SustainableMaterialSolutionsforSolarEnergy Technologies:ProcessingTechniquesand ApplicationsMarianaAmorimFraga
https://ebookmass.com/product/sustainable-materialsolutions-for-solar-energy-technologies-processingtechniques-and-applications-mariana-amorim-fraga/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Food Waste Recovery: Processing Technologies, Industrial Techniques, and Applications 2nd Edition Charis M. Galanakis
https://ebookmass.com/product/food-waste-recovery-processingtechnologies-industrial-techniques-and-applications-2nd-editioncharis-m-galanakis/ ebookmass.com
Biofuel Extraction Techniques: Biofuels, Solar, and Other Technologies Lalit Prasad
https://ebookmass.com/product/biofuel-extraction-techniques-biofuelssolar-and-other-technologies-lalit-prasad/
ebookmass.com
Sustainable Seaweed Technologies: Cultivation, Biorefinery, and Applications 1st Edition Maria Dolores Torres (Editor)
https://ebookmass.com/product/sustainable-seaweed-technologiescultivation-biorefinery-and-applications-1st-edition-maria-dolorestorres-editor/ ebookmass.com
Consumer Behaviour 2nd Edition Chan
https://ebookmass.com/product/consumer-behaviour-2nd-edition-chan/
ebookmass.com
Measuring business interruption losses and other commercial damages: an economic approach Third Edition Gaughan
https://ebookmass.com/product/measuring-business-interruption-lossesand-other-commercial-damages-an-economic-approach-third-editiongaughan/ ebookmass.com
The Outlaw's Daughter Margaret Brownley
https://ebookmass.com/product/the-outlaws-daughter-margaretbrownley-2/
ebookmass.com
Public Budgeting Systems 9th Edition
https://ebookmass.com/product/public-budgeting-systems-9th-edition/
ebookmass.com
Organic Chemistry for IIT JEE advanced Edition 3 Part 2, 4 of 4 Chapter 10 and Solutions of all Chapters Exercises K. S. Verma
https://ebookmass.com/product/organic-chemistry-for-iit-jee-advancededition-3-part-2-4-of-4-chapter-10-and-solutions-of-all-chaptersexercises-k-s-verma/
ebookmass.com
Zoology (12th Edition) Stephen A. Miller & Todd A. Tupper
https://ebookmass.com/product/zoology-12th-edition-stephen-a-millertodd-a-tupper/
ebookmass.com
The Invention of China in Early Modern England: Spelling the Dragon 1st ed. 2021 Edition Lux
https://ebookmass.com/product/the-invention-of-china-in-early-modernengland-spelling-the-dragon-1st-ed-2021-edition-lux/
ebookmass.com
SustainableMaterialSolutionsfor SolarEnergyTechnologies ProcessingTechniquesandApplications
Thispageintentionallyleftblank
SolarCellEngineering SustainableMaterial SolutionsforSolar EnergyTechnologies ProcessingTechniquesandApplications
Editedby
MarianaAmorimFraga
InstitutodeCie ˆ nciaeTecnologia,UniversidadeFederaldeSa ˜ oPaulo, SaoJose ´ dosCampos,Brazil
DelainaAmos
UniversityofLouisville,Louisville,KY,UnitedStates
SavasSonmezoglu
KaramanogluMehmetbeyUniversity,Karaman,Turkey
VelumaniSubramaniam
DepartmentofElectricalEngineering(SEES), CentrodeInvestigacio ´ nydeEstudiosAvanzadosdelIPN (CINVESTAV-IPN),MexicoCity,Mexico
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2021ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).
Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-821592-0
ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: MatthewDeans
AcquisitionsEditor: ChristinaGifford
EditorialProjectManager: JohnLeonard
ProductionProjectManager: SojanP.Pazhayattil
CoverDesigner: MarkRogers
TypesetbyMPSLimited,Chennai,India
1.Bismuth-basednanomaterialsforenergyapplications 3 NicholeC.Cates,JessicaC.RamirezdelaTorre,SergioAina, M.PilarLoberaandMar´ıaBernechea
1.2.1SolarCellOperation4
1.2.2Nanoengineering6
1.2.3Bismuth-BasedNanomaterials7 1.2.4Summary9
1.3Thermoelectricdevices 9
1.3.1ThermoelectricDevicesOperation9
1.3.2Nanoengineering11
1.3.3Bi-BasedNanomaterials12 1.3.4Summary16
1.4Batteries&Supercapacitors 16
1.4.1BatteryOperation16
1.4.2SupercapacitorOperation17
1.4.3Bismuth-BasedElectrodes17
1.4.4Nanoengineering18
1.4.5CoatingorMixingwithConductiveMaterials20
1.4.6BismuthPerovskiteSupercapacitors21 1.4.7Summary21
1.5Solar-hydrogenproduction 22
1.5.1Fundamentalsofphotocatalysisforhydrogenproduction22 1.5.2Nanoengineering24
1.5.3Bi-basednanomaterials24
1.5.4Summary29 1.6Conclusions
2.Emergentmaterialsandconceptsforsolarcell applications 37
Mar´ıaDoloresPerezandJuanPl ´ a
2.2Perovskitesolarcells 40
2.2.1Historicalreview40
2.2.2Solarcells41
2.2.3Stability45
2.2.4Scalingupandpossibilitiesforcommercialization49
2.3III Vsemiconductormaterialsformultijunctionsolarcells applications 50
2.3.1Historicalreview50
2.3.2Somebasicsofmultijunctionsolarcells53
2.3.3III Vmaterialsforphotovoltaicapplications55
2.3.4Selectedexamples58 2.3.5Discussion61
2.4Finalremarksandfutureperspectives 62 References 63
3.Noveldielectricscompoundsgrownbyatomiclayer depositionassustainablematerialsforchalcogenides thin-filmsphotovoltaicstechnologies 71
WilliamChiappimJunior,LeandroX.Moreno,RodrigoSavioPessoa, Anto ´ nioF.daCunha,PedroM.P.Salome ´ andJoaquimP.Leita ˜ o
3.1Introduction 71
3.2Atomiclayerdepositiontechnique 78
3.2.1Requirementsforidealprecursorsandatomiclayer depositionsignaturequality79
3.2.2Commercialandresearchtools82
3.3Atomiclayerdepositionappliedonchalcogenidesthinfilms technologies 84
3.3.1Absorberlayers:Cu(In,Ga)Se2,Cu2ZnSnS4,and Cu2ZnSn(S,Se)4 85
3.3.2Sustainablebufferlayersbasedonatomiclayerdeposition87
3.3.3Sustainablepassivationlayersbasedonatomiclayer deposition88
4.Firstprinciplesmethodsforsolarenergyharvesting materials 101
J.J.R´ıos-Ram´ırezandVelumaniSubramaniam
4.1Introduction
4.2Fundamentalconcepts 103
4.2.1Crystallinerepresentation103
4.2.2Themultielectronsystem107
4.2.3Thevariationalprinciple111
4.2.4Theuniversalfunctionalofthedensity113
4.2.5TheauxiliaryKohn-Shamsystem116
4.3Selectedmaterialswithsolarenergyharvesting implementations 118
4.3.1Theinputfile118
4.3.2Asupercellofzincoxide121
4.3.3StructuralstabilityofFAPbI3 perovskites122
4.3.4ChargeorderandhalfmetallicityofFe3O4 122
4.3.5Optimizationofanatasetitaniumdioxide123
4.3.6AconventionalandareducedrepresentationofmBiVO4 125
4.3.7Atemplatestructureforchalcopyrite126
4.4Conclusion 127 References 127
SectionII
Sustainablematerialsforphotovoltaics 5.Introductiontophotovoltaicsandalternative materialsforsiliconinphotovoltaicenergyconversion 131 GaneshRegmiandVelumaniSubramaniam
5.1Introduction 131
5.2Currentstatusofphotovoltaics 133
5.3Fundamentalpropertiesofphotovoltaicssemiconductors 136
5.3.1Crystalstructureofsemiconductors136
5.3.2Energybandstructure137
5.3.3Densityofenergystates139
5.3.4Drift-motionduetotheelectricfield142
5.3.5Diffusion-duetoaconcentrationgradient143
5.3.6Absorptioncoefficient144
5.4Physicsofsolarcell 145
5.4.1Homojunctionandheterojunctionstructure146
5.4.2p-njunctionunderillumination147
5.4.3I-Vequationsofsolarcell149
5.5Categoriesofthephotovoltaicmarket 151
5.6CommercializationofSisolarcells 152
5.7Statusofalternativephotovoltaicsmaterials 153
5.8Thinfilmtechnology 154
5.9Materialselectioninthinfilmtechnology 157
5.10Thinfilmdepositiontechniques 158
5.10.1Physicaldeposition158
5.10.2Chemicaldeposition160
5.11Copperindiumgalliumselenide-basedsolarcell 162
5.11.1Alkalimetalpostdepositiontreatmentoncopper indiumgalliumselenidebasedsolarcells163
5.12Cadmiumtelluridesolarcells 164
5.13Multijunctionsolarcells 165
5.14Emergingsolarcelltechnologies 165
5.14.1Organicsolarcells166
5.14.2Dye-sensitizedsolarcells166
5.14.3Perovskitesolarcells168
5.14.4Quantumdotsolarcells168
5.15Summary,conclusions,andoutlook 169 Acknowledgment 170 References 170
6.Anoverviewonferroelectricphotovoltaicmaterials 175
SavitaSharma
6.1Overview 175
6.2Ferroelectricmaterials 176
6.3Photovoltaiceffect 178
6.3.1Mechanismofferroelectricphotovoltaic179
6.3.2Historyandcurrentstatusofferroelectricphotovoltaic186
6.4Bariumtitanate 187
6.4.1Crystalstructure187
6.4.2Dielectricproperties190
6.4.3FerroelectricphenomenainBaTiO3 190
6.4.4Opticalproperties191
6.4.5VarioustechniquesofdepositingBaTiO3 thinfilm191
6.4.6PotentialapplicationsofBaTiO3 192
6.5Bismuthferrite 194
6.6Conclusion 195 Acknowledgments 196 References
7.Nanostructuredmaterialsforhighefficiencysolarcells 201
DanielN.Micha,RobertoJakomin,RudyM.S.Kawabata, MauricioP.Pires,FernandoA.PonceandPatr´ıciaL.Souza
7.1Introduction 201
7.2Nanostructuresandquantummechanics 203
7.3Quantumwellsinsolarcells 205
7.4Quantumwires(nanowires)insolarcells 210
7.5Quantumdotsinsolarcells 214
7.5.1InAsquantumdotsonGaAs216
7.5.2In(Ga)AsorInAsPquantumdotsonwidebandgap materialbarriers221
7.6Conclusions
8.Crystalline-siliconheterojunctionsolarcellswith grapheneincorporation 229
RecepZan,AliAltuntepe,TolgaAltanandAyseSeyhan
8.1Heterojunctionsolarcellsandgraphene 229
8.1.1Heterojunctionsolarcells229
8.1.2Graphene232
8.2Fabricationofsiliconheterojunctionsolarcell 234
8.2.1Surfacepatterningandsurfacecleaning235
8.2.2Depositionofa-silicon:Hlayers237
8.2.3Depositionoftransparentconductiveoxide240
8.2.4Metallization242
8.2.5Thermaltreatment243
8.3Synthesisofgraphene 244
8.3.1Incorporatinggrapheneintosiliconheterojunction solarcells249
8.4Conclusion
9.Tinhalideperovskitesforefficientlead-free solarcells
GiuseppeNasti,DiegoDiGirolamoandAntonioAbate
9.1Introduction
9.2Halideperovskitesolarcells:whytin?
9.2.1Perovskitestructure263
9.2.2Carriertransportandtinhalideperovskitedefects266
9.2.3Tinperovskitebandgap267
9.2.4Tinoxidation269
9.2.5Tintoxicity271
9.3ASnX3:abriefhistoricalexcursus
9.4TowardefficientandstableASnX3 PSCs
9.4.1Additives274
9.4.2Passivation277
9.4.3Lowdimensionalperovskites279
9.4.4Solvent280
9.5Conclusion
SectionIII Sustainablematerialsforphotocatalysis andwatersplitting 10.Photocatalysisusingbismuth-based heterostructurednanomaterialsforvisiblelight harvesting 289
AraceliRomero-Nunez,K.T.Drisya,JuanCarlosDur ´ an-A ´ lvarez, MyriamSol´ıs-Lo ´ pezandVelumaniSubramaniam
10.1Introduction 289
10.2Fundamentalsofheterogeneousphotocatalysis 291
10.2.1Heterogeneousphotocatalysisappliedto environmentalengineeringprocesses294
10.2.2Factorsaffectingthephotocatalyticprocess295 10.2.3Insightsofphysicochemicalcharacterizationof nanophotocatalysts297
10.3Bismuth-basedheterostructuresforphotocatalytic applications 299
10.3.1Semiconductor-semiconductorheterostructures usingbismuth-basedmaterials301
10.3.2Generalstrategiesforsynthesisofbismuth-based semiconductors303
10.3.3Applicationsofbismuth-basedheterostructures309
11.Recentadvancesin2DMXene-basedheterostructured photocatalyticmaterials 329
SudeshnaDasChakraborty,PallabBhattacharyaand TrilochanMishra
11.1Introduction 329 11.2Synthesisof2D-MXenes 331
11.2.1Functionalizationandelectronicpropertiesof MXene333
11.3Photocatalyticapplications 334
11.3.1H2 evolutionbyH2Osplitting336 11.3.2PhotocatalyticCO2 reductiontofuel345 11.3.3Environmentalapplications347
11.4Conclusionandfutureprospects 355 Acknowledgments 356 References 356
12.Atomiclayerdepositionofmaterialsfor solarwatersplitting
RodrigoSavioPessoa,WilliamChiappimJuniorand MarianaAmorimFraga
12.1Introduction
12.2Solarenergy
12.3Photoelectrochemicalcells
12.4Hydrogengenerationfromwaterphotoelectrolysis
12.5Materialsforphotoelectrode
12.6Atomiclayerdepositiontechnique:processandequipment 373
12.6.1Atomiclayerdepositionprocess373
12.6.2Atomiclayerdepositionreactors:typesand characteristics375
13.Solarselectivecoatingsandmaterialsfor high-temperaturesolarthermalapplications 383 Ramo ´ nEscobarGalindo,MatthiasKrause,K.Niranjanand HarishBarshilia
13.1Introduction 383
13.1.1Concentratedsolarpower:facts383
13.1.2Concentratedsolarpower:basics388
13.2CSPefficiencyconsiderations:theconceptofsolarselectivity 392
13.3State-of-the-artreviewofsolarabsorbersurfacesand materialsforhigh-temperatureapplications( . 565 Cinair) 395
13.3.1Absorberpaints395
13.3.2Solarselectivecoatings397 13.3.3Volumetricreceivers402
13.4Currenttrendsandissues 405
13.4.1Durabilitystudiesofsolarabsorbers405
13.4.2Lackofstandardizedcharacterizationprotocols407
13.5Roadmapforconcentratedsolarpowerabsorbing surfacesandmaterials 409
13.5.1Alternativeconcentratedsolarpowerabsorbing surfaces:selectivelysolar-transmittingcoatings409
13.5.2Industrializationofhigh-temperaturesolarselective coatings413 Acknowledgments 417 References 418
14.Applicationsofwastesbasedoninorganicsaltsas low-costthermalenergystoragematerials
SvetlanaUshak,YanioE.Milian,PaulaE.Mar´ınandMarioGrageda
429
14.1Introduction 429
14.2Thermalenergystorage 431
14.2.1Sensible,latentandthermochemicalheatstorage431
14.2.2Basicconceptsforthermalenergystoragematerials434
14.2.3Overviewofthermalenergystoragesystemtypes438
14.2.4Comparisonofenergystoragedensityfordifferent thermalenergystoragematerials439
14.3Overviewofindustrialwastestudiedasthermalenergy storagematerials 440
14.4Inorganicsalt-basedproductsandwastesaslow-cost materialsforsustainablethermalenergystorage 442
14.4.1Availabilityandabundanceofinorganicsaltsin NorthernChile442
14.4.2Economicanalysisofinorganicsaltsaslow-cost thermalenergystoragematerials444
14.4.3State-of-artofcurrentlyproposedby-productsand wastesasthermalenergystoragematerials446
14.5Challengesfortheapplicationofwasteandby-productsin thermalenergystoragesystems 453
14.5.1Proposedusesofwastesasthermalenergystorage materials453
14.5.2Challengesfortheapplicationofinorganicsalt-based wastesinthermalenergystoragesystems455
14.5.3Optimizationofthermalpropertiesofthermalenergy storagematerialsbasedoninorganicsaltwastes456
15.Nanoencapsulatedphasechangematerialsforsolar
JyotiSaroha,SonaliMehra,MaheshKumar, VelumaniSubramaniamandShaileshNarainSharma
15.1.1Selectioncriteriaofphasechangematerials470
15.1.2Workingprincipleofphasechangematerial473
15.1.3Encapsulationinphasechangematerials474
15.1.4Advantagesofmicroornanoencapsulationof phasechangematerial476
15.4.1Needforphasechangematerial-basedsolarair heaters484
15.4.2Needforphasechangematerial-basedbuilding materialsforruralhouses486
15.4.3Needforphasechangematerial-basedtextiles488
15.5Challengesahead 490
SectionV 16.Carbonnanodotintegratedsolarenergydevices
MelisOzgeAla¸sandRukanGenc ¸
16.2Carbonnanodotintegratedsolarenergydevices
16.2.1Dye-sensitizedsolarcells500
16.2.2Quantumdotsolarcells509
16.2.3Organicsolarcells511
16.2.4Polymersolarcells515
16.2.5Perovskitesolarcells519
16.3Summaryandfutureaspects
17.Solarcellbasedoncarbonandgraphene nanomaterials
AbdellahHenni,NesrineHarfouche,AminaKararand DjamalZerrouki
17.1Introduction
17.2.1Fullerene538 17.2.2Carbonnanotube540
17.2.3Graphene540
17.3Solarcellsbasedoncarbonnanomaterials 541
17.3.1Carbonindye-sensitizedsolar541
17.3.2Carboninorganicsolarcells543
17.3.3Carboninperovskitesolarcells544
17.4Challengesandprospects 547 References 549
18.Sustainablebiomaterialsforsolarenergytechnologies 557
YakupUlusu,NumanEczaciogluandIsaGokce
18.1Introduction 557
18.2Structuralpropertiesofbiomaterials 558
18.3Biomaterialsusedinbiophotovoltaics 562
18.3.1Livingorganismbasedsolarcellsystems563
18.3.2Light-harvestingproteins570
18.3.3Naturalpigments575
References 584
19.Bioinspiredsolarcells:contributionofbiologyto lightharvestingsystems 593
B.GopalKrishnaandSanjayTiwari
19.1Introduction 593
19.2Methodologiesforengineeredbiomimicry 595
19.2.1Bioinspiration595
19.2.2Biomimetic596
19.2.3Bioreplication597
19.3Bioinspiredsolarcells 597
19.4Bioinspiredstructuresandorganisms 601
19.4.1Dyes601
19.4.2Wettabilityandsuperhydrophobicdyes603
19.4.3Organisms603
19.5Biologicalprocessesforbioinspiration 611
19.5.1Photosynthesis611
19.5.2Cyanobacteria614
19.5.3Bioinspiredchromophores616
19.6Physicsinbiologicalsystems 616
19.6.1Coherenceeffectsinbiologicalsystems616
19.6.2Excitationenergytransfer617
19.6.3Chargetransfer618
19.7Structures 620
19.7.1Origamistructures620
19.7.2Graphene620
19.7.3Multijunctionsolarcells620
19.7.4Perovskitesolarcells620
19.7.5Silicon-basedsolarcell621
19.7.6Dye-sensitizedsolarcelltechnology622
19.7.7Thinfilmsolarcell623
19.8Conclusions 623 References 625 Index633
Listofcontributors AntonioAbate DepartmentofChemical,MaterialsandProductionEngineering, UniversityofNaplesFedericoII,Naples,Italy
SergioAina InstitutodeNanocienciayMaterialesdeArago ´ n(INMA),CSICUniversidaddeZaragoza,Zaragoza,Spain;DepartmentofChemicaland EnvironmentalEngineering(IQTMA),UniversityofZaragoza,Zaragoza,Spain
MelisO ¨ zgeAlas ¸ ChemicalEngineeringDepartment,FacultyofEngineering,Mersin University,Mersin,Turkey
TolgaAltan NanotechnologyApplicationandResearchCenter,Nig ˘ deOmer HalisdemirUniversity,Nig ˘ de,Turkey;DepartmentofMechanicalEngineering, Nig ˘ deOmerHalisdemirUniversity,Nig ˘ de,Turkey
AliAltuntepe NanotechnologyApplicationandResearchCenter,Nig ˘ deOmer HalisdemirUniversity,Nig ˘ de,Turkey
HarishBarshilia NanomaterialsResearchLaboratory,SurfaceEngineeringDivision, CSIR-NationalAerospaceLaboratories,Bangalore,India
Marı´aBernechea InstitutodeNanocienciayMaterialesdeArago ´ n(INMA),CSICUniversidaddeZaragoza,Zaragoza,Spain;DepartmentofChemicaland EnvironmentalEngineering(IQTMA),UniversityofZaragoza,Zaragoza,Spain; NetworkingResearchCenteronBioengineering,BiomaterialsandNanomedicine, Madrid,Spain;ARAID,GovernmentofAragon,Zaragoza,Spain
PallabBhattacharya FunctionalMaterialGroup,AMPDivision,CSIR-National MetallurgicalLaboratory,Jamshedpur,India
NicholeC.Cates SmartMaterialSolutions,Inc,Raleigh,NC,UnitedStatesof America
WilliamChiappimJunior i3NandDepartmentofPhysics,UniversityofAveiro, Aveiro,Portugal;PlasmasandProcessesLaboratory,AeronauticsInstituteof Technology,SaoJose ´ dosCampos,Brazil
Anto ´ nioF.daCunha i3NandDepartmentofPhysics,UniversityofAveiro,Aveiro, Portugal
SudeshnaDasChakraborty FunctionalMaterialGroup,AMPDivision,CSIRNationalMetallurgicalLaboratory,Jamshedpur,India
K.T.Drisya DepartamentodeIngenier´ıaEle ´ ctrica,CentrodeInvestigacio ´ nyde EstudiosAvanzadosdelInstitutoPolite ´ cnicoNacional,MexicoCity,Mexico
JuanCarlosDur ´ an-A ´ lvarez InstitutodeCienciasAplicadasyTecnolog´ıa, UniversidadNacionalAuto ´ nomadeMe ´ xico,MexicoCity,Mexico
xvi Listofcontributors
NumanEczacioglu DepartmentofBioengineering,FacultyofEngineering, KaramanogluMehmetbeyUniversity,Karaman,Turkey
MarianaAmorimFraga InstituteofScienceandTechnology,FederalUniversityof SaoPaulo,SaoJose ´ dosCampos,Brazil
Ramo ´ nEscobarGalindo AppliedPhysicsIDepartment,HigherPolytechnicSchool (EPS),UniversityofSeville,Spain
RukanGenc ¸ ChemicalEngineeringDepartment,FacultyofEngineering,Mersin University,Mersin,Turkey
DiegoDiGirolamo DepartmentofChemical,MaterialsandProductionEngineering, UniversityofNaplesFedericoII,Naples,Italy
IsaGokce DepartmentofBioengineering,FacultyofNaturalSciencesand Engineering,TokatGaziosmanpasaUniversity,Tokat,Turkey
B.GopalKrishna PhotonicsResearchLaboratory,SchoolofStudiesinElectronics &PhotonicsPt.RavishankarShuklaUniversity,Raipur,India
MarioGrageda CenterforAdvancedStudyofLithiumandIndustrialMinerals (CELiMIN),UniversityofAntofagasta,Antofagasta,Chile
NesrineHarfouche PolymerMaterialsInterfacesMarineEnvironment,Universityof SouthToulon,Toulon,France
AbdellahHenni LaboratoryDynamicInteractionsandReactivityofSystems,Kasdi MerbahUniversity,Ouargla,Algeria
RobertoJakomin CampusDuquedeCaxias,UniversidadeFederaldoRiode Janeiro,DuquedeCaxias,Brazil
AminaKarar LaboratoryDynamicInteractionsandReactivityofSystems,Kasdi MerbahUniversity,Ouargla,Algeria
RudyM.S.Kawabata SemiconductorLaboratory,Pontifı´ciaUniversidadeCato ´ lica doRiodeJaneiro,RiodeJaneiro,Brazil
MatthiasKrause Helmholtz-ZentrumDresden-Rossendorf,InstituteforIonBeam PhysicsandMaterialsResearch,Dresden,Germany
MaheshKumar CouncilofScientificandIndustrialResearch(CSIR)-National PhysicalLaboratory(NPL),NewDelhi,India;AcademyofScientificand InnovativeResearch(AcSIR),Ghaziabad,UttarPradesh,India
JoaquimP.Leita ˜ o i3NandDepartmentofPhysics,UniversityofAveiro,Aveiro, Portugal
M.PilarLobera InstitutodeNanocienciayMaterialesdeArago ´ n(INMA),CSICUniversidaddeZaragoza,Zaragoza,Spain;DepartmentofChemicaland EnvironmentalEngineering(IQTMA),UniversityofZaragoza,Zaragoza,Spain; NetworkingResearchCenteronBioengineering,BiomaterialsandNanomedicine, Madrid,Spain
PaulaE.Marı´n SustainableThermalEnergyTechnologies(STET),Universityof Warwick,Coventry,UnitedKingdom
SonaliMehra CouncilofScientificandIndustrialResearch(CSIR)-National PhysicalLaboratory(NPL),NewDelhi,India;AcademyofScientificand InnovativeResearch(AcSIR),Ghaziabad,UttarPradesh,India
DanielN.Micha DepartmentofPhysics,CentroFederaldeEducac¸a ˜ oTecnolo ´ gica CelsoSuckowdaFonseca,Petro ´ polis,Brazil
YanioE.Milian CenterforAdvancedStudyofLithiumandIndustrialMinerals (CELiMIN),UniversityofAntofagasta,Antofagasta,Chile TrilochanMishra FunctionalMaterialGroup,AMPDivision,CSIR-National MetallurgicalLaboratory,Jamshedpur,India
LeandroX.Moreno DepartmentofPhysics,InstituteofGeosciencesandExact Sciences(IGCE),Sa ˜ oPauloStateUniversity“Ju ´ liodeMesquitaFilho”(Unesp), RioClaro,Brazil
GiuseppeNasti DepartmentofChemical,MaterialsandProductionEngineering, UniversityofNaplesFedericoII,Naples,Italy
K.Niranjan NanomaterialsResearchLaboratory,SurfaceEngineeringDivision, CSIR-NationalAerospaceLaboratories,Bangalore,India
Marı´aDoloresPerez InstituteforNanoscienceandNanotechnology(INN)— NationalAtomicEnergyCommission(CNEA)—NationalCouncilforScientific andTechnicalResearch(CONICET),BuenosAires,Argentina;SolarEnergy Department—NationalAtomicEnergyCommision,Av.GeneralPaz1499,San Martin,BuenosAires,Argentina
RodrigoSavioPessoa PlasmasandProcessesLaboratory,AeronauticsInstituteof Technology,SaoJose ´ dosCampos,Brazil
MauricioP.Pires InstituteofPhysics,UniversidadeFederaldoRiodeJaneiro,Rio deJaneiro,Brazil
JuanPla ´ InstituteforNanoscienceandNanotechnology(INN)—NationalAtomicEnergy Commission(CNEA)—NationalCouncilforScientificandTechnicalResearch (CONICET),BuenosAires,Argentina;SolarEnergyDepartment—NationalAtomic EnergyCommision,Av.GeneralPaz1499, SanMartin,BuenosAires,Argentina
FernandoA.Ponce DepartmentofPhysics,ArizonaStateUniversity,Tempe,AZ, UnitedStates
JessicaC.RamirezdelaTorre InstitutodeNanocienciayMaterialesdeArago ´ n (INMA),CSIC-UniversidaddeZaragoza,Zaragoza,Spain;Departmentof ChemicalandEnvironmentalEngineering(IQTMA),UniversityofZaragoza, Zaragoza,Spain
GaneshRegmi DepartmentofElectricalEngineering(SEES),Centrode Investigacio ´ nydeEstudiosAvanzadosdelIPN(CINVESTAV-IPN),Mexico City,Mexico
J.J.Rı´os-Ramı ´ rez DepartamentodeIngenierı´aEle ´ ctrica(SEES),Centrode Investigacio ´ nydeEstudiosAvanzadosdelInstitutoPolite ´ cnicoNacional (CINVESTAV-IPN),CiudaddeMe ´ xico,Mexico
AraceliRomero-Nun ˜ ez DepartamentodeIngenierı´aEle ´ ctrica,Centrode Investigacio ´ nydeEstudiosAvanzadosdelInstitutoPolite ´ cnicoNacional,Mexico City,Mexico
PedroM.P.Salome ´ InternationalIberianNanotechnologyLaboratory,Braga, Portugal
JyotiSaroha CouncilofScientificandIndustrialResearch(CSIR)-NationalPhysical Laboratory(NPL),NewDelhi,India;AcademyofScientificandInnovative Research(AcSIR),Ghaziabad,UttarPradesh,India
AyseSeyhan DepartmentofPhysics,Nig ˘ deO ¨ merHalisdemirUniversity,Nig ˘ de, Turkey;NanotechnologyApplicationandResearchCenter,Nig ˘ deO ¨ mer HalisdemirUniversity,Nig ˘ de,Turkey
SavitaSharma PhysicsDepartment,KalindiCollege,UniversityofDelhi,Delhi,India
ShaileshNarainSharma CouncilofScientificandIndustrialResearch(CSIR)NationalPhysicalLaboratory(NPL),NewDelhi,India;AcademyofScientific andInnovativeResearch(AcSIR),Ghaziabad,UttarPradesh,India
MyriamSolı´s-Lo ´ pez DepartamentodeIngenierı´aEle ´ ctrica,CentrodeInvestigacio ´ n ydeEstudiosAvanzadosdelInstitutoPolite ´ cnicoNacional,MexicoCity,Mexico
Patrı´ciaL.Souza SemiconductorLaboratory,Pontifı´ciaUniversidadeCato ´ licado RiodeJaneiro,RiodeJaneiro,Brazil
VelumaniSubramaniam DepartmentofElectricalEngineering(SEES),Centrode Investigacio ´ nydeEstudiosAvanzadosdelIPN(CINVESTAV-IPN),Mexico City,Mexico
SanjayTiwari PhotonicsResearchLaboratory,SchoolofStudiesinElectronics& PhotonicsPt.RavishankarShuklaUniversity,Raipur,India
YakupUlusu DepartmentofBioengineering,FacultyofEngineering,Karamanoglu MehmetbeyUniversity,Karaman,Turkey
SvetlanaUshak CenterforAdvancedStudyofLithiumandIndustrialMinerals (CELiMIN),UniversityofAntofagasta,Antofagasta,Chile
RecepZan DepartmentofPhysics,Nig ˘ deOmerHalisdemirUniversity,Nig ˘ de, Turkey;NanotechnologyApplicationandResearchCenter,Nig ˘ deOmer HalisdemirUniversity,Nig ˘ de,Turkey
DjamalZerrouki LaboratoryDynamicInteractionsandReactivityofSystems, KasdiMerbahUniversity,Ouargla,Algeria
Preface Overthepast20years,theworldhaswitnessedthegrowingdevelopmentof renewableenergytechnologies,especiallysolarenergysystems.Initial researcheffortshavemainlybeendirectedtothetheoreticalunderstanding, design,modeling,simulation,andfabricationofdevicesforsolarenergy conversionandstoragebasedontraditionalmaterials.Thesetraditionalmaterialsincludec-anda-silicon,cadmiumtelluride,copperindiumgalliumselenide,galliumarsenide,andmanyothers.Recentprogressinsynthesisof micro-andnano-structures,processingtechniques,andapplicationsofsustainablematerialshaveopenednewopportunitiesinthisfieldprovidingsolutionsthatallowthedevelopmentofdeviceswithimprovedperformanceand efficiency.Thisbookcoversawiderangeoftopicsinsustainablematerials forsolarenergytechnologiesorganizedintofivesections:(1)trendsinmaterialsdevelopmentforsolarenergyapplications,(2)sustainablematerialsfor photovoltaics,(3)sustainablematerialsforphotocatalysisandwatersplitting, (4)sustainablematerialsforthermalenergysystems,and(5)sustainable carbon-basedandbiomaterialsforsolarenergyapplications.Itiscomprised of19chapterswrittenbyexpertsinthefieldwithdiverseresearchbackgrounds,nationalities,andspecialtiesincludingphysicists,engineers,materialscientists,andchemists.
Eachchapterisessentiallyadetailedoverviewofrelevantandcurrent topicsinsustainablematerialsforsolarenergysystemsincludingemerging materials,suchasbismuth-basednanomaterials,ferroelectricmaterials,2D MXenematerials,noveldielectriccompounds,tinhalideperovskites,atomic layerdepositedthinfilms,selectivecoatings,wastematerialsbasedoninorganicsalts,carbon-basedmaterials(nanodotandgraphene),andbiomaterials. Alsocoveredareawiderangeofpotentialtechnologicalapplicationsin fieldssuchasphotovoltaics,thermalenergysystems,photocatalysis,and watersplitting.Furthermore,thereisonechapterdevotedtoasignificanttheoreticaltopicbasedonfirstprinciplecalculationsforsolarenergyharvesting materialstomotivatereaderstocomparetheirexperimentalresultswiththeoreticalcalculationstounderstandtheintricaciesinvolved.Eachchaptercontainsacomprehensivelistofreferences.
Finally,researchregardingsolarenergyprocessesanddevicesbasedon sustainablematerialsisanareaworthyofstudyandattention.Thecoauthors ofthistextpresentacombinationofinnovativeandtimelessapproaches,
xx Preface
producingavaluableresourceforstudents,researchers,andprofessionals interestedinoralreadyworkinginthesefields.Furthermore,itisanappropriatereferenceortextforinterdisciplinarycoursesdevotedtosolarenergy materialsand/ordevicesacrossdifferentprogramsanddepartmentssuchas Chemistry,Physics,MaterialsScience,andEngineering. Wetrustthatyouwillenjoyreadingthisbook.
MarianaAmorimFraga InstitutodeCieˆnciaeTecnologia, UniversidadeFederaldeSa˜oPaulo,Sa˜oJose´ dosCampos,Brazil
DelainaA.Amos
UniversityofLouisville,Louisville,KY,UnitedStates SavasSonmezoglu KaramanogluMehmetbeyUniversity,Karaman,Turkey
VelumaniSubramaniam DepartmentofElectricalEngineering(SEES), CentrodeInvestigacio´nydeEstudiosAvanzadosdel IPN(CINVESTAV-IPN),MexicoCity,Mexico
SectionI TrendsinMaterials DevelopmentforSolar EnergyApplications Thispageintentionallyleftblank
Bismuth-basednanomaterials forenergyapplications NicholeC.Cates1,JessicaC.RamirezdelaTorre2,3,SergioAina2,3, M.PilarLobera2,3,4 andMar´ıaBernechea 2,3,4,5 1SmartMaterialSolutions,Inc,Raleigh,NC,UnitedStatesofAmerica, 2Institutode NanocienciayMaterialesdeArago´n(INMA),CSIC-UniversidaddeZaragoza,Zaragoza,Spain, 3DepartmentofChemicalandEnvironmentalEngineering(IQTMA),UniversityofZaragoza, Zaragoza,Spain, 4NetworkingResearchCenteronBioengineering,Biomaterialsand Nanomedicine,Madrid,Spain, 5ARAID,GovernmentofAragon,Zaragoza,Spain
DedicatedtothememoryofourcolleagueandfriendGuillemXercavinswho passedawayinFebruary2020
1.1Introduction Humandevelopmentisfacingaseriousdilemma.Energyconsumptionisrisingduetoincreasedworldwideindustrializationandacontinuouslygrowing population.Traditionally,energyisobtainedfromfossilfuelsthatarelimited resources,arerestrictedtoprecisegeographicalareas,haverisingprices,and insomecasesareassociatedwitheconomicandpoliticalinstability. Moreover,airpollutionandgreenhousegasesaregeneratinghealthandenvironmentalproblemsthatneedtobesolvedintheimmediatefuture. Therefore,itisurgentandnecessarytochangetoclean,zero-emissions renewableenergy.Inthissense,thedevelopmentofenergy-harvestingand energy-storagedevicesbasedonrenewablesourceswillbefundamentalfor thedeploymentofautonomousorisolatedsystemslikeemerginginternet-ofthings(IoT)applications.
Inthischapterwefocusontheuseofbismuthnanomaterialsinenergyharvestingdeviceslikesolarcellsandthermoelectrics,electrochemical energy-storagedevicessuchasbatteriesandsupercapacitors,andchemical energystorageintheformofhydrogenobtainedfromphotocatalyticprocesses.Cationicbismuth(Bi31)hasbeensuggestedasanexcellentcandidate fordefect-tolerantcompounds, i.e.materialswithgoodelectricandoptoelectronicpropertiesdespitethepresenceofdefects.Thesedefectsarelimitedto
shallowstatesatbandedgesthankstotheactivens2 lonepairthatcreates antibondinginteractionsatthevalencebandmaximum(Ganoseetal.,2017). Moreover,thislonepaircanalsoleadtodistortedbondingandthustoalow thermalconductivity,averyconvenientaspectforthermoelectricapplications(Nielsenetal.,2013).Moreover,therelativelylowpriceandabundanceofBiisattractiveforitslarge-scaleapplications(Go ´ mez-Vel ´ azquez etal.,2018;MillerandBernechea,2018).Additionally,despitebeingaheavymetal,bismuthisconsiderednon-toxicandisevenusedincommonmedicinessuchasPepto-Bismol(Mohan,2010;Yangetal.,2015).Indeed,very recently,somereviewsabouttheuseofbismuth-basedmaterialsinbiomedicinehavebeenpublished,pointingtolowornocytotoxicityofthesematerialsevenathighdoses,althoughmoreresearchisneededinthissense (Badrigilanetal.,2020;Shahbazietal.,2020).
Inthischapterwewillputspecialattentiontonanostructuredmaterials becausetheyofferadditionalattractivefeaturesliketuningoflightabsorptionorelectricalpropertieswithsizeand/orshape(Luetal.,2020; Bernecheaetal.,2015;Careyetal.,2015).Moreover,inthistypeofmaterialstheligandsonthesurfacecanmodulatepropertiessuchasbandedge positions,carrierdensity,chargemobility,orthermaltransport(Ongetal., 2013;Liuetal.,2015),whichhasproventobekeyforimprovingperformanceinsolarcells,orphotocatalyticprocesses(Brownetal.,2014;Yang etal.,2012).Foreachtechnology,wewilldiscussthestateoftheart,challenges,andthefocusareasforcurrentresearch.However,wewouldliketo pointoutthatitisnotouraimtoprovideanexhaustivecompilationofall thematerialsthatcanbeemployedintheseapplications,buttoofferanoverviewofthevastandversatilebismuth-basedcandidatesandtheadvantages providedbynanotechnologyforsuchuses.
1.2Photovoltaics Aphotovoltaic(PV)solarcellisadevicethatdirectlytransforms(solar) lightintoelectricitybymeansofasemiconductor.Usuallytheyareusedin solarpanelsforprimaryenergyproductionconvertingsolarlightintoelectricity,buttheycanalsofindapplicationsas(indoor)lightharvestersfor self-poweredsystems,implantableorwearableelectronics,andIoT applications.
1.2.1SolarCellOperation Ifasemiconductorisilluminatedwithlighthavinganenergyequalorhigher thanthedifferenceinenergybetweenthevalenceband(VB)andconduction band(CB),alsoknownasthebandgap(Eg),thislightcanbeabsorbedpromotinganelectronfromthevalencebandtotheconductionbandandleaving aholeinthevalenceband.Byintroducingadequatecontacts,thesecharge
carriers(electronsandholes)canbeseparatedandextractedtoanexternal circuit.Thesecontactswilldependonthesemiconductor(s)usedaslight absorbers.Inatypicalsolarcell,an-typesemiconductor(Fermilevelclose totheconductionband,goodelectron-transportmaterial)isputincontact withap-typematerial(Fermilevelclosetothevalenceband,goodholetransportmaterial).Whenthesetwosemiconductorsareincontact,their Fermilevels(μF)equilibrateandtherelativepositionoftheirvalenceand conductionbandsshift.Theformationofthisp-njunctioncreatesafavorable energypathfortheelectronsandholesgeneratedinbothsemiconductorsto flowinoppositedirections(Fig.1.1).Ifanintrinsicsemiconductorisusedas thelightabsorber,itisusuallysandwichedbetweentwoselectivecontacts,a hole-transportlayer(HTL)andanelectron-transportlayer(ETL).
Theefficiencyofasolarcell(η,in%),alsoknownaspowerconversion efficiency(PCE),isgivenby:
where VOC istheopencircuitvoltage, ISC isshortcircuitcurrent, FF isthe fillfactor,and P0 isthelightpowerusedtoilluminatethedevice(P0 1000W/m2 ifthesunisthelightsource).The VOC isrelatedtothedifferenceinenergyofthematerials Fermilevels(Fig.1.1),the ISC makesreferencetotheactualnumberofelectronsandholesgeneratedintheexternal
FIGURE1.1 Illustrationofsolarcellsoperationbasedonap-njunction(left)oranabsorber withselectivecontacts(right).