The dynamics of natural satellites of the planets nikolay emelyanov - Download the ebook today and o

Page 1


https://ebookmass.com/product/the-dynamics-of-natural-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

The dynamics of natural satellites of the planets Nikola■ Vladimirovich Emel■I■A■Nov

https://ebookmass.com/product/the-dynamics-of-natural-satellites-ofthe-planets-nikolai-vladimirovich-emel%ca%b9i%ef%b8%a0a%ef%b8%a1nov/

ebookmass.com

Management of concentrate from desalination plants Nikolay Voutchkov

https://ebookmass.com/product/management-of-concentrate-fromdesalination-plants-nikolay-voutchkov/

ebookmass.com

Heat Transport and Energetics of the Earth and Rocky Planets 1st Edition Anne Hofmeister

https://ebookmass.com/product/heat-transport-and-energetics-of-theearth-and-rocky-planets-1st-edition-anne-hofmeister/

ebookmass.com

Fundamentals

of

Information Systems Security

https://ebookmass.com/product/fundamentals-of-information-systemssecurity/

ebookmass.com

Biological Naturalism and the Mind-Body Problem 1st ed. 2022 Edition Jane Anderson

https://ebookmass.com/product/biological-naturalism-and-the-mind-bodyproblem-1st-ed-2022-edition-jane-anderson/

ebookmass.com

Industrial Process Scale-up 2nd Edition Jan Harmsen

https://ebookmass.com/product/industrial-process-scale-up-2nd-editionjan-harmsen/

ebookmass.com

Heritage Conservation in the United States: Enhancing the Presence of the Past John H. Sprinkle Jr.

https://ebookmass.com/product/heritage-conservation-in-the-unitedstates-enhancing-the-presence-of-the-past-john-h-sprinkle-jr/

ebookmass.com

Raging Sea (Warriors of the Stone Circles Book 2) Terri Brisbin

https://ebookmass.com/product/raging-sea-warriors-of-the-stonecircles-book-2-terri-brisbin/

ebookmass.com

Understanding Human Time (Oxford Studies of Time in Language and Thought) Kasia M. Jaszczolt (Editor)

https://ebookmass.com/product/understanding-human-time-oxford-studiesof-time-in-language-and-thought-kasia-m-jaszczolt-editor/

ebookmass.com

The Transformation of the Media System in Turkey: Citizenship, Communication, and Convergence Eylem

Yanarda■o■lu

https://ebookmass.com/product/the-transformation-of-the-media-systemin-turkey-citizenship-communication-and-convergence-eylemyanardagoglu/

ebookmass.com

THEDYNAMICSOF NATURALSATELLITES OFTHEPLANETS

THEDYNAMICSOF NATURALSATELLITES OFTHEPLANETS

NIKOLAYEMELYANOV

SternbergStateAstronomicalInstitute

LomonosovMoscowStateUniversity Moscow,Russia

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021ElsevierInc.Allrightsreserved.

TheRussianversionofthisbookwaspublishedin2019:EmelyanovN.V.,TheDynamicsofNaturalSatellitesofthePlanets BasedonObservations.Vek-2,Fryazino.576pp.ISBN978-5-85099-199-9.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-822704-6

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionsEditor: PeterLlewellyn

EditorialProjectManager: AliceGrant

ProductionProjectManager: SruthiSatheesh

Designer: VictoriaPearson

TypesetbyVTeX

3.2.5Keplerianmotionformulaswithrespecttononsingular elements(Lagrangeelements)..........................51

3.2.6ExamplesofusingLagrangeelements..................54

3.3Forcefunctionofattractionofanon-sphericalplanet.... ........55

3.3.1Forcefunctionexpansion...............................55

3.3.2Attractioninmodelsandforrealbodies .................56

3.4Anapproximateaccountoftheinfluenceofthemainsatellites onthemotionofdistantsatellitesoftheplanet .................60

3.5Variousapproachesandmethodsforconstructingmotion modelsofplanetarysatellites... ..............................61

3.6Amodelofmotionofasatelliteofanoblateplanetbasedonthe solutionofthegeneralizedproblemoftwofixedcenters........63

3.7Constructinganalyticaltheoriesofplanetarysatellitemotion usingperturbationtheorymethods... .........................66

3.7.1Generalschemeofperturbationtheory..................66

3.7.2Circumstancesinthemotionofrealcelestialbodies, allowingtheuseofperturbationtheorymethods. ........69

3.7.3Equationsforelementsoftheintermediateorbit. ........74

3.7.4Solvingequationsforintermediateorbitelements.Small parametermethod.....................................80

3.7.5Solvingequationsforintermediateorbitelements. PoissonMethod.......................................84

3.8Expansionoftheperturbingfunctionwithrespecttothe elementsoftheintermediateorbitofaplanetarysatellite........86

3.9Determinationofperturbationsofelementsoftheplanetary satelliteintermediateorbit.. ..................................91

3.10Constantperturbationofthesemi-majoraxisofthesatellite’s orbit.........................................................97

3.11Precessingellipsemodel.... .................................101

3.12Perturbedmotionatsmalleccentricitiesoftheorbits...........103

3.12.1Problemformulation..................................103

3.12.2Constructingamodelofcircularperturbedmotion......104

3.12.3TransitiontotheelementsoftheKeplerianorbit........106

3.12.4OsculatingKeplerianelementsofthesatellite’sorbitin perturbedmotionwithsmalleccentricities..............108

3.13Constructedanalyticaltheoriesofplanetarysatellitemotion ....114

3.13.1AnalyticaltheoryofthemotionofNeptune’ssatellite Triton................................................114

3.13.2PrecessingEllipsemodelsforcloseJupitersatellites

3.13.3Specialanalyticaltheoriesofthemainsatellitesofmajor planets,takingintoaccountthemutualattractionof satellites..

3.14Influenceoftidesinviscoelasticbodiesofplanetandsatelliteon thesatellite’sorbitalmotion ..................................126

3.14.1Statementoftheproblemofinfluenceoftides.

3.14.2Equationsinrectangularcoordinates..

3.14.3Solvingtheequationsforrectangularcoordinates..

3.14.4TransitiontothedifferentialequationsinKeplerian elements.............................................134

3.14.5Someimportantconclusionsabouttheinfluenceoftidal deformationsonsatellitedynamics...

4.1Theobjectiveofsolvingtheequationsofmotionofcelestial

4.2Generalpropertiesofmethodsforthenumericalintegrationof

4.3Runge–Kuttaintegrationmethodforordinarydifferential

4.4Algorithmforsolvingproblemsofmotionofacelestialbodyby numericalintegrationmethods. ..............................158

4.5Instructionsforthecomputationalprogramforthenumerical integrationofordinarydifferentialequationsbytheEverhart method.....................................................160

4.6Belikovprogramfornumericalintegrationofordinary differentialequations........................................165

4.7Testingandcomparingsomenumericalintegrationprocedures.167

4.8Approximationoftherectangularcoordinatesofplanetsand satellitesbytruncatedChebyshevseries.. ....................167

4.9Overviewofproblemsandmethodsofnumericalintegration. BookbyAvdyushev.........................................170

Chapter5Observationsofplanetarysatellites........

5.1Generalprinciplesofobservations............................173

5.2Determinationoftopocentricpositionsofplanetsandsatellites.174

5.3Planetobservations..........................................175

5.4Observationsofaplanetarysatellite.. ........................177

5.5Observationsoftwosatellitesoftheplanet ....................178

5.6Determinationofangularmeasuredvaluesduringobservations ofplanetarysatellites... .....................................180

5.7Calculationoftheangulardistancebetweensatellitesand positionangle...............................................183

5.8Determinationoftangentialcoordinatesofsatellites ...........184

5.9Determinationofthecoordinatedifferencebetweentwo satellitesoftheplanetinthecaseofphotometricobservations ofmutualeclipsesofsatellites... .............................185

5.10Conclusionregardingmeasuredvaluesduringobservationsof planetarysatellites. .........................................187

5.11Themomentofapparentapproximationofplanetarysatellites asameasurablequantityduringobservations.................188

5.12Meansandtechniquesofground-basedobservationsof planetarysatellites. .........................................190

5.13Sourcesofobservationsfromplanetarysatellites... ...........192

5.14Timescalesandcoordinatesystemsforobservationsof planetarysatellites. .........................................194 References..................................................199

Chapter6Constructionofmodelsforthemotionsofcelestialbodies basedonobservations................... ..............201

6.1Methodofdifferentialrefinementofthemotionparametersof celestialbodiesbasedonobservations.Applicationof least-squaresmethod........................................201

6.2Weakconditionalityandambiguityofsolution.... .............212

6.3Overviewoffilteringalgorithms..............................215

6.4Calculationofmeasuredvaluesandpartialderivativesofthe measuredvaluesbyrefinedparameters.......................217

6.4.1Generalorderofcalculations..........................217

6.4.2Differentialequationsforisochronousderivativesinthe three-bodyproblem.Refinementoftheinitialconditions oftheequationsofmotion............................220

6.4.3Differentialequationsforisochronousderivativesinthe three-bodyproblem.Refinementofthemassofthe perturbingbody... ...................................223

6.4.4Differentialequationsforisochronousderivativesinthe satellitemotionproblemforaoblateplanet .............224

6.4.5Constructionofconditionalequationsforangular measurementsoftopocentriccoordinates. .............227

6.5Assigningweightstoobservationsandconditionalequations..231

6.6Calculationofstatisticalcharacteristicsofresiduals............234

6.7Theproblemofrejectingroughobservations. .................236

occultationsandeclipsesofplanetarysatellites.........239

7.1Descriptionofphenomena...................................239

7.2Methodforobtainingastrometricdata........................242

7.3Asimplifiedmodelofmutualoccultationsandeclipsesof planetarysatellites... .......................................245

7.4Photometricmodelsofmutualoccultationsandeclipsesof planetarysatellites... .......................................248

7.4.1Generalphotometriccharacteristics... .................248

7.4.2Photometricmodelofthemutualoccultationofsatellites249

7.4.3Photometricmodelofsatelliteeclipse. .................251

7.5Thelawsoflightscatteringforplanetarysatellites.. ...........253

7.5.1Lommel–Seeligerlightscatteringlaw...................253

7.5.2Hapke’slightscatteringlawforasmoothsurface........254

7.5.3Hapke’slightscatteringlawforaroughsurface.. .......255

7.5.4Hapke’slawparametersfortheGalileansatellitesof Jupiter...............................................257

7.6Disk-integratedphotometriccharacteristicsofthesatellite......258

7.7Photometricmodelsofmutualoccultationsandeclipsesofthe mainsatellitesofSaturnandUranus.. ........................262

7.7.1Photometricmodelofmutualoccultationsandeclipses ofthemainsatellitesofSaturn. ........................262

7.7.2Photometricmodelofmutualoccultationsandeclipses ofthemainsatellitesofUranus ........................264

7.8Relationfortheaccuracyofastrometricresultsofobservations ofvarioustypes.............................................265

7.9Worldwidecampaignsonobservationsofsatellitesduringtheir mutualoccultationsandeclipses.............................266

7.10Obstaclestoimprovingtheaccuracyofastrometricresults.....267

7.11Periodsofthephenomenainthefuture.......................273 References..................................................274

8.1Factorsdeterminingephemerisaccuracy......................277

8.2Estimationoftheephemerisaccuracyusingobservation-errors variancebytheMonteCarlotechniques.......................279

8.3Estimationofephemerisaccuracybyvaryingthecompositionof observationsusing“bootstrap”-samples.. ....................281

8.4Estimationoftheaccuracyofephemerisbythemethodof motionparametervariation..................................284

8.5Theaccuracyoftheephemerisofthedistantsatellitesofmajor planets.....................................................286

9.3TherotationofNeptuneandtheorbitofTriton................297

9.4TheoryofrotationforPhobos..

9.5RotationoftheGalileansatellitesofJupiter,satellitesofSaturn andPluto...................................................304

9.6Chaoticrotationofplanetarysatellites.RotationofHyperion

10.1Theimpactofvariousfactorsontheevolutionoftheorbitsof planetarysatellites... .......................................315

10.2Theevolutionoftheorbitsofsatellitessubjecttothe predominantinfluenceofplanetoblateness..

10.3Evolutionoftheorbitsoftheplanetarysatellitesunderthe actionofthesolarattraction..................................319

10.3.1Averagingoftheperturbingfunction...................319

10.3.2Aspecialcase—Hillproblem...........................324

10.3.3Analysisoffamiliesofpossiblechangesinthe eccentricityof e andtheargumentofthepericenter ω for atwice-averagedperturbingfunctionintheHillcase ....325

10.3.4Orbitevolutionintimeforadouble-averagedperturbing functionintheHillcase...............................334

10.3.5Applicationsoftheconstructedtheoryoforbitevolution instudyingthedynamicsofrealplanetarysatellites .....341

10.4Refinedmodelsoftheevolutionoftheorbitsofplanetary satellites.Numericalanalyticalmethod.. ......................342

10.5Theevolutionoftheorbitsofplanetarysatellitesunderthe combinedinfluenceofvariousfactors.. ......................346

10.6ClassificationoftheorbitsofthedistantsatellitesofJupiter, Saturn,Uranus,andNeptuneaccordingtothetypesand propertiesoftheorbitevolution..............................350

10.7Theevolutionoftheorbitsandrendez-vousoccurrencesof distantsatellitesoftheplanets. ..............................352

10.7.1Modernknowledgeabouttheevolutionoftheorbitsof distantplanetarymoons.. .............................352

10.7.2Theproblemofcalculatinganddetectingthe rendez-vousoccurrencesofdistantplanetarysatellites..355

10.7.3Ananalyticaldescriptionoftheevolutionofsatellite orbits................................................356

10.7.4Determinationofminimaldistancesbetweentheorbits ofdistantplanetarysatellites.. ........................357

10.7.5ProposedInternetsourceforthestudyoftheevolutionof theorbitsandrendez-vousofdistantplanetarysatellites.358

10.7.6Examplesofcalculatingtheminimumdistancesbetween theorbitsofsatellites .................................359

10.7.7Conclusion...........................................363

10.8RefinementoftheLaplace–Lagrangesecularperturbation

Chapter11Physicalparametersofplanetarysatellites.

11.3DetectionofvolcanoesonthesatelliteofJupiterIousing groundphotometry. .........................................371

11.4Estimatesofthephysicalparametersofdistantplanetary satellites.. ..................................................372

11.4.1Featuresofdistantplanetarysatellites.. ................372

11.4.2Overviewofavailablephotometricdatafordistant planetarysatellites... .................................374

11.4.3Photometricmodelfordistantplanetarysatellites .......377

11.4.4Determinationofphotometricparametersofsatellitesby photometry. .........................................379

11.4.5Initialdataandresultsofdeterminingthephotometric parametersofsatellites.. .............................380

11.4.6Comparisonofresultsobtainedbydifferentauthors.....385

11.4.7Conclusionsontheestimatesofthephotometric parametersofdistantplanetarysatellites ...............388

12.1Variantsandchangeofversionofmotiontheoriesand

12.2Meansofprovidingaccesstodatabases,motionmodelsand

Author’spreface

Atheoryonlymakessensewhenitisnotonlyabstractconstructionsintheimaginationofafascinatedtheoretician,butwellestablishedproceduresthatproperlyservethegoalsofpractical knowledgeofnature.

Thedynamicsofplanetarysatellitesisaveryinterestingarea ofcelestialmechanics.Atfirstglance,thedynamicsofsatellites canbestudiedwithoutobservation.Theresearchercancomeup withasatellitemodelthatisclosetorealityoringeneralabstract one,trynewmethodsonit,demonstratinghishighestskill.There isanotherseductivelineofactivity:theexplanationofwhycelestialbodiesmoveexactlyastheymove.Anewexplanationof factsknowninnatureoranexplanationofpreviouslyunexplained phenomenaseemstobeasignificantscientificachievement.Of course,wethushoneourskills.However,inthesematters,the researchershouldatsomepointstopandaskhimselfthequestion:dowegetnewinformationaboutthenaturearoundus?Of course,ascientificgeneralizationoffactsatsomestagecancreate aqualitativeleapinourideasaboutnature.However,thisisprecededbyatime-consumingandsometimesexhaustingprocess ofaccumulatingfactualknowledge.Inthedynamicsofplanetary satellites,thiswayinevitablyrunsthroughthetechnicalprocessingofinformationfromobservations,throughthecompilationof prohibitivelycumbersomecomputingprogramsandtheimplementationofboringcalculations.Whichresearcherwillgothere? Eitheraresearcherwhounderstandstheharshinevitabilityofthis process,oronewhohashisownspecialscientificandtechnologicalpredilections.Tohelpjustsuchbraveresearchers,thisbook waswritten.

Asinmanyotherbranchesofastronomy,inthedynamicsof planetarysatellites,thecriterionoftruthiscompliancewithobservations.Theoristsknowthatthemoreobservations,theworse itcanbeforatheory.Wecancongratulatesuchtheorists—their theoryhasbeenreplacedbyanewone.Itispreciselyforsuch eventsthisbookisaimed.

Bothinordinarylifeandinscientificresearch,weareoftenin searchofa“helpdesk”.Nowadays,suchabureauis“theglobal virtualmind”—Internet.Instudiesofthedynamicsofplanetary satellites,asinmanyotherscientificstudies,onlysuchdataare

requiredwhichareprovidedwithinformationaboutwhoreceived thisdataandhow,andforwhichtheaccuracyandreliability areclear.Thisbookprovidesreferenceinformationonplanetary satellites,withlinkstoreliablesources.

Scientificworkisoftensuccessfulwhenitislimitedtoacertainframeworkbothintermsofobjectsandresearchmethods.In suchaharmoniousprocess,annoyingsituationssometimesoccur whenitisnecessarytogobeyondfamiliarmethodsorinformation.Insuchsituations,theproposedbookmayhelp.

Finally,thisbookhelpscounteractthethoughtthatthewords “celestialmechanics”soundold-fashionedandthatthisisnota modernfieldofastronomy.Infact,celestialmechanicsisnotlimitedtothethree-bodyproblemandthedeterminationoftheorbit fromthreeobservations.Nowadays,thisisthemostpracticaland modernfieldofastronomy.Itnotonlysatisfiesournaturalcuriosity,butalsoservestosolvetwoperennialproblemsofhumanity:expandingourhabitatandprotectingagainstthedangerous forcesofnature.

Mostofthebookisbasedonthescientificresultsandpublicationsoftheauthor.Forthosesubjectsthattheauthorhimselfwas notdirectlyinvolvedin,thebookprovidesbriefreviewsofpublicationsofotherspecialists.Anextensivebibliographyisgivenfor allsectionsofthebook.Thisisnecessaryforamoredetailedstudy ofmethodsandscientificresults.Thebibliographyitselfisareferencematerialthatisindemandforwidespreaduse.Aseparatelist isgivenforeachchapter.Somelinksmayberepeatedindifferent chapters.

Thescientificworkonthetopicofthisbookwascarriedout bytheauthorpartiallyincollaborationwithcolleaguesfromthe InstitutdeMécaniqueCélesteetdeCalculdesEphémérides(IMCCE),Paris,France.This,ontheonehand,accompaniedthework withgoodexpertise,andontheotherhand,ensuredtherelevance oftheresultsobtainedbytheauthor.

Thepossibilityofwritingthebookwasprimarilyprovided byahighlevelofeducation,whichwasgiventotheauthorby M.V.LomonosovMoscowStateUniversity.Theauthorspenthis entirescientificlifewithintheSternbergAstronomicalInstituteof MoscowStateUniversity,wherethisbookwaswritten.

TheauthorthankstheassociateprofessorG.I.Shirminforthe finaleditingandproofreadingofthebook.

1

Objectives,currentproblemsand generalapproachtothestudyof thedynamicsofsatellites

1.1Introduction

TheunderstandingthatthevastUniverseextendsinalldirectionshasalwaysworriedmankind.Thiscausesadoubledesire. Firstly,itwouldbenicetounderstandourplaceintheboundless spaceandtheinfinitediversityoftheworld.Peopleoftenexperienceaslightdiscomfortfromthelackofananswertosucha question.Atthesametime,adesirearisestoextractbenefitsfrom theCosmostosatisfyever-increasingneeds.Peopleareevenmore worriedwhentheydiscoverathreattotheirlivesbytheforcesof nature.Nothingscaresussomuchasanincomprehensiblephenomenon.Itissurprisinglyeasytoreassurepeoplebyexplaining terriblephenomena,evenwithnotquitefamiliarwords.Theinformationthatatleastsomeoneunderstandstheprocessesofnaturereturnsustotheusualcomfortofeverydaylife.Thatiswhy weshouldbegratefultothefewpeoplewhoworktosaveusfrom painfulquestionsaboutspaceandfate.

Sinceancienttimes,peoplehavethoughtabouttheinfluence ofcelestialbodiesonterrestriallife.Attemptstocomparecelestialphenomenawiththefateofmanweremadebybothscientists andinvestigativeindividualsnotbeingscientists.However,atall times,averyunreliableresultwasobtainedtimeandagain.Asfor thefateofthecelestialbodiesthemselves,astronomersandmathematicianshavelongcalculatedthesurprisinglystablenatureof theirmovement.Thesizesandshapesoftheorbitsoftheplanets, ortheslopesoftheaxesoftheirrotation,havenotchangedmuch evenatcosmogonictimeintervals.

NaturalscientistsandphilosophershavecometotheconclusionthatthemainreasonfortheexistenceofaCosmicMindinthe Universeisthefunctionofcognition.Ledbyreasonlifeischaracterizedbyadesiretounderstandandexplainwhatishappening asregardsthephenomenon.

AtanystageofcognitionoftheUniverse,wealreadyhavea moreorlessadequatemodelforit.New,moreaccurateobser-

TheDynamicsofNaturalSatellitesofthePlanets

https://doi.org/10.1016/B978-0-12-822704-6.00006-6

Copyright©2021ElsevierInc.Allrightsreserved.

Chapter1 Objectives,currentproblemsandgeneralapproachtothestudyofthedynamicsofsatellites vationsmayleadtoamodelmismatchwithreality.Atmost,the requiredadjustmentofthemodelisrestoredbyclarifyingthe knownparametersofthemotionorthestateofcelestialbodies. Sometimesitisnecessarytosignificantlyimprovetheories,the model-constructingtechnique,orthecalculationmethods.This processisunconsciouslyaimedatdiscoveringnew,unexplained phenomena.Atsomestage,itispossibletogetthismuch-needed “food”fortheMind,butthisisalwaysprecededbythecolossal workofscientists—observers,theorists,andcalculators.Themotionmodelsofcelestialbodiesarealsovaluableinthattheyallow ustopredicttheirlocationatanytimeinthepastorfuture.

Atheoryonlymakessensewhenitisnotonlybyabstractconstructionsintheimaginationofafascinatedtheoretician,butalso oneneedswell-establishedproceduresthatregularlyservethe purposesofpracticalknowledgeofnature.Oneofthemaintools inthisrespectispracticalcelestialmechanics.Itispracticalcelestialmechanicsthatgivesusthemostcompleteandaccurate knowledgeofthedynamicsofplanetarysatellites.

1.2Celestialmechanics—thebasisfor

studyingthedynamicsofplanetary

satellites

Celestialmechanicsisthebranchofsciencethatstudiesthe movementsofcelestialbodiesundertheactionofnaturalforces.

Thesubjectofcelestialmechanicsisthemechanicalformof themotionofmatter.

Theobjectsofresearchareallkindsofmaterialformations, fromthesmallestparticlesofcosmicdusttocolossalsystemssuch asstarclusters,galaxiesandclustersofgalaxies.

Thepurposeofcelestialmechanicsistostudythelawsofnaturethatgovernthemechanicalmovementsofcelestialbodies.

Forallnaturalsciences,celestialmechanicsplaystheroleof afoundation,withoutwhichthestudyoftheUniverseandthe explorationoftheCosmosareunthinkable.ThesignificanceofcelestialmechanicsforlifeonEarthistogainknowledgeaboutthe motionofcelestialbodiesandthenearCosmostobettermeetthe needsofmankindandtoresultinprotectionfromtheforcesof nature.ThetheoryofmotionofartificialsatellitesofEarthallows fortheuseofspacecraftforcommunicationandresearchofterrestrialresources.Thetheoryofmotionofasteroids,cometsand meteorsgivesanassessmentofthedangerofthesebodiesenteringtheatmosphereandfallingtotheEarth’ssurface.Studiesofthe motionsofthebodiesofthesolarsystemmadeitpossibletocre-

ateafundamentalreferenceframe—amodeloftheinertialsystem implementedbycelestialmechanicsandastrometryintheform ofastronomicalyearbooksandthefundamentalstarcatalogues.

Inthedevelopmentofcelestialmechanicsmanyofthemost effectivemethodsofmathematicalphysicsandcomputational mathematicsarose,tookshapeandwerefurthered.

Asanexample(andbynomeanstheonlyone!),wecanindicatemethodsforthenumericalintegrationofdifferentialequationsdescribingvariousnaturalphenomenaandman-madeprocesses.Havingarisenincelestialmechanics,theseandothernumericalmethodsarewidelyusedinscienceandtechnology.In the17–18thcenturies,withthesolutionofastronomicalproblems bythemethodsofcelestialmechanics,essentiallyalltheoretical physicsbegan.

Notonlythetheoryofsystemsofordinarydifferentialequations,asitoccurredinthelastcentury,ispredominant,but,in fact,theentiresetofmoderntoolsofappliedmathematicsisused bymoderncelestialmechanicstomodelthemovementsofspace objects.

1.3Objectivesofstudyingthedynamicsof planetarysatellites

TheprimaryobjectiveofresearchintothedynamicsofSolar Systembodiesisthedeterminationofparametersofmotionof planetsandtheirsatellites.Thisobjectiveisrelevanttotheperennialchallengeofmankind:expandingandexploringourhabitat. Satellitesofmajorplanetsarethemostsuitabletargetsforunmannedandmannedlandingmissions.Researchofthestructure anddynamicsofSolarSystembodiesisanintegralpartofdynamicalastronomy.Themethodsofcelestialmechanicsandastrometricobservationsareusedinthisresearch.Interplanetary navigation,whichattractedtheinterestofscientistsinthesecond halfofthe20thcentury,isanewproblemofthedynamicsofSolar Systembodies.

Thegeneralapproachtostudyingthedynamicsofcelestial bodiesconsistsindevelopingmodelsofmotionandephemerides ofplanets,asteroids,andplanetarysatellites.Suchmodelsare builtbasedonthegenerallawsofnature,thephysicalparameters ofcelestialbodies,and,mostimportantly,observations.Advanced mathematicalandcomputationaltechniquesareusedintheprocess.EphemeridesaretheendresultofthisresearchandincorporatetheentirebodyofknowledgeonthedynamicsofSolarSystem bodies.

Chapter1 Objectives,currentproblemsandgeneralapproachtothestudyofthedynamicsofsatellites

Ephemeridesareusedtodeterminethephysicalpropertiesof celestialbodiesandtostudytheoriginsandevolutionoftheSolarSystem.Theyarealsoneededtoprepareandlaunchspace missionstootherplanetsandhelpdiscovernewcelestialbodies.Inthemiddleofthe19thcentury,UrbainLeVerrierhadused ephemeridestopredicttheexistenceofthethenunknownplanet Neptune,andnewplanetsandsatellitesarestillbeingdiscoveredthisway.Therefore,onemayconcludethatephemeridesalso serveasaresearchtool,sincetheyincorporatealltheavailable dataonthemotionofplanetsandsatellites.

Theresultsandconclusionsofcelestialmechanicsarevisibly andinvisiblypresentinmanyotherareasofscienceandhuman practice.

1.4Basicconceptsofcelestialmechanics andastrometry

Weestablishsomebasicconceptsofpracticalcelestialmechanicsandastrometry,withwhichwewilloperateinthefollowingpresentation.

Theobjectsofourresearcharetheplanetsandsatellitesofthe SolarSystem.Thus,weoperatewithmodelsofcelestialbodies, whichinnaturedonotexist,butwhichtoacertainextentdiffer littlefromthebehaviorsofrealcelestialbodies.Examplesofsuch objectsareamaterialpointandanabsolutelysolidhomogeneous bodyboundedbythesurfaceofatriaxialellipsoid.

Lawsofmotion. Therealmanifestationofthemotionofcelestialbodiesisachangeintheirrelativeposition,whichisdeterminedbythemutualdistances.Tosetthemotionofasystem ofcelestialbodies,oneshouldsetthelawofchangeintheirmutualdistancesintime.Themathematicaldescriptionofthelaws ofmotionaretheseorotherfunctionsoftime.

Foraconvenientrepresentationofthemotionofcelestialbodies,weusetheconceptsofareferenceframe,coordinatesystem andtimescale.Theabstractconceptofacoordinatesystemis somehowconnectedwithrealcelestialbodies.Examplesinclude theGreenwichmeridianonEarthorextragalacticradiosources. Theabstractconceptofatimescaleisassociatedwithrealphysicalprocesses.ExamplesincludeEarth’srotationorelectromagneticradiationfromanatom.

Lawsofinteraction. Thebasisforstudyingthemotionofcelestialbodiesisthelawsofphysicsthatarestrictlyestablished fromobservations,whichdescribetheinteractionsofbodiesor theeffectsonthemoftheenvironmentinwhichtheymove.The

mathematicalformofthelawsofinteractionofcelestialbodies areordinarydifferentialequations,whilethemutualdistances betweencelestialbodiesortheircoordinatessatisfytheseequations.

Mechanicalmodel. Incelestialmechanics,theconceptofa mechanicalmodelisused.Themodelisdescribedbythecompositionofmovingobjectsandtheirproperties,byspecifyingthe forcesactingontheindividualcomponentsofthemodel.Mechanicalmodelsareusedeitherforanapproximatedescriptionof themotionsofcelestialbodiesorasabasisforthedevelopment ofmoreaccuratemethodsfordescribingtheirmotions.

Thetaskofpracticalcelestialmechanicsisthecreationand studyofvariousmechanicalmodels,aswellasthestudyanddescriptionofthemotionofrealcelestialbodies.

Amechanicalmodel,being,asarule,anapproximatedescriptionofthemotionsofasystemofrealcelestialbodies,canfundamentallydifferfromthem.Inparticular,thepropertiesofbodies inthemodelmaynotcorrespondtoreality,andthelawsoftheactingforcescanbespecifiedinaspecialway.Examplesincludethe motionofasystemof materialpoints inwhichcelestialbodies aredimensionless,or arestrictedthree-bodyproblem thatdoes notsatisfyNewton’sthirdlaw.

Observations.Measuredvalues. Thesourceofourknowledge ofcelestialbodiesisobservation.Inobserving,wecannotbecontentwithstatingthefactofthepresenceofacelestialbodyinthe sky.Duringastronomicalobservations,measurementsofvarious quantitiesarecarriedoutusingavarietyofinstruments.Unlike abstractcoordinates,themeasuredvalueisalwaystherealone.It isformedinthemeasuringdevice.Astronomersdealwithawide varietyofinstrumentsandmeasuredvalues.Examplesaretheanglesofrotationofthetelescopeaxisrelativetotheverticalline andthemeridianplane,thedistancebetweenimagesofcelestialbodiesonphotographicplates,thetimeintervalbetweenthe flashofthelaserrangefinderandthefixationofthelightpulsereflectedfromthecelestialbody,thebackgroundintensityfroma singlepixelofasemiconductorlightdetector,andthedifference inrecordingsofthesignalfromaspaceradiosourceattworadio telescopes.

Accuracyofobservations. Instrumentsusuallyhavemeasurementerrors.Notethatthemysteriesoftheprocessesoccurringin measuringinstrumentsleaveusonlywiththeopportunitytobuild hypothesesregardingmeasurementerrors.Themagnitudeofthe errorofanindividualmeasurementisneverknown.Oftenweassumethattheerrorsarepurelyrandom,andweconsidervarious statisticalcharacteristicsoftheerrors.Mostly,weusethecon-

Chapter1 Objectives,currentproblemsandgeneralapproachtothestudyofthedynamicsofsatellites ceptofthemostprobableroot-mean-squareerror.Thestructural propertiesofmeasuringinstrumentssometimesmakeitpossible toapproximatelyestablishtheaccuracyofmeasurements.Inthe generalcase,wearetalkingaboutthe accuracyofobservations. Time. Variationofthemeasuredvalueintimeisduetothemotionofcelestialbodies.Measurementisperformedatsomepoint intime.Thistimepointiscountedbytheclockoftheobservatory. Inpracticalcelestialmechanics,aspecifictimeofmeasurementis alwaysascribedtoameasurablequantity.

Timeisanabstractconceptandsomeinstrumentsareneeded tomeasureit.However,anydevicehasitsownmeasurementerror.First,timewasmeasuredbytheangleofrotationoftheEarth. SuchatimewascalleduniversalwasanddesignatedasUT(UniversalTime).WhendiscrepanciesbetweenthetheoryofthemotionoftheMoonandobservationswerediscovered,itbecame clearthattheEarthrotatesunevenly,andtimehasbecomethe standard,asanindependentvariableinthetheoryofmotionof theMoon.Time,measuredbyobservationsoftheMoon,was calledephemeristimeandwasdenotedET.However,theaccuracyoftheobservationsoftheMoonisstilllimited.Thesearchfor amoreaccuratetimemeterledtoanatomicclock.Thistimesensorisnowthemostaccurate.Time,averagedoverseveralofthe mostaccurateatomicclocksintheworld,iscalledinternational atomictimeandisdesignatedasIAT(InternationalAtomicTime).

Inthefuture,wewilltalkaboutobservationsofcelestialbodies, alwaysassumingthatoneoranother measuredvalue isreceivedat acertainpointintime: measurementtime.

Theaccuracyofastronomicalmeasurementshasalready reachedsuchalevelthattheinadequacyofclassicalNewtonian mechanicsfordescribingtheobservedmotionofcelestialbodieshasbecomenoticeable.Inamoreaccuratetheoryofgeneral relativity,timepassesdifferentlyatanytwopointsinspace.To connectdifferenttimescales,itisnecessarytotakeintoaccount themotionofbodiesandtheirmasses.

Motionparameters.

Whenwestudyplanetsandsatellites, starsandgalaxies,weboldlyassumethatsomeparametersinherentincelestialbodiesandtheirmotionremainconstantall thetime.Theseincludethemass,sizeandshapeofbodies,orbit parametersandmanyotherquantities.Theseparameterscannot bedirectlymeasuredusingexistinginstruments.However,their meaningsreallymanifestthemselvesintheobservedmotionof celestialbodies.Inthefuturewewillcallsuchquantities motion parameters ofcelestialbodies.

Coordinatesystems. Measuredquantitiesdonotgivevisual representationsoftheconfigurationofthesystemofcelestialbod-

iesandareevenlesssuitableforexpressinggenerallawsofmotion.Aconvenientmeansofdescribingthespatialarrangement ofbodiesanddirectionsofcelestialbodiesistheuseofcoordinate systems.Whenwetalkaboutthepositionofthestaroraboutthe orientationofthebodyinacertaincoordinatesystem,wemean theabstractcoordinateaxesinspaceandimaginarylinesinthe sky.Coordinatesystemsarechosensoastogiveaclearideaofthe lawsandpropertiesofthemotionofcelestialbodies.

Thechoiceofacoordinatesystemisduetotheconvenienceof describingandstudyingthemotionofaparticularcelestialbody. Theoriginandcoordinateaxesareassociatedeitherwiththedetailsoftheobject,forexample,theEarth’sGreenwichmeridian,or withitsdynamicproperties,forexample,withtheprincipalaxes ofinertiaofthebody,orwiththepropertiesofmotion,forexample,withtherotationaxisofthebody,orwiththepositionofthe bodyatsometimepoint,orwemaychooseacoordinatesystem inanotherparticularway.

Mostly,asystemofrectangularorCartesiancoordinatesis used,itsoriginisdenotedbytheletter O ,andtheaxesbytheletters x , y ,and z.Thesystemofsphericalcoordinatesisoftenused withthedesignationofthecentraldistancebytheletter r ,thelatitudebytheletter ϕ andthelongitudebytheletter λ.

Werefertoanycoordinatesystemswithanoriginlocatedatthe observationpointas topocentriccoordinatesystems.Inaddition, weassociatetheaxesofthetopocentricsystemwiththevertical lineandthelocalmeridian.WhentheoriginofthecoordinatesystemisplacedatthemasscenteroftheEarth,wearetalkingabout geocentriccoordinatesystems.

Thelawsofmotionofcelestialbodiesarethedependencesof thecoordinatesofbodiesontimeandmotionparameters.Dependenciescantakemanyforms.Atmost,analyticalfunctions areusedthatdescribetheexplicitdependenceofthecoordinates ontime.Insomecases,thedependenceisgiveninimplicitform, thenthecoordinatesareobtainedbycalculationswithformulas bywayofsuccessiveapproximations.Thelawofmotioncantake theformofnumericaltablesinwhichthecoordinatesofcelestialbodiesaregivenforanumberoffixedpointsintime,usually definedwithsomeconstantstep.Withsuchanumericalspecificationofthelawofmotion,thedependenceofthecoordinateson themotionparametersofthecelestialbodyislost.Inthiscase,it isdifficulttoanalyzethepropertiesofmotion,andwearelimited tothetimeintervalforwhichthecoordinateswerecalculated.

Thecoordinatesofcelestialbodiesareabstractconcepts.They cannotbemeasuredbyanyinstruments.Coordinatesystemsare

Objectives,currentproblemsandgeneralapproachtothestudyofthedynamicsofsatellites modeledusingformulasandalgorithmsandformaconstituent partofthemotionmodelofcelestialbodies.

Amodelofmotionofacelestialbody. Wedonotknowexactly howthecelestialbodiesarearrangedandbywhatexactlawsthey move.Therefore,wehavetobecontentwiththestudyofmotion models,puttingforwardtheboldhypothesisthatourmodelsdifferlittlefromreality.

Inthegeneralcase,byamodelofmotionofacelestialbody wewillmeanacertainconstructionthatallowsustodetermine thevaluesofthemeasuredquantityatanygiventimeinstantsfor knownvaluesoftheparametersofmotion.

Implementationsofthemodelofmotionofacelestialbody canhaveverydifferentforms.Thesecanbemathematicalformulas,writtenmanuallyonpaperorpublishedasprintedmaterial.Thesecanbeprintednumerictablesofcoordinatevalues. Currently,bothformulasandtablesaredisplayedincomputer memoryunits.Inthiscase,theformulasareconvertedintocalculationalgorithms,andthetablesareavailabletocomputational programsthatsolvecertainproblems.Evenintheeraofpowerfulcomputingtechnology,thecoordinatesoftheprincipalcelestialbodiescalculatedforseveralyearsinadvancearecreatedand printedintheformofastronomicalyearbooksinseveralworldresearchcenters.

Wheredoourideasofthelawsofmotionofcelestialbodies comefrom?Inancienttimes,theywereestablishedalmostempiricallyfromsimpleobservations.Now,ofcourse,thelawsof motionarefoundintheprocessofsolvingdifferentialequations ofmotionrelativetothecoordinatesofcelestialbodies.These equationsarecompiledonthebasisofstrictlyestablishedlawsof physics,whichdescribetheinteractionsofbodiesortheeffectson themoftheenvironmentinwhichtheymove.Thisisdoneaspart ofamechanicalmodel.Allfactorsaffectingthemovementofeach bodyofthesystemandincludedinthemodelunderconsiderationareclearlyfixed.Thesetofconstructsofthelawsofmotionof celestialbodies,aswellasitsresult,thelawsofmotionthemselves, arecalledthetheoryofmotion.Thisiswhatcelestialmechanics addresses.

Inthevastmajorityofproblemsofcelestialmechanics,itis impossibletoobtainanexactsolutionoftheequationsofmotion.Onehastobecontentwitheitheranapproximatesolution oftheexactequations,oranexactsolutionoftheapproximate equations.Bothanalyticalandnumericalmethodsforsolvingdifferentialequationsareused.Inbothcases,thesolutionhasan error.Thiserrorcanbemoreorlessreliablyestimatedusingthe theoryitself.

Theaccuracyofthemotionmodelofacelestialbody. Theinitialdataforthemodelofmotionofacelestialbodyaremotion parameters,which,inturn,areknownwithsomeerror.Thiserror willalsoaffecttheaccuracyofthepre-calculationofthecoordinatesofthecelestialbodyandtheaccuracyofthepre-calculation ofthemeasuredvalue.Furthermore,wewilltalkaboutthe model accuracy,implyinganerrorinthecalculationofthemeasured value.Inthiscase,weseparatetwosourcesofthiserror:theproximityoftheobtainedsolutionofthemotionequationsandthe inaccuracyofthemotionparameters.Theerrorofthesolutionof themotionequationswillalsobecalledtheerrorofthecalculationsortheerrorofthemethod.Whenwetalkabouttheaccuracy ofthetheoryofmotionofacelestialbody,itisalwaysnecessary toclarifywhethertheinaccuracyofthemotionparametersisincludedintheerrorofthetheoryorisintheaccuracyofthetheory undertheassumptionofabsolutelyaccurateparameters.

Researchmethods. Fromotherastronomicaldisciplinescelestialmechanicsdiffersonlyinresearchmethods,amongwhichare analytical,numericalandqualitative approaches.

Analyticalmethods makeitpossibletoobtainasetofanalytical relationshipsthatallowustocalculatetheapproximatepositions andvelocitiesofcelestialbodiesatgiventimepoints,omitting itsvaluesatanyintermediatetimepoints.Afeatureofanalyticalmethodsisthegreatcomplexityandgrowingbulkinessofthe calculations.Inaddition,analyticalmethodsmakeitimpossible toassessthepropertiesofthestudiedmotionsatverylargetime intervals.Anotherdrawbackisthatanalyticalmethodsarenotapplicabletoallobjects.

Thelimitationsinherentinanalyticalmethodsdonotapplyto numericalmethods,whicharesuitableforcalculatingthemotions ofanycelestialbodiesandtheirsystemswithapredeterminedaccuracy.Withtheuseofpowerfulcomputersinscientificresearch, thepreviouslyconsideredexcessivelaboriousnessofnumerical methodshasceasedtobeanobstacletotheirapplication.But theyhavetheirown“Achilles’heel”—thisisthesteadyaccumulationoferrorwithincreaseintheintegrationinterval,whilerigorousestimatesofthegrowthofthiserrorareimpossible.Another drawbackofthesemethodsisthenumericalformofpresenting theresultsandtheinevitabilityofcalculatingtheintermediate stages,althoughoftenthegoalofthestudyisthefinalconfigurationafterintegration.

Qualitativemethods ofcelestialmechanicsmakeitpossibleto judgethepropertiesofthemovementsofcelestialbodieswithout fullintegrationof(analyticalornumerical)differentialequations.

Chapter1 Objectives,currentproblemsandgeneralapproachtothestudyofthedynamicsofsatellites

Analytical,numericalandqualitativemethodscontinuetobe appliedinmodernpracticalcelestialmechanics,andthebeauty andhighefficiencyofanalyticalmethodsaresuccessfullycombinedwiththesimplicityanduniversalityofnumericalmethods, andallthisiscomplementedbythecosmogonicimportanceof theconclusionsobtainedbyqualitativeresearchmethods.

1.5Generalapproachtostudyingthe dynamicsofplanetsandsatellitesbased onobservations

Ageneralapproachtostudyingthedynamicsofplanetsand satellitesistheconstructionofamodelofmotionbasedonobservations.Itisthemodelofmotionthatisneededforthepractical knowledgeofnature.

Fig. 1.1 showsaschemeforstudyingthedynamicsofSolar Systembodiesbasedonobservations.Atanystageofresearch, wefixthecompositionofthestudiedsystemofcelestialbodies. Thelawsoftheinteractionofbodies(gravitationalattraction,resistanceofthemedium),currentlyestablished,allowforwriting downthedifferentialequationsofmotion.Usinganalyticalmethods,onecanfindageneralsolutionoftheequationsofmotion. Aftersubstitutingthevaluesofarbitraryconstants(motionparameters)intothisgeneralsolution,weobtaintherequiredmodel ofmotionofthesystemofcelestialbodies.Whenwesolveequationsofmotionbymethodsofnumericalintegrationunderknown initialconditions(motionparameters),wealsoobtainamodelof motionofasystemofcelestialbodies.Somepreliminaryvalues ofmotionparametersareusuallyknownfrompreviousstudies. Toconstructamodelofmotion,thevaluesofthephysicalparametersenteringtheequationsofmotionthroughthelawsof interaction(forexample,themassofbodies)willalsoberequired.

Themainprocedureforstudyingthedynamicsofcelestial bodiesistorefinethemodelbasedonobservations.Observations giveusthevaluesofthemeasuredquantities.Callthemmeasured values.Ontheotherhand,wehaveamotionmodelthatserves topre-calculatemeasuredvalues.Wecancalculatethemeasured valuespreciselyatthetimesofobservation.Resultsarecalledcalculatedmeasuredvalues.Valuesdifferentinoriginofthesame entitywilldifferfromeachother.Wedenotethisdifferenceofvaluesin Fig. 1.1 symbolicallyby“O-C”(Oforobservatum,Cfor calculatum).Thedifferenceisanaturalresult,sinceitcontains anerrorofobservationandanerrorinthemodelofmotionofa celestialbody.However,insomecases,thedifferences“O-C”will

Schemeofstudyingthedynamicsofcelestialbodies.

exceedthemodelerrorandtheobservationerror.New,moreaccurateobservationsrevealamodelmismatchwithreality.Inthese cases,themismatchisattributedtothesimplestandmostprobablecause—theinaccuracyoftheacceptedvaluesofthemotion parametersofthecelestialbody.Aprocesscalledrefinementof motionparametersfromobservationsisincludedinthiscase(see “Parameterrefinementmethods”in Fig. 1.1).Mostly,therequired agreementbetweenthetheoryandobservationsisachievedbyrefiningtheparameters,andthedifferences“O-C”againfallwithin theerrorsofthemodelandobservations.

Insomerarecases,thetheorycannotbereconciledwith observations—thedifferences“O-C”remainsignificant.Thenwe havetoimprovemethodsforsolvingtheequationsofmotionand calculationmethods.Thisisthemostlaboriouspartofcelestial mechanics.Thefactorsaffectingthemotionofeachcelestialbody arebeingreconsidered.New,moreaccurateformulasofthetheoryarederived.Asaresult,theformulasbecomelongerandmore complex.Inaddition,moreaccuratecalculationmethodsarebeingdevelopedandapplied.Asaresult,therequiredcomputing timeissignificantlyincreased.

Inevenrarercases,themismatchofthetheorywithobservationsremainssignificant,nomatterhowhardtheresearcherstry torefinethemotionparametersandimprovethemotionmodel. Asaresultofthegeneralizationoffacts,testingofnewhypotheses andhighertensionofintelligence,adiscoveryismade.Previously unknowncelestialbodiesornewlawsoftheinteractionofthe knownbodiesmaybediscovered.Insuchasituation,ourgeneral ideasabouttheworldaroundusexpandsignificantly.Ageneralizationofthebasiclawsofnatureismade.

Theschemepresentedhere,likeanyscheme,ismeagreand limited,itonlyingeneraltermsreflectsthemixtureofscientific researchandtheaccumulationoffacts,fantasiesanderrors.

Figure1.1.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.