Sustainable material solutions for solar energy technologies: processing techniques and applications

Page 1


SustainableMaterialSolutionsforSolarEnergy Technologies:ProcessingTechniquesand ApplicationsMarianaAmorimFraga

https://ebookmass.com/product/sustainable-materialsolutions-for-solar-energy-technologies-processingtechniques-and-applications-mariana-amorim-fraga/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Food Waste Recovery: Processing Technologies, Industrial Techniques, and Applications 2nd Edition Charis M. Galanakis

https://ebookmass.com/product/food-waste-recovery-processingtechnologies-industrial-techniques-and-applications-2nd-editioncharis-m-galanakis/ ebookmass.com

Biofuel Extraction Techniques: Biofuels, Solar, and Other Technologies Lalit Prasad

https://ebookmass.com/product/biofuel-extraction-techniques-biofuelssolar-and-other-technologies-lalit-prasad/

ebookmass.com

Sustainable Seaweed Technologies: Cultivation, Biorefinery, and Applications 1st Edition Maria Dolores Torres (Editor)

https://ebookmass.com/product/sustainable-seaweed-technologiescultivation-biorefinery-and-applications-1st-edition-maria-dolorestorres-editor/ ebookmass.com

Consumer Behaviour 2nd Edition Chan

https://ebookmass.com/product/consumer-behaviour-2nd-edition-chan/

ebookmass.com

Measuring business interruption losses and other commercial damages: an economic approach Third Edition Gaughan

https://ebookmass.com/product/measuring-business-interruption-lossesand-other-commercial-damages-an-economic-approach-third-editiongaughan/ ebookmass.com

The Outlaw's Daughter Margaret Brownley

https://ebookmass.com/product/the-outlaws-daughter-margaretbrownley-2/

ebookmass.com

Public Budgeting Systems 9th Edition

https://ebookmass.com/product/public-budgeting-systems-9th-edition/

ebookmass.com

Organic Chemistry for IIT JEE advanced Edition 3 Part 2, 4 of 4 Chapter 10 and Solutions of all Chapters Exercises K. S. Verma

https://ebookmass.com/product/organic-chemistry-for-iit-jee-advancededition-3-part-2-4-of-4-chapter-10-and-solutions-of-all-chaptersexercises-k-s-verma/

ebookmass.com

Zoology (12th Edition) Stephen A. Miller & Todd A. Tupper

https://ebookmass.com/product/zoology-12th-edition-stephen-a-millertodd-a-tupper/

ebookmass.com

The Invention of China in Early Modern England: Spelling the Dragon 1st ed. 2021 Edition Lux

https://ebookmass.com/product/the-invention-of-china-in-early-modernengland-spelling-the-dragon-1st-ed-2021-edition-lux/

ebookmass.com

SustainableMaterialSolutionsfor SolarEnergyTechnologies

ProcessingTechniquesandApplications

Thispageintentionallyleftblank

SolarCellEngineering SustainableMaterial SolutionsforSolar EnergyTechnologies

ProcessingTechniquesandApplications

Editedby

MarianaAmorimFraga

InstitutodeCie ˆ nciaeTecnologia,UniversidadeFederaldeSa ˜ oPaulo, SaoJose ´ dosCampos,Brazil

DelainaAmos

UniversityofLouisville,Louisville,KY,UnitedStates

SavasSonmezoglu

KaramanogluMehmetbeyUniversity,Karaman,Turkey

VelumaniSubramaniam

DepartmentofElectricalEngineering(SEES), CentrodeInvestigacio ´ nydeEstudiosAvanzadosdelIPN (CINVESTAV-IPN),MexicoCity,Mexico

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-821592-0

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: ChristinaGifford

EditorialProjectManager: JohnLeonard

ProductionProjectManager: SojanP.Pazhayattil

CoverDesigner: MarkRogers

TypesetbyMPSLimited,Chennai,India

1.Bismuth-basednanomaterialsforenergyapplications 3 NicholeC.Cates,JessicaC.RamirezdelaTorre,SergioAina, M.PilarLoberaandMar´ıaBernechea

1.2.1SolarCellOperation4

1.2.2Nanoengineering6

1.2.3Bismuth-BasedNanomaterials7 1.2.4Summary9

1.3Thermoelectricdevices 9

1.3.1ThermoelectricDevicesOperation9

1.3.2Nanoengineering11

1.3.3Bi-BasedNanomaterials12 1.3.4Summary16

1.4Batteries&Supercapacitors 16

1.4.1BatteryOperation16

1.4.2SupercapacitorOperation17

1.4.3Bismuth-BasedElectrodes17

1.4.4Nanoengineering18

1.4.5CoatingorMixingwithConductiveMaterials20

1.4.6BismuthPerovskiteSupercapacitors21 1.4.7Summary21

1.5Solar-hydrogenproduction 22

1.5.1Fundamentalsofphotocatalysisforhydrogenproduction22 1.5.2Nanoengineering24

1.5.3Bi-basednanomaterials24

1.5.4Summary29 1.6Conclusions

2.Emergentmaterialsandconceptsforsolarcell applications 37

Mar´ıaDoloresPerezandJuanPl ´ a

2.2Perovskitesolarcells 40

2.2.1Historicalreview40

2.2.2Solarcells41

2.2.3Stability45

2.2.4Scalingupandpossibilitiesforcommercialization49

2.3III Vsemiconductormaterialsformultijunctionsolarcells applications 50

2.3.1Historicalreview50

2.3.2Somebasicsofmultijunctionsolarcells53

2.3.3III Vmaterialsforphotovoltaicapplications55

2.3.4Selectedexamples58 2.3.5Discussion61

2.4Finalremarksandfutureperspectives 62 References 63

3.Noveldielectricscompoundsgrownbyatomiclayer depositionassustainablematerialsforchalcogenides thin-filmsphotovoltaicstechnologies 71

WilliamChiappimJunior,LeandroX.Moreno,RodrigoSavioPessoa, Anto ´ nioF.daCunha,PedroM.P.Salome ´ andJoaquimP.Leita ˜ o

3.1Introduction 71

3.2Atomiclayerdepositiontechnique 78

3.2.1Requirementsforidealprecursorsandatomiclayer depositionsignaturequality79

3.2.2Commercialandresearchtools82

3.3Atomiclayerdepositionappliedonchalcogenidesthinfilms technologies 84

3.3.1Absorberlayers:Cu(In,Ga)Se2,Cu2ZnSnS4,and Cu2ZnSn(S,Se)4 85

3.3.2Sustainablebufferlayersbasedonatomiclayerdeposition87

3.3.3Sustainablepassivationlayersbasedonatomiclayer deposition88

4.Firstprinciplesmethodsforsolarenergyharvesting materials 101

J.J.R´ıos-Ram´ırezandVelumaniSubramaniam

4.1Introduction

4.2Fundamentalconcepts 103

4.2.1Crystallinerepresentation103

4.2.2Themultielectronsystem107

4.2.3Thevariationalprinciple111

4.2.4Theuniversalfunctionalofthedensity113

4.2.5TheauxiliaryKohn-Shamsystem116

4.3Selectedmaterialswithsolarenergyharvesting implementations 118

4.3.1Theinputfile118

4.3.2Asupercellofzincoxide121

4.3.3StructuralstabilityofFAPbI3 perovskites122

4.3.4ChargeorderandhalfmetallicityofFe3O4 122

4.3.5Optimizationofanatasetitaniumdioxide123

4.3.6AconventionalandareducedrepresentationofmBiVO4 125

4.3.7Atemplatestructureforchalcopyrite126

4.4Conclusion 127 References 127

SectionII

Sustainablematerialsforphotovoltaics

5.Introductiontophotovoltaicsandalternative materialsforsiliconinphotovoltaicenergyconversion 131 GaneshRegmiandVelumaniSubramaniam

5.1Introduction 131

5.2Currentstatusofphotovoltaics 133

5.3Fundamentalpropertiesofphotovoltaicssemiconductors 136

5.3.1Crystalstructureofsemiconductors136

5.3.2Energybandstructure137

5.3.3Densityofenergystates139

5.3.4Drift-motionduetotheelectricfield142

5.3.5Diffusion-duetoaconcentrationgradient143

5.3.6Absorptioncoefficient144

5.4Physicsofsolarcell 145

5.4.1Homojunctionandheterojunctionstructure146

5.4.2p-njunctionunderillumination147

5.4.3I-Vequationsofsolarcell149

5.5Categoriesofthephotovoltaicmarket 151

5.6CommercializationofSisolarcells 152

5.7Statusofalternativephotovoltaicsmaterials 153

5.8Thinfilmtechnology 154

5.9Materialselectioninthinfilmtechnology 157

5.10Thinfilmdepositiontechniques 158

5.10.1Physicaldeposition158

5.10.2Chemicaldeposition160

5.11Copperindiumgalliumselenide-basedsolarcell 162

5.11.1Alkalimetalpostdepositiontreatmentoncopper indiumgalliumselenidebasedsolarcells163

5.12Cadmiumtelluridesolarcells 164

5.13Multijunctionsolarcells 165

5.14Emergingsolarcelltechnologies 165

5.14.1Organicsolarcells166

5.14.2Dye-sensitizedsolarcells166

5.14.3Perovskitesolarcells168

5.14.4Quantumdotsolarcells168

5.15Summary,conclusions,andoutlook 169 Acknowledgment 170 References 170

6.Anoverviewonferroelectricphotovoltaicmaterials 175

SavitaSharma

6.1Overview 175

6.2Ferroelectricmaterials 176

6.3Photovoltaiceffect 178

6.3.1Mechanismofferroelectricphotovoltaic179

6.3.2Historyandcurrentstatusofferroelectricphotovoltaic186

6.4Bariumtitanate 187

6.4.1Crystalstructure187

6.4.2Dielectricproperties190

6.4.3FerroelectricphenomenainBaTiO3 190

6.4.4Opticalproperties191

6.4.5VarioustechniquesofdepositingBaTiO3 thinfilm191

6.4.6PotentialapplicationsofBaTiO3 192

6.5Bismuthferrite 194

6.6Conclusion 195 Acknowledgments 196 References

7.Nanostructuredmaterialsforhighefficiencysolarcells 201

DanielN.Micha,RobertoJakomin,RudyM.S.Kawabata, MauricioP.Pires,FernandoA.PonceandPatr´ıciaL.Souza

7.1Introduction 201

7.2Nanostructuresandquantummechanics 203

7.3Quantumwellsinsolarcells 205

7.4Quantumwires(nanowires)insolarcells 210

7.5Quantumdotsinsolarcells 214

7.5.1InAsquantumdotsonGaAs216

7.5.2In(Ga)AsorInAsPquantumdotsonwidebandgap materialbarriers221

7.6Conclusions

8.Crystalline-siliconheterojunctionsolarcellswith grapheneincorporation 229

RecepZan,AliAltuntepe,TolgaAltanandAyseSeyhan

8.1Heterojunctionsolarcellsandgraphene 229

8.1.1Heterojunctionsolarcells229

8.1.2Graphene232

8.2Fabricationofsiliconheterojunctionsolarcell 234

8.2.1Surfacepatterningandsurfacecleaning235

8.2.2Depositionofa-silicon:Hlayers237

8.2.3Depositionoftransparentconductiveoxide240

8.2.4Metallization242

8.2.5Thermaltreatment243

8.3Synthesisofgraphene 244

8.3.1Incorporatinggrapheneintosiliconheterojunction solarcells249

8.4Conclusion

9.Tinhalideperovskitesforefficientlead-free solarcells

GiuseppeNasti,DiegoDiGirolamoandAntonioAbate

9.1Introduction

9.2Halideperovskitesolarcells:whytin?

9.2.1Perovskitestructure263

9.2.2Carriertransportandtinhalideperovskitedefects266

9.2.3Tinperovskitebandgap267

9.2.4Tinoxidation269

9.2.5Tintoxicity271

9.3ASnX3:abriefhistoricalexcursus

9.4TowardefficientandstableASnX3 PSCs

9.4.1Additives274

9.4.2Passivation277

9.4.3Lowdimensionalperovskites279

9.4.4Solvent280

9.5Conclusion

SectionIII

Sustainablematerialsforphotocatalysis andwatersplitting

10.Photocatalysisusingbismuth-based heterostructurednanomaterialsforvisiblelight harvesting 289

AraceliRomero-Nunez,K.T.Drisya,JuanCarlosDur ´ an-A ´ lvarez, MyriamSol´ıs-Lo ´ pezandVelumaniSubramaniam

10.1Introduction 289

10.2Fundamentalsofheterogeneousphotocatalysis 291

10.2.1Heterogeneousphotocatalysisappliedto environmentalengineeringprocesses294

10.2.2Factorsaffectingthephotocatalyticprocess295 10.2.3Insightsofphysicochemicalcharacterizationof nanophotocatalysts297

10.3Bismuth-basedheterostructuresforphotocatalytic applications 299

10.3.1Semiconductor-semiconductorheterostructures usingbismuth-basedmaterials301

10.3.2Generalstrategiesforsynthesisofbismuth-based semiconductors303

10.3.3Applicationsofbismuth-basedheterostructures309

11.Recentadvancesin2DMXene-basedheterostructured photocatalyticmaterials 329

SudeshnaDasChakraborty,PallabBhattacharyaand TrilochanMishra

11.1Introduction 329 11.2Synthesisof2D-MXenes 331

11.2.1Functionalizationandelectronicpropertiesof MXene333

11.3Photocatalyticapplications 334

11.3.1H2 evolutionbyH2Osplitting336 11.3.2PhotocatalyticCO2 reductiontofuel345 11.3.3Environmentalapplications347

11.4Conclusionandfutureprospects 355 Acknowledgments 356 References 356

12.Atomiclayerdepositionofmaterialsfor solarwatersplitting

RodrigoSavioPessoa,WilliamChiappimJuniorand MarianaAmorimFraga

12.1Introduction

12.2Solarenergy

12.3Photoelectrochemicalcells

12.4Hydrogengenerationfromwaterphotoelectrolysis

12.5Materialsforphotoelectrode

12.6Atomiclayerdepositiontechnique:processandequipment 373

12.6.1Atomiclayerdepositionprocess373

12.6.2Atomiclayerdepositionreactors:typesand characteristics375

13.Solarselectivecoatingsandmaterialsfor high-temperaturesolarthermalapplications 383 Ramo ´ nEscobarGalindo,MatthiasKrause,K.Niranjanand HarishBarshilia

13.1Introduction 383

13.1.1Concentratedsolarpower:facts383

13.1.2Concentratedsolarpower:basics388

13.2CSPefficiencyconsiderations:theconceptofsolarselectivity 392

13.3State-of-the-artreviewofsolarabsorbersurfacesand materialsforhigh-temperatureapplications( . 565 Cinair) 395

13.3.1Absorberpaints395

13.3.2Solarselectivecoatings397 13.3.3Volumetricreceivers402

13.4Currenttrendsandissues 405

13.4.1Durabilitystudiesofsolarabsorbers405

13.4.2Lackofstandardizedcharacterizationprotocols407

13.5Roadmapforconcentratedsolarpowerabsorbing surfacesandmaterials 409

13.5.1Alternativeconcentratedsolarpowerabsorbing surfaces:selectivelysolar-transmittingcoatings409

13.5.2Industrializationofhigh-temperaturesolarselective coatings413 Acknowledgments 417 References 418

14.Applicationsofwastesbasedoninorganicsaltsas low-costthermalenergystoragematerials

SvetlanaUshak,YanioE.Milian,PaulaE.Mar´ınandMarioGrageda

429

14.1Introduction 429

14.2Thermalenergystorage 431

14.2.1Sensible,latentandthermochemicalheatstorage431

14.2.2Basicconceptsforthermalenergystoragematerials434

14.2.3Overviewofthermalenergystoragesystemtypes438

14.2.4Comparisonofenergystoragedensityfordifferent thermalenergystoragematerials439

14.3Overviewofindustrialwastestudiedasthermalenergy storagematerials 440

14.4Inorganicsalt-basedproductsandwastesaslow-cost materialsforsustainablethermalenergystorage 442

14.4.1Availabilityandabundanceofinorganicsaltsin NorthernChile442

14.4.2Economicanalysisofinorganicsaltsaslow-cost thermalenergystoragematerials444

14.4.3State-of-artofcurrentlyproposedby-productsand wastesasthermalenergystoragematerials446

14.5Challengesfortheapplicationofwasteandby-productsin thermalenergystoragesystems 453

14.5.1Proposedusesofwastesasthermalenergystorage materials453

14.5.2Challengesfortheapplicationofinorganicsalt-based wastesinthermalenergystoragesystems455

14.5.3Optimizationofthermalpropertiesofthermalenergy storagematerialsbasedoninorganicsaltwastes456

15.Nanoencapsulatedphasechangematerialsforsolar

JyotiSaroha,SonaliMehra,MaheshKumar, VelumaniSubramaniamandShaileshNarainSharma

15.1.1Selectioncriteriaofphasechangematerials470

15.1.2Workingprincipleofphasechangematerial473

15.1.3Encapsulationinphasechangematerials474

15.1.4Advantagesofmicroornanoencapsulationof phasechangematerial476

15.4.1Needforphasechangematerial-basedsolarair heaters484

15.4.2Needforphasechangematerial-basedbuilding materialsforruralhouses486

15.4.3Needforphasechangematerial-basedtextiles488

15.5Challengesahead 490

SectionV

16.Carbonnanodotintegratedsolarenergydevices

MelisOzgeAla¸sandRukanGenc ¸

16.2Carbonnanodotintegratedsolarenergydevices

16.2.1Dye-sensitizedsolarcells500

16.2.2Quantumdotsolarcells509

16.2.3Organicsolarcells511

16.2.4Polymersolarcells515

16.2.5Perovskitesolarcells519

16.3Summaryandfutureaspects

17.Solarcellbasedoncarbonandgraphene nanomaterials

AbdellahHenni,NesrineHarfouche,AminaKararand DjamalZerrouki

17.1Introduction

17.2.1Fullerene538 17.2.2Carbonnanotube540

17.2.3Graphene540

17.3Solarcellsbasedoncarbonnanomaterials 541

17.3.1Carbonindye-sensitizedsolar541

17.3.2Carboninorganicsolarcells543

17.3.3Carboninperovskitesolarcells544

17.4Challengesandprospects 547 References 549

18.Sustainablebiomaterialsforsolarenergytechnologies 557

YakupUlusu,NumanEczaciogluandIsaGokce

18.1Introduction 557

18.2Structuralpropertiesofbiomaterials 558

18.3Biomaterialsusedinbiophotovoltaics 562

18.3.1Livingorganismbasedsolarcellsystems563

18.3.2Light-harvestingproteins570

18.3.3Naturalpigments575

References 584

19.Bioinspiredsolarcells:contributionofbiologyto lightharvestingsystems 593

B.GopalKrishnaandSanjayTiwari

19.1Introduction 593

19.2Methodologiesforengineeredbiomimicry 595

19.2.1Bioinspiration595

19.2.2Biomimetic596

19.2.3Bioreplication597

19.3Bioinspiredsolarcells 597

19.4Bioinspiredstructuresandorganisms 601

19.4.1Dyes601

19.4.2Wettabilityandsuperhydrophobicdyes603

19.4.3Organisms603

19.5Biologicalprocessesforbioinspiration 611

19.5.1Photosynthesis611

19.5.2Cyanobacteria614

19.5.3Bioinspiredchromophores616

19.6Physicsinbiologicalsystems 616

19.6.1Coherenceeffectsinbiologicalsystems616

19.6.2Excitationenergytransfer617

19.6.3Chargetransfer618

19.7Structures 620

19.7.1Origamistructures620

19.7.2Graphene620

19.7.3Multijunctionsolarcells620

19.7.4Perovskitesolarcells620

19.7.5Silicon-basedsolarcell621

19.7.6Dye-sensitizedsolarcelltechnology622

19.7.7Thinfilmsolarcell623

19.8Conclusions 623 References 625 Index633

Listofcontributors

AntonioAbate DepartmentofChemical,MaterialsandProductionEngineering, UniversityofNaplesFedericoII,Naples,Italy

SergioAina InstitutodeNanocienciayMaterialesdeArago ´ n(INMA),CSICUniversidaddeZaragoza,Zaragoza,Spain;DepartmentofChemicaland EnvironmentalEngineering(IQTMA),UniversityofZaragoza,Zaragoza,Spain

MelisO ¨ zgeAlas ¸ ChemicalEngineeringDepartment,FacultyofEngineering,Mersin University,Mersin,Turkey

TolgaAltan NanotechnologyApplicationandResearchCenter,Nig ˘ deOmer HalisdemirUniversity,Nig ˘ de,Turkey;DepartmentofMechanicalEngineering, Nig ˘ deOmerHalisdemirUniversity,Nig ˘ de,Turkey

AliAltuntepe NanotechnologyApplicationandResearchCenter,Nig ˘ deOmer HalisdemirUniversity,Nig ˘ de,Turkey

HarishBarshilia NanomaterialsResearchLaboratory,SurfaceEngineeringDivision, CSIR-NationalAerospaceLaboratories,Bangalore,India

Marı´aBernechea InstitutodeNanocienciayMaterialesdeArago ´ n(INMA),CSICUniversidaddeZaragoza,Zaragoza,Spain;DepartmentofChemicaland EnvironmentalEngineering(IQTMA),UniversityofZaragoza,Zaragoza,Spain; NetworkingResearchCenteronBioengineering,BiomaterialsandNanomedicine, Madrid,Spain;ARAID,GovernmentofAragon,Zaragoza,Spain

PallabBhattacharya FunctionalMaterialGroup,AMPDivision,CSIR-National MetallurgicalLaboratory,Jamshedpur,India

NicholeC.Cates SmartMaterialSolutions,Inc,Raleigh,NC,UnitedStatesof America

WilliamChiappimJunior i3NandDepartmentofPhysics,UniversityofAveiro, Aveiro,Portugal;PlasmasandProcessesLaboratory,AeronauticsInstituteof Technology,SaoJose ´ dosCampos,Brazil

Anto ´ nioF.daCunha i3NandDepartmentofPhysics,UniversityofAveiro,Aveiro, Portugal

SudeshnaDasChakraborty FunctionalMaterialGroup,AMPDivision,CSIRNationalMetallurgicalLaboratory,Jamshedpur,India

K.T.Drisya DepartamentodeIngenier´ıaEle ´ ctrica,CentrodeInvestigacio ´ nyde EstudiosAvanzadosdelInstitutoPolite ´ cnicoNacional,MexicoCity,Mexico

JuanCarlosDur ´ an-A ´ lvarez InstitutodeCienciasAplicadasyTecnolog´ıa, UniversidadNacionalAuto ´ nomadeMe ´ xico,MexicoCity,Mexico

xvi Listofcontributors

NumanEczacioglu DepartmentofBioengineering,FacultyofEngineering, KaramanogluMehmetbeyUniversity,Karaman,Turkey

MarianaAmorimFraga InstituteofScienceandTechnology,FederalUniversityof SaoPaulo,SaoJose ´ dosCampos,Brazil

Ramo ´ nEscobarGalindo AppliedPhysicsIDepartment,HigherPolytechnicSchool (EPS),UniversityofSeville,Spain

RukanGenc ¸ ChemicalEngineeringDepartment,FacultyofEngineering,Mersin University,Mersin,Turkey

DiegoDiGirolamo DepartmentofChemical,MaterialsandProductionEngineering, UniversityofNaplesFedericoII,Naples,Italy

IsaGokce DepartmentofBioengineering,FacultyofNaturalSciencesand Engineering,TokatGaziosmanpasaUniversity,Tokat,Turkey

B.GopalKrishna PhotonicsResearchLaboratory,SchoolofStudiesinElectronics &PhotonicsPt.RavishankarShuklaUniversity,Raipur,India

MarioGrageda CenterforAdvancedStudyofLithiumandIndustrialMinerals (CELiMIN),UniversityofAntofagasta,Antofagasta,Chile

NesrineHarfouche PolymerMaterialsInterfacesMarineEnvironment,Universityof SouthToulon,Toulon,France

AbdellahHenni LaboratoryDynamicInteractionsandReactivityofSystems,Kasdi MerbahUniversity,Ouargla,Algeria

RobertoJakomin CampusDuquedeCaxias,UniversidadeFederaldoRiode Janeiro,DuquedeCaxias,Brazil

AminaKarar LaboratoryDynamicInteractionsandReactivityofSystems,Kasdi MerbahUniversity,Ouargla,Algeria

RudyM.S.Kawabata SemiconductorLaboratory,Pontifı´ciaUniversidadeCato ´ lica doRiodeJaneiro,RiodeJaneiro,Brazil

MatthiasKrause Helmholtz-ZentrumDresden-Rossendorf,InstituteforIonBeam PhysicsandMaterialsResearch,Dresden,Germany

MaheshKumar CouncilofScientificandIndustrialResearch(CSIR)-National PhysicalLaboratory(NPL),NewDelhi,India;AcademyofScientificand InnovativeResearch(AcSIR),Ghaziabad,UttarPradesh,India

JoaquimP.Leita ˜ o i3NandDepartmentofPhysics,UniversityofAveiro,Aveiro, Portugal

M.PilarLobera InstitutodeNanocienciayMaterialesdeArago ´ n(INMA),CSICUniversidaddeZaragoza,Zaragoza,Spain;DepartmentofChemicaland EnvironmentalEngineering(IQTMA),UniversityofZaragoza,Zaragoza,Spain; NetworkingResearchCenteronBioengineering,BiomaterialsandNanomedicine, Madrid,Spain

PaulaE.Marı´n SustainableThermalEnergyTechnologies(STET),Universityof Warwick,Coventry,UnitedKingdom

SonaliMehra CouncilofScientificandIndustrialResearch(CSIR)-National PhysicalLaboratory(NPL),NewDelhi,India;AcademyofScientificand InnovativeResearch(AcSIR),Ghaziabad,UttarPradesh,India

DanielN.Micha DepartmentofPhysics,CentroFederaldeEducac¸a ˜ oTecnolo ´ gica CelsoSuckowdaFonseca,Petro ´ polis,Brazil

YanioE.Milian CenterforAdvancedStudyofLithiumandIndustrialMinerals (CELiMIN),UniversityofAntofagasta,Antofagasta,Chile TrilochanMishra FunctionalMaterialGroup,AMPDivision,CSIR-National MetallurgicalLaboratory,Jamshedpur,India

LeandroX.Moreno DepartmentofPhysics,InstituteofGeosciencesandExact Sciences(IGCE),Sa ˜ oPauloStateUniversity“Ju ´ liodeMesquitaFilho”(Unesp), RioClaro,Brazil

GiuseppeNasti DepartmentofChemical,MaterialsandProductionEngineering, UniversityofNaplesFedericoII,Naples,Italy

K.Niranjan NanomaterialsResearchLaboratory,SurfaceEngineeringDivision, CSIR-NationalAerospaceLaboratories,Bangalore,India

Marı´aDoloresPerez InstituteforNanoscienceandNanotechnology(INN)— NationalAtomicEnergyCommission(CNEA)—NationalCouncilforScientific andTechnicalResearch(CONICET),BuenosAires,Argentina;SolarEnergy Department—NationalAtomicEnergyCommision,Av.GeneralPaz1499,San Martin,BuenosAires,Argentina

RodrigoSavioPessoa PlasmasandProcessesLaboratory,AeronauticsInstituteof Technology,SaoJose ´ dosCampos,Brazil

MauricioP.Pires InstituteofPhysics,UniversidadeFederaldoRiodeJaneiro,Rio deJaneiro,Brazil

JuanPla ´ InstituteforNanoscienceandNanotechnology(INN)—NationalAtomicEnergy Commission(CNEA)—NationalCouncilforScientificandTechnicalResearch (CONICET),BuenosAires,Argentina;SolarEnergyDepartment—NationalAtomic EnergyCommision,Av.GeneralPaz1499, SanMartin,BuenosAires,Argentina

FernandoA.Ponce DepartmentofPhysics,ArizonaStateUniversity,Tempe,AZ, UnitedStates

JessicaC.RamirezdelaTorre InstitutodeNanocienciayMaterialesdeArago ´ n (INMA),CSIC-UniversidaddeZaragoza,Zaragoza,Spain;Departmentof ChemicalandEnvironmentalEngineering(IQTMA),UniversityofZaragoza, Zaragoza,Spain

GaneshRegmi DepartmentofElectricalEngineering(SEES),Centrode Investigacio ´ nydeEstudiosAvanzadosdelIPN(CINVESTAV-IPN),Mexico City,Mexico

J.J.Rı´os-Ramı ´ rez DepartamentodeIngenierı´aEle ´ ctrica(SEES),Centrode Investigacio ´ nydeEstudiosAvanzadosdelInstitutoPolite ´ cnicoNacional (CINVESTAV-IPN),CiudaddeMe ´ xico,Mexico

AraceliRomero-Nun ˜ ez DepartamentodeIngenierı´aEle ´ ctrica,Centrode Investigacio ´ nydeEstudiosAvanzadosdelInstitutoPolite ´ cnicoNacional,Mexico City,Mexico

PedroM.P.Salome ´ InternationalIberianNanotechnologyLaboratory,Braga, Portugal

JyotiSaroha CouncilofScientificandIndustrialResearch(CSIR)-NationalPhysical Laboratory(NPL),NewDelhi,India;AcademyofScientificandInnovative Research(AcSIR),Ghaziabad,UttarPradesh,India

AyseSeyhan DepartmentofPhysics,Nig ˘ deO ¨ merHalisdemirUniversity,Nig ˘ de, Turkey;NanotechnologyApplicationandResearchCenter,Nig ˘ deO ¨ mer HalisdemirUniversity,Nig ˘ de,Turkey

SavitaSharma PhysicsDepartment,KalindiCollege,UniversityofDelhi,Delhi,India

ShaileshNarainSharma CouncilofScientificandIndustrialResearch(CSIR)NationalPhysicalLaboratory(NPL),NewDelhi,India;AcademyofScientific andInnovativeResearch(AcSIR),Ghaziabad,UttarPradesh,India

MyriamSolı´s-Lo ´ pez DepartamentodeIngenierı´aEle ´ ctrica,CentrodeInvestigacio ´ n ydeEstudiosAvanzadosdelInstitutoPolite ´ cnicoNacional,MexicoCity,Mexico

Patrı´ciaL.Souza SemiconductorLaboratory,Pontifı´ciaUniversidadeCato ´ licado RiodeJaneiro,RiodeJaneiro,Brazil

VelumaniSubramaniam DepartmentofElectricalEngineering(SEES),Centrode Investigacio ´ nydeEstudiosAvanzadosdelIPN(CINVESTAV-IPN),Mexico City,Mexico

SanjayTiwari PhotonicsResearchLaboratory,SchoolofStudiesinElectronics& PhotonicsPt.RavishankarShuklaUniversity,Raipur,India

YakupUlusu DepartmentofBioengineering,FacultyofEngineering,Karamanoglu MehmetbeyUniversity,Karaman,Turkey

SvetlanaUshak CenterforAdvancedStudyofLithiumandIndustrialMinerals (CELiMIN),UniversityofAntofagasta,Antofagasta,Chile

RecepZan DepartmentofPhysics,Nig ˘ deOmerHalisdemirUniversity,Nig ˘ de, Turkey;NanotechnologyApplicationandResearchCenter,Nig ˘ deOmer HalisdemirUniversity,Nig ˘ de,Turkey

DjamalZerrouki LaboratoryDynamicInteractionsandReactivityofSystems, KasdiMerbahUniversity,Ouargla,Algeria

Preface

Overthepast20years,theworldhaswitnessedthegrowingdevelopmentof renewableenergytechnologies,especiallysolarenergysystems.Initial researcheffortshavemainlybeendirectedtothetheoreticalunderstanding, design,modeling,simulation,andfabricationofdevicesforsolarenergy conversionandstoragebasedontraditionalmaterials.Thesetraditionalmaterialsincludec-anda-silicon,cadmiumtelluride,copperindiumgalliumselenide,galliumarsenide,andmanyothers.Recentprogressinsynthesisof micro-andnano-structures,processingtechniques,andapplicationsofsustainablematerialshaveopenednewopportunitiesinthisfieldprovidingsolutionsthatallowthedevelopmentofdeviceswithimprovedperformanceand efficiency.Thisbookcoversawiderangeoftopicsinsustainablematerials forsolarenergytechnologiesorganizedintofivesections:(1)trendsinmaterialsdevelopmentforsolarenergyapplications,(2)sustainablematerialsfor photovoltaics,(3)sustainablematerialsforphotocatalysisandwatersplitting, (4)sustainablematerialsforthermalenergysystems,and(5)sustainable carbon-basedandbiomaterialsforsolarenergyapplications.Itiscomprised of19chapterswrittenbyexpertsinthefieldwithdiverseresearchbackgrounds,nationalities,andspecialtiesincludingphysicists,engineers,materialscientists,andchemists.

Eachchapterisessentiallyadetailedoverviewofrelevantandcurrent topicsinsustainablematerialsforsolarenergysystemsincludingemerging materials,suchasbismuth-basednanomaterials,ferroelectricmaterials,2D MXenematerials,noveldielectriccompounds,tinhalideperovskites,atomic layerdepositedthinfilms,selectivecoatings,wastematerialsbasedoninorganicsalts,carbon-basedmaterials(nanodotandgraphene),andbiomaterials. Alsocoveredareawiderangeofpotentialtechnologicalapplicationsin fieldssuchasphotovoltaics,thermalenergysystems,photocatalysis,and watersplitting.Furthermore,thereisonechapterdevotedtoasignificanttheoreticaltopicbasedonfirstprinciplecalculationsforsolarenergyharvesting materialstomotivatereaderstocomparetheirexperimentalresultswiththeoreticalcalculationstounderstandtheintricaciesinvolved.Eachchaptercontainsacomprehensivelistofreferences.

Finally,researchregardingsolarenergyprocessesanddevicesbasedon sustainablematerialsisanareaworthyofstudyandattention.Thecoauthors ofthistextpresentacombinationofinnovativeandtimelessapproaches,

xx Preface

producingavaluableresourceforstudents,researchers,andprofessionals interestedinoralreadyworkinginthesefields.Furthermore,itisanappropriatereferenceortextforinterdisciplinarycoursesdevotedtosolarenergy materialsand/ordevicesacrossdifferentprogramsanddepartmentssuchas Chemistry,Physics,MaterialsScience,andEngineering. Wetrustthatyouwillenjoyreadingthisbook.

MarianaAmorimFraga InstitutodeCieˆnciaeTecnologia, UniversidadeFederaldeSa˜oPaulo,Sa˜oJose´ dosCampos,Brazil

DelainaA.Amos

UniversityofLouisville,Louisville,KY,UnitedStates SavasSonmezoglu KaramanogluMehmetbeyUniversity,Karaman,Turkey

VelumaniSubramaniam DepartmentofElectricalEngineering(SEES), CentrodeInvestigacio´nydeEstudiosAvanzadosdel IPN(CINVESTAV-IPN),MexicoCity,Mexico

SectionI

TrendsinMaterials DevelopmentforSolar EnergyApplications

Thispageintentionallyleftblank

Bismuth-basednanomaterials forenergyapplications

NicholeC.Cates1,JessicaC.RamirezdelaTorre2,3,SergioAina2,3, M.PilarLobera2,3,4 andMar´ıaBernechea 2,3,4,5 1SmartMaterialSolutions,Inc,Raleigh,NC,UnitedStatesofAmerica, 2Institutode NanocienciayMaterialesdeArago´n(INMA),CSIC-UniversidaddeZaragoza,Zaragoza,Spain, 3DepartmentofChemicalandEnvironmentalEngineering(IQTMA),UniversityofZaragoza, Zaragoza,Spain, 4NetworkingResearchCenteronBioengineering,Biomaterialsand Nanomedicine,Madrid,Spain, 5ARAID,GovernmentofAragon,Zaragoza,Spain

DedicatedtothememoryofourcolleagueandfriendGuillemXercavinswho passedawayinFebruary2020

1.1Introduction

Humandevelopmentisfacingaseriousdilemma.Energyconsumptionisrisingduetoincreasedworldwideindustrializationandacontinuouslygrowing population.Traditionally,energyisobtainedfromfossilfuelsthatarelimited resources,arerestrictedtoprecisegeographicalareas,haverisingprices,and insomecasesareassociatedwitheconomicandpoliticalinstability. Moreover,airpollutionandgreenhousegasesaregeneratinghealthandenvironmentalproblemsthatneedtobesolvedintheimmediatefuture. Therefore,itisurgentandnecessarytochangetoclean,zero-emissions renewableenergy.Inthissense,thedevelopmentofenergy-harvestingand energy-storagedevicesbasedonrenewablesourceswillbefundamentalfor thedeploymentofautonomousorisolatedsystemslikeemerginginternet-ofthings(IoT)applications.

Inthischapterwefocusontheuseofbismuthnanomaterialsinenergyharvestingdeviceslikesolarcellsandthermoelectrics,electrochemical energy-storagedevicessuchasbatteriesandsupercapacitors,andchemical energystorageintheformofhydrogenobtainedfromphotocatalyticprocesses.Cationicbismuth(Bi31)hasbeensuggestedasanexcellentcandidate fordefect-tolerantcompounds, i.e.materialswithgoodelectricandoptoelectronicpropertiesdespitethepresenceofdefects.Thesedefectsarelimitedto

shallowstatesatbandedgesthankstotheactivens2 lonepairthatcreates antibondinginteractionsatthevalencebandmaximum(Ganoseetal.,2017). Moreover,thislonepaircanalsoleadtodistortedbondingandthustoalow thermalconductivity,averyconvenientaspectforthermoelectricapplications(Nielsenetal.,2013).Moreover,therelativelylowpriceandabundanceofBiisattractiveforitslarge-scaleapplications(Go ´ mez-Vel ´ azquez etal.,2018;MillerandBernechea,2018).Additionally,despitebeingaheavymetal,bismuthisconsiderednon-toxicandisevenusedincommonmedicinessuchasPepto-Bismol(Mohan,2010;Yangetal.,2015).Indeed,very recently,somereviewsabouttheuseofbismuth-basedmaterialsinbiomedicinehavebeenpublished,pointingtolowornocytotoxicityofthesematerialsevenathighdoses,althoughmoreresearchisneededinthissense (Badrigilanetal.,2020;Shahbazietal.,2020).

Inthischapterwewillputspecialattentiontonanostructuredmaterials becausetheyofferadditionalattractivefeaturesliketuningoflightabsorptionorelectricalpropertieswithsizeand/orshape(Luetal.,2020; Bernecheaetal.,2015;Careyetal.,2015).Moreover,inthistypeofmaterialstheligandsonthesurfacecanmodulatepropertiessuchasbandedge positions,carrierdensity,chargemobility,orthermaltransport(Ongetal., 2013;Liuetal.,2015),whichhasproventobekeyforimprovingperformanceinsolarcells,orphotocatalyticprocesses(Brownetal.,2014;Yang etal.,2012).Foreachtechnology,wewilldiscussthestateoftheart,challenges,andthefocusareasforcurrentresearch.However,wewouldliketo pointoutthatitisnotouraimtoprovideanexhaustivecompilationofall thematerialsthatcanbeemployedintheseapplications,buttoofferanoverviewofthevastandversatilebismuth-basedcandidatesandtheadvantages providedbynanotechnologyforsuchuses.

1.2Photovoltaics

Aphotovoltaic(PV)solarcellisadevicethatdirectlytransforms(solar) lightintoelectricitybymeansofasemiconductor.Usuallytheyareusedin solarpanelsforprimaryenergyproductionconvertingsolarlightintoelectricity,buttheycanalsofindapplicationsas(indoor)lightharvestersfor self-poweredsystems,implantableorwearableelectronics,andIoT applications.

1.2.1SolarCellOperation

Ifasemiconductorisilluminatedwithlighthavinganenergyequalorhigher thanthedifferenceinenergybetweenthevalenceband(VB)andconduction band(CB),alsoknownasthebandgap(Eg),thislightcanbeabsorbedpromotinganelectronfromthevalencebandtotheconductionbandandleaving aholeinthevalenceband.Byintroducingadequatecontacts,thesecharge

carriers(electronsandholes)canbeseparatedandextractedtoanexternal circuit.Thesecontactswilldependonthesemiconductor(s)usedaslight absorbers.Inatypicalsolarcell,an-typesemiconductor(Fermilevelclose totheconductionband,goodelectron-transportmaterial)isputincontact withap-typematerial(Fermilevelclosetothevalenceband,goodholetransportmaterial).Whenthesetwosemiconductorsareincontact,their Fermilevels(μF)equilibrateandtherelativepositionoftheirvalenceand conductionbandsshift.Theformationofthisp-njunctioncreatesafavorable energypathfortheelectronsandholesgeneratedinbothsemiconductorsto flowinoppositedirections(Fig.1.1).Ifanintrinsicsemiconductorisusedas thelightabsorber,itisusuallysandwichedbetweentwoselectivecontacts,a hole-transportlayer(HTL)andanelectron-transportlayer(ETL).

Theefficiencyofasolarcell(η,in%),alsoknownaspowerconversion efficiency(PCE),isgivenby:

where VOC istheopencircuitvoltage, ISC isshortcircuitcurrent, FF isthe fillfactor,and P0 isthelightpowerusedtoilluminatethedevice(P0 1000W/m2 ifthesunisthelightsource).The VOC isrelatedtothedifferenceinenergyofthematerials Fermilevels(Fig.1.1),the ISC makesreferencetotheactualnumberofelectronsandholesgeneratedintheexternal

FIGURE1.1 Illustrationofsolarcellsoperationbasedonap-njunction(left)oranabsorber withselectivecontacts(right).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.