Synthesis and operability strategies for computer-aided modular process intensification efstratios n

Page 1


SynthesisandOperabilityStrategiesforComputerAidedModularProcessIntensificationEfstratios N.

https://ebookmass.com/product/synthesis-and-operabilitystrategies-for-computer-aided-modular-processintensification-efstratios-n-pistikopoulos/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Multi–parametric Optimization and Control (Wiley Series in Operations Research and Management Science) 1st Edition

Efstratios N. Pistikopoulos

https://ebookmass.com/product/multi-parametric-optimization-andcontrol-wiley-series-in-operations-research-and-managementscience-1st-edition-efstratios-n-pistikopoulos/ ebookmass.com

Process Intensification and Integration for Sustainable Design Dominic C. Y. Foo (Editor)

https://ebookmass.com/product/process-intensification-and-integrationfor-sustainable-design-dominic-c-y-foo-editor/

ebookmass.com

Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals

https://ebookmass.com/product/formulation-and-process-developmentstrategies-for-manufacturing-biopharmaceuticals/ ebookmass.com

Keeper of the Hearth (The Three Sisters MacBeith Book 2)

Laura Strickland

https://ebookmass.com/product/keeper-of-the-hearth-the-three-sistersmacbeith-book-2-laura-strickland/

ebookmass.com

Learn Enough Ruby to Be Dangerous Michael Hartl

https://ebookmass.com/product/learn-enough-ruby-to-be-dangerousmichael-hartl/

ebookmass.com

Unwitting Mate: An Mpreg Paranormal Romance (Valleywood Series Book #17) Kelex

https://ebookmass.com/product/unwitting-mate-an-mpreg-paranormalromance-valleywood-series-book-17-kelex/

ebookmass.com

The Politics Of Authenticity And Populist Discourses: Media And Education In Brazil, India And Ukraine 1st Edition Christoph Kohl

https://ebookmass.com/product/the-politics-of-authenticity-andpopulist-discourses-media-and-education-in-brazil-india-andukraine-1st-edition-christoph-kohl/ ebookmass.com

Waste Valorization for Bioenergy and Bioproducts Hwai Chyuan Ong

https://ebookmass.com/product/waste-valorization-for-bioenergy-andbioproducts-hwai-chyuan-ong/

ebookmass.com

How to Get a Job in Publishing A Guide to Careers in the Booktrade, Magazines and Communications Alison Baverstock

https://ebookmass.com/product/how-to-get-a-job-in-publishing-a-guideto-careers-in-the-booktrade-magazines-and-communications-alisonbaverstock/

ebookmass.com

Wahhabism and the World: Understanding Saudi Arabia's Global Influence on Islam 1st Edition Peter Mandaville (Editor)

https://ebookmass.com/product/wahhabism-and-the-world-understandingsaudi-arabias-global-influence-on-islam-1st-edition-peter-mandavilleeditor/ ebookmass.com

EfstratiosN.Pistikopoulos

TexasA&MEnergyInstitute;ArtieMcFerrinDepartmentofChemicalEngineering TexasA&MUniversity CollegeStation,TX,UnitedStates

YuheTian DepartmentofChemicalandBiomedicalEngineering WestVirginiaUniversity Morgantown,WV,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission.

TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook.

Thisbook’suseordiscussionofMATLAB® softwareorrelatedproductsdoesnotconstituteendorsementorsponsorshipby TheMathWorksofaparticularpedagogicalapproachorparticularuseoftheMATLAB® software.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbe foundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-85587-7

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: AnitaKoch

EditorialProjectManager: LenaSparks

ProductionProjectManager: BharatwajVaratharajan Designer: MatthewLimbert

TypesetbyVTeX

InthememoryofProfessorsChristodoulosA.Floudas,M.SamMannan, andM.NazmulKarim

Authors’biographiesxiii

Prefacexv

Acknowledgmentsxxi

PART1.Preliminaries

1.Introductiontomodularprocessintensification3 1.1.Introduction3

1.2.Definitionsandprinciplesofmodularprocess intensification3

1.3.Modularprocessintensificationtechnologyshowcases7 References16

2.Computer-aidedmodularprocessintensification:design, synthesis,andoperability19

2.1.Conceptualsynthesisanddesign20

2.2.Operability,safety,andcontrolanalysis29

2.3.Researchchallengesandkeyquestions35 References37

PART2.Methodologies

3.Phenomena-basedsynthesisrepresentationformodular processintensification45

3.1.Apreludeonphenomena-basedPIsynthesis45

3.2.GeneralizedModularRepresentationFramework47

3.3.Drivingforceconstraints48

3.4.KeyfeaturesofGMFsynthesis52

3.5.Motivatingexamples53 References57

4.Processsynthesis,optimization,andintensification59

4.1.Problemstatement59

4.2.GMFsynthesismodel60

4.3.Pseudo-capitalcostestimation68

4.4.Solutionstrategy70

4.5.Motivatingexample:GMFsynthesisrepresentationand optimizationofabinarydistillationsystem73

Nomenclature76 References77

5.EnhancedGMFforprocesssynthesis,intensification,and heatintegration79

5.1.GMFsynthesismodelwithOrthogonalCollocation79

5.2.GMFsynthesismodelwithheatintegration82

5.3.Motivatingexample:GMFsynthesis,intensification,and heatintegrationofaternaryseparationsystem86 References93

6.Steady-stateflexibilityanalysis95

6.1.Basicconcepts95

6.2.Problemdefinition95

6.3.Solutionalgorithms98

6.4.Designandsynthesisofflexibleprocesses103

6.5.Tutorialexample:flexibilityanalysisofheatexchanger network105 References110

7.Inherentsafetyanalysis111

7.1.DowChemicalExposureIndex111

7.2.DowFireandExplosionIndex112

7.3.SafetyWeightedHazardIndex115

7.4.Quantitativeriskassessment120 References122

8.Multi-parametricmodelpredictivecontrol123

8.1.Processcontrolbasics123

8.2.Explicitmodelpredictivecontrolviamulti-parametric programming128

8.3.ThePAROCframework135

8.4.Casestudy:multi-parametricmodelpredictivecontrolofan extractivedistillationcolumn139 References145

9.Synthesisofoperableprocessintensificationsystems147

9.1.Problemstatement147

9.2.Asystematicframeworkforsynthesisofoperableprocess intensificationsystems148

9.3.Steady-statesynthesiswithflexibilityandsafety considerations150

9.4.Motivatingexample:heatexchangernetworksynthesis157 References160

PART3.Casestudies

10.Envelopeofdesignsolutionsforintensified reaction/separationsystems163

10.1.TheFeinbergDecomposition164

10.2.Casestudy:olefinmetathesis165 References172

11.Processintensificationsynthesisofextractiveseparation systemswithmaterialselection173 11.1.Problemstatement173

11.2.Casestudy:ethanol-waterseparation174 References186

12.Processintensificationsynthesisofdividingwallcolumn systems187

12.1.Casestudy:methylmethacrylatepurification188

12.2.Basecasedesignandsimulationanalysis190

12.3.ProcessintensificationsynthesisviaGMF193 References206

13.Operabilityandcontrolanalysisinmodularprocess intensificationsystems207

13.1.Lossofdegreesoffreedom207

13.2.Roleofprocessconstraints211

13.3.Numberingupvs.scalingup216

13.4.Remarks219 References221

14.Aframeworkforsynthesisofoperableandintensified reactiveseparationsystems223

14.1.Processdescription223

14.2.SynthesisofintensifiedandoperableMTBEproduction systems227 References246

15.Asoftwareprototypeforsynthesisofoperableprocess intensificationsystems247

15.1.TheSYNOPSISsoftwareprototype247

15.2.Casestudy:pentenemetathesisreaction249 References261

A.Processmodeling,synthesis,andcontrolofreactive distillationsystems263

A.1.Modelingofreactivedistillationsystems263

A.2.Short-cutdesignofreactivedistillation264

A.3.Synthesisdesignofreactivedistillation265

A.4.Processcontrolofreactivedistillation266

A.5.Softwaretoolsformodeling,simulation,anddesignof reactivedistillation267 References268

B.Drivingforceconstraintsandphysicaland/orchemical equilibriumconditions271

B.1.Pureseparationsystems271

B.2.Reactiveseparationsystems272

B.3.Purereactionsystems272

C.Reactivedistillationdynamicmodeling275

C.1.Processstructure275

C.2.Traymodeling276

C.3.Reboilerandcondensermodeling280

C.4.Physicalproperties280

C.5.Initialconditions280

C.6.Equipmentcostcorrelations280 References281

D.NonlinearoptimizationformulationoftheFeinberg Decompositionapproach283 References285

E.Degreesoffreedomanalysisandcontrollerdesignin modularprocessintensificationsystems287

E.1.Degreesoffreedomanalysis287

E.2.Controllertuningforolefinmetathesiscasestudy291 References294

F.MTBEreactivedistillationmodelvalidationanddynamic analysis295

F.1.MTBEreactivedistillationmodelvalidationwithcommercial Aspensimulator295

F.2.Steady-stateanddynamicanalysesontheselectionof manipulatedvariableforMTBEreactivedistillation295 References298 Index299

Authors’biographies

Dr.YuheTian isanassistantprofessorintheDepartment ofChemicalandBiomedicalEngineeringatWestVirginia University.PriortojoiningWVU,shereceivedherPhDdegreeinChemicalEngineeringfromTexasA&MUniversity underthesupervisionofProfessorEfstratiosN.Pistikopoulos(2016–2021).Sheholdsbachelor’sdegreesinchemical engineeringandmathematicsfromTsinghuaUniversity, China(2012–2016).Herresearchfocusesonthedevelopmentandapplicationofmulti-scalesystemsengineering toolsformodularprocessintensification,cleanenergyinnovation,systemsintegration,andsustainablesupplychain optimization.

Dr.EfstratiosN.Pistikopoulos istheDirectoroftheTexas A&MEnergyInstituteandtheDowChemicalChairProfessorintheArtieMcFerrinDepartmentofChemicalEngineeringatTexasA&MUniversity.Hewasaprofessor ofChemicalEngineeringatImperialCollegeLondon,UK (1991–2015)andtheDirectorofitsCentreforProcessSystemsEngineering(2002–2009).HeholdsaPhDdegreefrom CarnegieMellonUniversityandworkedwithShellChemicalsinAmsterdambeforejoiningImperial.Hehasauthored orco-authoredover500majorresearchpublicationsinthe areasofmodeling,control,andoptimizationofprocess,energy,andsystemsengineeringapplications,aswellas15 booksandthreepatents.HeisaFellowofIChemEand AIChE,andtheeditor-in-chiefofComputers&ChemicalEngineering.In2007,Prof.Pistikopouloswasaco-recipientoftheprestigiousMacRobertAwardfromtheRoyalAcademy ofEngineering.In2012,hewastherecipientoftheComputinginChemicalEngineering AwardofCAST/AIChE,whilein2020hereceivedtheSargentMedalfromtheInstitution ofChemicalEngineers(IChemE).HeisamemberoftheAcademyofMedicine,EngineeringandScienceofTexas.In2021,hereceivedtheAIChESustainableEngineeringForum ResearchAward.HereceivedthetitleofDoctorHonorisCausain2014fromtheUniversityPolitehnicaofBucharest,andfromtheUniversityofPannoniain2015.In2013,hewas electedFellowoftheRoyalAcademyofEngineeringintheUnitedKingdom.

Preface

Today’schemicalprocessindustryisfacedwithpressingchallengestosustaintheincreasinglycompetitiveglobalmarketwithrisingconcernsonenergy,water,food,andenvironment.Processintensification(PI)offersmanypromisingopportunitiestoaddressthese challenges.Itaimstorealizestepchangesinprocesseconomics,energyefficiency,and environmentalimpactsbydevelopingnovelprocessschemesandequipment.ThesynergisticnaturebetweenmodulardesignandmanyPItechnologies,whichfunctionthe mosteffectivelyatsmallscaleandfeaturestandardizedequipment,addstothepotentialof modularprocessintensificationtowardsflexible,agile,andefficientproductionsystems.

Modularprocessintensificationhasgainedsignificantimpetusinthepastdecadesfeaturingbothsuccessfulindustrialapplicationsandburgeoningscientificresearchinterests. However,earlybreakthroughsinthisareamostlyreliedonEdisonianeffortsviaexperimentationwhilelackingtheoryandfundamentalunderstandingtowardssystematicinnovation.Meanwhile,thesenoveltechnologiesbringnewdesignandoperationalchallenges suchasdesigncomplexity,safetyconcernsunderextremeoperatingconditions,operation underuncertainty,unsteady-stateoperation,etc.Computationaltoolsareindireneedto assessandoptimizesuchsystemsattheearlydesignstage.

Inthiscontext,computer-aidedmodularprocessintensificationhasbecomearapidly emergingresearchthemeinrecentyears.Themodel-basedmethodsandtools,withexpertiseoftheProcessSystemsEngineering(PSE)community,cansupportquantitative decisionmakingbyprovidingtechno-economicevaluationsaswellaspredictivecapabilitiesonthedesignandoperationofmodularandintensifiedsystems.Thisbookaims toprovideaunifiedmethodologyframeworkforthedesignofoperablemodularprocess intensificationsystemsusingadvancedprocesssynthesisandoperabilitymethods,asdepictedinFig. 1.Specifically,thisbookwillcoverthefollowingtopics:

Topic1: introductiononcomputer-aidedmodularprocessintensification PIcanbeachievedbyutilizingthesynergybetweenmulti-functionalphenomena,integratingmultipleprocessstepsintoasingleequipment,enhancingthemass,heat,and momentumtransferrate,etc.Wewillpresentanoverviewofthebasicconceptsandfundamentalprinciplesofmodularprocessintensificationfromanevolutionaryperspective. Anumberofrepresentativeintensifiedtechnologieswillalsobeintroduced,e.g.hybridreaction/separationsystems,micro-reactionsystems,periodicsystems.Wewillthendiscuss howcomputer-aidedmethodsandtoolscancontributetosystematicallygenerateinnovativeprocessdesignsolutionswithguaranteedoperationalperformances.Tothispurpose, state-of-the-artmethodologicaldevelopmentsforsynthesis,optimization,andcontrolof intensifiedsystemswillbereviewed.

FIGURE1 Anoverviewofthesynthesisandoperabilitymethodsandaunifiedframeworkintroducedinthisbook.

Topic2: processintensificationsynthesisviaaphenomena-based modularrepresentationapproach

TheGeneralizedModularRepresentationFramework(GMF),asarepresentativemethodologyforPIsynthesis,willbedetailedwithmathematicalformulationandalgorithmimplementation.AnumberofengineeringapplicationcasestudieswillbepresentedtoshowcaseGMFforthedesignofdiverseintensifiedsystems(reactiveseparation,dividingwall column,etc.).Wewillalsoexplorethefollowingresearchquestionstowardssystematic processinnovation:(i)howtoexploitthesynergyofmulti-functionalphenomena(e.g., reactionandseparation)–withoutpre-postulationoftasksorequipment?(ii)howtodeterminetheperformancelimitsofintensifieddesignsandbenchmarkwiththeultimate thermodynamicorkineticsbounds?(iii)howtoencapsulateintensifieddesignsandtheir conventionalcounterpartsinaunifiedsynthesisrepresentationandtoidentifywhenintensifieddesignswilloutperformintermsofeconomics,energysavings,etc.?and(iv)what istheroleoffunctionalmaterials(e.g.,catalysts,solvents)?

Topic3: model-basedflexibility,inherentsafety,andcontrolanalysisfor modularprocessintensificationsystems

Advancedoperabilityanalysis,inherentsafetyanalysis,andmodel-basedcontrolstrategiesdevelopedinthePSEcommunitywillbeintroducedtoassesstheoperationalperformanceofchemicalprocesssystems.Particularly,wewilltalkabouttheseminalflexibility test/indexapproachtoensurefeasibleoperationunderuncertainty,inherentsafetyindicesandquantitativeriskanalysistoevaluateprocesssafetyattheearlydesignstage, andexplicit/multi-parametricmodelpredictivecontrolfollowingthePAROC(PARametric

OptimizationandControl)frameworktoderiveoptimaldynamicoperationstrategies. Tutorialexampleswillbepresentedwithstep-by-stepprocedurestoshowcasetheapplicationofthesemethodsinmodularPIsystems.Tounderstandtheuniqueoperational challengesandneedsresultedbymodularizationandintensification,wewillalsoanalyze theimpactonoperabilityofkeyfactorsincluding:(i)degreesoffreedom,(ii)processconstraints,(iii)numberingupvs.scalingup,etc.

Topic4: asystematicframeworkforthesynthesisofoperableprocess intensificationsystems

Tohighlighttheimportanceofintegratingoperabilitycriteriainthedesignofintensified systems,wewillpresentanintegratedGMF-flexibility-safetysynthesisapproachwhichenablestheautomatedgenerationofsafelyoperablemodularPIsystemsfromphenomena level.Astep-wiseframeworkisfurtherdevelopedwhichsynergizes:(i)phenomena-based processsynthesiswithGMFtoderivenovelintensifieddesignconfigurations,(ii)integrateddesignwithflexibilityandinherentsafetyconsiderations,and(iii)simultaneous designandexplicitmodelpredictivecontroloptimizationtogenerateverifiable,operable, andoptimalintensifiedsystems.Multipleprocessdesignsolutionscanbedeliveredfrom theframeworkwiththetrade-offsbetweeneconomicandoperationalperformances.An integratedcomputer-aidedsoftwareprototypewillalsobedemonstratedtoautomatethe distinctsynthesisandoperabilitytoolsaswellastoimplementtheentireframework.

Tofacilitatethereaderstolearnandapplythetechniquestotheirresearchand/orindustrialproblemsofinterest,thebookisorganizedintothreeparts,respectivelyas Preliminaries, Methodologies,and CaseStudies.Inthisway,eachchapterwillfocusonacertain methodology,orapplicationtopic,consistingofthecorrespondingbasicprinciples,model formulation,solutionalgorithm,andstep-by-stepimplementationguidanceonkeyprocedures.Morespecifically:

Part 1:Preliminaries

Chapter 1 providesanoverviewoftheevolutionofmodularprocessintensificationdefinitionsandfundamentalprinciples.Anoverviewwillbegivenonthecurrentstatusof academicresearchandindustrialapplicationsregardingspecificmodularPItechnologies, includingbutnotlimitedtodividingwallcolumn,membrane-assistedseparation,pressureswingadsorption,etc.

Chapter 2 highlightssomerecentPSEadvancesformodularprocessintensification.Processsynthesismethods,particularlyhighlightingtheuseofphenomena-basedrepresentation,cansystematicallygeneratenovelprocesssolutions.Advancedoperabilityandcontrolstrategieswillalsobereviewedwhichaimtoensurefeasibleprocessoperationunder uncertainty.

Part 2:Methodologies

Chapter 3 introducesGMFfortherepresentationofchemicalprocesssystemsusingmodularphenomenabuildingblocks,whichlaysthefoundationforthisbooktodriveinnovation.Wewilldiscussindetailthemass/heatexchangemodularrepresentationconcepts, thekeyGMFsynthesisfeatures,andthedrivingforceconstraintsbasedontotalGibbsfree energychange.

Chapter 4 demonstratesGMFforprocesssynthesis,optimization,andintensification.We willpresenttheGMFsuperstructurenetworkwhichcancapturebothconventionaland novelprocessconfigurations,themathematicalmodelwhichisformulatedasamixedintegernonlinearprogrammingproblem,andthetailoredsolutionstrategywhichcan efficientlyscreenthecombinatorialdesignspace.

Chapter 5 extendsGMFasaunifiedapproachforprocessintensificationsynthesis,heat integration,andthermalcoupling.Wewilldiscusstheheattransferfeasibilityconstraints basedontemperaturegradient,whichrequiresnopre-postulationofstreamthermalpropertiesintheprocesssynthesisformulation.ExtensionsofGMFwithorthogonalcollocation willalsobedetailedtoenhanceintra-modulerepresentation.

Chapter 6 introducestheflexibilityanalysisapproachestoassessifadesignisfeasibleunderexpectedprocessuncertainties.Themathematicalformulationandsolutionalgorithm offlexibilitytestandflexibilityindexwillbehighlighted.Tosynthesizeflexibleprocesssystems,amulti-perioddesignapproachwillbepresented.

Chapter 7 discussesinherentsafetyanalysisattheconceptualdesignstage.Quantitative riskanalysisandinherentsafetyindices(e.g.,DowFire&ExplosionIndex,DowChemical ExposureIndex,SafetyWeightedHazardIndex)willbeintroducedanddemonstrated.

Chapter 8 talksaboutadvancedmodel-basedcontrolstrategies,withparticularemphasis onexplicit/multi-parametriccontrol.WewillalsointroducethePAROC(PARametricOptimizationandControl)frameworkwhichisanintegratedframeworkandsoftwareplatform forthedesignandcontroloptimizationofcomplexprocesssystems.

Chapter 9 highlightsintegratedprocessintensificationsynthesiswithoperability,safety, andcontrolconsiderations.WewillpresentaholisticSYNOPSISframework,standingfor SYNthesisofOperableProcesSIntensificationSystems.Leveragingtheaboveintroduced synthesisandoperabilitystrategies,theframeworkcansystematicallyandconsistentlyaddresssteady-stateanddynamicdesignandoperationinintensifiedprocesses.

Part 3:Casestudies

Chapter 10 appliesGMFwithattainableregion-basedtheorytoquantitativelyidentifythe performancelimitsandtodevelopanenvelopeofdesignsolutionsforreaction/separation systems,priortoestablishinganyspecificprocessdesigns.Theapproachwillbeshowcasedviaacasestudyonolefinmetathesisforbuteneandhexeneproduction.

Chapter 11 addressessimultaneoussolventselectionandprocessintensificationsynthesisusingGMF.Physicalpropertymodelsareexplicitlyincorporatedinthesynthesismodel formulationtoassesssolventperformanceinfacilitatingseparation.Arepresentative ethanol-waterseparationcasestudywillbepresented,consideringtheuseofanionicliquidsolventcandidate.

Chapter 12 showcasesGMFonsynthesizingheterogeneousmulti-componentseparation systems,withparticularinterestinexploringtheuseofdividingwallcolumns.Conventionalornovelprocessstructures,suchastwo-columnsequencesanddividingwall columns,canbesystematicallygeneratedwithoutpre-postulationofequipmentdesign.

Chapter 13 performsrigorousmodel-basedanalysestowardsafundamentalunderstandingofoperability,safety,andcontrolchallengesinprocessintensificationandmodular designs.Comparativeexampleswillbepresentedtoshowcasetheprosandconsinintensifiedandmodularsystemsversustheirconventionalcounterpartsfromoperational aspects.

Chapter 14 demonstratestheintegratedSYNOPSISframeworktodeliververifiable,operable,andintensifiedsystemsthroughamethyltert-butyletherproductioncasestudy.The approachcansystematicallyintegratedesignandoperabilityconsiderationsatdifferent stages(i.e.,phenomena-basedsynthesis,steady-statedesign,controloptimization).

Chapter 15 presentsasoftwareprototypebasedontheSYNOPSISframework.Theprototypecomprises:(i)ProcessIntensificationSynthesisSuite–togeneratepromisingprocess configurationsbasedonGMF,(ii)OperabilityandControlSuite–toensuretheactualoperationalperformanceoftheresultingintensifiedsystems,and(iii)ProcessIntensification Modellibrary–withspecializedsteady-stateanddynamicPImodels.

Acknowledgments

TheauthorsacknowledgethefinancialsupportfromtheTexasA&MEnergyInstitute, Shell,NationalScienceFoundationPAROCProject(GrantNo.1705423),andDepartment ofEnergyRAPIDManufacturingInstituteforProcessIntensificationSYNOPSISProject (DE-EE0007888-09-03,PartnerOrganizations:TexasA&MUniversity,GeorgiaInstituteof Technology,AuburnUniversity,Shell,TheDowChemicalCompany,SiemensProcessSystemsEnterprise).

Preliminaries

Introductiontomodularprocess intensification

1.1Introduction

Facingahighlycompetitiveglobalmarketwithincreasingawarenessonenvironmental andsafetyissues,chemicalproductionismakingitswaytowardsaparadigmshifttomore efficient,moreenvironmentallyfriendly,andmoreversatile.Processintensificationand modulardesignareregardedaspromisingsolutionstopursuethisstructuraltransformation,gainingsignificantrecentimpetusinthechemical/energyindustryandthechemical engineeringresearchcommunity.

Processintensification(PI)aimstoboostprocessandenergyefficiency,enhanceprocessprofitabilityandsafety,whilereducingwasteandemissionsbyutilizingthesynergy betweenmulti-functionalphenomenaatdifferenttimeandspatialscales,aswellasbyenhancingprocessdrivingforcessuchasthemass,heat,and/or,momentumtransferrates, throughtheuseofnovelprocessschemesandequipment[1].AwiderangeofPItechnologieshavebeendeveloped[2],someofwhicharealreadysuccessfullycommercializedsuch asreverseflowreactor,reactivedistillation,anddividingwallcolumn,tonameafew.

Ontheotherhand,modulardesignisadifferentwhileoftenconcurrentconceptto processintensification.Itaimstodramaticallyreducethesizeofprocessunitstochange from“theeconomyofscale”tosmall,distributed,andstandardizedplantswithbetter flexibilityandfasterresponsetodemandchanges,especiallyforutilizationofunconventionalfeedstocksandforspecialtychemicalproduction[3].Akeyquestionformodular designisthegainorlossincostefficiencyvs.design/operationagilenesswhencomparing “numberingup”againstconventional“scalingup”.Formanyintensifiedtechnologies(e.g., micro-reactors,membranereactors,alternativeenergysources)whichinherentlyfunction themosteffectivelyatsmallerscales,thecombinationofPItechnologieswithmodulardesignmayprovideanencouragingsynergisticprocesssolution[4].

Inthischapter,weintroducethekeyconceptsofmodularPI,state-of-the-artresearch andindustrialdevelopments,andrepresentativetechnologyshowcases.

1.2Definitionsandprinciplesofmodularprocess intensification

TheconceptofPIwasfirstintroducedintotheChemicalEngineeringdisciplinein1983 markedbythepaperofColinRamshawfromtheICINewScienceGroup,whodescribed theirstudiesoncentrifugalfields(so-called“HiGee”)indistillationprocesses[5].Since SynthesisandOperabilityStrategiesforComputer-AidedModularProcessIntensification https://doi.org/10.1016/B978-0-32-385587-7.00010-5 Copyright©2022ElsevierInc.Allrightsreserved.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.