirstcommercialAmericangaswellwashand-dugintoaDevonian-ageshalein 1821inFredonia,NewYorktosupplyvillagestreetlighting(Curtis,2002),theconcept thatorganic-richor“black”shalesareapotentialsourceofhydrocarbonswasunderstood(SchriderandWise,1980).Thepreservationoforganiccarbongivestherockits darkcolor,althoughthiscanvaryconsiderablyfromflannelgraytotheyellow-black colorofripeolivestoadeepcharcoalblack.AttemptsbytheUSGeologicalSurvey (USGS)toquantifycarboncontentfromrockcolorchartsfoundthatshalestendtoget darkerasthecarboncontentincreases,butoncetheorganiccarboncontentreaches about4%,theshaleisblackanddoesn’tgetany“blacker”withtheadditionofmore carbon(HostermanandWhitlow,1980).

Themechanismforcarbonpreservationinshaleisthoughttorequirethreeimportant components:1)highproductivityofalgaeinthewaterisneededtoproduceasubstantial amountoforganiccarbon(Wrightstone,2011),2)thisorganicmaterialmustthensettle outofthewatercolumnandbedepositedinalow-sedimentenvironment,thereby preventingthe“dilution”oforganiccarbonbylargeinfluxesofinorganicmineral sediment(SmithandLeone,2010),and3)anoxicbottomconditionsarerequiredto preservetheblackmudsbypreventingbenthicanimalsandaerobicmicrobesfrom consumingtheorganicmaterial.Inmanycases,thetransitionfromoxidizingtoanoxic bottomconditionswasabrupt,creatingasharpboundarybetweena“gray”shaleandan overlying“black”shale(Fig.1.1).

Anoxiacanoccurindeepwaterbelowapermanentpycnocline(BoyceandCarr, 2010),andalsoinquiet,shallowwaterthathaslittlesedimentinflux(Schieber,1994). Thereareargumentssupportingbothideas,andbothshallowanddeepwaterprocesses maybeimportantfordifferenttypesofblackshales.

Thedeepwatermodelforanoxiaisoftenreferredtoasthe“BlackSea”modelbecause itpostulatesadeep,restricted,forelandbasinsomewhatlikethemodern-dayBlackSea (Ettensohn,2008).Oneofthechallengesofexplainingtheoriginsofblackshalesindeep wateristhepresenceofnonblackshaleunitslikelimestones,grayshales,siltstones,and othercoarserclasticrockswithintheblackshalesequence.Inthedeepwatermodel appliedtothenorthernAppalachianbasin,thedepositionofeachblackshaleunitwas interpretedtobetheresultofrapidsubsidenceinaforelandbasin,followedbyinfilling withshalesandcoarserclasticssentintothebasinfromthecyclicnatureofmountain buildingduringtheAcadianorogenyontheeasternmargin(Ettensohn,2012).

TheFossilFuelRevolution:ShaleGasandTightOil. https://doi.org/10.1016/B978-0-12-815397-0.00002-1

Thethicknessesoftheclasticwedgesaboveeachblackshaleweremeasuredto estimatebasindepth.Order-of-magnitudewaterdepthsinthenorthernAppalachian basinfromthisapproachrangedfrom80to310m(250 1000ft)duringdepositionofthe thicksequenceofMiddleDevonianthroughEarlyMississippianorganic-richmuds (Ettensohn,2012).Theestimatesalsoshowageneraldeepeningoftheseabottomwith time,whichmayhavebeencausedbythecumulativeeffectsoftectonicloading,along withrisingDevoniansealevels.Theseproposedwaterdepthsareunusuallydeep comparedtomodernepeiricseas,whichtendtohavedepthsoflessthan100m.Other researchershavesuggestedthatperhapsadifferentmodelisneeded(i.e., Arthurand Sageman,2005).

Theshallow-watermodelswereinspiredbyevidenceoffossilskeletalmaterialfound inblackshales,composedoffragmentsfromechinoderms,bryozoans,brachiopods,and othertypicallybenthicfaunathatrequireoxygentosurvive.Thepresenceofthesefossil fragmentsindicatestheupperlayersofsedimentwerenotpermanentlyanoxic,but possiblyjustseasonallydisoxic(SmithandLeone,2010).Anotherproblemwitha deepwateroriginisthatmanyblackshaleunitsrestonerosionalunconformitiesatthe topoftheirunderlyinglimestones.TheMarcellusShale,RhinestreetShale,Barnett Shale,HaynesvilleShale,WoodfordShale,PierreShale,andBakkenShaleallonlap

FIGURE1.1 PhotographofcontactbetweentheblackClevelandShaleandtheunderlyinggrayChagrinShaleina drillcorefromOhio. PhotobyDanSoeder.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
The fossil fuel revolution: shale gas and tight oil daniel j. soeder - Get the ebook in PDF format f by Education Libraries - Issuu