Thalamus modulates consciousness via layer-specific control of cortex michelle j. redinbaugh & jessi

Page 1


ThalamusModulatesConsciousnessviaLayerSpecificControlofCortexMichelleJ.Redinbaugh &JessicaM.Phillips&NiranjanA.Kambi&Sounak Mohanta&SamanthaAndryk&GavenL.Dooley& MohsenAfrasiabi&AeyalRaz&YuriB.Saalmannhttps://ebookmass.com/product/thalamus-modulatesconsciousness-via-layer-specific-control-of-cortex-michellej-redinbaugh-jessica-m-phillips-niranjan-a-kambi-sounakmohanta-samantha-andryk-gaven-l/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Elsevier Weekblad - Week 26 - 2022 Gebruiker

https://ebookmass.com/product/elsevier-weekbladweek-26-2022-gebruiker/

ebookmass.com

Jock Seeks Geek: The Holidates Series Book #26 Jill Brashear

https://ebookmass.com/product/jock-seeks-geek-the-holidates-seriesbook-26-jill-brashear/

ebookmass.com

The New York Review of Books – N. 09, May 26 2022 Various Authors

https://ebookmass.com/product/the-new-york-review-ofbooks-n-09-may-26-2022-various-authors/

ebookmass.com

Age as Disease: Anti-Aging Technologies, Sites and Practices 1st Edition David-Jack Fletcher

https://ebookmass.com/product/age-as-disease-anti-aging-technologiessites-and-practices-1st-edition-david-jack-fletcher/

ebookmass.com

Inequality in the 21st Century: A Reader 1st Edition

E-book PDF Version – Ebook PDF Version

https://ebookmass.com/product/inequality-in-the-21st-century-areader-1st-edition-e-book-pdf-version-ebook-pdf-version/

ebookmass.com

Day of the Wolf Terry Spear

https://ebookmass.com/product/day-of-the-wolf-terry-spear/

ebookmass.com

King of the Royal Mounted Great Jewel Mystery (1939) Big Little Book Big Little Books

https://ebookmass.com/product/king-of-the-royal-mounted-great-jewelmystery-1939-big-little-book-big-little-books/

ebookmass.com

Gender, Authorship, and Early Modern Women’s Collaboration (Early Modern Literature in History) 1st ed. 2017 Edition Patricia Pender

https://ebookmass.com/product/gender-authorship-and-early-modernwomens-collaboration-early-modern-literature-in-history-1sted-2017-edition-patricia-pender/

ebookmass.com

Bossa Mundo: Brazilian Music in Transnational Media Industries K.E. Goldschmitt

https://ebookmass.com/product/bossa-mundo-brazilian-music-intransnational-media-industries-k-e-goldschmitt/

ebookmass.com

Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology 2nd Edition

https://ebookmass.com/product/biochemical-pathways-an-atlas-ofbiochemistry-and-molecular-biology-2nd-edition/

ebookmass.com

ThalamusModulatesConsciousnessviaLayerSpecificControlofCortex

Highlights

d Centrallateralthalamicstimulationarousesmacaquesfrom stableanesthesia

d Thalamicanddeep-layercorticalspikingcorrelatewith consciousnesslevel

d Consciousnessdependsonfeedforward,feedback,and intracolumnarsignaling

d Pathway-specificsignalingoperatesatalphaandgamma duringconsciousness

Authors

MichelleJ.Redinbaugh, JessicaM.Phillips, NiranjanA.Kambi,..., MohsenAfrasiabi,AeyalRaz, YuriB.Saalmann

Correspondence mredinbaugh@wisc.edu(M.J.R.), saalmann@wisc.edu(Y.B.S.)

InBrief

Redinbaughetal.demonstrateneural correlatesofconsciousness,consistent inwakefulnessandstimulation-induced arousal,whichbreakdownduring anesthesiaandsleep.Theauthors concludethatactivityincentrallateral thalamusandcorticaldeeplayersisvital forconsciousness,influencing feedforward,feedback,and intracolumnarprocesses.

Redinbaughetal.,2020,Neuron 106,1–10 April8,2020 ª 2020ElsevierInc. https://doi.org/10.1016/j.neuron.2020.01.005

ThalamusModulatesConsciousness viaLayer-SpecificControlofCortex

MichelleJ.Redinbaugh,1,* JessicaM.Phillips,1 NiranjanA.Kambi,1 SounakMohanta,1 SamanthaAndryk,1 GavenL.Dooley,1 MohsenAfrasiabi,1 AeyalRaz,2,3,5 andYuriB.Saalmann1,4,5,6,* 1DepartmentofPsychology,UniversityofWisconsin-Madison,Madison,WI53706,USA 2DepartmentofAnesthesiology,RambamHealthCareCampus,Haifa3109601,Israel 3RuthandBruceRappaportFacultyofMedicine,Technion–IsraelInstituteofTechnology,Haifa3200003,Israel 4WisconsinNationalPrimateResearchCenter,Madison,WI53715,USA

5Theseauthorscontributedequally

6LeadContact

*Correspondence: mredinbaugh@wisc.edu (M.J.R.), saalmann@wisc.edu (Y.B.S.) https://doi.org/10.1016/j.neuron.2020.01.005

SUMMARY

FunctionalMRIandelectrophysiologystudiessuggestthatconsciousnessdependsonlarge-scale thalamocorticalandcorticocorticalinteractions. However,itisunclearhowneuronsindifferent corticallayersandcircuitscontribute.Wesimultaneouslyrecordedfromcentrallateralthalamus (CL)andacrosslayersofthefrontoparietal cortexinawake,sleeping,andanesthetized macaques.Wefoundthatneuronsinthalamus anddeepcorticallayersaremostsensitiveto changesinconsciousnesslevel,consistentacross differentanestheticagentsandsleep.Deep-layer activityissustainedbyinteractionswithCL. Consciousnessalsodependsondeep-layerneuronsprovidingfeedbacktosuperficiallayers (nottodeeplayers),suggestingthatlong-range feedbackandintracolumnarsignalingareimportant.Toshowcausality,westimulatedCLin anesthetizedmacaquesandeffectivelyrestored arousalandwake-likeneuralprocessing.This effectwaslocationandfrequencyspecific.Our findingssuggestlayer-specificthalamocortical correlatesofconsciousnessandinformhowtargeteddeepbrainstimulationcanalleviatedisordersofconsciousness.

INTRODUCTION

Consciousnessisthecapacitytoexperienceone’senvironment andinternalstates.Theminimalmechanismsthataresufficient forthisexperience,theneuralcorrelatesofconsciousness (NCC),aremuchdebated(DehaeneandChangeux,2011;Friston,2010;Lamme,2006;Oizumietal.,2014).Nonetheless,majortheoriesofconsciousnessemphasizetheimportanceof recurrentactivityandinteractionbetweenneurons.Thiscan taketheformofcommunicationbetweenbrainareasalong

feedforwardandfeedbackpathwaysandintracolumnar communicationwithinacorticalarea.

Feedforwardpathwayscarrysensoryinformationfromsuperficiallayerstosuperficialandmiddlelayersofhigher-order corticalareas,whereasfeedbackpathwayscarryprioritiesand predictionsfromdeeplayerstoeithersuperficialordeeplayers oflower-ordercorticalareas(Markovetal.,2014;Mejiasetal., 2016).Reportsofthecontributionoffeedforward(Maksimow etal.,2014;Sandersetal.,2018;vanVugtetal.,2018)and feedback(Bolyetal.,2011;Leeetal.,2009,2013;Razetal., 2014;Uhrigetal.,2018)pathwaystoconsciousnesshavevaried. However,previousstudiesdidnothavethespatialresolution todeterminetransmissionalongpathsbetweenspecific layers—inparticular,whetherfeedbackpathstosuperficialor deepcorticallayers,orboth,contributetoconsciousness.

Availableevidencesuggeststhatchangesinthelevelof consciousnessdifferentiallyinfluencesactivityincortical layers.Non-rapideyemovement(NREM)sleepreducesspiking activityindeeplayersoftheprimaryvisualcortex(V1)inmice andcats(LivingstoneandHubel,1981;Senzaietal.,2019),as wellasinteractionsbetweenthesuperficialanddeeplayers ofV1(Senzaietal.,2019).NREMsleepinmice(Funketal., 2016)andisofluraneanesthesiainferrets(Sellersetal.,2013) alsochangeslocalfieldpotentials(LFPs)differentiallyacross layers.Itisunclearhowchangesinconsciousnessinfluence individualneuronsacrosslayers,andtheirinteraction,inthe higher-ordercortex.

Reciprocallyconnectedwiththehigher-ordercortex,higherorderthalamicareasfacilitatecorticalcommunication(Saalmannetal.,2012;Schmittetal.,2017;Theyeletal.,2010)and couldthusplayaroleinmodulatingcorticocorticalinteraction acrossdifferentconsciousstates.Changesinconsciousness levelbroadlyinfluencethalamicactivityandthalamocortical interactions(Bakeretal.,2014;Contrerasetal.,1997;Jones, 2009;Llina ´ setal.,1998).However,thecentrallateralthalamus (CL)mayhaveaspecialrelationtoconsciousness.CLdamage islinkedtodisordersofconsciousness(Schiff,2008).Anatomically,CLreceivesinputfromthebrainstemreticularactivating system.Italsoprojectstosuperficiallayersandreciprocally connectswithdeeplayersofthefrontoparietalcortex(Kaufman andRosenquist,1985;PurpuraandSchiff,1997;Townsetal.,

1990).Thus,CLiswellpositionedtoinfluenceinformationflow betweencorticallayersandareas.Deepbrainstimulationof thecentralthalamusincreasedresponsivenessinaminimally consciouspatient(Schiffetal.,2007),andcentralthalamic stimulationimprovedtheperformanceofavigilancetaskin healthymacaques(Bakeretal.,2016).Althoughthalamocortical mechanismsofsucheffectshavebeenproposed(Jones,2009; Llinasetal.,1998;PurpuraandSchiff,1997),experimental evidenceislacking.Basedonitsconnectivity,wehypothesized thatCLinfluencesfeedforward,feedback,andintracolumnar corticalprocessestoregulateinformationflow,andthus, consciousness.

ToresolvethecontributionsofcorticocorticalandthalamocorticalpathstotheNCC,weusedlinearmulti-electrode arraystorecordspikesandLFPssimultaneouslyfromthe rightfrontaleyefield(FEF);thelateralintraparietalarea(LIP; frontoparietalareasimplicatedinawareness)(Wardaketal., 2002,2006);andinterconnectedCLintwomacaquesduring task-freewakefulness,NREMsleep,andgeneralanesthesia (isoflurane,propofol).Aftercharacterizingthalamocortical networkactivityunderanesthesia,weelectricallystimulated thethalamus,reliablyinducingarousal.Wereportlayer-specific NCCinfrontoparietalcortexandcortico-CLpathways.

RESULTS

Gamma-FrequencyCLStimulationIncreased ConsciousnessLevel

Aftermaintainingstableanesthesia(arousalscore0–1)forat least2hwhilerecordingneuralactivity,weevaluatedthe signsofarousalbefore,during,andafterstimulationusinga customizedscalesimilartoclinicalmetrics(STARMethods) andperformedstatisticalanalysesusinggenerallinearmodels (STARMethods; TablesS1–S4).Across261stimulationblocks, thalamicstimulationsignificantlyincreasedarousalrelativeto pre-(F=119.28,n=261,p<1.0 3 10 10)andpost-conditions (F=124.64,n=261,p<1.0 3 10 10),evenwhenaccounting fordifferencesindoseandanesthetic(Figures1A,1B,and S1A–S1C).Behavioralchanges(Figure1A)weretimelockedto stimulation:monkeysopenedtheireyeswithwake-like occasionalblinks,performedfullreachesandwithdrawals withforelimbs(ipsi-orcontralateral),madefacialandbody movements,showedincreasedreactivity(palpebralreflex, toe-pinchwithdrawal),andhadalteredvitalsigns(respiration rate,heartrate).Thereconstructionofelectrodetracks placedeffectivestimulations(arousalscore R 3)nearthecenter ofCL(Figures1C–1F).Euclidianproximityofthestimulation arraytoCLsignificantlypredictedchangesinarousal(Figures S1G–S1I;T= 3.39,n=225,p=0.00082);whensystematically varyingarraydepth,proximitytotheCLcentershoweda significantquadraticrelationwitharousal(T= 2.92,n=225, p=0.00393; Figures1Fand S1D–S1F).Effectivestimulation sitesremainedsoonseparaterecordingdaysandwithdifferent anesthetics(Figure1G).Stimulationeffectivenessdepended onfrequency(Figures1Gand1H).Ateffectivesites,only 50-Hzstimulationsreliablyincreasedarousal(T=3.91,n=44, p=0.00035).TheseresultsshowthatCLstimulationcan rouseanimalsfromstable,anesthetizedstates.Thisallowedus

tozeroinonNCCs,identifiedhereasactivitydifferencesbetweenwakefulnessandanesthesia,whichareselectively restoredbyeffective(arousalscore R 3,n=55,mean=4.70, SD=1.70)relativetoineffective(arousalscore<3,n=171, mean=0.77,SD=0.74)50-Hzstimulations.

ConsciousnessLevelModulatedSpikeRateandTiming inDeepCorticalLayersandCL Werecorded845neuronsacross3brainareas(FEF,LIP,CL) during4states(wake,sleep,isoflurane,propofol; Figure2). Wakeandanesthesiadataderivedfromseparatesessions, whereasthesameneuronsyieldedsleepandwakedata.This includedasubsetofCLneuronswitharelativelyhighfiring rate( 40–50Hz; FiguresS2EandS2F),similartoneuronsreportedincats(GlennandSteriade,1982;Steriadeetal.,1993). Thalamicneuronsshowedstate-dependentspikerateand burstingactivity(Figures2Cand2D).CLneuronsrecorded duringanesthesia(T= 4.67,n=282,p=3.0 3 10 5)and NREMsleep(F=16.40,n=83,p=0.001)hadsignificantly lowerspikeratesthanduringwakefulness.Isofluraneand propofoleffectswerenotsignificantlydifferent(FigureS2A). Relativetowakefulness,CLneuronsalsoincreasedbursting duringanesthesia(Figures2Dand S2G;T=2.27,n=172,p= 0.024)andsleep(F=7.11,n=121,p=0.0095).

Welocalizedcorticalneuronstosuperficial,middle,or deeplayersusingcurrentsourcedensity(CSD)responses tosoundsinthepassiveoddballparadigm(Figures2Aand 2B).Onlydeepneuronsshowedstate-dependentactivity (Figures2E–2H).Firingratesduringsleepweresignificantly lowerthanwakefulness;thestate-by-layerinteractionwas significantinbothFEF(F=15.17,n=101,p=0.008)andLIP (F=7.70,n=98,p=0.031).Similarly,firingratesduring anesthesiawerelowerthanduringwakefulness;state-by-layer interactionsinFEF(T=3.05,n=281,p=0.013)andLIP(T= 3.79,n=282,p=0.001)weresignificant.Onlydeepneurons increasedburstingduringanesthesia,evidencedbysignificant state-by-layerinteraction(Figure2E;T=2.12,n=285,p= 0.035).Isofluraneandpropofolyieldedsimilarresults(Figures S2B–S2D).Effective50-Hzthalamicstimulationcountered anesthesiaeffectsindeepcorticallayersoftheLIP(Figures2I–2K);the4-wayinteractionofstimulationepoch,effectiveness, layer,andareawassignificant(F=5.19,n=167,p=0.023). Overall,stateswithhigherconsciousnesslevels(stimulationinducedarousal,wakefulness)showedincreaseddeepcortical andthalamicactivities,suggestingaroleintheNCC.

IntracolumnarInteractionsShowedLayer-SpecificNCC Tomeasurestate-relatedchangesinthalamocorticaland corticocorticalcommunication,wecalculatedpowerandcoherenceusingbipolarderivatizedLFPs.Wecombineddata acrossanesthetics,aseffectswerequalitativelysimilar(Figures S2H–S2Oand S4A–S4H).Wefocushereonintracolumnar changes,particularlycoherencewithinsuperficiallayers, deeplayers,andbetweensuperficialanddeeplayersofthe samecorticalarea.Coherencechangedmarkedlybetween wakefulnessandanesthesia;anesthesiaincreaseddeltacoherence(<4Hz)andreducedalpha(8–15Hz)andlowgamma coherence(30–60Hz; Figures3Aand3B; TableS1 forcomplete

Figure1.Gamma-FrequencyCLStimulationIncreasedConsciousnessLevel

(A)Examplebehavioralandneuralrecordingsduring50-Hzstimulation(arousalscore5).

(B)Populationmeanarousalscore(±SE)before,during,andafterstimulationsforbothmonkeys(circlesshowindividualstimulationevents).

(C)Coronalsectionofrighthemisphere8mmanteriortointerauralline(A8).Thearrowshowstheelectrode. (D)Magnifiedviewofthethalamus.

(E)StimulationsitesinmonkeyR(n=90)collapsedalongtheA-Paxis.Circlesrepresentthemiddlecontactinthestimulationarray;diameterscales withinduced arousal.

(F)Stimulation-inducedarousalchange(scoreduringstim–pre)asafunctionofthedorsal-ventraldistancefromCLcenter.Symbolsshowstimulationeventsby monkey;theredcurveshowsthequadraticfit(±SE).

(G)Exampleofstimulationseriesfordifferentfrequenciesduringpropofol(left)andisoflurane(right)atthesamesite22.5mmventraltothecorticalsurface.

(H)Populationmeanarousalchange(±SEofpointestimate)fordifferentstimulationfrequenciesateffectiveandineffectivesitesfrombothmonkeys.

statistics).Wake-anesthesiadifferenceswereconsistentbetweendifferentlayersofFEFandLIP(Figures3C–3H)and qualitativelysimilartodifferencesbetweenwakefulnessand NREMsleep(FigureS2).Notably,coherencebetweensuperficial anddeeplayersofbothcorticalareasshowedsubstantial decreasesinallhigher-frequency(>4Hz)communicationduring anesthesia(T R 10.05,n=8,725,p<1.0 3 10 10; Figures3E and3F; TableS1),suggestingalteredprocessingincortical microcircuits.

Effective50-Hzthalamicstimulationincreasedintracolumnar coherencedifferentiallyacrossfrequencybandsandlayers (Figures3K–3P; TableS1 forcompletestatistics).Coherence withinsuperficiallayerswasincreasedforeffectivecompared toineffectivestimulationsatlowgamma(Figures3Kand3L),

106,1–10,April8,2020 3 Pleasecitethisarticleinpressas:Redinbaughetal.,ThalamusModulatesConsciousnessviaLayer-SpecificControlofCortex,Neuron(2020),https://

Pleasecitethisarticleinpressas:Redinbaughetal.,ThalamusModulatesConsciousnessviaLayer-SpecificControlofCortex,Neuron(2020),https:// doi.org/10.1016/j.neuron.2020.01.005

Figure2.ConsciousnessLevelModulatedSpikeRateandTiminginDeepCorticalLayersandCL (A)Exampleofsound-alignedevokedpotentialsfromlinearmulti-electrodearrayinFEF.Toneonsetat0s.BoldlinesshowinverseCSD(iCSD)-defined middlelayers. (B)Sound-alignediCSDcorrespondingto(A).

(CandD)PopulationCLspikerate(±SE)(C)andCLburstindex(±SE)(D)foranesthesia(blue),sleep(teal),andwake(orange)states;*p<0.05.

(E)Cortical(FEFandLIP)burstindex(±SE)insuperficial(S),middle(M),anddeep(D)layersforwakefulness(orange)andanesthesia(blue).

(F–H)Superficial(F),middle(G),anddeep(H)layerspikerates(±SE)inFEFandLIPacrossstates.

(I–K)Superficial(I),middle(J),anddeep(K)spikerates(±SE)inFEFandLIPduringeffectivestimulation(SE,red),ineffectivestimulation(SI,gray),andprestimulation(P,blue).

showingasignificantinteractionbetweenstimulationand effectiveness(T=5.24,n=2,387,p=1.8 3 10 6).Withindeep layers(Figures3Oand3P),similarinteractionsshowthateffectivestimulationsselectivelyincreasedcoherenceattheta(4–8Hz,T=9.04,n=2,183,p<1.0 3 10 10)andalpha(T= 11.79,n=2,183,p<1.0 3 10 10)frequencies.Importantforintracolumnarprocessing,superficialanddeeplayersshowed broadbandcoherenceincreasesselectiveforeffectivestimulationsatthesamefrequencieshinderedbygeneralanesthesia (bands>4Hz;T R 4.83,n=2,631,p % 1.3 3 10 6;see Table S1).Notethatpowerchangesduringthalamicstimulationdid notcorrelatewithcoherencechanges(FiguresS3K–S3P; Table S2 forcompletestatistics),nordidpowerchangesreflectbehavioralarousalduringstimulation.

ThalamocorticalandCorticocorticalInteractions

ShowedPathway-SpecificNCC

Wenextfocusonanatomicallymotivatedinteractionsacross thefrontoparietalcortex.Wemeasuredcoherencebetween theoriginandterminationofputativefeedforward(superficial LIP-superficialandmiddleFEF)andtwofeedback(deepFEF-superficialLIPordeepFEF-deepLIP)pathways(Markovetal., 2014;Mejiasetal.,2016).Wealsoexaminedstate-dependent effectsonthalamocorticalcoherence(CL-superficialorCLdeepcorticallayers)(Molinarietal.,1994;Townsetal.,1990). Communicationbetweencorticalareasshowedsignificant changesduringgeneralanesthesia(Figure4A).Corticocortical

4 Neuron 106,1–10,April8,2020

coherenceincreasedatdeltaanddecreasedatallhigherfrequenciesacrossputativefeedforwardandfeedbackpathways (|T| R 6.04,N R 4,030,p % 1.6 310 9; TableS3 forcomplete statistics).Wefoundqualitativelysimilarbutsmallereffects duringNREMsleep(FiguresS4C,S4F,andS4I)andforspikefieldcoherence(FiguresS4J–S4L; TableS3 forcompletestatistics).Coherencebetweenthalamusandeithersuperficialor deepcorticallayersdecreasedacrossallfrequencybandsduringanesthesia(Figures4I–4L; TableS4 forcompletestatistics). Thalamocorticalspike-fieldcoherenceshowedsimilareffects (FiguresS4M–S4R; TableS4 forcompletestatistics).These resultsshowthatanesthesiadecreasesbroadbandthalamocorticalandcorticocorticalcoherence.

Thalamicstimulationisolatedspecificinteractionsbetween corticalareasimportantforconsciousness(Figure4E).Effectivestimulationsresultedintargetedrestorationoffrontoparietalcoherenceinputativefeedforwardandfeedbackpathways (Figures4F–4H).Coherencebetweensuperficiallayersof LIPandsuperficialandmiddleFEFsubstantiallyreducedat delta(T= 4.05,n=2,799,p=8.6 3 10 4),andincreased atalpha(T=6.87,n=2,799,p=1.46 3 10 10),lowgamma (T=4.45,n=2,799,p=1.50 3 10 4),andhighgamma (60–90Hz;T=3.03,n=2,799,p=0.027),foreffectivemore thanineffectivestimulations,asshownbysignificantinteractions(Figure4F).Therewasalsoasignificantinteractionfor coherencebetweendeeplayersofFEFandsuperficialLIPat alpha(Figure4G;T=3.97,n=1,617,p=0.001),showing

Figure3.IntracolumnarInteractionsShowLayer-SpecificNCC

(AandB)PopulationFEF(A)andLIP(B)coherencewith95%confidenceintervalsforwakefulnessandanesthesia.Averageofallcontactpairsacrosslayers.The graylinesshowsignificantdifferencesbetweenspectra(Holm’scorrectedttests).

(C–H)Populationcoherencedifferencebetweenwakefulnessandanesthesia.Positivewhenwake>anesthesia.Theerrorbarsindicate95%confidenceintervals ofttestsateachfrequency.Thegrayshadingshowseffectsconsistentbetweenstate(wakeversusanesthesia)andthalamicstimulation(effectiveversus ineffectiveinK–P)results.Averageofallcontactpairsforandbetweensuperficial(C)FEFand(D)LIP;superficialanddeep(E)FEFand(F)LIP;anddeep(G)FEF and(H)LIP.

(IandJ)PopulationFEF(I)andLIP(J)coherencewith95%confidenceintervalsunderanesthesiabeforeandduringeffectivestimulation.Averageacrossall layers.

(K–P)Populationcoherencedifference(stim–pre)with95%confidenceintervalsforeffectiveandineffectivestimulations.Positivewhenstim>pre.Averageofall contactpairsforandbetweensuperficial(K)FEFand(L)LIP;superficialanddeep(M)FEFand(N)LIP;anddeep(O)FEFand(P)LIP.

substantialincreasesinalphacoherencespecifictoeffective stimulations.WhilecoherencebetweenFEFandLIPdeep corticallayersdidgenerallyincreasewithstimulation,nointeractionsweresignificant(Figure4H; TableS3 forcompletestatistics).Overall,more-consciousstatesshowedincreased alphaandgammacoherenceinfeedforwardpathwaysas wellasalphacoherenceinthefeedbackpathwaysoriginating indeeplayersandterminatinginsuperficiallayersofthe lower-orderarea.

DISCUSSION

Circuit-LevelMechanismforConsciousnessand Anesthesia

Ourresultssuggestthatspecificfeedforwardandfeedback corticocorticalpathaswellasintracolumnarandthalamocort-

icalcircuitdynamicscontributetotheNCC(Figure4M). Welinkconsciousnesstoincreasedspikingactivityin deepcorticallayersandCL,whichisconsistentwithcatand rodentstudiesofV1(LivingstoneandHubel,1981;Senzai etal.,2019)andCL(GlennandSteriade,1982)comparing wakefulnessandNREMsleep.Thisspikingactivityislikely sustainedthroughreciprocaldeep-layercortex-CLconnections,becausereduceddeepcorticallayerandCLspiking coincidedwithreducedfunctionalconnectivitybetween CLandcortex,andCLstimulationincreaseddeepcortical layerspiking.

Thedeepcorticallayersareanatomicallypositionedto drivefeedbacktosuperficiallayersinlower-orderareas,and toinfluencefeedforwardpathwaysviainteractionswithsuperficiallayersinthesamecorticalcolumn.CL,withprojections bothtosuperficialanddeepcorticallayers,canmodulate

Figure4.ThalamocorticalandCorticocorticalInteractionsShowPathway-SpecificNCC

(A)Populationcoherencewith95%confidenceintervalsforallpairedcontactsbetweenFEFandLIPduringwakefulnessandanesthesia.Thegraylinesshow significantdifferencesbetweenspectra(Holm’scorrectedttests).

(B–D)Populationaveragecoherencedifference:wake–anesthesia.Theerrorbarsindicate95%confidenceintervalsofttestsateachfrequency.Thegray shadingshowseffectsconsistentbetweenstateandthalamicstimulation(inF–H)results.(B)SuperficialLIPandsuperficialandmiddleFEF;(C)deep FEFand superficialLIP;and(D)deepFEFanddeepLIP.

(E)PopulationcoherencebetweenFEFandLIPwith95%confidenceintervalsforallpairedcontactsunderanesthesia,beforeandduringeffectivestimulation.

(F–H)Populationaveragecoherencedifference,stim–pre,with95%confidenceintervalsforeffectiveandineffectivestimulations.(F)SuperficialLIPandsuperficialandmiddleFEF;(G)deepFEFandsuperficialLIP;and(H)deepFEFanddeepLIP.

(IandJ)Populationthalamocorticalcoherencewith95%confidenceintervalsforwakeandanesthesiaacrossallpairedCL-FEF(I)andCL-LIP(J)contacts. (KandL)Populationaveragethalamocorticalcoherencedifference,wake–anesthesia,with95%confidenceintervalsofttests.CL-superficialandCL-deep layersfor(K)FEFand(L)LIP.

(M)SchematicshowingpathwaysandpredominantfrequenciescontributingtoNCC.Yellowshadingwherespikingchangeswithconsciousnesslevel.FF, feedforward;FB,feedback;TC,thalamocortical.

intracolumnarandcross-areainteractions(PurpuraandSchiff, 1997).Theseinteractionsoperatedatalphaandgammafrequenciesduringconsciousness,whereasgeneralanesthesia andsleepreducedactivityindeepcorticallayersandCL, thusreducingalphaandgammafrequencycommunication withinandbetweencorticalareas.ReactivationofthisCLdeepcorticallayerloopwithgamma-frequencystimulation reinstatedwake-likecorticaldynamicsandincreasedtheconsciousnesslevel,overcomingtwoseparateanestheticswith differentmoleculartargets.Overall,ourstudyprovides empiricalevidenceforacircuit-levelmechanismofconsciousnesswithspecialemphasisonthereciprocalinteraction betweenCLanddeepcorticallayers,whichmayserveasa

commontargetofanestheticdrugs,particularlythosewith actionsontheGABA-Areceptor.

SpecificityofEffectiveThalamicStimulationPointsto MinimalandSufficientMechanismsforConsciousness OurresultssuggestthatCLhasaspecialroletoplayinconsciousness,asstimulationsweremosteffectivewhen centeredonCLasopposedtoneighboringthalamicareas, suchasthemediodorsal(MD)andcentromedian(CM)nuclei. Thus,theuniquepropertiesofCLhaveimportantimplications forconsciousness.CLprojectstosuperficialanddeeplayers ofthefrontalandtheparietalcortex(KaufmanandRosenquist,1985;PurpuraandSchiff,1997;Townsetal.,1990).

ThisprojectionpatterndifferssubstantiallyfromtheMD,which largelyprojectstotheprefrontalcortexandhasdifferent laminardistribution(EricksonandLewis,2004;Giguereand Goldman-Rakic,1988;RayandPrice,1993).Whilecholinergic stimulationoffrontalcortexhasprovensufficientforbehavioralarousalinrodents( Paletal.,2018),prefrontalstimulation viatheMDprovedlesseffectiveinourmacaques.Thissuggeststhatprefrontalactivationalone,viatheMD,isinsufficientforconsciousness.CLalsohasaprominentprojection tothestriatum,whichcouldcontributetoconsciousness. However,theCM,withastrongerprojectiontothestriatum butlimitedcorticalprojections(Smithetal.,2004),wasless effectivethanCLstimulationatinducingconsciousness.This suggeststhatactivationofthedirectthalamo-striatalpathis insufficientforconsciousness.Ourresultsfurthersupport coordinatedactivityacrosstheCLandthefrontoparietalcortexasNCC.

ValidatingNCCwithMultipleConsciousand UnconsciousStates

Changesinconsciousnesscoincidewithstatechangesacross sleepandwakecycles,traumaticbraininjury,orexposuretoa widerangeofanestheticagentswithdifferentmoleculartargets.Assuch,itcanbedifficulttodistinguishNCCfromneural effectsspecifictooneofthesestates,suchaseffectsofattention,trauma,oraparticularpharmacologicalagent.Inthis study,weshowNCCinathalamocorticalsystemthatare(1) similarlyperturbedinnatural(sleep)andtwoinducedstatesof unconsciousnesswithdifferentpharmacologicalagents(isofluraneorpropofol),and(2)validatedintwostatesofconsciousness,normalwakefulness,andstimulation-induced arousalduringcontinuousanestheticadministration(Figures3 and 4,grayshading).Thisshowsthatourresultsareneither drugspecificnorpurelyreflectinganunnaturalstateofconsciousness.Rather,ourresultsshowconsistentNCCandpoint toacommoncircuit-leveltargetofgeneralanesthetics.

BeyondDelta:Path-SpecificIndicatorsofLevelof Consciousness

Sincetheearlystudiesofconsciousness,electroencephalogram(EEG)deltaactivityhasbeenconsideredcriticalforsleep stagingandmonitoringdepthofanesthesia.Ourresults showthatdeltaactivity,whileprevalentinunconsciousstates (isoflurane,propofol,andsleep),differsbetweenthefrontal andtheparietalcortex,aswellasacrosscorticallayers,and isnotitselfapredictorofbehavioralarousal(FiguresS3A–S3H).Furthermore,wefoundthatwhiledeltacoherence wasanticorrelatedwithconsciousnessinfeedforwardpathways,possiblydemonstratingamechanismfordisconnection, therewasnosuchrelationforfeedbackpathways(Figures4F–4H).Ifdeltaoscillationsdofacilitatecorticocorticaldisconnection,ourfindingssuggestthattheydosoinapathwayspecificmanner,inwhichfeedforwardprocessesarereadily disruptedbytheincreasedprevalenceofdeltaactivityrelative tofeedback.Thus,deltaoscillationsmayplayalargerrole indisconnectingthebrainfromtheexternalsensoryenvironmentthaninpreventinginternalandtop-downgenerated experiences.

Long-RangeFrontoparietalInteractionContributesto Consciousness,NotJustReport

Frontalcorticalactivity,instudiesofconsciousnessrequiring behavioralreports,mayreflectthereportratherthanthelevel ofconsciousness(Tsuchiyaetal.,2015 ).Ourstudydidnot requirereport(althoughitcannotberuledoutcompletelythat observedactivityreflectsanunderlyingprocessrelatedtoreporting).Furthermore,toruleoutsensorimotordifferences betweendifferentstatesofconsciousness,weperformedrecordingsinaquiet,darkroomandonlyanalyzeddatafrom epochswhenthemonkey’seyeswerestable,therebycontrollingforsensorystimulationandeyemovements.Underthese conditions,wefoundfrontoparietalinteractionfeaturedduring wakefulnessandstimulation-inducedarousal,appearing rapidlyaftertheonsetofthalamicstimulationandgenerally dissipatingjustasquicklyafterstimulationendedinanesthetizedmonkeys.Thissuggeststhatfrontoparietalcommunicationmaynotsimplyberelatedtoreport,butrathercontributes totheconsciousexperience.Becausefeedbackprojections todistantcorticalareaspreferentiallyterminateinsuperficial layers(whereasfeedbacktoadjacentareaspreferentially terminateindeeplayers)(Markovetal.,2014),ourfindingthat feedbacktosuperficiallayerscorrelatedwiththelevelofconsciousnessmaysuggestthatlong-rangefeedbackprojections arevitalforconsciousness.

ImplicationsforClinicalInterventionsinDisordersof Consciousness

Interventionsusingclinicaldeepbrainstimulation(DBS)electrodesinhumans(Schiffetal.,2007)andmonkeys(Baker etal.,2016)andbipolarstimulatingelectrodesinrodents (MairandHembrook,2008;Shirvalkaretal.,2006)haveshown arousalmodulationwithstimulationfrequenciesbetween100 and200Hz.Incomparison,usingalinearmulti-electrode arraywithasmallelectrodecontactsize,wefoundthatCLstimulationmosteffectivelyinducedarousalat50Hz(cf.with2,10, and200Hz).CLisanelongatednucleusalongthedorsalventralaxis, 3–4mminextentinmacaques.Byusinglinear multi-electrodearrays(simultaneouslystimulating16contacts, with200- m minter-contactspacing),wewereabletostimulate acrossthedorsal-ventralextentofCLatsmall,regularlyspaced intervalsinarelativelypreciseway.Thisconfigurationledtothe greatestbehavioraleffects(Figures1Fand S1D–S1F),demonstratingclearspatialspecificity.Whileourstudydidnottestthe fullrangeofclinicallyrelevantstimulationfrequencies,itisinterestingtonotethat50-Hzstimulationinourstudy,andthemore spatiallyrefined40-and100-Hzoptogeneticstimulationina ratsleepstudy(Liuetal.,2015),modulatedarousal.These frequenciesmatchtheactivitypatternsofthesubsetofCL neuronswithahighfiringrateduringwakefulness,reportedin FiguresS2EandS2Fandpreviouswork(GlennandSteriade, 1982;Steriadeetal.,1993).Mimickingthewakefulfiring rateoftheseneuronsduringanestheticadministrationmay partiallyexplaintheincreasedefficacyofgammastimulation inourdata.Inlightoftheseresults,itmaybepossibletooptimizeclinicalDBStobetterreflectthedesiredneuraldynamics ofaffectedthalamocorticalcircuitstohelpalleviatedisorders ofconsciousness.

STAR+METHODS

Detailedmethodsareprovidedintheonlineversionofthispaper andincludethefollowing:

d KEYRESOURCESTABLE

d LEADCONTACTANDMATERIALSAVAILABILITY

d EXPERIMENTALMODELANDSUBJECTDETAILS

d METHODDETAILS

B Neuroimaging

B Surgery

B Behavioraltasksandsensorystimuli

B Arousalscoring

B Electrophysiologicalrecordingandstimulation

B Electrodearraylocalization

B Anesthesiaexperiments

B Awakeexperiments

B Sleep

B Neuraldatapreprocessing

B Spikerate

B Spiketiming

B Currentsourcedensity(CSD)

B Power

B Coherence

d QUANTIFICATIONANDSTATISTICALANALYSIS

B Generalapproach

B Stimulationeffects

B Spikerateeffects

B Burstingeffects

B Powerandcoherenceeffects

d DATAANDCODEAVAILABILITY

SUPPLEMENTALINFORMATION

SupplementalInformationcanbefoundonlineat https://doi.org/10.1016/j. neuron.2020.01.005

ACKNOWLEDGMENTS

WethankM.I.Banks,C.W.Berridge,R.A.Pearce,R.D.Sanders,B.M.Krause, andC.Murphyforusefulcommentsonthemanuscript.ThisworkwassupportedbyNIHgrantsR01MH110311andP51OD011106,BSFgrant201732, andaWNPRCpilotgrant.

AUTHORCONTRIBUTIONS

M.J.R.,J.M.P.,N.A.K.,S.M.,A.R.,andY.B.S.performedtheresearch;M.J.R., S.A.,G.L.D.,M.A.,andY.B.S.analyzedthedata;M.J.R.,A.R.,andY.B.S. wrotethepaper;M.J.R.,J.M.P.,N.A.K.,S.M.,S.A.,G.L.D.,M.A.,A.R.,and Y.B.S.editedthepaper.

DECLARATIONOFINTERESTS

A.R.isaconsultantforandreceivesfundingfromMedtronic.Theotherauthors declarenocompetinginterests.

Received:November19,2019

Revised:December26,2019

Accepted:January7,2020

Published:February12,2020

REFERENCES

Baker,R.,Gent,T.C.,Yang,Q.,Parker,S.,Vyssotski,A.L.,Wisden,W., Brickley,S.G.,andFranks,N.P.(2014).Alteredactivityinthecentralmedial thalamusprecedeschangesintheneocortexduringtransitionsintobothsleep andpropofolanesthesia.J.Neurosci. 34,13326–13335.

Baker,J.L.,Ryou,J.W.,Wei,X.F.,Butson,C.R.,Schiff,N.D.,andPurpura,K.P. (2016).Robustmodulationofarousalregulation,performance,andfrontostriatalactivitythroughcentralthalamicdeepbrainstimulationinhealthy nonhumanprimates.J.Neurophysiol. 116,2383–2404.

Bokil,H.,Purpura,K.,Schoffelen,J.M.,Thomson,D.,andMitra,P.(2007). Comparingspectraandcoherencesforgroupsofunequalsize.J.Neurosci. Methods 159,337–345.

Bokil,H.,Andrews,P.,Kulkarni,J.E.,Mehta,S.,andMitra,P.P.(2010). Chronux:aplatformforanalyzingneuralsignals.J.Neurosci.Methods 192, 146–151.

Bollimunta,A.,Chen,Y.,Schroeder,C.E.,andDing,M.(2008).Neuronal mechanismsofcorticalalphaoscillationsinawake-behavingmacaques. J.Neurosci. 28,9976–9988.

Boly,M.,Garrido,M.I.,Gosseries,O.,Bruno,M.A.,Boveroux,P.,Schnakers, C.,Massimini,M.,Litvak,V.,Laureys,S.,andFriston,K.(2011).Preserved feedforwardbutimpairedtop-downprocessesinthevegetativestate. Science 332,858–862.

Bruce,C.J.,Goldberg,M.E.,Bushnell,M.C.,andStanton,G.B.(1985).Primate frontaleyefields.II.Physiologicalandanatomicalcorrelatesofelectrically evokedeyemovements.J.Neurophysiol. 54,714–734.

Caruso,V.C.,Pages,D.S.,Sommer,M.A.,andGroh,J.M.(2016).Similarprevalenceandmagnitudeofauditory-evokedandvisuallyevokedactivityinthe frontaleyefields:implicationsformultisensorymotorcontrol. J.Neurophysiol. 115,3162–3173.

Chen,X.,Zirnsak,M.,andMoore,T.(2018).DissonantRepresentationsof VisualSpaceinPrefrontalCortexduringEyeMovements.CellRep. 22, 2039–2052.

Cohen,Y.E.,Russ,B.E.,andGifford,G.W.,3rd(2005).Auditoryprocessingin theposteriorparietalcortex.Behav.Cogn.Neurosci.Rev. 4,218–231. Contreras,D.,Destexhe,A.,Sejnowski,T.J.,andSteriade,M.(1997). Spatiotemporalpatternsofspindleoscillationsincortexandthalamus. J.Neurosci. 17,1179–1196.

Dehaene,S.,andChangeux,J.P.(2011).Experimentalandtheoreticalapproachestoconsciousprocessing.Neuron 70,200–227.

Erez,Y.,Tischler,H.,Moran,A.,andBar-Gad,I.(2010).Generalizedframeworkforstimulusartifactremoval.J.Neurosci.Methods 191,45–59. Erickson,S.L.,andLewis,D.A.(2004).Corticalconnectionsofthelateralmediodorsalthalamusincynomolgusmonkeys.J.Comp.Neurol. 473,107–127. Friston,K.(2010).Thefree-energyprinciple:aunifiedbraintheory?Nat.Rev. Neurosci. 11,127–138.

Funk,C.M.,Honjoh,S.,Rodriguez,A.V.,Cirelli,C.,andTononi,G.(2016).Local SlowWavesinSuperficialLayersofPrimaryCorticalAreasduringREMSleep. Curr.Biol. 26,396–403.

Gifford,G.W.,3rd,andCohen,Y.E.(2005).Spatialandnon-spatialauditory processinginthelateralintraparietalarea.Exp.BrainRes. 162,509–512. Giguere,M.,andGoldman-Rakic,P.S.(1988).Mediodorsalnucleus:areal, laminar,andtangentialdistributionofafferentsandefferentsinthefrontal lobeofrhesusmonkeys.J.Comp.Neurol. 277,195–213.

Glenn,L.L.,andSteriade,M.(1982).Dischargerateandexcitabilityofcortically projectingintralaminarthalamicneuronsduringwakingandsleepstates. J.Neurosci. 2,1387–1404.

Grunewald,A.,Linden,J.F.,andAndersen,R.A.(1999).Responsestoauditory stimuliinmacaquelateralintraparietalarea.I.Effectsoftraining. J.Neurophysiol. 82,330–342.

Haegens,S.,Barczak,A.,Musacchia,G.,Lipton,M.L.,Mehta,A.D.,Lakatos, P.,andSchroeder,C.E.(2015).LaminarProfileandPhysiologyofthe a Rhythm

Pleasecitethisarticleinpressas:Redinbaughetal.,ThalamusModulatesConsciousnessviaLayer-SpecificControlofCortex,Neuron(2020),https:// doi.org/10.1016/j.neuron.2020.01.005

inPrimaryVisual,Auditory,andSomatosensoryRegionsofNeocortex. J.Neurosci. 35,14341–14352.

Jenkinson,M.,Beckmann,C.F.,Behrens,T.E.,Woolrich,M.W.,andSmith, S.M.(2012).Fsl.Neuroimage 62,782–790.

Jones,E.G.(2009).Synchronyintheinterconnectedcircuitryofthethalamus andcerebralcortex.Ann.NYAcad.Sci. 1157,10–23.

Katzner,S.,Nauhaus,I.,Benucci,A.,Bonin,V.,Ringach,D.L.,andCarandini, M.(2009).Localoriginoffieldpotentialsinvisualcortex.Neuron 61,35–41. Kaufman,E.F.,andRosenquist,A.C.(1985).Efferentprojectionsofthe thalamicintralaminarnucleiinthecat.BrainRes. 335,257–279. Lacey,C.J.,Bolam,J.P.,andMagill,P.J.(2007).Novelanddistinctoperational principlesofintralaminarthalamicneuronsandtheirstriatalprojections. J.Neurosci. 27,4374–4384.

Lamme,V.A.(2006).Towardsatrueneuralstanceonconsciousness.Trends Cogn.Sci. 10,494–501.

Lee,U.,Kim,S.,Noh,G.J.,Choi,B.M.,Hwang,E.,andMashour,G.A.(2009). Thedirectionalityandfunctionalorganizationoffrontoparietalconnectivity duringconsciousnessandanesthesiainhumans.Conscious.Cogn. 18, 1069–1078.

Lee,U.,Ku,S.,Noh,G.,Baek,S.,Choi,B.,andMashour,G.A.(2013). Disruptionoffrontal-parietalcommunicationbyketamine,propofol,andsevoflurane.Anesthesiology 118,1264–1275.

Linden,J.F.,Grunewald,A.,andAndersen,R.A.(1999).Responsestoauditory stimuliinmacaquelateralintraparietalarea.II.Behavioralmodulation. J.Neurophysiol. 82,343–358.

Liu,J.,Lee,H.J.,Weitz,A.J.,Fang,Z.,Lin,P.,Choy,M.,Fisher,R.,Pinskiy,V., Tolpygo,A.,Mitra,P.,etal.(2015).Frequency-selectivecontrolofcorticaland subcorticalnetworksbycentralthalamus.eLife 4,e09215.

Livingstone,M.S.,andHubel,D.H.(1981).Effectsofsleepandarousalonthe processingofvisualinformationinthecat.Nature 291,554–561. Llinas,R.,Ribary,U.,Contreras,D.,andPedroarena,C.(1998).Theneuronal basisforconsciousness.Philos.Trans.R.Soc.Lond.BBiol.Sci. 353, 1841–1849.

Maimon,G.,andAssad,J.A.(2009).BeyondPoisson:increasedspike-time regularityacrossprimateparietalcortex.Neuron 62,426–440. Mair,R.G.,andHembrook,J.R.(2008).Memoryenhancementwitheventrelatedstimulationoftherostralintralaminarthalamicnuclei.J.Neurosci. 28, 14293–14300.

Maksimow,A.,Silfverhuth,M.,La ˚ ngsjo,J.,Kaskinoro,K.,Georgiadis,S., Jaaskelainen,S.,andScheinin,H.(2014).Directionalconnectivitybetween frontalandposteriorbrainregionsisalteredwithincreasingconcentrations ofpropofol.PLoSOne 9,e113616.

Markov,N.T.,Vezoli,J.,Chameau,P.,Falchier,A.,Quilodran,R.,Huissoud,C., Lamy,C.,Misery,P.,Giroud,P.,Ullman,S.,etal.(2014).Anatomyofhierarchy: feedforwardandfeedbackpathwaysinmacaquevisualcortex.J.Comp. Neurol. 522,225–259.

Mejias,J.F.,Murray,J.D.,Kennedy,H.,andWang,X.J.(2016).Feedforward andfeedbackfrequency-dependentinteractionsinalarge-scalelaminar networkoftheprimatecortex.Sci.Adv. 2,e1601335. Mitra,P.,andBokil,H.(2007).ObservedBrainDynamics(Oxford UniversityPress).

Molinari,M.,Leggio,M.G.,Dell’Anna,M.E.,Giannetti,S.,andMacchi,G. (1994).Chemicalcompartmentationandrelationshipsbetweencalcium-bindingproteinimmunoreactivityandlayer-specificcorticalcaudate-projecting cellsintheanteriorintralaminarnucleiofthecat.Eur.J.Neurosci. 6,299–312. Oizumi,M.,Albantakis,L.,andTononi,G.(2014).Fromthephenomenologyto themechanismsofconsciousness:IntegratedInformationTheory3.0.PLoS Comput.Biol. 10,e1003588.

Pal,D.,Dean,J.G.,Liu,T.,Li,D.,Watson,C.J.,Hudetz,A.G.,andMashour, G.A.(2018).DifferentialRoleofPrefrontalandParietalCorticesinControlling LevelofConsciousness.Curr.Biol. 28,2145–2152.e5.

Pettersen,K.H.,Devor,A.,Ulbert,I.,Dale,A.M.,andEinevoll,G.T.(2006). Current-sourcedensityestimationbasedoninversionofelectrostaticforward solution:effectsoffiniteextentofneuronalactivityandconductivitydiscontinuities.J.Neurosci.Methods 154,116–133.

Pigarev,I.N.,Saalmann,Y.B.,andVidyasagar,T.R.(2009).Aminimallyinvasiveandreversiblesystemforchronicrecordingsfrommultiplebrainsitesin macaquemonkeys.J.Neurosci.Methods 181,151–158.

Purpura,K.,andSchiff,N.D.(1997).TheThalamicIntralaminarNuclei:ARolein VisualAwareness.Neuroscientist 3,8.

Ray,J.P.,andPrice,J.L.(1993).Theorganizationofprojectionsfromthemediodorsalnucleusofthethalamustoorbitalandmedialprefrontalcortexinmacaquemonkeys.J.Comp.Neurol. 337,1–31.

Raz,A.,Grady,S.M.,Krause,B.M.,Uhlrich,D.J.,Manning,K.A.,andBanks, M.I.(2014).Preferentialeffectofisofluraneontop-downvs.bottom-uppathwaysinsensorycortex.Front.Syst.Neurosci. 8,191.

Romanski,L.M.,Tian,B.,Fritz,J.,Mishkin,M.,Goldman-Rakic,P.S.,and Rauschecker,J.P.(1999).Dualstreamsofauditoryafferentstargetmultiple domainsintheprimateprefrontalcortex.Nat.Neurosci. 2,1131–1136.

Saalmann,Y.B.,Pigarev,I.N.,andVidyasagar,T.R.(2007).Neuralmechanismsofvisualattention:howtop-downfeedbackhighlightsrelevantlocations.Science 316,1612–1615.

Saalmann,Y.B.,Pinsk,M.A.,Wang,L.,Li,X.,andKastner,S.(2012).Thepulvinarregulatesinformationtransmissionbetweencorticalareasbasedon attentiondemands.Science 337,753–756.

Saleem,K.S.,andLogothetis,N.K.(2007).ACombinedMRIandHistology AtlasoftheRhesusMonkeyBraininStereotaxicCoordinates (AcademicPress).

Sanders,R.D.,Banks,M.I.,Darracq,M.,Moran,R.,Sleigh,J.,Gosseries,O., Bonhomme,V.,Brichant,J.F.,Rosanova,M.,Raz,A.,etal.(2018).Propofolinducedunresponsivenessisassociatedwithimpairedfeedforwardconnectivityincorticalhierarchy.Br.J.Anaesth. 121,1084–1096.

Schall,J.D.,Morel,A.,King,D.J.,andBullier,J.(1995).Topographyofvisual cortexconnectionswithfrontaleyefieldinmacaque:convergenceandsegregationofprocessingstreams.J.Neurosci. 15,4464–4487.

Schiff,N.D.(2008).Centralthalamiccontributionstoarousalregulationand neurologicaldisordersofconsciousness.Ann.NYAcad.Sci. 1129,105–118.

Schiff,N.D.,Giacino,J.T.,Kalmar,K.,Victor,J.D.,Baker,K.,Gerber,M.,Fritz, B.,Eisenberg,B.,Biondi,T.,O’Connor,J.,etal.(2007).Behaviouralimprovementswiththalamicstimulationafterseveretraumaticbraininjury.Nature 448, 600–603.

Schmitt,L.I.,Wimmer,R.D.,Nakajima,M.,Happ,M.,Mofakham,S.,and Halassa,M.M.(2017).Thalamicamplificationofcorticalconnectivitysustains attentionalcontrol.Nature 545,219–223.

Schroeder,C.E.,Mehta,A.D.,andGivre,S.J.(1998).Aspatiotemporalprofile ofvisualsystemactivationrevealedbycurrentsourcedensityanalysisinthe awakemacaque.Cereb.Cortex 8,575–592.

Sellers,K.K.,Bennett,D.V.,Hutt,A.,andFrohlich,F.(2013).Anesthesiadifferentiallymodulatesspontaneousnetworkdynamicsbycorticalareaandlayer. J.Neurophysiol. 110,2739–2751.

Senzai,Y.,Fernandez-Ruiz,A.,andBuzsaki,G.(2019).Layer-Specific PhysiologicalFeaturesandInterlaminarInteractionsinthePrimaryVisual CortexoftheMouse.Neuron 101,500–513.e5.

Shirvalkar,P.,Seth,M.,Schiff,N.D.,andHerrera,D.G.(2006).Cognitive enhancementwithcentralthalamicelectricalstimulation.Proc.Natl.Acad. Sci.USA 103,17007–17012.

Smith,Y.,Raju,D.V.,Pare,J.F.,andSidibe,M.(2004).Thethalamostriatalsystem:ahighlyspecificnetworkofthebasalgangliacircuitry.TrendsNeurosci. 27,520–527.

Steriade,M.,Curro Dossi,R.,andContreras,D.(1993).Electrophysiological propertiesofintralaminarthalamocorticalcellsdischargingrhythmic(approximately40HZ)spike-burstsatapproximately1000HZduringwakingandrapid eyemovementsleep.Neuroscience 56,1–9.

Neuron 106,1–10,April8,2020 9

Pleasecitethisarticleinpressas:Redinbaughetal.,ThalamusModulatesConsciousnessviaLayer-SpecificControlofCortex,Neuron(2020),https:// doi.org/10.1016/j.neuron.2020.01.005

Theyel,B.B.,Llano,D.A.,andSherman,S.M.(2010).Thecorticothalamocorticalcircuitdriveshigher-ordercortexinthemouse.Nat.Neurosci. 13,84–88.

Towns,L.C.,Tigges,J.,andTigges,M.(1990).Terminationofthalamicintralaminarnucleiafferentsinvisualcortexofsquirrelmonkey.Vis.Neurosci. 5, 151–154.

Trongnetrpunya,A.,Nandi,B.,Kang,D.,Kocsis,B.,Schroeder,C.E.,and Ding,M.(2016).AssessingGrangerCausalityinElectrophysiologicalData: RemovingtheAdverseEffectsofCommonSignalsviaBipolarDerivations. Front.Syst.Neurosci. 9,189.

Tsuchiya,N.,Wilke,M.,Frassle,S.,andLamme,V.A.F.(2015).No-Report Paradigms:ExtractingtheTrueNeuralCorrelatesofConsciousness.Trends Cogn.Sci. 19,757–770.

Uhrig,L.,Sitt,J.D.,Jacob,A.,Tasserie,J.,Barttfeld,P.,Dupont,M.,Dehaene, S.,andJarraya,B.(2018).Resting-stateDynamicsasaCorticalSignatureof AnesthesiainMonkeys.Anesthesiology 129,942–958.

vanVugt,B.,Dagnino,B.,Vartak,D.,Safaai,H.,Panzeri,S.,Dehaene,S.,and Roelfsema,P.R.(2018).Thethresholdforconsciousreport:signallossand responsebiasinvisualandfrontalcortex.Science 360,537–542.

Wardak,C.,Olivier,E.,andDuhamel,J.R.(2002).Saccadictargetselection deficitsafterlateralintraparietalareainactivationinmonkeys.J.Neurosci. 22,9877–9884.

Wardak,C.,Ibos,G.,Duhamel,J.R.,andOlivier,E.(2006).Contributionofthe monkeyfrontaleyefieldtocovertvisualattention.J.Neurosci. 26,4228–4235. Womelsdorf,T.,Ardid,S.,Everling,S.,andValiante,T.A.(2014).Burstfiring synchronizesprefrontalandanteriorcingulatecortexduringattentionalcontrol.Curr.Biol. 24,2613–2621.

Pleasecitethisarticleinpressas:Redinbaughetal.,ThalamusModulatesConsciousnessviaLayer-SpecificControlofCortex,Neuron(2020),https:// doi.org/10.1016/j.neuron.2020.01.005

STAR+METHODS

KEYRESOURCESTABLE

REAGENTorRESOURCESOURCEIDENTIFIER Chemicals,Peptides,andRecombinantProteins

Isoflurane,USPPiramalEnterprisesLimitedNDC66794-013-25 PropoFlo28(Propofol)ZoetisInc.NDC54771-4944-1 KETAVED(KETAMINEHCL100MG) VedcoInc.NDC50989-996-06

ExperimentalModels:Organisms/Strains Monkeys(Macacamulatta)WisconsinNationalPrimate ResearchCenter(WNPRC)

SoftwareandAlgorithms

OmniPlexServerv1.14.1Plexon

https://www.primate.wisc.edu/

https://plexon.com/products/omniplex-software/ PlexContronv1.14.1Plexon https://plexon.com/products/omniplex-software/ PlexonStim-2v2.3.0.0Plexon https://plexon.com/products/plexstim-electricalstimulator-2-system/

Presentationv19.0NeurobehavioralSystems https://www.neurobs.com/ LogitechWebcamSoftwarev2.51Logitech https://support.logi.com/hc/en-us/articles/ 360024691274–Downloads-Webcam-C260 Fslv1.6OxfordUniversityInnovation https://fsl.fmrib.ox.ac.uk/fsldownloads_registration Fsleyesv0.22.6OxfordUniversityInnovation https://fsl.fmrib.ox.ac.uk/fsldownloads_registration XQuartzv2.7.11X.OrgFoundation https://www.xquartz.org/ OfflineSorterv4Plexon https://plexon.com/products/offline-sorter/ MATLABR2015bMathWorks https://www.mathworks.com/products.html? s_tid=gn_ps

Chronuxv2.11chronux http://chronux.org/ SARGEtoolboxv1.5.4IBGLab https://www.ibglab.org/sarge CSDplotterv0.1.1KlasPettersen (klas.pettersen@umb.no.) https://github.com/espenhgn/CSDplotter Rv3.2.2RFoundationfor StatisticalComputing https://www.r-project.org/ RStudiov1.1.463RStudio https://rstudio.com/ MovaviVideoConverterv7.3.0Movavi https://www.movavi.com/videoconvertermac/? device=c&gclid=Cj0KCQiAtrnuBRDXARIsABiN7BytoiOxcGD8lyR3Fvs1MGc3zWwA0UisQaA1 DdujFHHS_q1fbZk6WwaAlnlEALw_wcB Elmediavideoplayerv7.6ElmediaPlayer https://www.elmedia-video-player.com/ Other MacaqueStimulatedArousalIndexThispaper

LEADCONTACTANDMATERIALSAVAILABILITY

STARMethods,Email(mredinbaugh@wisc.edu)

Thisstudydidnotgeneratenewuniquereagents.Furtherinformationandrequestsregardingresources,equipment,andexperimentalmethodsshouldbedirectedto,andwillbefulfilledby,theLeadContact,YuriB.Saalmann(saalmann@wisc.edu).

EXPERIMENTALMODELANDSUBJECTDETAILS

Weacquireddatafromtwomalemonkeys(Macacamulatta, 4.3-5.5yearsold,7.63-10.30kgbodyweight).AnimaldailyneedsmaintainedbyexperimentersandhusbandrystaffattheWisconsinNationalPrimateResearchCenter(WNPRC),whereanimals werehoused.AnimalhealthwasmonitoredbyveterinariansattheWNPRC.TheUniversityofWisconsin-MadisonInstitutional AnimalCareandUseCommitteeapprovedallprocedures,whichconformedtotheNationalInstitutesofHealthGuideforthe CareandUseofLaboratoryAnimals.

,1–10.e1–e12,April8,2020

METHODDETAILS

Neuroimaging

WeperformedstructuralimagingonanesthetizedmonkeysusingtheGEMR7503Tscanner(GEHealthcare,WaukeshaWI).At thestartofeachscansession,wepre-medicatedthemonkeywithketamine(upto20mg/kgbodyweight)andatropinesulfate (0.03-0.06mg/kg),priortointubation.Wethenadministeredisoflurane(1%–3%on 1L/minO2 flow)tothemonkey,withasemiopenbreathingcircuitandspontaneousrespiration,tomaintaingeneralanesthesiaforthedurationofthesession.Wemonitored themonkey’svitalsigns(expiredcarbondioxide,respirationrate,oxygensaturation,pulserate,temperature)usinganMR-compatiblepulseoximeterandrectalthermometer.

Weacquiredahigh-resolutionstructuralbrainimagepriortotheimplantsurgery,todelineatethalamocorticalregionsofinterest (ROIs),and,aftercraniotomy,additionalscansofelectrodes insitu toconfirmelectrodepositioning.Forthesethreedimensional T1-weightedstructuralimages,weusedaninversion-recoverypreparedgradientechosequencewiththefollowingparameters: FOV=128mm2;matrix=256 3 256;no.ofslices=166;0.5mmisotropic;TR=9.68ms;TE=4.192ms;flipangle=12 ;inversion time(TI)=450ms).Togeneratethehigh-qualitystructuralimage,wecollected6-10T1-weightedstructuralimagesandcalculated theaverageimageforeachmonkeyusingtheFMRIBSoftwareLibrary(FSL)(Jenkinsonetal.,2012).Tolocalizeelectrodes,weaveragedtwostructuralimagesofelectrodes insitu

Surgery

Weinducedanesthesiawithketamine(upto20mg/kgbodyweight,i.m.)andmaintainedgeneralanesthesiaduringasepticsurgical procedureswithisoflurane(1%–2%).Weused12ceramicskullscrewsanddentalacrylictoaffixheadimplantsonmonkeys.We drilled2.5mmcraniotomiesinthefrontalandparietalboneswithinacustomizedplasticrecordingchamber,providingaccessto ourthreethalamocorticalROIsintherighthemisphere:frontaleyefield(FEF),lateralintraparietalarea(LIP),andcentrallateral thalamicnucleus(CL).Wederivedcraniotomycoordinatesfromthehigh-qualityT1-weightedstructuralimagesacquiredpriorto thesurgery.Wefittedeachcraniotomywithaconicalplasticguidetubefilledwithbonewax(guidetubeprefabricatedusing modelofskullbasedonT1-weightedstructuralimages)(Pigarevetal.,2009;Saalmannetal.,2007,2012)throughwhichlinear electrodearraystraversed.Wealsoinsertedtwotitaniumskullscrewswithintherecordingchamber,onefromwhichtorecord theEEGandonetoserveasareference.Theheadimplantincludedaheadpostand,ontheimplantleftandrightsides,fourhollow slots(twooneachside)intowhichrodsfitted,allowingheadimmobilizationduringelectrophysiologicalrecordings.

Behavioraltasksandsensorystimuli

Tocompareelectrophysiologicaldatabetweendifferentstatesofconsciousness,weneededtoacquiredataundersimilarbehavioral andsensoryconditionsforawakeandanesthetizedmonkeys.Thus,weacquiredelectrophysiologicaldatafrombothawakeand anesthetizedmonkeysduringapassiveauditoryoddballparadigmaswellasduring‘‘restingstate’’(inwhichnosensorystimuli werepresented).Thepassiveauditoryoddballparadigmwasusefulbecauseitdoesnotrequireabehavioralresponse,doesnot requireopeneyes,andauditorystimulihavebeenshowntoelicitneuronalresponsesfromFEF(Carusoetal.,2016;Romanski etal.,1999;Schalletal.,1995)andLIP(Cohenetal.,2005;GiffordandCohen,2005;Grunewaldetal.,1999;Lindenetal.,1999), allowingsound-alignedcurrentsourcedensityanalyses.Additionally,ascontrolsintheawakemonkeys,weacquiredelectrophysiologydataduringafixationtask,andduringthepassiveauditoryoddballparadigmwhilethemonkeymaintainedfixation(oddball paradigmrunconcurrentlywithfixationtask;see‘‘AwakeExperiments’’section).Allelectrophysiologicalrecordingsoccurredina quiet,darkroom.

Inthepassiveauditoryoddballparadigm,thesequenceofauditorytones(200msduration,with800±100msjitterbetweeneach tone)comprised80%standardtones(0.9kHzfrequency)and20%deviant/oddballtones(1kHzfrequency).Atleastthefirstfour stimuliofasequence(3mindurationforanesthesia;6mindurationforwake)werestandardtones,andtwosequentialtonescould notbedeviantstimuli,otherwisethetoneorderwaspseudorandomwithintheconstraintoftheoverall80/20standard-to-deviant ratio.Wepresentedtonesusingtwospeakersplaced35cmfromeachearunderanesthesiaand80cmfromeachearduringwakefulness(soundlevelateachearwasabout75dBSPLforbothstates).

Inthefixationtask,themonkeyneededtofixateacentralfixationpoint(dimgraycircleofdiameter0.42degreesofvisualangle onblackbackground)onthemonitorscreenlocated57cmaway.Themonkeyreceivedasmallvolume(0.18-0.22mL)ofjuiceevery 2.2-3.5swhilemaintainingfixationwithina3 3 3degreeofvisualanglewindow,centeredonthefixationpoint.Whenthemonkey’s gazeleftthefixationwindow,hewouldtypicallyre-establishcentralfixationquickly,toagainreceivejuiceevery2.2-3.5s whilefixating.Toencouragelongfixations,wedoubledthejuicevolumeiffixationpersistedbeyond10s.Weonlyanalyzed electrophysiologicaldataduringstableeyeepochs(eyepositionremainedfixedforatleast1s).Thisappliedtoallwake-state data(resting,oddballparadigmandfixationtask).

Forawakeexperiments,wemonitoredmonkeys’eyepositionusingavideo-basedeyetracker(500Hzsamplingrate).For anesthesiaexperiments,wemonitoredeyesusingadigitalvideocamera(capturing30framespersecond)andusedMATLABto analyzeluminancecontrastinawindowtightlyboundingtheeyeimage.Thecontrastdifferentiatedclosedeyes(i.e.,relatively

homogeneoushighluminanceeyelidshade)andthalamicstimulation-inducedeyeopenings(i.e.,darkpupilandiriscontrasting againstsclera),asshownin Figure1A;andvisualinspectionoftheeyevideoverifiedthetimingofeyeopenings/closingsderived fromthecontrastanalysis.

Arousalscoring

Wedevelopedanarousalindexbasedonclinicalarousalscalestomeasurethebehavioraleffectsofelectricalstimulation.The arousalindexincorporatedfivemainindicatorsofarousal,witheachindicatorscored0,1or2,andthesumofthescoresofthe fiveindicatorsyieldingthearousalindex(range0-10).Thefiveindicatorsare:

1)limb/facemovements(0=nothing;1=smallmovementorincreasedEMGwithnoclearmovement;2=fullreachorwithdrawal)

2)oralsigns(0=nothing;1=smallmouth/jaw/tonguemovements;2=fulljawopenings/closures,withmultiplerepetitions)

3)bodymovements(0=nothing;1=smalltorsomovementorswallowing;2=largefulltorsomovement)

4)eyemovements/openings(0=nothing;1=eyelidflutters/smallblinksorincreasedeyemovements;2=fulleyeopeningwith occasionalblinks)

5)vitalsigns(0=nochange,i.e.,differenceof<10%respirationrate(RR),<5%heartrate(HR);1=differenceof>10%RR,>5% HR;2=atleast20%changeineitherRRorHR,oratleast10%changeinbothRRandHR;comparedtobaseline30spriorto stimulation).

AveterinarianattheWisconsinNationalPrimateResearchCenter,aclinicalanesthesiologist,andfiveotherprimateelectrophysiologistsobservedtheelectricalstimulationeffectsduringanesthesiaexperiments.Usingobservationsrecordedatthetimeof stimulationexperimentsaswellasofflinereviewofvideosandEMGdata(filtered30-450Hz,full-waverectified,thenfiltered 5-100Hztoextracttheenvelope),wescoredarousallevelpriorto,during,andafterallstimulationevents.Atypicalstimulationblock consistedofthreestimulationeventrepetitions(oneminuteeach)withinasevenminuterecordingperiodatagivensite,usingthe samestimulationfrequency,current,polarity,duration,anestheticanddose.Wedefinedstimulationeventepochsfromtheonset tooffsetofpulses,i.e.,from1-2minutes,3-4minutes,and5-6minutesofasevenminuteblock.Thetimebetweentwostimulation epochswassplitequallyintopost-andpre-stimulationepochs(see Figure1Aforanexample).Thepre-stimulation,duringstimulationandpost-stimulationarousalindexforablockreflectedthemaximumpossiblescoreacrosstherepetitions(repetitionslargely producedthesamescorewithineachepochtype).Priortoelectricalstimulations(exceptforararefewinstancestestingthevalence ofdifferentstimulationfrequencies),thearousalindexwas0or1.Thiscouldbedifferentiatedfromstimulationeventsinducing anarousalindexof3ormorebyallobservers.Thus,wedefinedeffectivestimulationeventsasthoseinducinganarousalindex of3ormore,whereasineffectivestimulationeventshadanarousalindexof0-2.Thebehavioralindicesusedtocomputethearousal scorearebasedonbehaviorsexhibitedbyindividualsrecoveringfromgeneralanesthesiaordisordersofconsciousness.Stimulation-inducedarousalscoresreflectdifferent(parallel)progressionsalongtherecoverysequence.

Electrophysiologicalrecordingandstimulation

FEFandLIPelectrodeshadeither16or24contacts,andCLelectrodeshad24contacts(MicroProbes).Theseplatinum/iridium electrodecontactshadadiameterof12.5 mm,and200 mmspacingbetweencontacts.Theimpedanceofcontactsonrecording electrodeswastypically0.8-1MU.WealsomeasuredtheEEGusingtitaniumskullscrewslocatedabovedorsalfrontoparietalcortex and,inanesthetizedexperiments,theEMGusingahypodermicneedle(30G)intheforearm.Werecordedelectrodesignals(filtered 0.1-7,500Hz,amplifiedandsampledat40kHz)usingapreamplifierwithahighinputimpedanceheadstageandOmniPlexdata acquisitionsystemcontrolledbyPlexControlsoftware.

Weelectricallystimulatedusing24-contactelectrodearraysthathadpreviouslybeenusedseveraltimesasrecordingelectrodes (andnowhadlowerimpedance).Inearlystimulationtrials,wetitratedcurrent(tested100-300 mA,butbecause100-200 mAinduced arousal,therewereonlyasmallnumberof>200 mAcases),polarityoffirstphaseofbiphasicpulse(negative-orpositive-goingfirst phase),numberofelectrodecontactssimultaneouslystimulated(tested1,4,8and16contacts),andstimulationduration(15-60s). Forsubsequentelectricalstimulations,wesimultaneouslystimulatedvia16electrodecontacts(16mostventralcontacts),with 400 msbi-phasicpulsesof200 mA,foratotalof60sstimulationdurationforanygivenstimulationevent(experimentsincluded multiplestimulationevents).Wetypicallyperformedthreestimulationeventsatagivenfrequencywithinastimulationblockfor reproducibility,witharecoverytimeofatleastthestimulationeventdurationbetweenrepetitions,i.e.,stimulationsfrom1-2minutes, 3-4minutes,and5-6minutesofasevenminuteblock.Inouranalyses,weincludedallstimulationdatawithcurrentsfrom 100-200 mA.Stimulationeventduration,rangingfrom15-60s,didnotinfluencearousalindices,soweincludedalldurationsin ouranalyses.

Electrodearraylocalization

WeacquiredT1-weightedstructuralimageswithelectrodesheld insitu bythecustomizedguidetubes(Pigarevetal.,2009;Saalmannetal.,2007,2012).Whiletheactualelectrodeisnotvisibleintheimages,asusceptibility‘‘shadow’’artifactappears alongthelengthoftheelectrodewithawidthofapproximatelyonevoxel(0.5mm3,eithersideoftheelectrode).WetargetedelectrodestothalamocorticalROIsbasedontheindividualmonkey’sstructuralimages,usingastereotaxicatlasasageneralreference

(SaleemandLogothetis,2007).Were-positionedelectrodesasnecessaryandre-acquiredT1-weightedstructuralscansuntilelectrodeswereintheirdesiredlocationsinthethalamusandcortex.Offline,weregistered(6degreesoffreedom)theimageswithelectrodes insitu tothehigh-qualitystructuralimageacquiredpriortosurgery.Usingmeasurementsofelectrodedepthduringimaging andrecordingsessionsaswellastheimageofelectrodes insitu,wereconstructedrecordingandstimulationsitesalongelectrode tracks.Thalamicstimulationsites,specificallytheeighthelectrodecontactofthe16contactssimultaneouslyusedforelectricalstimulation(i.e.,middleofstimulatingarray),areshownononecoronalslice(sitescollapsedacrosstheanterior-posterioraxis)in Figure1 (monkeyR).

WefurthervalidatedthelocalizationofrecordingsitesinourthreethalamocorticalROIsusingfunctionalcriteria.Weconfirmed theFEFROIinaninitialexperimentusingelectricalstimulationatthefrontalrecordingsite,i.e.,lowcurrents(<100 mA)elicited eyemovements(Bruceetal.,1985).IntheLIPROIduringawakeexperiments,alargenumberofneuronsshowedtheclassical responsecharacteristicofperi-saccadicactivity.IntheCLROI,wefoundasubsetofneuronswithhighfiringrates(around 40-50Hz)intheawakestate,consistentwithaCLlocus(GlennandSteriade,1982;Steriadeetal.,1993).

WiththeaimofpositioningelectrodecontactsinallcorticallayersinFEFandLIP,weuseddepthmeasurementsderivedfrom structuralimagestoinitiallypositionelectrodearraysacrossFEFandLIPlayers(24contactswith200 mmspacingbetweencontacts correspondstoa4.6mmspan,and16contactscorrespondtoa3mmspan,whichgenerallyallowsforcontactsinsuperficial,middle anddeepcorticallayersfortracksnearperpendiculartothecorticalsurfaceorwithmoderateanglesfromperpendicular).Wefurther adjustedelectrodepositiontomaximizethenumberofcontactsshowingsingle-unitormulti-unitspikingactivity,andwevisualized evokedpotentialstoauditorytones,withmiddlelayersshowingearliestresponse.Wethenusedcurrentsourcedensity(CSD) analysistoattributecontactstosuperficial,middleanddeepcorticallayers(seesection‘‘CurrentSourceDensity[CSD]’’below).

Weperformedpost-mortemhistologytoreconstructelectrodetracksinonemonkey(inadditiontothereconstructionsusing structuralMRIandelectrodedepthmeasurementsinbothmonkeys).Afterfixingthebrainin10%neutralbufferedformalin,theright hemispherewascutintoapproximately5mmthickcoronalsections,embeddedinparaffin,thenthinlysectioned(8 mm).Around ROIs,westainedsectionswithHematoxylinandEosin,andvisualizedsectionsunderamicroscopetoconfirmelectrodetracks throughourROIs.

Werecorded282CLneurons,281FEFneuronsand282LIPneuronsintotal.ForCL,therewere181neuronsduringanesthesia; 101neuronsduringwakefulness;and83neuronsduringsleep.ForFEFsuperficial,middleanddeeplayers,therewererespectively 48,33and91neuronsduringanesthesia;37,22and50neuronsduringwakefulness;and37,22and42neuronsduringsleep.ForLIP superficial,middleanddeeplayers,therewererespectively38,34and91neuronsduringanesthesia;36,10and73neuronsduring wakefulness;and24,9and65neuronsduringsleep.Neuronsrecordedduringsleepwerealsorecordedduringthewakestate. Neuronsrecordedduringanesthesiawererecordedindifferentsessionsfromneuronsrecordedduringwakefulness/sleep.

Anesthesiaexperiments

Weusedeitherisoflurane(9sessions:5forMonkeyR,4forMonkeyW)orpropofol(9sessions:4forMonkeyR,5forMonkeyW)in anesthesiaexperiments,toensurethatresultswerenotdrug-specific,insteadreflectinggeneralmechanismsofanesthesia/consciousness.Thedurationofeachanesthesiaexperimentalsessionwas10-12hours.Weinducedanesthesiawithketamine(upto 20mg/kgbodyweight,i.m.),thenintubatedthemonkeyandinsertedanintravenouscatheter(s)forfluidanddrugadministration. Wemaintainedgeneralanesthesiainspontaneouslyrespiringmonkeyswithisoflurane(0.8%–1.5%on1L/minO2 flow)orpropofol (0.17-0.33mg/kg/mini.v.),andaclinicalanesthesiologist(A.R.)oversawstableconditionsthroughout.Wecategorizeddosesas lower(isoflurane<1%;propofol<0.23mg/kg/min),medium(isoflurane1%–1.19%;propofol0.23-0.26mg/kg/min)andhigher (isoflurane R 1.2%;propofol R 0.27mg/kg/min)withintheaforementionedrangesforstatisticalpurposes(see‘‘Quantification andStatisticalAnalysis’’section).Wepositionedmonkeysinthepronepositionwithinamodifiedstereotaxicapparatusatopasurgicaltable,withthemonkey’sheadimmobilizedbyfourrods(attachedtothestereotaxicdevice)thatslidintotheimplanthollows.We maintainedthemonkey’stemperatureusingaforced-airwarmingsystemandmonitoredvitals(endtidalcarbondioxide,respiration rate,oxygensaturation,heartrate,bloodpressureandrectaltemperature).

Eachexperimentalsessionhadtwoparts:thefirstpartinvolvedsimultaneousrecordingsfromFEF,LIPandCL(recordingsstarted atleasttwohoursafteranestheticinductionandketamineadministration),andthesecondpartinvolvedelectricalstimulationofCL duringsimultaneousrecordingsfromFEFandLIPwithoutchangingtheanestheticregimen.Weindependentlypositionedlinear multielectrodearraysineachROI,andallowedarraystosettlefor30minutespriortostartingrecordings.Microdrivescoupledto anadaptorsystemalloweddifferentapproachanglesforeachROI.Forbothpartsofexperiments,weinterleavedrestingstate epochsandthepassiveauditoryoddballparadigm.Duringthefirstpartoftheexperimentalsession,weperformedneuralrecordings atanumberofdifferentanestheticlevels,adaptingthedosetoreflectarangeofclinicallyrelevantanestheticdepths,e.g.,1%,1.1%, 1.25%and/or1.5%isoflurane,or0.2,0.225,0.25and/or0.3mg/kg/minpropofol,allowingdosingchangestostabilizebeforestarting thenextblockofrecordings(typicallyatleast30minutes).Duringthesecondpartoftheexperiment,weeitherelectricallystimulated usingthelinearmultielectrodearrayexistinginthethalamusorreplaceditwithanotherarrayinsertedalongthesametrajectoryto thesamedepth.Wefirststimulatedthalamicsitesatafrequencyof50Hz.Ifthisdidnotinducearousal,thenwemovedthestimulatingelectrodetoanewdepthinthethalamusinstepsof0.5-1mmdorsalorventralalongtheelectrodetrack,untilstimulation inducedarousal.When50Hzstimulationinducedarousal,wetestedadditionalstimulationfrequencies,i.e.,2,10or200Hz,orfurther depths(mappingtheareaofeffect).Theorderofstimulationfrequenciesgenerallyfollowedoneoftwopatterns:50Hzalternating e4 Neuron 106,1–10.e1–e12,April8,2020 Pleasecitethisarticleinpressas:Redinbaughetal.,ThalamusModulatesConsciousnessviaLayer-SpecificControlofCortex,Neuron(2020),https://

withoneoftheotherstimulationfrequencies;ormultiplerepetitionsofaparticularstimulationfrequency,followedbymultiple repetitionsofadifferentstimulationfrequency.

Inearlyexperiments,wetestedthalamicstimulationsatdifferentanestheticdosesbetween0.8%–1.3%forisofluraneand between0.17-0.3mg/kg/minforpropofol.Weobservedthalamicstimulation-inducedarousalforallbutthehighestdoses (i.e.,1.3%isofluraneand0.3mg/kg/minpropofol).Insubsequentisofluraneexperiments,weuseddosesbetween0.8–1.25% (M=1.04,SD=0.11)duringthalamicstimulation,andinpropofolexperiments,weuseddosesbetween0.17-0.28mg/kg/min (M=0.23,SD=0.03).Dataforalldoseswereincludedinanalysesandcontrolledforstatistically(see‘‘QuantificationandStatistical Analysis’’section).

Asanadditionalcontrol,wealsoseparatelystimulatedtheFEFandLIPusingthesamestimulationparametersasthoseusedinthe thalamus(10or50Hz).FEForLIPstimulationalonedidnotinducearousal.Stimulatingbothareaswouldhaverequiredconsiderable pilotingandadditionalexperimentation,andwasthusbeyondthescopeofthisstudy.

Awakeexperiments

Weperformed40awakeexperimentalsessions(18formonkeyR;22formonkeyW),eachsessionusuallyof2-4hoursduration.Monkeyssatuprightinaprimatechairwiththeirheadimmobilizedusingtheheadpostand/orfourrodsthatslidintothehollowslotsinthe headimplant.Awakeexperimentsweresplitintotwotypes(similartothetwopartsofanesthesiaexperimentalsessions);thosewith andwithoutthalamicstimulation.ExperimentswithoutstimulationinvolvedsimultaneousrecordingsfromFEF,LIPandCLacross multipleblocksofalltaskconditions.StimulationexperimentalsessionsinvolvedelectricalstimulationofCL,atdifferentfrequencies, duringsimultaneousrecordingsfromFEFandLIPacrossalltaskconditions.Duringeachtypeofexperiment,weinterleaved taskconditionsinvolvingreward(fixationandoddballfixation)withthosenotinvolvingrewards(restingstateandpassiveoddball). Thespecifictaskorderwasvariedrandomlyacrossdifferentexperimentalsessions.

Forelectricalstimulation,wepseudorandomlyappliedstimulationblocksofdifferentfrequencies,i.e.,10,50and200Hz.Because electricalstimulationofthethalamusat50Hzfrequency(orotherfrequencies)inawakemonkeysdidnotelicitanymovements(as observedduringeffectivestimulationeventsinanesthesiaexperiments),itisunlikelythattheeffectsof50HzstimulationofCLin anesthetizedmonkeyssimplyreflecteddirecteffectsonthemotorsystem.Rather,itsupportsthefindingthat50Hzstimulation effectsreflectedincreasedarousal.

Weperformedneuralrecordingsfrombrainareasimplicatedinawareness.Becausetheseareasarealsoinvolvedinselective attentionandoculomotorfunction,weaimedtoensuredifferencesbetweenwakeandanesthesiaresultswerenotrelatedtoattentionalorsaccadicprocesses.Tothisend,withinthewakestate,wecomparedrecordingsduringthefixationtasktorestingstate,as wellasrecordingsduringthepassiveoddballwithfixationtothatwithoutfixation.Foreachcondition(fixationtask,restingstate, oddballwithandwithoutfixation),weanalyzedepochs(atleast1sinduration)inwhichthemonkey’seyepositionwasstable,as verifiedusingtheeyetracker.Theseanalysesshowedneuraldatafromcomparedconditionstobequalitativelysimilar.Considering thesecontrols,tokeepwakeandanesthesiaconditionsassimilaraspossible,wecomparedwakeandanesthesiadatacollected duringconditionsinwhichtherewerenotaskdemands,i.e.,therestingstateandpassiveoddballconditions(notthefixation taskortheoddballwithfixation)inthedark.

Sleep

Duringawakeexperiments,monkeysattimeswouldfallasleep,particularlyduringconditionsnotinvolvingrewards,suchasthe restingstate.Online,weidentifiednon-rapideyemovement(NREM)sleepusingthefollowingcriteria:increaseddelta(1-4Hz)activity inEEG(comparedwithwake);extendedeyeclosure(recordingtimeswheneyesclosedandre-opened,tocomparewithsemi-automaticdetectionoffline);precedingperiodofdrowsinessindicatedbyslowdrooping/closingofeyelids;stopinfixationtaskperformance(ifcurrenttaskisfixationtask);andnoovertbodymovement.Offline,weidentifiedNREMsleepperiodsusingEEGand eyetrackerdata.Webandpassfiltered(1-4Hz;Butterworth,order6)EEGdataandappliedtheHilberttransform,tocalculatethe instantaneousdelta-bandamplitude.Fromtheresultingtimeseries,wedetectedtimesofrelativelyhighdeltaamplitudeusing thresholdstitratedforeachrecordingsession,becausethemeandeltaamplitudeandstandarddeviationcouldvarydepending ontherecordingsessionandtotalsleeptime.Foreachsession,weselectedthethresholdasthenumberofstandarddeviations fromthemeandeltaamplitudethatproducedatotalsleeptimeestimatethatcloselyresembledtheexpectedsleeptimebased ononlineNREMidentification,aswellastheofflinecalculationofthetotaltimewhenthemonkey’seyeswereclosed(usingtherecordedeyetrackertimeseriesdata).OfflineNREMsleepidentificationandtimestampingtheninvolvedautomateddetection ofextendedepochsacrosstherecordingsessionwhenboththemonkey’seyeswereclosedanddeltaamplitudewasabove threshold.TheseofflineNREMsleepdetectionsweresimilartomanualonlinedetections,andprovedreliablefordifferentrecording sessionsandmonkeys.

TheidentifiedsleepepochscorrespondedtoearlyphasesofNREMsleep(N1orN2,i.e.,lightsleep).Thus,monkeyswerenotat thesamedepthofunconsciousnessduringsleepastheywereduringgeneralanesthesiainourstudy.Thisnotwithstanding,we includedthespikeratedataduringearlyNREMsleep,asthisallowedustocomparetheinfluenceofconsciousandless-conscious statesonthesamesubsetofneurons(n=282)recordedinbothwakefulnessandsleep.Thisfurthersubstantiatedourcomparisonof spikingactivitybetweentheawakeandanesthetizedstates,activityrecordedfromtwodifferentsamplesofneuronsfromthe sameROIs(maintenanceofstableanesthesiaupto12hoursrequiredrecordingstotakeplaceinasurgicalsuite,whereasawake Neuron 106,1–10.e1–e12,April8,2020 e5

recordingstookplaceinthebehaviorallab).Becauselocalfieldpotentials(LFPs)reflectcombinedactivityfromaconsiderablylarger volume(comparedwithsingle-neuronactivity)(Katzneretal.,2009),LFPsrecordedatdifferenttimes,i.e.,awakeandduringanesthesia,aremorereadilycompared.Nonetheless,weincludeearlyNREMsleepLFPdataaswell,tofurthersubstantiatethealtered connectivityduringanesthesia(althoughacompleteaccountofsleepinfluenceonourthalamocorticalrecordingsisbeyondthe scopeofthisstudy).

Neuraldatapreprocessing

Wedefineddatasegmentsof1sduration(akintotrials)foranalysis.Intheawakestate,wefirstdeterminedstableeyeepochs(to matcheyebehaviorbetweenconsciousandunconsciousstates),i.e.,epochsstarting200msafterasaccadeandending200ms beforethenextsaccade.Next,wedividedstableeyeepochsintonon-overlapping1swindows.Intheanesthetizedandnon-REM sleepstates(wheneyesareclosed),wedividedalldataineachofthesestatesintonon-overlapping1swindows.

Welowpassfiltereddatato250HzforLFPs(Butterworth,order6,zero-phasefilter).Next,welinearlydetrendedLFPs,thenextractedartifactsfromLFPdata,byremovingsignificantsinewavesusingtheChronuxfunctionrmlinesc.Individualelectrodecontactswithsignalamplitudegreaterthan5standarddeviationsfromthemeanwereexcludedfromanalysis.Forpowerandcoherence analyses,wefurthercalculatedbipolarderivationsofLFPs,i.e.,thedifferencebetweentwoadjacentelectrodecontacts(excluding contactsthathadbeenremovedduetonoise),tominimizeanypossibleeffectsofacommonreferenceandvolumeconduction (Bollimuntaetal.,2008;Haegensetal.,2015;Trongnetrpunyaetal.,2016).

Webandpassfiltereddata250-5,000Hzforspikingactivity(Butterworth,order4,zero-phasefilter)andsortedspikesusingPlexon OfflineSortersoftware.Initialspikedetectioninvolvedthresholdingdataat>3standarddeviationsawayfromthemean.Wethen usedprincipalcomponentsanalysistoextractfeaturesofthespikeshapes.Finally,weusedtheT-distributionexpectationmaximizationalgorithmtoidentifyclustersofspikeswithsimilarfeatures.

Forneuraldataduringelectricalstimulation,therewasabriefartifactcausedbytheappliedcurrent.Toremovethisartifact,wefirst exciseda1mswindowaroundtheartifact,thenlinearlyinterpolatedacrossthiswindow.Next,weusedtheChronuxfunctionrmlinesctoremoveanysignificantsinewavesatthestimulationfrequency(wealsoperformedartifactremovalusingtheSARGEtoolbox (Erezetal.,2010),whichyieldedqualitativelysimilarresults).

Spikerate

Wecalculatedtheaveragespikeratein1swindows(duringstableeyeepochs)foreachneuron,intheawake,sleepand/oranesthetizedstates.Wedividedanesthetizedstatedataintoelectricalstimulationandnostimulationwindows.Forelectricalstimulation data,wecalculatedthespikerateduringthestretchesofdataunaffectedbythestimulation-inducedartifact.

Spiketiming

Foreachneuron,wegeneratedinterspikeinterval(ISI)histograms(1msbinwidth),fromwhichwederivedanindexofburstfiring propensityintheawakeandanesthetizedstates(Senzaietal.,2019).Weexcludedneuronswithverylowspikerate(<1Hz)from theburstindexanalysis,astheirISIhistogramshadtoofewsamples).Forthalamicneurons,theburstindexequaledtheproportion ofspikesoccurringwithin2-8ms(sumofspikesinthe2-8msbinsoftheISIhistogramdividedbythetotalnumberofspikes; Figure2D);wealsocalculatedindicesfor2-5,2-10and2-15msbins(forqualitativelysimilarresults).BecauseISIsinCLneuronal burstshavebeenreportedtocommonlyrangeupto6ms(lengtheningwithincreasingburstsize)(Laceyetal.,2007),weselected thenextaccommodatingwindowsize,2-8ms.Forcorticalneurons,theburstindexequaledtheproportionofspikesoccurring within2-15ms(sumofspikesinthe2-15msbinsoftheISIhistogramdividedbythetotalnumberofspikes; Figure2E);wealsocalculatedindicesfor2-10,2-20and2-30msbins.AlthoughithasbeenreportedthatLIPneuronshavealowtendencytoburstinthewake state(MaimonandAssad,2009),westillmeasuredchangesinspikingregularityacrossdifferentstates,byusingarelatively largerwindow,2-15ms(cf. CL),stillapplicableforfrontalcortex(Womelsdorfetal.,2014),toallowcomparisonsbetween corticalareas.

Currentsourcedensity(CSD)

Welocalizedelectrodecontactstosuperficial,middleordeepcorticallayersbasedoninverseCSDanalyses(Pettersenetal.,2006). Todothis,weusedtheCSDplottertoolboxforMATLAB(https://github.com/espenhgn/CSDplotter ;dt=1ms,corticalconductivity value=0.4S/m,diameter=0.5mm)forcalculatingtheinverseCSDinresponsetoauditorytonesinthepassiveoddballparadigm. Linearmulti-electrodearraysmeasuretheLFP, f,atNdifferentcorticaldepths/electrodecontactsalongthezaxiswithspacingh. ThestandardCSD,Cst,isestimatedfromtheLFPsusingthesecondspatialderivative.

LFPscanalsobeestimatedfromgivenCSDs,representedinmatrixformas F = F b C ,where F isthevectorcontainingtheNmeasurementsof f, b C isthevectorcontainingtheestimatedCSDs,andFisanNxNmatrixderivedfromtheelectrostaticforwardcalculation ofLFPsfromknowncurrentsources.TheinverseCSDmethodusestheinverseofFtoestimatetheCSD,i.e., b C = F 1 F.Forthestep

inverseCSDmethod(Pettersenetal.,2006)usedhere,itisassumedthattheCSDisstepwiseconstantbetweenelectrodecontacts, sothesourcesareextendedcylindricalboxeswithradiusRandheighth.Inthiscase,Fisgivenby:

where s istheelectricalconductivitytensor,and f(zj)isthepotentialmeasuredatpositionzj atthecylindercenteraxisduetoacylindricalcurrentboxwithCSD,Ci,aroundtheelectrodepositionzi.TheinverseCSDmethodoffersadvantagesoverthestandardCSD. TheinverseCSDmethodestimatestheCSDaroundallNelectrodecontacts,whereasthestandardCSDmethodyieldsestimates aroundN-2contacts.Further,thestandardCSDrequiresequidistantcontacts,whereastheinverseCSDmethoddoesnot,whichis advantageouswhendatafromanoisycontactmayneedtobeexcluded.WeusedthestepinverseCSDmethod,becauseitmay performbetterthanthedelta-sourceCSDmethodaselectrodecontactspacingincreases,andthesplineCSDmethodcanbemore sensitivetospatialnoise,e.g.,fromgaindifferencesbetweenelectrodecontactsorfromanexcludedcontact(Pettersenetal.,2006). Weidentifiedtheearlycurrentsinkinresponsetoauditorystimulationanddesignatedthebottomofthesinkasthebottomofthe middlelayers(aroundboundarybetweenlayers4and5).Weincludedtheelectrodecontactatthebottomofthemiddlelayersandthe twomoresuperficialcontactsasthemiddlelayers.ElectrodecontactsinFEForLIPsuperficialtothemiddlelayersweredesignated asbeinginthesuperficiallayers,whereasFEForLIPcontactsdeeperthanthemiddlelayersweredesignatedasbeinginthedeep layers.Layerassignmentswerecross-referencedtoreconstructionsoftherecordingsitesalongtheelectrodetrack(basedonmeasurementsofelectrodedepthaswellastheimageofelectrodes insitu)aswellastosingle-unitormulti-unitspikingactivity,which helpeddelineatetheborderbetweengrayandwhitematter.Weexcludedfromanalysiscontactsthatwerefoundtobelocated outsidetheROI.

PreviousstudiesgeneratedCSDdatainFEF(Chenetal.,2018)andLIP(Schroederetal.,1998)usingvisualstimulation(FEF:1 degreeofvisualanglesquareat60%contrast;LIP:diffuselight).OurCSDprofilesgeneratedwithauditorystimulationwereroughly consistentwiththesepreviousstudiesofFEFandLIPinsofarassensorystimulationelicitedearlysinksinmiddlelayers(whichwould bepredictedbasedonauditorystimulationactivatingmiddlecorticallayersrelativelyearly).

WealsoperformedCSDanalyses,inthecaseofrestingstaterecordings,usingLFPsignalsalignedtothetroughofdelta-band oscillationsrecordedfromtheelectrodecontactwiththehighestdeltapower(i.e.,thiscontactservedasthephaseindex)(Bollimunta etal.,2008;Funketal.,2016;Haegensetal.,2015).Thesedeltaphase-realignedCSDsshoweddifferencesacrosscorticallayers whichhelpedverifythatprobepositionsremainedstableacrossrecordingblocksthatdidnotincludeauditorystimuliofthepassive oddballparadigm.

Power

Wecalculatedpowerin1swindows(stableeyeepochs)foreverybipolar-derivedLFP,usingmulti-tapermethods(5Slepiantaper functions,timebandwidthproductof3,averagingoverwindows/trials)withtheChronuxdataanalysistoolboxforMATLAB(http:// chronux.org/)(Bokiletal.,2007,2010;MitraandBokil,2007).Noisytrials,sampleswithamplitudesthatexceeded4standarddeviationsfromthemean,wereremoved.Sinusoidalnoise,especiallyatstimulationfrequenciesand60Hz,wasremovedusingnotch filtersortheChronuxfunctionrmlinesc.Therewereanunequalnumberofwindowspercondition,duetodifferencesindatalength andnumberofstableeyeepochs.Becausethenumberoftimewindows(ortrials)affectsthepowerestimate(S(f)),webias-corrected powervalues(Bokiletal.,2007).Thebias-correctedpowerspectrum,B(f),isgivenby:

where n0 =2*K*N,whereKisthenumberoftapers(5)andNisthenumberoftimewindows.Toobtainpopulationvalues,wepooled thebias-correctedpowerestimatesfortheawakestateandagainfortheanesthetizedstate(separatelyforthenostimulation,effectivestimulationandineffectivestimulationconditions).

Coherence

Wecalculatedcoherenceusingmulti-tapermethods(5Slepiantaperfunctions,timebandwidthproductof3)withtheChronux toolbox.Noisytrials,sampleswithamplitudesthatexceeded4standarddeviationsfromthemean,wereremoved.Sinusoidalnoise, especiallyatstimulationfrequenciesand60Hz,wasremovedusingnotchfiltersortheChronuxfunctionrmlinesc.Weusedthe coherencemeasuretostudythetemporalrelationshipbetweenLFPs,orbetweenspikesandLFPs,withinandbetweenthethalamus, FEFandLIP.Thecoherenceisgivenby:

whereS(f)isthespectrumwithsubscripts1and2referringtothesimultaneouslyrecordedspike/LFPatonesiteandLFPatanother site.Thecoherenceisnormalizedbetween0and1,soitcanbeaveragedacrossdifferentpairsoftimeseries.Foreachpaired

Pleasecitethisarticleinpressas:Redinbaughetal.,ThalamusModulatesConsciousnessviaLayer-SpecificControlofCortex,Neuron(2020),https:// doi.org/10.1016/j.neuron.2020.01.005

recording,wecalculatedthecoherencein1swindowsduringwhichthemonkey’seyeswerestable.Therewereanunequal numberofwindowspercondition,duetodifferencesindatalengthandnumberofstableeyeepochs.Becausethenumberof timewindows(ortrials)affectsthecoherenceestimate,webias-corrected/transformedcoherencevalues(Bokiletal.,2007).The transformedcoherence,T(f),isgivenby:

where n0 isthedegreesoffreedom;forourmulti-taperestimates, n0 =2*K*N,whereKisthenumberoftapers(5)andNisthenumber oftimewindows.Toobtainpopulationvalues,wepooledthetransformedcoherenceestimatesfortheawakestateandagainforthe anesthetizedstate(separatelyforthenostimulation,effectivestimulationandineffectivestimulationconditions).

Toensurethatchangesincoherencedidnotsimplyreflectchangesinpoweratgivenfrequencybands,weinvestigatedtherelationshipbetweenourpowerandcoherenceresults.Whilewedidfindthatanesthesiaincreaseddeltapoweranddecreasedpowerat higherfrequenciesforallcorticalareas,powerchangesduringthalamicstimulationwerebroadbandandtypicallysmallerforeffectiverelativetoineffectivestimulations(unlikecoherencechanges; FigureS3; TableS2).Thispoorcorrelationbetweenarousaland powerduringstimulationsuggeststhatpowerisunlikelytobedrivingstimulation-inducedchangesincoherence,andisnotakey componentoftheNCC.

QUANTIFICATIONANDSTATISTICALANALYSIS

Generalapproach

Weperformedstatisticalanalysesusinggenerallinearmodels(GLMs)inRviaRStudio,regressingtherelevantdependentvariableon allindependentvariables,interactions,andcovariates(Models1-21below).Weusedlinearmodels(LMinR)foreffectsthatvaried betweenallothereffects,yieldingTstatisticsforeachestimatedslope(b parameter).Effectsthatvariedwithinothereffectsofinterest wereestimatedusinglinearmixedeffectmodels(LMERinR),yieldingFstatistics,oraftercomputingdifferencescoreswithlinear models,yieldingTstatistics.RandomeffectsofLMERmodelsarerepresentedasgammaparameters,andallsimpleandmaineffectsarepresentedasbetaparameters,wheretheslopefortheeffectofinterestis b1.Pvaluesstemmingfromthesamefamilyof statisticaltests(modelsintendedtodescribethesameeffectindifferentpopulations)werecontrolledformultiplecomparisonsusing Holm’scorrection.

Tocomparedosesbetweenanesthetics,weseparateddosesintolower( 1),medium(0),andhigher(1)dosegroupswithinthe experimentalrangeusedforbothanestheticagents.Forisoflurane,lowerdoseswere<1%,mediumwere R 1%and<1.2%,and higherdoseswere R 1.2%.Forpropofol,lowerdoseswere<0.23mg/kg/min,mediumwere R 0.23and<0.27mg/kg/min,and higherdoseswere R 0.27mg/kg/min.Thisallowedustousecodeddose(DoseCode)asacovariateindependentofanesthetic.

Tocontraststimulationeffectiveness,wecodedstimulationsproducingarousal R 3aseffective(1)andthoseproducing arousal<3asineffective(0).Thisallowedustocompareneuraldynamicsacrossstimulationsthatreflectedclearchangesinthelevel ofconsciousnesswhilecontrollingforchangesthatmaybeinducedonlybyintroductionofthalamiccurrent,whichwasthesamefor ineffectiveandeffectivestimulations.

Tolimitthenumberofmultiplecomparisonsacrossfrequency,weaveragedpowerandcoherenceacrosscanonicalfrequency bands:delta=0-4Hz,theta=4-8Hz,alpha=8-15Hz,beta=15-30Hz,lowgamma=30-60Hzandhighgamma=60-90Hz.As acontrolforpossibleartifacts,wealsoaveragedmoreselectivelywithinthelowgamma(across30-47and53–57Hz)andhigh gamma(63-90Hz)bands,soasnottoincludedataat50Hz,thefrequencyofthalamicstimulation,and60Hz,thefrequencyofpower linenoise,producingsimilarresults.

Stimulationeffects

Totestthegeneraleffectofthalamicstimulationonarousal(Figure1B),weregressedarousalscorewithinstimulationblocksonthe peri-stimulationepoch(pre,stimulation,post),includingdoseandanestheticascovariates.Peri-stimulationepoch(StimEpochF) wasdummycodedasafactorreferencedtotheepochwithstimulation,anestheticwascodedasacentereddichotomousvariable (isoflurane= 0.5,propofol=0.5),anddosewastreatedasDoseCode.Weincludedrandomslopesonlyforstimulationepochs,as doseandanestheticremainedconstantwithinagivenstimulationevent.Significantlynegative b1 showsthatoutsideofstimulation, arousalscoreislowerevencontrollingfortheeffectsofdoseandanesthetic.

ArousalScore b0 + b1 StimEpochF + b2 DoseCode + b3 Anes (Model1)

Toensuretheeffectsofstimulationwerenotbeingdrivenormodulatedbydose,werepeatedthismodelusingDoseCodeasan interactant,buttheinteractionwasnotsignificant(FiguresS1A–S1C).

Totesttheeffectofdorsal-ventral(D-V)proximitytoCLofthestimulationarrayonarousal(Figure1F),weregressedthe stimulationarousaldifference(stim–pre)onthelinearandquadraticcomponentsoftheD-VproximitytoCLofthecentermost contactofeachstimulationarray,includingdose,anesthetic,andvariationofplacementalongthemedial-lateral(M-L)axisas covariates.D-Vdistance(D-Vdist)wascodedasthedistancefromthecentermostcontactofthestimulationarraytocenterof CLintheD-Vplaneineachmonkey,dosewascodedasDoseCode,anesthetic(Anes)wascodedasadichotomousvariable

e8 Neuron 106,1–10.e1–e12,April8,2020

Pleasecitethisarticleinpressas:Redinbaughetal.,ThalamusModulatesConsciousnessviaLayer-SpecificControlofCortex,Neuron(2020),https://

(isoflurane= 0.5,propofol=0.5),andM-Ldistance(M-Ldist)wascodedasthelineardistancefromthecentermostcontactinthe stimulationarraytothecenterofCLintheM-Lplaneforeachanimal.Significantlynegative b1 showsthatmovingmoredorsalormore ventralfromthecenterofCLdecreasesthearousalinducedbystimulationaboveandbeyondtheeffectsofanesthetic,dose,and M-Lvariation.

ArousalDiffstim

ðÞ

Vdist + b3 DoseCode + b4 M Ldist + b5 Anes (Model2)

TotesttheeffectofEuclidiandistancefromthecenterofCLonarousal(FiguresS1G–S1I),weregressedarousaldifference(stim–pre)ontheEuclidiandistance(Distance)includingdose,anesthetic,andmonkeyascovariates.Importantly,weincludedmonkeyas acovariateinthismodeltocontrolforgeneraldifferencesbetweenthemonkeysintermsofthesizeandshapeoftheiranatomyinM-L andD-Vplanes(mainsourceofvariationinourelectrodetracklocations).Euclidiandistancewascalculatedasthelengthofavector fromthecenterofCLtothecentermostcontactofeachstimulationarray.DosewascodedasDoseCode,anesthetic(Anes)was codedasacentered,dichotomousvariable(isoflurane= 0.5,propofol=0.5),andmonkey(Animal)wascodedasacentered, dichotomousvariable(monkeyR= 0.5,monkeyW=0.5).Significantlynegative b1 showsthatmovingfurtherfromthecenterof CLinanyM-L/D-Vdirectiondecreasesthearousalinducedbystimulationaboveandbeyondvariationcontributedbydose,anesthetic,ormonkey.

ArousalDiff

Totesttherelativeeffectivenessofstimulationfrequencyonarousal(Figure1H),weregressedarousaldifference(stim–pre)onstimulationfrequency,forallcase-matchedexamplesinwhichstimulationsoccurredatthesamesite,atmultiplefrequencies,andat leastonestimulationhadbeeneffective(arousalscore R 3).Becauseonly50Hzstimulationsreliablyincreasedarousal(Figure1H; errorbarsdidnotinclude0),wecodedstimulationfrequency(StimFreq)asadichotomousvariable,wherestimulationswereeitherat 50Hz(0.5)ornotat50Hz( 0.5).Dose(DoseCode)wascodedasafactorreflectinglower,mediumandhigherdoseswithinour experimentalrange,andanesthetic(Anes)wascodedasacentereddichotomousvariable(isoflurane= 0.5,propofol=0.5).Significantlypositive b1 showsthat,asmonkeysgofrompretostimulationconditions,arousalincreasesmorewhenstimulationsareat 50Hzaboveallotherfrequencies,evencontrollingfordifferencesindoseandanestheticbetweenstimulationblocks.

Spikerateeffects

Fornon-stimulationdata,welimitedallcomparisonstorestingstateandanesthesiaconditionswithoutauditorystimuli.Totestthe effectofsleeponthalamicspikerate(Figure2C),weregressedspikeratewithinneurononstate(wakeversussleep).Statewas codedasadichotomousvariable(wake=0,sleep=1).Arandominterceptandslopeforstatewasincludedbyneuron.Significant negative b1 showsthatafterneuronstransitionfromwaketosleep,spikeratetendstodecrease. SpikeRate

Inthecortex(Figures2F–2H),weusedasimilarmodelbutincludedthelayerfromwhichtheneuronwasrecorded(SpikeLayer)asan interaction.SpikeLayerwasdummycodedasafactorreferencedtothedeepcorticallayers.Arandominterceptandslopeforstate wasincludedbyneuron.Norandomslopewasincludedforspikelayerasitcouldnotvarywithinneuron.Findingsignificantpositive b1 fortheinteractionofstateandlayershowsthatthedecreaseinspikeratepredictedbythestatechangeislessforsuperficialrelativetodeepcorticallayerscontrollingforvariationinthemiddlelayerspikerate.Thismodelwasusedseparatelyforneuronsfoundin FEFandLIP(andcontrolledformultiplecomparisons).

SpikeRate b0 + b1 State

+ b2 State + b3

+ gneuron ð1 + StateÞ (Model6)

Totesttheeffectofanesthesiaonthalamicspikerate(Figure2C),weregressedspikeratebetweenneurononstate(wakeversus anesthesia).Statewascodedasadichotomousvariable(wake=0,anesthesia=1).Significant b1 showsthatneuronsrecordedduringanesthesiahadlowerspikeratesrelativetowakefulness.

SpikeRate b0 + b1 State (Model7)

Inthecortex(Figures2F–2H),weusedasimilarmodelbutincludedthelayerfromwhichtheneuronwasrecorded(SpikeLayer)asan interaction.SpikeLayerwasdummycodedasafactorreferencedtothedeepcorticallayers.Findingsignificantpositive b1 forthe interactionofstateandlayershowsthatthedecreaseinspikeratepredictedbythestatechangeislessforsuperficialrelativetodeep corticallayerscontrollingforvariationinthemiddlelayerspikerate.ThismodelwasusedseparatelyforunitsfoundinFEFandLIP.

SpikeRate b0 + b1 State

SpikeLayer + b2 State + b3 SpikeLayer (Model8)

Toensurethateffectswereconsistentbetweenanesthetics,wecomparedthespikerateforeachtypeofneuron(superficial,middle, deepcortical,orthalamic)separatelyacrossanestheticstates(isofluraneversuspropofol; FiguresS2A–S2D)includingdoseand corticalareaascovariates.Statewasdummycodedasadichotomousvariable(propofol=0,isoflurane=1).Corticalarea(Area) wascodedasacentereddichotomousvariable(FEF= 0.5,LIP=0.5)anddosewascodedasDoseCode.Negative b1 shows

Neuron 106,1–10.e1–e12,April8,2020 e9

ArousalDiff

thatspikesrecordedduringisofluranehavelowerspikeratethanthoserecordedunderpropofol(thoughnoneweresignificantafter controllingformultiplecomparisons).

SpikeRate b0 + b1 StateF + b2 Area + b3 DoseCode (Model9) Forstimulationdata,weanalyzedpassiveauditoryoddballparadigmdatainadditiontorestingstatedata.Totesttheeffectof thalamicstimulation(50Hz)oncorticalspikerate(Figures1I–1K),weregressedspikeratewithinstimulationblockonthe4-wayinteractionbetweenperi-stimulationepoch(preversusstim),corticallayer(superficialversusdeep),stimulationeffect(effectiveversus ineffective),andcorticalarea(FEFversusLIP),includingdose,anestheticandtaskascovariates.Peri-stimulationepoch(StimEpoch) wascodedasadichotomousvariable(pre= 1,stim=0),spikelayer(SpikeLayer)wascodedasadichotomousvariable(superficial=0,deep=1),stimulationeffectiveness(StimEffect)wascodedasadichotomousvariable(ineffective=0,effective=1),and corticalarea(Area)wascodedasacentereddichotomousvariable(FEF= 0.5,LIP=0.5).Inaddition,dosewascodedasDoseCode,andanesthetic(isoflurane= 0.5,propofol=0.5)andtask(restingstate= 0.5,passiveoddball=0.5)werecodedasa centered,dichotomousvariables.Arandominterceptandslopeforstimulationepochwasincludedbystimulationblock(stimID), asthiswastheonlyvariablewhichchangedwithinagivenstimulationblock.Asignificantlypositive b1*forthe4-wayinteraction showsthateffectivestimulationincreasesspikeratemorefordeeplayersinLIPthananyothercondition,controllingfordifferences indose,anesthetic,andtaskconditions.

SpikeRate b0 + b1 StimEpoch SpikeLayer StimEffect Area + b2 StimEpoch StimEffect Area + b3 StimEpoch SpikeLayer Area + b4 StimEpoch SpikeLayer StmEffect + b5 SpikeLayer StimEffect Area + b6 StimEpoch SpikeLayer + b7 StimEpoch StimEffect + b8 StimEpoch Area + b9 SpikeLayer StimEffect + b10 SpikeLayer Area + b11 StimEffect Area + b12 StimEpoch + b13 SpikeLayer + b14 StimEffect + b15 Area + b16 DoseCode + b17 Anes + b18 task + gstimlD ð1 + StimEpochÞ

Burstingeffects

Totesttheeffectofsleeponthalamicbursting(Figure2D),weregressedburstingindexwithinneuron(BI2-8;derivedfromthe2-8ms binsoftheISIhistogram)onstate(wakeversussleep),includingspikerateasacovariate(asspikeratetendedtochangewithstatein thalamicneuronsandcouldinfluencetheburstindex).Statewascodedasadichotomousvariable(wake= 0.5,sleep=0.5). Becausetherelationshipbetweenburstingchangesandspikeratewaslargelylinearwithinneuron,spikeratewascodedasacontinuousvariable(totalspikes/totaltime).Weincludedarandomslopeforstateandspikeratebyneuron.Asignificantpositive b1 indicatesthataftertransitionsfromwakefulnessintoNREMsleep,thalamicneuronsincreasebursting,controllingforchangesin spikerate.

Totesttheeffectofanesthesiaonthalamicbursting(Figure2D),weregressedburstingindex(BI2-8;derivedfromthe2-8msbinsof theISIhistogram)betweenneurononstate(wakeversusanesthesia),includingspikerateasacovariate(asspikeratetendedto changewithstateinthalamiccellsandcouldinfluencetheburstindex).Statewascodedasadichotomousvariable(wake=0,anesthesia=1).Astherelationshipbetweenburstingchangesandspikeratewerenotreliablylinearbetweenneurons,spikeratewaslog transformed(SpikeRateL)andcodedasacontinuousvariable(ln(totalspikes/totaltime)).Asignificantpositive b1 indicatesthatneuronsrecordedduringanesthesiahavehigherburstindexthanwakefulness,controllingfordifferencesinspikerate.

Totesttheeffectofanesthesiaoncorticalbursting(Figure2E),weregressedburstingindex(BI2-15;derivedfromthe2-15msbinsof theISIhistogram)betweenneuronontheinteractionofstate(wakeversusanesthesia)andspikelayer,includingspikerateand corticalbrainareaascovariates.State(wake=0,anesthesia=1)andspikelayer(superficial=0,deep=1)werecodedasdichotomousvariables.Asbothcorticalareasyieldedsimilarresults,wecombineddataacrossthecortex,andincludedcorticalareaasa centered,dichotomouscovariate(FEF= 0.5,LIP=0.5).Becausetherelationshipbetweenburstingchangesandspikeratewerenot reliablylinearbetweencells,spikeratewaslogtransformed(SpikeRateL)andcodedasacontinuousvariable(ln(totalspikes/total time)).Significantpositive b1 forthestateandlayerinteractionindicatesthattheincreasedburstingduringanesthesiaislargerfor deeprelativetosuperficialneurons,controllingfordifferencesinspikerateandcorticalarea.

Powerandcoherenceeffects

Forthepurposeofgraphicalrepresentation,wecomputed95%confidenceintervalsforpowerandcoherencespectrausingthe ttestfunctioninMATLAB(reflecting95%confidenceintervalsofthemean)forallspectraandpaireddifferencescores(wake–sleep, stim–pre).Similarly,weusedthettest2functiontoproduceconfidenceintervalsforunpaireddifferencescores(wake–anesthesia).

(Model10)
Bl2 8 b0 + b1 State + b2 SpikeRateL (Model12)
Bl2 15 b0 + b1 State
SpikeLayer + b2 State + b3
SpikeLayer + b4 SpikeRateL + b5 Area (Model13)

Toillustrateregionsofsignificantdifferenceacrossfrequenciesbetweenstatesandstimulationconditions,wecomputedttests betweenspectrausingthettest2commandinMATLABateachfrequency.Pvalueswerecontrolledformultiplecomparisonsusing Holm’scorrection.

Welimitedallnon-stimulationcomparisonstorestingstateandanesthesiaconditionswithoutauditorystimuli.Totesttheeffectsof anestheticsonpowerandcoherence(FiguresS2, S3,and S4),weregressedpower(S),coherence(C),andspike-fieldcoherence (spikeFC)averagedacrossdifferentfrequencybands(delta,alpha,theta,beta,lowgammaandhighgamma)andisolatedtodifferent electrodecontactpairsofinterest(inthecaseofcoherence,e.g.,isolatedtosuperficial-deepcontactpairswithinacorticalarea,or deepFEF-deepLIPcontactpairs),onstate(wakeversusanesthesia).Forcoherenceestimateswithinorbetweenlayersofthesame corticallayer,weincludedcorticalareaasacovariate.Thalamocorticalcomparisonswereperformedseparatelyforeachcortical area,andthusdidnotneedthiscovariate.Similarly,cross-areacorticocorticalcoherence,whichwasalwayscomputedbetween FEFandLIP,didnotincludethiscovariate.Statewascodedasadichotomousvariable(anesthesia=1,wake=2),andcortical area(Area)wascodedasacentered,dichotomousvariable(FEF= 0.5,LIP=0.5)whereapplicable.Becausespike-fieldcoherence wascalculatedbetweenindividualneuronsandderivatizedLFPs,weincludedarandominterceptbyneuron(thisinclusionchanged neitherthedirectionnorsignificanceoftheeffects).Significantpositive b1 parametersshowfrequencybandswithincreasedpower, coherence,orspike-fieldcoherenceduringwakefulnessrelativetoanesthesia.Significantnegative b1 parametersshowfrequency bandswithdecreasedpower,coherence,orspike-fieldcoherenceduringwakefulnessrelativetoanesthesia.

Intracolumnarandthalamocortical:

Cross-areacorticocortical:

TableS1(Model14)

TableS2(Model15)

TablesS3andS4(Model16)

TableS2(Model17)

TablesS3andS4(Model18)

Welimitedallstimulationcomparisonstoanesthesiaconditionswithoutauditorystimuliwherethestimulationfrequencywas50Hz andwithintheeffectivecurrentrange(120-200 mA).Totesttheeffectsof50Hzthalamicstimulationonpowerandcoherence(Figures3K–3P, 4F–4H,and S3K–S3P),weregressedchangeinpower(S)andcoherence(C)(stim–pre)averagedacrossdifferent frequencybands(delta,alpha,theta,beta,lowgamma,highgamma)andisolatedtodifferentelectrodecontactpairsofinterest (inthecaseofcoherence),onstimulationeffectiveness(effectiveversusineffective)includinganestheticanddoseascovariates. Forcoherenceestimateswithinorbetweenlayersofthesamecorticallayer,weincludedcorticalareaasacovariate.Cross-area corticocorticalcoherence,whichwasalwayscomputedbetweenFEFandLIP,didnotincludethiscovariate.Anesthetic(Anes;isoflurane= 0.5,propofol=0.5)andcorticalarea(Area;FEF= 0.5,LIP=0.5),whereapplicable,werecodedascentered,dichotomousvariables.WecodeddoseasDoseCode.Significantpositive b1 parametersshowaninteractionwithstimulationepoch,where positivechangesinpowerorcoherenceatthegivenfrequencybandaresignificantlylargerforeffectiverelativetoineffective stimulations.Significantnegative b1 parametersshowchangesinpowerorcoherenceatthegivenfrequencybandthataresignificantlysmallerforeffectiverelativetoineffectivestimulations.Itwaspossibletogetnegativeinteractionsevenifpowerorcoherence stillincreasedduringstimulationrelativetothepreepoch.

Intracolumnar:

CDiff d;q;a;b;gl;gh ðÞ stim pre ðÞ b0 + b1 StimEffect + b2 DoseCode + b3 Anes + b4 Area

SDiff d;q;a;b;gl;gh ðÞ stim pre ðÞ b0 + b1 StimEffect + b2 DoseCode + b3 Anes + b4 Area

Cross-areacorticocortical:

CDiff d;q;a;b;gl;gh ðÞ stim pre ðÞ b0 + b1 StimEffect + b2 DoseCode + b3 Anes

TableS1(Model19)

TableS2(Model20)

TableS3(Model21)

Weconsideredeffectsconsistentbetween(a)wakeversusanesthesiaand(b)effectiveversusineffectivestimulationcomparisons (Figures3 and 4,grayshading)ifboththeStimEpocheffectfromstimulationmodels(b0;stim–pre)wereconsistentindirection

Pleasecitethisarticleinpressas:Redinbaughetal.,ThalamusModulatesConsciousnessviaLayer-SpecificControlofCortex,Neuron(2020),https:// doi.org/10.1016/j.neuron.2020.01.005

andsignificancetothebetaparameterforthestateeffectinnon-stimulationmodels(b1*State;wake–anesthesia).Suchafinding indicatesthatthechangesfollowingstimulation-inducedarousalareinthesamedirectionasthosefoundinthewakestateover anesthesia.Additionally,theinteractiontermforstimulationdata(b1*StimEffect)hadtobesignificant,indicatingthatsimilarities werelimitedtotheeffectivestimulationcondition,andthusdrivenbyarousalandnotappliedthalamiccurrentinitself.

DATAANDCODEAVAILABILITY

Alldataandcodeavailableuponreasonablerequest.Requestsshouldbemadeto,andwillbefulfilledby,theLeadContact,YuriB. Saalmann(saalmann@wisc.edu).

Other documents randomly have different content

town, Tas lanas; and in the woods he made one which he called Sʟeng lanas (“rear part of the house”).18

My informant, who is now chief of Those-born-at-House-point, began by saying that when the flood raised by Raven’s uncle subsided a woman was sitting upon House-point (i.e., Nekoon or Rose spit). This woman had four teats, each of which was owned by one of the Raven families of House-point, the Eggs of Skî′tgao Rear-town people, Point-town people, Those-born-at-House-point. After her people had begun to increase they pulled grass over themselves, began to twirl one stick upon another to light fires and, since they had no canoes, floated their fishing lines off from the great spit. The story-teller probably intended these particulars to be included as part of his relation. I also have a Masset version of that part of the story which deals with the war at House-point. [322]

A level spot back of the town. ↑

A hill south of Rose spit. ↑

The present Haida name. ↑

Aythya americana, Eyt. So identified by the story-teller himself in the museum at Victoria. Haida, qadjî′ñ-gᴀl-ga′ksʟa-i. ↑

Inserted between the layers of cedar bark to be lined for roofing. ↑

Of the kind called skiä′msm; see the story of A-slender-one-who-was-givenaway, note 1. ↑

Said to be similar to the next piece mentioned. ↑

According to a Masset version Those-born-at-House-point were driven from the town. ↑

One of the villages near Cape Ball. ↑

This was a portent of the destruction of the town mentioned below. ↑

The words are used for ditches or stream beds running through level ground, or when some upright object falls over. ↑

People of Masset inlet. ↑

Or rather the place where trees have been burned off. ↑

That is, Cape Ball’s. ↑

Not far south of Rose spit. ↑

18

Tow is an English spelling of the Haida name Tao. Whether the same or not, it is identical in form with the word which means “grease.” ↑

The Haida expression is “upward,” which means toward the Stikine country. ↑

See “Story of the Food-giving-town people,” and notes. ↑

[Contents]

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.