https://ebookmass.com/product/sustainable-biofloc-systems-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Marine Ecology: Processes, Systems, and Impacts 2nd Edition
https://ebookmass.com/product/marine-ecology-processes-systems-andimpacts-2nd-edition/
ebookmass.com
Systems Biogeochemistry of Major Marine Biomes Aninda Mazumdar
https://ebookmass.com/product/systems-biogeochemistry-of-major-marinebiomes-aninda-mazumdar/
ebookmass.com
Vermicomposting for Sustainable Food Systems in Africa 1st Edition Hupenyu Allan Mupambwa
https://ebookmass.com/product/vermicomposting-for-sustainable-foodsystems-in-africa-1st-edition-hupenyu-allan-mupambwa/
ebookmass.com
(eTextbook PDF) for Criminal Justice in Action: The Core 9th Edition
https://ebookmass.com/product/etextbook-pdf-for-criminal-justice-inaction-the-core-9th-edition/
ebookmass.com
Financial
Eugene F. Brigham
https://ebookmass.com/product/financial-management-mindtap-1-termprinted-access-card-eugene-f-brigham/
ebookmass.com
003 - Die tödliche Stille Roxann Hill
https://ebookmass.com/product/003-die-todliche-stille-roxann-hill/
ebookmass.com
Schaum's Outline of Calculus, 7th Edition Elliott Mendelson
https://ebookmass.com/product/schaums-outline-of-calculus-7th-editionelliott-mendelson/
ebookmass.com
Prisons, Politics and Practices in England and Wales 1945–2020: The Operational Management Issues Cornwell
https://ebookmass.com/product/prisons-politics-and-practices-inengland-and-wales-1945-2020-the-operational-management-issuescornwell/ ebookmass.com
Financial Management for Public, Health, and Not-forProfit Organizations Fifth Edition – Ebook PDF Version
https://ebookmass.com/product/financial-management-for-public-healthand-not-for-profit-organizations-fifth-edition-ebook-pdf-version/
ebookmass.com
https://ebookmass.com/product/the-shards-a-novel-bret-easton-ellis/
ebookmass.com
SUSTAINABLEBIOFLOCSYSTEMSFOR MARINESHRIMP
SUSTAINABLE BIOFLOC SYSTEMSFOR MARINESHRIMP
TZACHI MATZLIACH SAMOCHA
AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom ©2019ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizations suchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.In usingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN978-0-12-818040-2
ForinformationonallAcademicPresspublicationsvisitour websiteat https://www.elsevier.com/books-and-journals
Publisher: CharlotteCockle
AcquisitionEditor: PatriciaOsborn
EditorialProjectManager: LauraOkidi
ProductionProjectManager: PremKumarKaliamoorthi
CoverDesigner: AlanStudholme
TypesetbySPiGlobal,India
Contributors
LeandroF.Castro ZeiglerBros.Inc.,Gardners,PA, UnitedStates
TerryHanson SchoolofFisheries,Aquacultureand AquaticSciences,AuburnUniversity,Auburn,AL, UnitedStates
IngridLupatsch ABAgriLtd.,Peterborough, UnitedKingdom
DavidI.Prangnell TexasParksandWildlife Department,SanMarcos,TX,UnitedStates
TzachiM.Samocha MarineSolutionsandFeed Technology,Spring,TX,UnitedStates
NickStaresinic aquacalc@gmail.com
GranvilD.Treece Treece&Associates,Lampasas, TX,UnitedStates
Listoffigures
Fig.1.1 Belizeaquaculture. 4
Fig.1.2 Productionatoutdoorshrimp bioflocfarms. 5
Fig.1.3 Traditionalfarmcomparedto thearearequiredforcomparable super-intensiveproduction [red area—(lightgraysquareinprintversion)]. 6
Fig.1.4 Biofloctechnologyinpracticeat WaddellMaricultureCenterin Bluffton,SouthCarolina,USA. 7
Fig.1.5 AmericanMariculture,Inc.on PineIsland,Florida,USA. 9
Fig.1.6 FloridaOrganicAquaculture’s indoorbioflocshrimpculture raceways. 9
Fig.1.7 GlobalBlueTechnologieshatcheryand grow-outcellsnearRockport,Texas, USA. 10
Fig.1.8 Commercialshrimpnurseryin Texasusingbiofloc.Theeight concreteracewaysaremodeled onthe100-m3 TexasA&MARMLraceways. 10
Fig.1.9 Indoorshrimpproduction facilityinMedinadelCampo, Spain. 11
Fig.1.10 Indoorproductionfacilityfor L.vannamei inChina. 11
Fig.1.11 TheGanixBlueOasisfarmin LasVegas,Nevada,USAwas veryshortlived. 12
Fig.1.12 Cumulativedistributionoftotal cost($/kg)forearthenponds vs.RAS. 13
Fig.2.1 Lateralviewoftheexternal morphologyofageneralized penaeidshrimp. 20
Fig.2.2 Externalgenitaliaofgeneralized adultpenaeidshrimp, (A)petasma(male),(BandC) thelyca(female). 20
Fig.2.3 Lateralviewoftheinternal morphologyofanadultfemale
penaeidshrimp(“shrimp-culture. blogspot.com”). 21
Fig.2.4 Typicallifecycleofpenaeid shrimp. 21
Fig.3.1 Appearanceofthewater surface (left) andamicroscopicviewof abioflocaggregate (right) froman indoor,biofloc-dominated productionsystem. 30
Fig.3.2 Morphologyofthethird maxillipedinthreepenaeidspecies: (A) Litopenaeusvannamei, (B) Fenneropenaeuschinensis, (C) Marsupenaeus japonicus.ScaleBar:0.5mm.
33
Fig.3.3 Ascanningelectronmicrograph showingthenet-likestructureof thethirdmaxillipedofPacific WhiteShrimp. 34
Fig.4.1 Supplycanallinkedtothe coastallagoonfromwhichthe TexasA&M-ARMLandTexas ParksandWildlifeLaboratory drawwater. 38
Fig.4.2A TheMarineNitrogenCycle. Featuresofparticularimportance toaquaculturethatarediscussedin thetext.Ammoniaproducedby shrimpandsomebioflocbacteria(8) isconvertedbyammonia-oxidizing bacteria(4&9)intonitrite.Nitriteoxidizingbacteria(5&11)convert nitritetonitrate.Together,these processesarereferredtoas nitrification andoccurin oxygenatedenvironments.Under anoxicconditions,denitrifiers(13) andanammoxmicrobes(10) followdifferentpathwaysto producenitrogengasthatislost totheatmosphere,thus removingnitrogenfromthe system.
42
Fig.4.2B TheBasicNitrogenCycleina MixotrophicBiofloc-DominatedSystem. Shrimpingestprotein-nitrogenfrom formulatedfeed(1)andbiofloc(6)to supportgrowthandbuildbiomass.They excretemainlyammonia(2)thatis assimilatedbybothheterotrophicand autotrophicflocbacteria(3). Theheterotrophsbuildbacterialbiomass andtheautotrophsnitrifyammoniain twosteps:firsttonitrite(4)andthento nitrate(5).Theautotrophicnitrifiers producefarlessbacterialbiomass. Withoutadenitrifyingprocess,nitrate accumulatesinthesystem. 44
Fig.4.3 Thetypicalpatternofammonia,nitrite, andnitrateconcentrationsinanewly startedsystem,demonstratinghow ammonia-oxidizingbacteriadevelop soonerthannitrite-oxidizingbacteria (leadingtonitritebuildup),and theaccumulationofnitratewhenthereis insufficientdenitrificationorwater exchange. 51
Fig.4.4 Organicmatter(biofloc)removedfrom asystembyafoamfractionator. 53
Fig.5.1A Open-walledtank. 62
Fig.5.1B GreenhouseusedattheTexas A&M-AMRL. 63
Fig.5.1C Inflatedair-supportedstructure. 63
Fig.5.1D Alargewoodenstructureused byFloridaOrganicAquaculture, Fellsmere,FL. 63
Fig.5.1 A2500-m3 reservoirpond (left) and36-m3 mixingtank (right) attheTexasA&M-ARML. 64
Fig.5.2 Concreteharvestbasinsatthe TexasA&M-ARML(A)andat BowersShrimpFarm,Palacios,Texas, US(B). 64
Fig.5.3 Airblowersinflatedouble-layer polyethylenegreenhouseroofsatthe TexasA&M-ARML. 67
Fig.5.3A Roundfiberglasstanksused attheTexasA&M-ARML. 70
Fig.5.3B Rigidpolyethylenetanks. 70
Fig.5.3C RacewaylinedwithEPDMmembrane. 72
Fig.5.3D Corrugatedroundtanklined withpolyethylene.
Fig.5.4 Backupdieselgenerators (30kWand250kW)installedat aquaculturefacilities.
Fig.5.5 Airpressuregauge.Noteinstallationof a5-cmPVCvalveforpressure regulation.
Fig.5.6 Positivedisplacementblowerwithbelt drive(A)andregenerativeblowers(B) drivingdiffusersandairliftsinthe TexasA&M-ARML40m3 raceways. Blowershaveinletfilters.
Fig.5.7
78
Silicaairstones(A),diffuser hose(B)(blackhosewith blue line)(lightgrayline inprintversion), andmicro-bubblediffuser (ceramicplate)(C).
Fig.5.8
72
75
77
79
Schematics(A,B,D)andphoto (C)ofanairliftintheTexas A&M-ARML40m3 raceways. Airisinjectedviaapolyethylene hoseatthebaseofa5-cmPVCpipecut inhalflength-wise. 81
Fig.5.9 SchematicofaVenturi injector.Air-oxygenisdrawnintothe flowatthepointofrestriction. 81
Fig.5.10 Schematicofa3 injector.45-psiwater (bluearrow) (darkgrayarrow inprint version)mixeswithair (dashed-line arrow) 82
Fig.5.11 Pureoxygensupply;(A)Liquidoxygen bottle(LOX),(B)Compressedoxygen cylinders,(C)Oxygengenerator. 83
Fig.5.12 Speececone. 84
Fig.5.13 Diagramofasimpleconical settlingtank. Redarrows (light gray inprintversion):water fromculturetank. Bluearrows (darkarrow inprintversion): waterreturntotank.
85
Fig.5.14 Hydrocyclonefilter. 87
Fig.5.15 Aswirlseparator. 87
Fig.5.16 Left photo—PressurizedSand Filterwithsandusedfor filtration; Right photo—Poly Geyserbeadfilterwith beadmedia. 88
Fig.5.17 Drumfilter. 88
Fig.5.18 Beltfeedersplacedover shrimpproductionraceways. 89
Fig.5.19 Evenlyspacedbeltfeedersmountedon walkwaysoveraraceway,andasingle beltfeedermountedonthesideofa culturetank. 90
Fig.5.20 Somemeasurestoprevent entryofunauthorized personnelandpredators: (A)walls,(B)electrifiedwire, (C)motiondetector,(D)predatortrap. 90
Fig.5.21 Flow-injectionanalyzerusedto measureammonia,nitrite,nitrate,and phosphateattheTexasA&M-ARML. 92
Fig.5.21A Agreenhousewithsix40m3 raceways atTexasA&M-ARML.Corrugated fiberglassonfrontwall(A),oneofthree garagedoors(B),outsideviewoffanshutter(C),insideviewoffan(D),open sidewall(E)rolled-up(F)androlleddown(G),electrifiedwiresontheside wall(H)withacontroller(I),andshade clothcoveringtheroof(J). 96
Fig.5.22 Photosof40m3 racewaysandsupport systems:(A)antijumpnetting, (B)freeboard,(C)boardwalk,(D)belt feeder,(E)centerpartition,(F)three5-cm airlifts,(G)accessdoor,(H)
2.5-cmPVCairdistribution pipe,(I)ropesforpositioningcenter partition. 97
Fig.5.23 Top-viewschematicdrawingof40m3 racewaywithsupportsystems. 98
Fig.5.24 Close-up(A)andgenerallayoutofthe raceway’scenterpartition(B);center partition(a),weightmadeof3.8-cm PVCpipeabovespraypipe(b),5-cm PVCspraypipe(c),partitionsupport (d),ropeholdingthepartition(e). 99
Fig.5.25 Spraynozzleinbottomspray pipe:(A)completeset,(B) assemblywithoutspraytip,(C)street adapter. 100
Fig.5.26 Two-hppumpwith5-cmPVC pipenetworkandvalvesof40m3 raceway;(A)waterfromraceway, (B)waterfromreservoir,(C)waterto raceway,(D)watertoevaporation pond,(P)pump. Bluelines (dotted dark grayline inprintversion)show directionofflow. 100
Fig.5.27 Aphotoof40m3 raceway showing(A)5-cmPVCairdistribution pipe,(B)2.5-cmPVCairdeliverypipe, (C)1.6-cmflexibleairsupplyhosesto airliftpumpsanddiffusers,(D)1.6-cm PVCballvalvecontrollingairsupplyto airliftanddiffusers,(E)bottom spraypipewithspraynozzleand diffuser,(F)boardwalk,(G)center partition,(H)ropeholdingpartitionin place.
Fig.5.30 Settlingtanksfor40m3 raceway system:(1)sideview,(2)topview, (3)allsixsettlingtanks:(A)sleeve preventingmixingofwater enteringandleavingthetank, (B)woodensupport,(C)tanklid, (D)1.6-cmsupplyhose,(E)1.6-cm PVCsupplyvalve,(F)5-cmPVCreturn pipe,(G)5-cmPVCdrainvalve. 104
Fig.5.31 Foamfractionatorinthe40m3 raceway: (A)5-cmPVCvalveonpump dischargepipe,(B)1.6-cmPVCvalve controllingwatersupplytofoam fractionator,(C)1.6-cmPVCvalve controllingwatersupplytosettling tank,(D)1.6-cmhoseconnectingvalve andfoamfractionator,(E)oneoftwo 2-cmVenturiinjectors,(F)clearacrylic tube,(G)2.5-cmPVCgate-valve controllingflowfromfoamfractionator toracewayvia2.5-cmflexiblehose (H),(I)foamfractionatordrainvalve, (J)separationtank.
Fig.5.32
101
Fig.5.28 Venturiinjectorassembly:(A)oxygen flowmeter,(B)oxygensupplyvalve, (C)oxygensupplyhoses,(D)check valve,(E)airintake. 102
Fig.5.29 YSI5500DDOmonitoringsystem: (A)on-sitedisplay,(B)computer displaywithaudio,(C)optical probe,(D)programmingand screenshotofalarm-settingsoftware. 103
105
Multicyclonemountingandvalve arrangementin40m3 raceway:(A)5-cm PVCdischargepipe,(B)1.6-cmPVC valvecontrollingsupplytofoam fractionator,(C)1.6-cmPVCvalve controllingsupplytosettlingtank, (D)multicyclonefilter,(E)5-cmPVC valvecontrollingsupplytomulticyclone filter,(F)wastedrainvalve. 106
Fig.5.33 Separationtankswithdrying biofloc(A),afalse-bottomiscreatedby placingawoodenframe(B),covered withchickenwire(C),andcoveredbya geotextilemembrane(D),orburlap cloth(E)forwaterseparation,with hosereturningwaterbacktothe raceway(F)viaanoutletatthebottom ofthetank(G). 106
Fig.5.34 Drybioflocinaseparationtank. 107
Fig.5.35 Greenhousefortwo100m3 racewayswithdouble-layer inflatedroofcoveredbyblack shadecloth(A),inflated double-layerwovenpolyethyleneside(B)andend-walls(C),garagedoor (D),sidedoor(E),exhaustfan(F). 107
Fig.5.36 Schematictopviewofthe100m3 raceway.
Fig.5.37 100m3 raceway:Antijumpnetting (A),5-cmPVCdistributionpipes (B),2.5-cmPVCa3 watersupply pipe(C),boardwalk(D),center partition(E),accessdoor(F), beltfeeders(G).
108
109
Fig.5.38 Two2-hpcentrifugalpumpsfora 100m3 raceway.The5-cmPVC valvemanifoldcontrolssingleordual pumpuse.Valvehandlesarepaintedto reduceUVdegradation. 109
Fig.5.39 Asaddleforapaddlewheelflowmeter (A),oneoftwo-5cmPVCdistribution pipesfeedingsevena3 injectorsineach raceway(B),screenedpumpintake (oneoftwo)noteguardnetontopof thefilterpipe(C),boardwalk(D), freeboard(E),antijumpnetting(F),and racewayfootingsupportingantijump netting(G). 110
Fig.5.40 Waterandairflowofa3 injectorfor aerationandmixinginthe100m3 raceway:Oneoftwo5-cmPVC distributionpipes(A),2.5-cmPVCball valvecontrollingwatertoinjector (B),2.5-cmPVCbarrelunionadapter (C),2.5-cmwatersupplypipe (D),2.5-cmairsuctionpipe(E),a3 injector(F),airbubbleandwater mixturestreamingoutofinjector (G),boardwalk(H),5-cmballvalvefor quickfillofraceway(I). Bluearrows (darkgrayarrows inprintversion):high pressurewatersupply; Redarrows (dottedlightgrayarrows inprint version):atmosphericairsuction. 111
Fig.5.41 Oxygenbackupsystem:aquarium hose(A)deliversoxygentoa3 suction pipe(B). 111
Fig.5.42 Centerpartition:EPDMgluedtobottom andsupportedbyropesconnectedto 5-cmcappedflotationpipe.20-cmPVC concrete-embeddedelbowconnectedto harvestbasin(A),boltingEPDM membraneintoconcretewith stainless-steelframe(B). 112
Fig.5.43 Afullandemptyraceway.Notice freeboardinthefullraceway. 112
Fig.5.44 Racewayfilledtoworkingdepth with20-cmPVCstandpipe extendingabovethesurface (A).Netpreventsshrimplarger than1gfromenteringthedrain line(B). 113
Fig.5.45 (1)2-m3 outdoorfiberglasssettlingfor oneraceway;(2)topviewofsettling tank;(3)pipingsystematshallowend ofraceway;(4)5cmPVCpipe returningwaterfromsettlingtankto
raceway:(A)sleevetopreventmixing ofwaterenteringandleavingsettling tank,(B)1.6-cmhosedeliveringwater fromracewaytosettlingtank, (C)1.6-cmvalvecontrollingflowto settlingtank,(D)5-cmPVC distributionpipe,(E)5-cmPVC pipereturningwaterfromsettlingtank toraceway,(F)2.5-cmPVCvalve feedinga3 injector,(G)5-cmPVCvalve toquicklyfillraceway. 113
Fig.5.46 (1)Homemadefoamfractionator, (2)schematicoffoamfractionator: (A)30-cmPVCpipe,(B)10-cmacrylic pipe,(C)5-cmPVCfoamdeliverypipe, (D)temporaryfoamstoragetank, (E)2.5-cmPVCballvalvecontrolling flowtofoamfractionator,(F)a3 injector, (G)2.5-cmPVCairintakepipe, (H)2.5-cmPVCgatevalvecontrolling returnflowtoraceway. 114
Fig.5.47 Concreteharvestbasin.(A)5-cm PVCoutletfordrainingtheracewayby pump,(B)15-cmPVCthreadedoutlet (oneoneachsidewall)forconnectinga fishpump,(C)nested20-cmPVCfilter pipespreventcloggingthedischarge linewithforeignobjects,(D) safetywoodengridontopofthe structure. 116
Fig.6.1 Filterbagonseawaterinletof TexasA&M-AgriLifeResearch MaricultureLab. 120
Fig.6.2 Pressuresprayingracewayswith freshwatertoremoveorganic matter. 120
Fig.6.3 Venturiinjectorforadding disinfectantstoareservoir.Asthe middle5-cmvalveisclosed,thesuction pressurethroughtheVenturiincreases. 121
Fig.6.4 Liquid(12.5%)sodium hypochloriteina200-L(55-gal.) drumwithasiphonpump. 122
Fig.6.5 Chemicalstorageincontainment traystolimitspills. 122
Fig.6.6 Disinfectingaracewaywithchlorine solutionspraywhilewearing protectiveequipment. 124
Fig.7.1 Amodifiedcontainerusedto dripachemicalsolutionintoa culturetank. 137
Fig.7.2 One-literImhoffconesusedtomeasure settleablesolids. 141
Fig.7.3 Racewayfilledwithnewwater (clear)withlowbioflocandlow turbidity (left) andaracewaywith maturedbioflocwaterwithhigh turbidity (right) 142
Fig.7.4 Harvestedshrimpbeingdissected, dried,andgroundforionic compositionanalysis. 144
Fig.7.5 MicrobialCommunityColorIndex (MCCI)indicatingthetransition fromanalgaltoabacterialsystemas feedloadincreases.Thetransition occursatafeedrateof300–500kg/haperday(30–50g/m2 per day),indicatedbyanMCCI between1and1.2. 148
Fig.7.6 Racewayswithalgaldominatedwater. 148
Fig.7.7 Filterscreenssurroundingthe pumpintakestandpipeoftwosystems toprevententrapmentofPL.An aerationringmountedatthebaseofthe pumpintakeofthe40m3 raceway (left) aidsscreencleaning(theopeningat thetoppreventsdamagetoPLand cavitation). 149
Fig.7.8 BottomandbioflocPVCmixing tool. 150
Fig.7.9 Mixingaracewaymanually. Notetheunevendistributionofbiofloc onthesurface.
Fig.8.1 Postlarvaegradingfromalarval rearingtank(A),transferintoa bucket(B),placementinsideacageina tankwithpureoxygensupply (C),collectionofthesmallPLfrom outsidethecage(D),andtransferintoa newtank(E).
Fig.8.2 In-tankPLseparation.(A)collectingPL withadipnetfromthelarvalrearing tank(C)andtransferintoafloating cagemadefromnettingwithamesh sizethatallowssmallPLtopassback intothetank.
Fig.8.3 Smallerpostlarvae(A)remaining afterremovaloflargerpostlarvae (B)fromthesamelarvalrearing tank.
Fig.8.4 Shippingpostlarvaeinoxygen-inflated plasticbags(A)andpackedin Styrofoamboxes(B).
150
154
155
155
156
Fig.8.5 AcclimatingPLsinhaulingtanks. 157
Fig.8.6 Small-tankacclimationshowinga hand-heldmonitorwith
multiprobeandshippingbagwith PLfloatinginoxygenatedwater(A). Bagsareopened,attachedtothesideof thetank,andprovidedwithanoxygen andairsupplyforeachbag(B).Water fromtheacclimationtankisadded graduallytoashippingbag(C).
157
Fig.8.7 Standpipeinacclimationtankis removedtoletPLdrainbygravityinto thenurserytank(A),Noteairsupplyto theacclimationtank(B). 159
Fig.8.8 SamplingPLinanacclimationtank. Notemixingbytwopeopleand transferofthesample(A)toa 1-Lcontainer(B). 160
Fig.8.9
ObservationandcountingofPLin samplescollectedfromacclimation tanksorshippingbags.General observationsofswimmingactivity, deadPL,andpredationaredonein aglassjarorbeaker(A).Counting isdonebypouringsmallquantitiesofPL onastretched350-μmmeshwhitescreen (B)orframedscreenwithmarkedgrid (C),orbypouringthemintoaflatwhite tray(D).Hand-heldcounter(E). 160
Fig.8.10 TopviewofPLsamplingtank withbottomaerationgrid.
161
Fig.8.11 Spoutlesssamplingcups(A)compared witharegularbeakerwithspout(B). 161
Fig.8.12 MetalstrainerforquantifyingPL. 163
Fig.8.13 Imageofpostlarvatailshowing half-emptygut. 165
Fig.8.14 Highsizevariationofpostlarvae inanursery. 166
Fig.8.15 Exampleofawidesizedistribution inanursery(averageweight SD: 143 118mg/individual,CV:83%, min:23mg/individual,max:600mg/ individual).Eachcolorrepresentsa feedsizeappropriateforasize class:6%of0.4to0.6mm,36%of 0.6to8.5mm,56%of1mm,and3% of1.5-mmdrypellets(Zeigler Bros.,Inc.). 167
Fig.8.16 Suggesteddailyfeedrationsand particlesizebasedonwater temperature,survival,stocking density,andassumedfeedconversion ratioasusedinanurserytrialatthe TexasA&M-ARML.Suggestedfeeding tablewasprovidedbyZeiglerBros., Inc.,Gardners,PA,US. 168
Fig.8.17 Typicalshrimpnurseryfeed labels. 169
Fig.8.18 Datarecordingstation(A), preweighingconveyor(B) postweighingconveyor(C),and anelectronicbalancebetweenthetwo conveyors(D)withremotedisplay(E). 175
Fig.8.19 Fishbasketforharvestingsmall juvenileshrimp(A);basketfor weighinglargejuveniles(B);aclose-up offishbasketwalllinedwith1mmnet (C);afishbasketwithalid(D),and handle(E). 176
Fig.8.20 Harvestbyswivelstandpipe. 178
Fig.8.21 Dewateringdevice(A)andclose viewofadewateringrack(B)of afishpump. 179
Fig.9.1 Pumpintakefilterscreenpipe(A), pumpintake(B),andaerationring(C). 182
Fig.9.2 The5-cmPVCscrewcapofthe bottomspraypipeatthe raceway’sdeepend. 183
Fig.9.3 The5-cmPVCvalvecontrolling waterflowintotheVenturi injector. 183
Fig.9.4 The5-cmbleedvalvecontrolling waterflowintothebottom spraypipe. 183
Fig.9.5 Anairdiffuserattachedtothe bottomspraypipe. 183
Fig.9.6 Watersupplyto100m3 raceway: 5-cmvalvesfeedingtheprimarya3 injectorsupplypipeandthe cyclonefilter(A).A2.5-cmvalve controllingwaterflowtoeacha3 injector(B).Theinjectorassembly (C).A5-cmquick-fillvalveatthe endofeachofthetwoprimary watersupplypipesineachraceway (D),andapressuregagerequiredto ensureadequatewaterpressureto operatetheinjectoratmaximum efficiency(E). 184
Fig.9.7 Effectof20%improvementin biologicalorpricefactorson10-year NetPresentValue(NPV)ofa super-intensivebioflocPacific WhiteShrimpproduction (Hansonetal.,2009).
Fig.9.8 Feedbagsstackedonawooden palletandwrappedin shrink-wrap.
Fig.9.10
Placementofbeltfeedersina 100-m3 TexasA&M-ARMLraceway. 192
Fig.9.11 Left and middle:Castnetusedina confinedspacetomonitorgrowthina 100-m3 tank; Right:Castnetusedinan openarea. 193
Fig.9.12
Fig.9.13
Fig.9.14
SamplingprocedureattheTexas A&M-ARML:(A)Prepare materials;(B)Tarebucket; (C)Spreadthecastnet. 194
Shrimpwithsignsthatindicateculture problems. 195
Shrimpwithsuboptimal(1)and optimal(2)gutfullness.
Fig.10.1 Vividappearanceoffreshlychill-killed shrimp(A)comparedtostressedor deadshrimpthathavebeenchilled(B).
195
202
Fig.10.2 Containers,materials,andtools forharvestattheTexasA&M-ARML: (A)tablewithsamplingsupplies, (B)taredharvestbaskets,(C)harvest usingalong-handledipnet,(D)harvest basketfilledwithshrimp,(E)splashprotectedelectronicbalance,(F) weighingwithhangingelectronic balance;notelidonbasket,(G)basket transferbyfour-wheeler,(H) insulatedharvesttote,(I)chill-killtanks withicewater;shrimpinbaskets,(J) plasticsiftingscoop. 202
Fig.10.3
Fig.10.4
Fig.10.5
Astandpipeinthe20-cmdrain outletduringnormaloperation(A). Thestandpipeisremovedbefore operatingthefishpump.Also shownaretwoscreenedpumpintakes inanempty (rightpicture) anda half-fullraceway(B). 204
Threaded15-cmoutletinthe harvestbasinsidewallabovethebottom (A)andafilterpipetopreventforeign objectsfromenteringthedrainline(B). 205
Nonsubmersible(A)andsubmersible (B)fishpumpwithhydraulichoses, hydraulicpowerpack(C)withelectric motor(1),hydraulicpump(2),and hydraulicoiltank(3). 205
Fig.10.6
186
187
Fig.9.9 Typicalfeedbaglabels. 188
Fishpumpconnecteddirectlyto theracewayoutletonthesidewall oftheharvestbasin(A).Waterfrom thedewateringtowerreturnsto theharvestbasinviathebluehose (B)andshrimparecollectedina harvestbasket(C). 206
Fig.10.7 (A)Funnelingshrimpfromthe dewateringtower(1)intoharvest basketwithlid(noteuseoffeedbagas adisposablechute),(B)dewatering towerwithsteps(1)foreasyaccess, (C)hoseconnectingthefishpumpto thedewateringtower(1)with powerrack(2),(D)fishpumpregulator (1)andhydraulichoseconnectors (2and3). 207
Fig.10.8 Ashrimptrapusedforlive harvest. 207
Fig.10.9 (A)DC-poweredsubmersible pumpwithprotectivenettingand aspraybarinsidea600-Llive-haul tank,(B)thepumpandspraybar, (C)watermixingbypump. 208
Fig.11.1 Settledsolidslevelfroman anaerobicdigestermeasuredwith aclearsamplingtube. 213
Fig.11.2 Stagesinadenitrification digester.Thesemaybelocatedin separatetanksorseparate compartmentsinthesametank. 213
Fig.11.3 Artificialwetlandgrowing Salicornia sp.tofilterwaterfromashrimp system. 215
Fig.11.4 Subsurfaceflowinaconstructed wetlandfornutrientrecoveryof maricultureeffluent.Viewshows1.5% subsurfacegradeandwaterlevelwith respecttosurface. 216
Fig.11.5 Schematicandflowdiagramwith photosofHSSFconstructed wetlandfornutrientrecoveryof maricultureeffluent. 217
Fig.12.1 Shrimphealthinculturesystemsis affectedbymanyfactorsthatact togethertodeterminegrowth,survival, andFCR. 220
Fig.12.2 Shrimpwithfull(A)and partiallyfull(B)guts. 221
Fig.12.3 Shrimpwithseverediscolorationoftail segments(necrosis)suggesting Vibrio infection,infectiousmyonecrosis, ormicrosporidiosis. 221
Fig.12.4 Necrosis(deadtissue)onshrimp. 222
Fig.12.5 Shrimpmoltscollectedfromaraceway. 223
Fig.12.6 Monitoringshrimpsize variationisimportantinhealth monitoringandnecessaryforselecting anappropriate sizefeed. 223
Fig.12.7 Preservedjuvenile L.vannamei showingsignsofIHHNV-causedrunt deformitysyndrome:bentrostrums (left) anddeformityofthetailmuscle and6thabdominalsegment (right) 228
Fig.12.8 Juvenile L.vannamei showingsigns ofTaurasyndrome: red (darkgray inprintversion)tailfanwith roughedgesonthecuticular epitheliumofuropods (left) and multiplemelanizedcuticular lesions (right). 229
Fig.12.9
Juvenile L.vannamei showing signsofwhitespotdisease:distinctive whitespots,especiallyonthecarapace androstrum (left and bottomright) or pink (lightgray inprintversion)to red-brown (darkgray inprintversion) discoloration (topright) 229
Fig.12.10 P.monodon showingsignsofyellow headdisease(YHD): Yellow (lightgray inprintversion)to yellow-brown (dark gray inprintversion)discolorationof thecephalothoraxandgillregion. Threeshrimpwith (left) andwithout (right) YHD. 230
Fig.12.11 P.monodon(left) and L.stylirostris(right) withsignsofvibriosis.Septic hepatopancreaticnecrosiscausedby Vibrio(left).Shrimponfarrightis normal,otherthreehavepalered discoloration(especiallylegs),and atrophied,pale-whitehepatopancreas. Bacterialshelldiseasecausedby Vibrio indicatedbymelanizedlesions (right). 231
Fig.12.12 Shrimpmortalitiesfollowing EMSoutbreakinMexicoin2012. 232
Fig.12.13 Subadult Farfantepenaeuscaliforniensis (left)and Litopenaeusvannamei (right) showingsignsof Fusarium disease: black,melanizedlesionsonthegills (left)andprominentprotrudinglesion (right). 232
Fig.12.14 L.vannamei postlarvawithtrophozoites ofthegregarine Paraophioidina scolecoides inthemidgut. 233
Fig.12.15 Litopenaeussetiferus (left)andjuvenile L.vannamei (right)withsignsofcotton shrimpdisease.Normalshrimp (bottomleft)comparedto“cottony” striatedmusclesandblue-black cuticleofshrimpinfectedwith Ameson sp. 233
Fig.12.16 Scavengerssuchasraccoonsandother pestsmustbeexcludedfromculture andfeedstorageareastoprevent predationonshrimpanddisease introduction. 235
Fig.12.17 Moltsanddeadshrimpremovedfrom aculturetankduringa Vibrio outbreak. 237
Fig.13.1 Ten-yearannualnetcashflow. 264
Fig.13.2 Greenhousestructuretocover eight500-m2 (fourperside) racewayunitssharingacentralharvest area. 266
Fig.13.3 Marketingnetworkwithflowsof informationonproductdemand, price/availability,productsupply, andtransactions. 281
Fig.13.4 Exampledistributionchannels forshrimp. 281
Fig.13.5 HistoricalGulfofMexicoBrown Shrimp(shell-onheadless)pricesat firstpointofsale,1998–2014. 282
Fig.13.6 Farm-raisedPacificWhiteShrimp prices,CentralandSouthAmerica (head-on)atfirstpointofsale, 1998–2014. 282
Fig.14.1 (A)Acommonswimmingpool pressurizedsandfilterwithmanual backwash,(B)anautomatedbeadfilter, and(C)alargefoamfractionatorused tocontrolparticulatematterinthree separateracewaysinthe2003nursery trial. 289
Fig.14.2 WeeklychangesinTAN,NO2-N, NO3-N,andTSSintrialswiththree differentparticlecontrolmethods. 289
Fig.14.3 (A)Heavyfoamdevelopedinthe racewaywiththepressurizedsand filter,(B)apersistentalgalbloom developedintheracewaywithafoam fractionatorduringthe2003nursery trial,(C)Imhoffcones,showing (leftto right) watercolorationintheraceways operatedwithbeadfilter,sandfilter, andfoamfractionator. 290
Fig.14.4 Homemadefoamfractionators(F)with adesignatedpump(P),Venturiinjector (V),polyethylenefoam-diverting sleeve(S),andfoamcollectiontank(C). 291
Fig.14.5 Weeklychangesinammonia(A), nitrite(B),nitrate(C),dailychangesin nitrite(D),andweeklychangesinTSS (E).Alldatafroma62-dnurserytrialin 2009withPacificWhiteShrimp
PL10–12infour40m3 racewaysat5000 PL/m3 fed30%and40%crudeprotein (CP)feeds.
Fig.14.6 DailyNO2-Nina52-dnursery trial(2010)withPacificWhite Shrimpat3500PL11/m3 infour40m3 racewaysandnowaterexchange.
Fig.14.7 WeeklychangesinTAN,NO2-N,TSS, andSSina49-dnurserytrial(2012)in six40m3 racewayswithPacificWhite shrimpat1000PL9/m3 andno exchange.
Fig.14.8 ChangesinTANandNO2-Nina62-d nurserytrial(2014)withthePacific WhiteShrimpPL5–10(0.9 0.6mg)at 540/m3 intwo100m3 racewayswithno exchange.
Fig.14.9 AphotooftheblackHDPE-extruded nettingaroundtheperimeterofa40m3 racewayusedin2006ina94-dgrow-out trialwithPacificWhiteShrimpjuveniles (0.76 0.08g)at279/m3
294
295
298
300
303
Fig.14.10 PacificWhiteShrimpshowing tailnecrosis(A)andtaildeformities(B). 309
Fig.14.11 Yellow&green Vibrio countsina38-d grow-outtrial(2014)in100m3 racewayswithhybrid(FastGrowth Taura-Resistant)juveniles (6.4g)at458/m3 324
Fig.AI.1 Imhoffconeswithbacterial floc. 354
Fig.AI.2 Refractometer(A)andscale visiblewhenlookingthroughthe refractometereyepiece(B),with specificgravityontheleftandsalinity (ppt)ontheright. 356
Fig.AII.1 TCBSagarplateswith Vibrio colonies. (A) Yellow (lightgrayinprintversion) dominant[onlyone green (darkgrayin printversion)],(B)Higherproportion ofgreencolonies. 360
Fig.AII.2 ACHROMagar Vibrio agar (CHROMagar-France)withmauve (V.parahaemolyticus), green-blue (light grayinprintversion)to turquoise-blue (darkgrayinprintversion) (V.vulnificus/V.cholerae),and white(colorless)(V.alginolyticus) colonies. 361
Fig.AIII.1 Injectionpointsforfixationofwhole shrimp. 364
Fig.AIII.2 Incisionlocationsforfixationofwhole shrimp. 364
Fig.AV.1 LayoutoftheBasicWQMap. 374
Fig.AV.2 TheWQMap’sdatainputpanelsfor theexampleprobleminthetext. 376
Fig.AV.3 TheWQMapfortheexampleproblem withinitialandtargetpointsplusthe bicarbonatevector. 377
Fig.AV.4 AdjustmentOptionsmenu withsodiumbicarbonateselected. 377
Fig.AV.5 Water-qualitypointsinthe yellowadjustmentzonecanbereached byaddingNa-bicarbonateand Na-hydroxide. 378
Fig.AV.6 Adding1.13kgofNa-bicarbonateand 0.26kgofNa-hydroxidesolvesthe exampleproblem. 378
Fig.AV.7 Adding0.58kgofNa-bicarbonateand 0.70kgofNa-carbonatealsosolvesthe exampleproblem. 379
Fig.AV.8 NoamountofNa-carbonateand Na-hydroxidecanreachthetargetof theexample. 380
Fig.AV.9 WQMapdecoratedwiththe GreenZone(safearea)plusUIA&CO2 dangerzones. 380
Fig.AV.10 Settingcriticalvaluesofun-ionized ammoniaanddissolvedcarbon dioxide. 381
Fig.AV.11 Predictedwaterquality61/2hafter feeding120kgofshrimpat1.5%/day (blackcircle). 382
Fig.AV.12 Acaseinwhichadding NaHCO3 increasespH. 383
Fig.AV.13 Acaseinwhichadding NaHCO3 decreasespH. 384
Fig.AV.14 Acaseinwhichadding NaHCO3 doesnotchangepH. 384
Fig.AV.15 AddingCO2 lowerspH withoutchangingTotal Alkalinity. 386
Fig.AV.16 RemovingCO2 raisespH withoutchangingTotal Alkalinity. 386
Listoftables
Table1.1 ProductionPerformanceof ArcaBiruFarmin2010 5
Table1.2 AmountofWatertoProduce 1-kgShrimp 7
Table1.3 Grow-OutTrialComparison 12
Table2.1 CalculationsofDailyEnergyand ProteinRequirementsforPacific WhiteShrimp 22
Table2.2 RecommendedDietaryVitamin andMineralRequirementsfor Shrimp 23
Table2.3 SummaryofProgressinthe GeneticImprovementofPacific WhiteShrimpbyShrimp ImprovementSystems(SIS) 25
Table4.1 GeneralCharacteristicsof WaterSourcesforShrimp Culture(Chien,1992;Davis etal.,2004;Prangnelland Fotedar,2006) 40
Table4.2 IonicCompositionofSeawater ComparedtoaSeaSaltMixand TwoInlandSalineWaters 40
Table4.3 Consequencesof Chemoautotrophic,Heterotrophic Bacterial,andAlgalMetabolism for1gofAmmonia-Nitrogen (Ebelingetal.,2006;Lefflerand Brunson,2014) 46
Table4.4 TheMainCharacteristicsof HeterotrophicandAutotrophic Systems 47
Table4.5 Consequencesof Chemoautotrophicand HeterotrophicBacterial MetabolisminaMixotrophicSystem With1kgof35%ProteinFeed,No SupplementalOrganicCarbon, and50.4gNH4+-N(Ebelinget al.,2006)
Table4.6 OxygenSolubilityat AtmosphericPressure(101.3kPa)
Table4.7 TheInfluenceofpHDirectlyon Shrimp
Table4.8 PercentageofTotalAmmoniain theMoreToxicUn-Ionized AmmoniaFormin32–40ppt SalinitySeawateratDifferent TemperaturesandpH 51
Table4.9 MaximumConcentrationsof HeavyMetals,Pesticides, andPCBsPermittedbythe FDAinFarmedShrimp (AquacultureCertification Council,2009;Drazba,2004;FDA,2011) 56
Table5.1 SiteSelectionFactorsforan IndoorShrimpProduction Facility 60
Table5.2 ThermalResistance(R)ofCommon Materials(Fowleretal.,2002; InspectAPedia,2015) 66
Table5.3 CharacteristicsofThree LinersCommonlyUsedbyin Aquaculture 71
Table5.4 Characteristicsof Blower-Driven,Pump-Driven, andCombinedMethodsfor IndoorBiofloc 76
Table5.5 WaterDepthtoWhichAirCan BePumpedatDifferentAir Pressures 76
Table5.6 GeneralCharacteristicsof DifferentDiffusers 79
Table5.7 ComparisonofPureOxygen Sources 82
Table5.8 ComparisonofEquipmentfor SolidsControlinIndoorBiofloc Systems 85
Table5.9 RecommendedEquipmentfor IndoorSuper-IntensiveBiofloc ShrimpProduction 93
Table6.1 CleaningandDisinfection Protocol(Yanongand Erlacher-Reid,2012) 121
Table6.2 RecommendedConcentrations andExposureTimesforChlorine Disinfection(HugueninandColt, 2002;Lawson,1995) 123
Table6.3 ProductstoIncreasethe ConcentrationofMajorCations inCultureWater 127
Table7.1 CommonReagentsUsedto IncreaseAlkalinityandTheir Characteristics 136
Table7.2 OrganicCarbonSourcesfor BioflocSystems 140
Table7.3 CalculationofCarbonAddition (asWhiteSugar)toRemovea DesiredProportionof AmmoniaFromaGivenAmount ofFeed 141
Table7.4 RecommendedConcentrationsof SelectedTraceElementsinWater forShrimpCultureWithina SalinityRangeof5to35ppt (Whetstoneetal.,2002) 143
Table7.5 OptimalRangesofWater-Quality ParametersforPacificWhite ShrimpinBioflocSystems,Frequency ofAnalysis,andAdjustment Methods 145
Table8.1 AcclimationofPacificWhite Shrimp(PL10andOlder)Basedon DifferencesinpH,Salinity (10–40ppt),andTemperature(°C) 159
Table8.2 PacificWhiteShrimpPL TolerancetoFormalinand LowSalinitybyAge 163
Table8.3 RecommendedExposure ConcentrationandExpected SurvivalforFormalinStressTestof PL1toPL5PacificWhiteShrimp (n ¼ 100) 163
Table8.4 RecommendedExposure ConcentrationandExpected SurvivalforLowSalinityStress TestofPL1toPL5PacificWhite Shrimp(n ¼ 100) 164
Table8.5 RecommendedDecreaseand ExpectedSurvivalforLow SalinityStressTestofPL1 toPL5PacificWhiteShrimp(n ¼ 100) 164
Table8.6 PacificWhiteShrimpPLStress Tests 164
Table8.7 SummaryofPLQuality Assessment 165
Table8.8 SummaryofObservationsof PostlarvaeandRecommended Responses 165
Table8.9 RoutineNurseryActivities 173
Table8.10 DataSheetRecordingSamples toCalculateTotalYieldFroma HypotheticalNursery 177
Table9.1 FeedTableBasedonMaximum IngestionAccordingtoBody Weight(Nunes,2011) 189
Table9.2 ExampleofDataCollectedFrom aGrow-OutTank 194
Table9.3 RoutineTasksAssociated WithManagingGrow-OutRaceways 196
Table9.4 Grow-OutRoutine 198
Table12.1 ShrimpHealthSummary 224
Table13.1 TemplateforCalculating Staffing,Salary,andWages foraShrimpProduction Facility 246
Table13.2 TemplateforDetermining ElectricalCostsforTypical MachineryItemsUsedina GreenhouseShrimpProduction Facility 247
Table13.3 Bio-EconomicModelUser InputSpreadsheets,Biological ParameterstoEnter 249
Table13.4 Bio-EconomicModelUserInput Spreadsheets,Racewayand GreenhousePhysicalFacility ParameterstoEnter 249
Table13.5 Bio-EconomicModelUser InputSpreadsheets,InputUnit Cost-PriceParameterstoEnter 250
Table13.6 Bio-EconomicModelUserInput Spreadsheets,Capital InvestmentCosts 251
Table13.7 InvestmentItemInformation RequiredfortheBio-Economic Model 252
Table13.8 CalculationofInitialInvestmentand AnnualReplacementCosts 254
Table13.9 Intermediate-andLong-Term LoanPaymentsofAnnual InterestandPrincipal 257
Table13.10 EnterpriseBudget(Receipts, VariableCosts,FixedCosts,Net ReturnstoLand)andBreakeven PricesforaSuper-Intensive ShrimpProductionSystem ConsistingofTenGreenhouses (EightGrow-OutRacewaysper GreenhouseandTwoNursery RacewaysperGreenhouse) BasedonAverageof10-yr CashFlow 258
Table13.11 ExampleofaOne-YearCash FlowGeneratedasanOutput FromCashFlow,Year1,fora RecirculatingBiosecureShrimp ProductionFacility 260
Table13.12 Bio-EconomicModelOutput 263
Table13.13 ThreeBuildingStructureOptionsto EncloseRacewayUnits 267
Table13.14 EstimatedRacewayConstruction CostsforTwoWallTypesandSlabor SandBottoms,andAs-BuiltRaceway Cost 268
Table13.15 RacewayEconomiesofScale WithPostandLiner Construction 269
Table13.16 FixedCostsforConstructions andEquipment/Machineryforthe TexasA&M-ARMLIndoor RecirculatingShrimp ProductionFacility,Six40m3 Raceways,2014 271
Table13.17 FixedCostsforConstructions andEquipment/Machineryforthe TexasA&M-ARMLIndoor RecirculatingShrimp ProductionFacility,Two100m3 Raceways,2014 273
Table13.18 BaseScenarioConditionsUsed inBio-EconomicModelRun 275
Table13.19 ChangeinNetPresentValue(NPV), InternalRateofReturn(IRR),and CostofProduction(COP)With20% ImprovementinCriticalProduction Factors 276
Table13.20 2013StudyResultsComparing Hyper-Intensive35%Protein Feed(HI-35)toa40%Protein ExperimentalFeed(EXP-40) 276
Table13.21 Summaryof2013ProductionResults ExtrapolatedtoaGreenhouseWith Eight500-m3 Grow-OutRaceways andTwo500-m3 Nursery RacewaysandTwoShrimp SellingPrices 277
Table13.22 SummaryofEconomicAnalysis forthe2013TrialsExtrapolated toaGreenhouseWithEight500-m3 Grow-OutRacewaysand Two500-m3 NurseryRaceways atTwoShrimpSellingPrices 277
Table13.23 Summaryof2014NurseryStudy ComparingProductionof ShrimpGrowninTwoDifferent Greenhouse/Raceway Configurations 278
Table13.24 Summaryof2014NurseryStudyCost ofShrimpProductionRaisedinTwo DifferentGreenhouse/Raceway Configurations 278
Table13.25 Summaryof2014Grow-OutStudy ComparingProductionofShrimp GrowninTwoDifferent Greenhouse/Raceway ConfigurationsandFedTwoDietsin theGreenhouseWithSixRaceways 279
Table13.26 Summaryof2014Grow-Out StudyCostofShrimp ProductionGrowninTwoDifferent Greenhouse/Raceway ConfigurationsandFedTwoDietsin theGreenhouseHaving SixRaceways 279
Table13.27 Historical Ex-Vessel Price($/lb) forHeads-onShrimpFromthe NorthernGulfofMexico 283
Table13.28 TheEffectofShrimpSizeon ProductionandEconomicMeasures 284
Table14.1 Summaryof40m3 Nursery Trials(1998and1999)With PacificWhiteShrimpPostlarvae atDifferentStockingDensities 288
Table14.2 Summaryof50-dNurseryTrial in2000WithPL8–10(0.8mg)Pacific WhiteShrimpat3700PL/m3 in40m3 RacewaysWithSandFilterand SupplementedPureOxygen 288
Table14.3 Summaryofa74-dNursery Trial(2003)With40m3 RacewaysWith 0.6-mgPL5–6PacificWhiteShrimp at4300,7300,and5600PL/m3 With aBeadFilter(BF),Pressurized SandFilter(PSF),andFoam Fractionator(FF) 290
Table14.4 ResultsFroma71-dNursery(2004)in 40m3 RacewaysWith0.6mgPacific WhiteShrimpPLat4000/m3 and ParticulateMatterControlledby WaterExchange(WE)of9.37%/dora CombinationofPressurizedsand FiltersandHomemadeFoam Fractionators(FF)with3.35%/d ExchangeinTwoReplicates 292
Table14.5 Summaryof62-dNurseryTrial (2009)With1-mgPacificWhite ShrimpPL10–12in40m3 Racewaysat 5000PL/m3 Offered30%and40% CrudeProtein(CP)Feeds 293
Table14.6 PerformanceofFast-Growthand Taura-ResistantPacificWhiteShrimp PLina52-dNursery(2010)inFour 40m3 Racewaysat3500PL11/m3 andNoWaterExchangeina Two-ReplicateTrial 295
Table14.7 PerformanceofFast-Growth andTaura-ResistantPacific WhiteShrimpPL9(2.5mg)ina49-d NurseryTrial(2012)in40m3 Racewaysat1000PL/m3 and NoExchange 296
Table14.8 WaterQualityina49-dNurseryTrial (2012)in40m3 RacewaysWithPacific WhiteShrimpat1000PL9/m3 andNo Exchange 297
Table14.9 Summaryof62-dNurseryTrial (2014)WithPacificWhiteShrimp PL5–10(0.9 0.6mg)at675PL/m3 in 40m3 RacewaysFedEZ Artemia and DryFeedinBiofloc-Dominated WaterWithNoExchange 299
Table14.10 Summaryofa62-dNursery Trial(2014)WithPacificWhite ShrimpPL5–10(0.9 0.6mg)at 540PL/m3 in100m3 Raceways fedEZ Artemia andDryFeedin Biofloc-DominatedWaterWith NoExchange 301
Table14.11 NurseryTrialsinRacewaysat theTexasA&MAgriLife ResearchMariculture Laboratory(1998–2014) 302
Table14.12 PerformanceofPacificWhiteShrimp Juveniles(0.76 0.08g)Stockedat 279/m3 ina94-dGrow-OutTrial (2006)inSix40m3 Raceways OperatedinDuplicatesWithThree Treatments:NoFoamFractionator andLimitedWaterExchange (No-FF),FoamFractionatorWith LimitedWaterExchange(FF),andNo FoamFractionatorWithIncreased WaterExchange(WE)WhenFed35% ProteinFeed 304
Table14.13 Summaryofa92-dGrow-Out Trial(2007)infour40m3 Raceways WithPacificWhiteShrimpJuveniles (1.3 0.2g)at531/m3 Feda35% CrudeProteinFeedandNoWater Exchange 305
Table14.14 PacificWhiteShrimp Performanceina108-dGrow-Out Trial(2009)inFour40m3 Raceways with1.0gJuvenilesat450/m3 EachOperatedWithaFoam Fractionator(FF)orSettlingTank(ST) forTSSControlWithTwoReplicate perTreatment 307
Table14.15 Summaryofthe2011Grow-OutTrial WithPacificWhiteShrimpJuveniles inFive40m3 Racewaysat500/m3 WithNoWaterExchangeandFeda 35%ProteinFeed 310
Table14.16 WaterQualityinthe2012Grow-Out TrialWithPacificWhiteShrimp Juvenilesin40m3 Racewaysat 500/m3 WithNoWaterExchange and35%ProteinFeed 312
Table14.17 PacificWhiteShrimpPerformancein a67-dGrow-OutTrial(2012)With 2.7gJuvenilesinSix40m3 Raceways at500/m3 FedTwoCommercial Feeds,NoWaterExchange,With FoamFractionators(FF)andSettling Tanks(ST)toControlBiofloc 313
Table14.18 WaterQualityina77-d Grow-OutTrial(2013)WithPacific WhiteShrimpJuvenilesinSix40m3 Racewaysat324/m3 FedCommercial (HI-35)andExperimental(EXP-40) FeedWithNoWaterExchange 314
Table14.19 PacificWhiteShrimpPerformancein a77-dGrow-OutTrial(2013)inSix 40m3 Racewaysat324/m3 Fed Commercial(HI-35)and Experimental(EXP-40)FeedWithNo WaterExchange 314
Table14.20 WaterQualityina49-d Grow-OutTrial(2014)With PacificWhiteShrimpJuvenilesin Four40m3 RacewaysFedTwo CommercialFeedsWithNo WaterExchange 315
Table14.21 Mean Vibrio ColonyCountsonTCBS overa49-dGrow-OutTrial(2014)in Four40m3 RacewaysFed35%and 40%ProteinFeeds(HI-35and EXP-40) 316
Table14.22 PacificWhiteShrimpPerformancein a49-dGrow-OutTrial(2014)infour 40m3 Racewaysfed35%and40% CrudeProteinFeedsWithNoWater Exchange 317
Table14.23 Grow-OutTrialsin40m3 RacewaysattheTexasA&M-ARML (2006–2014) 318
Table14.24 Summaryof87-dGrow-Out Trial(2010)inTwo100m3 Raceways WithPacificWhiteShrimpJuveniles (8.5g)at270/m3 WithNoWater Exchange 319
Table14.25 WaterQualityina106-d Grow-OutTrial(2011)in100m3 RacewaysStockedWith3.1gJuvenile PacificWhiteShrimpat390/m3,a3 Injectors,HI-35Feed,andNoExchange 321
Table14.26 Summaryofa106-dGrow-OutTrial (2011)inTwo100m3 Raceways StockedWith3.1gJuvenilePacific WhiteShrimpat390/m3,a3 Injectors, HI-35Feed,andNoExchange 321
Table14.27 Summaryofa63-dTrial(2012)intwo 100m3 RacewaysWith3.6-gPacific WhiteShrimpJuvenilesat500/m3,a3 Injectors,HI-35Feed,andNo Exchange 322
Table14.28 WaterQualityina38-dGrow-Out Trial(2014)inTwo100m3 RacewaysWith6.4-gHybrid (Fast-Growth Taura-Resistant) PacificWhiteShrimpJuveniles at458/m3 324
Table14.29 Vibrio Countsina38-dTrial(2014)in two100m3 RacewaysWithHybrid (Fast-Growth Taura-Resistant) Juveniles(6.4g)at458/m3 325
Table14.30 Summaryofa38-dGrow-Out Trial(2014)inTwo100m3 Raceways WithPacificWhiteShrimp(6.4g)at 458/m3,a3 Injectors,EXP-40Feed, andNoExchange 325
Table14.31 SummarizestheGrow-OutTrialsin Two100m3 RacewaysattheTexas A&M-ARML(2010–2014) 326
TableAI.1 PercentageofToxic(Unionized) Ammoniainthe23–27ppt SalinityRangeatDifferent TemperaturesandpH 351
TableAI.2 PercentageofToxic(Unionized) Ammoniainthe18–22ppt SalinityRangeatDifferent TemperaturesandpH 351
TableAI.3 PercentageofToxic(Unionized) AmmoniainFreshwater (TDS ¼ 0mg/L)atDifferent TemperaturesandpH 352
TableAII.1 ColonyColorFormedby DifferentPathogenic Vibrio spp. onTCBSAgarPlatesAccording toSucrose(Yellow)or NonsucroseFermenting(Green) (NoguerolaandBlanch,2008;Doug Ernst,personalcommunication; JeffreyTurner,TAMU-CC,personal communication) 360
TableAIV.1 RecommendedWaterQuality LaboratoryAnalyses, Equipment,andSupplies 368
TableAVI.1 UnitConversionTable 389
TableAVI.2 TemperatureConversion
Preface
Reducingaquaculture’simpactontheenvironmentisnowwidelyrecognizedbyproducers, retailers,researchers,andconsumersalikeas absolutelyessentialiftheindustryistoexpand tomeetthegrowingglobaldemandforseafood.
Consumershavebeenprominentindriving thistrendbydemandingthattheirseafoodpurchasessatisfycertainsustainabilitycriteria. Theirconcernsrelatetopracticesthatnotonly ensureahealthyproduct,butalsoreduceaquaculture’senvironmentalfootprint.Innoparticularorder,theseconcernsinclude:
• Dischargeofuntreatedwastewaterand pathogensintotheenvironment
• Feedingredientsderivedfromstressed fisherystocks
• Antibioticsandartificialcoloringagentsused inproduction
• Inefficientuseofdiminishingfreshwater resources
• Escapeofculturedstockintowild populations
• Preferenceforlocallyraised,ultra-fresh products
• Farm-to-forktraceability
Fulfillingmanyofthesecriteriainevitably requiresashiftfromtraditionalflow-through systemstorecirculatingaquaculturesystem (RAS)technologies.Commercialadoptionof RAS,however,isproceedingveryslowly.Two reasonsforthisareasfollows:
• Itismoreprofitableto“externalize”thecost ofwatertreatmentbydischargingwaste directlyintotheenvironment.
• RASmanagementrequiresgreatertechnical expertise.
Responsibleenvironmentallegislationand consumerpreferenceforsustainablyproduced seafoodbothencouragegrowersto“internalize” watertreatment,theformerbyregulatory enforcementandthelatteractingthroughmarketforces.
Thetechnicalhurdletoexpansionislowered byprovidingthetoolsandtrainingneeded formodernRASdesignandmanagement. Thisis,infact,thecoremotivationbehind thepresentmanualthatdescribesthebioflocdominated(BFD)systemdevelopedby Dr.TzachiSamochaattheTexasA&MAgriLife ResearchMaricultureLaboratory(ARML)in CorpusChristi,Texas.
Dr.Samocha’ssystem,theproductofover 16yearsofresearch,hasreachedapointat whichitisreadyfordisseminationbeyondthe aquacultureresearchcommunity.Partsofit havebeenreportedinthescientificliterature andsomecomponentshavebeenimplemented commercially(FloridaOrganicAquaculture,Fellsmere,FL,US;AmericanMariculture,St.James City,FL,US;BowersShrimp,Palacios,TX,US;severalsmall-scaleproductionoperationsthroughoutthe US;LAQUA,Palotina,Parana,Brazil,andanumberofshrimpfarmersinSouthKorea),butthismanualisthefirstcompletedescriptionmade availableforawideaudienceofaquaculture stakeholders.
AmongRAStechnologies,Dr.Samocha’s BFDsystemstandsoutbyregularlyyielding 7–9kg/m3 ofhigh-quality,marketableshrimp
afterabouttwomonthsofgrow-out.Thisis roughlytentimestheyieldoftraditionalflowthroughsystems,withwhichwell-runBFDsystemsarecostcompetitive.Further,thisis achievedwitheffectivelyzerowaterexchange, animportantfeaturethatenhancesthissystem’s claimofenvironmentalsustainability.
TexasA&Mhasarecordofproducingpracticalaquaculturemanualsbasedondecadesof researchbyitsstaff,students,andcollaborators. Thesemanuals(e.g., TreeceandYates,1988, 2000;TreeceandFox,1993)havehadarecognizedimpactinadvancingcommercialaquacultureinTexasandbeyond.
Thepresentworkaspirestocontinuethattraditionbutdivergesinthatitisnotstrictlya ‘How-To’manual.Whileitdoescontaindetailed instructionsforcarryingoutproceduresessentialtoBFDproductionofPacificWhiteShrimp, italsoprovidesathoroughaccountnotonlyof whatworkedbut—importantly—whatdid not work.Thisgivesreadersdeeperinsightinto theprocessthatresultedinthemostrecent BFDsystemandalsoalertsthemtocertainpitfallstobeavoided.
Muchofthematerialinthemanualthusdoes notfitthecontentandstylerequiredbytypical scientificjournalsandsohasnotpreviously appearedinprint.Thetextalsoispurposely writteninamorenarrativestyleintendedto makeitmoreaccessibletoawideraudience. Theintentistohelpaspiringentrepreneurs buildandoperateascaleversionofDr.Samocha’sBFDsystemtogethands-onexperience undertheconditionsoftheirsite.Suchexperiencewillinformtheirdecisionofhow—or whether—toincorporateBFDtechnologyin
theirbusinessplans.Theeconomicanalysesof Chapter13willproveparticularlyusefulin thisregard.
Alongwithasetofhelpfulappendices,the manualalsotouchesonmoregeneralaspects ofclosedsystems,suchasequipmentand procedureoptions,thatmaybeunfamiliarto thosewithoutexperiencewiththistypeof aquaculture.
Finally,itisthehopeoftheauthorandhis contributorsthatthismanualwillproveuseful instimulatingadoptionofthisinnovative shrimpproductiontechnologyand,insome way,contributetosustainableexpansionofthe USshrimpaquaculturesector.
Descriptionsofprocedures,equipment,andmaterialsusedinthisworksometimesgivethenameof manufacturers.Mentioningsuppliernamesdoes not,however,implyendorsementbytheauthors, TexasA&MAgriLifeResearch,ortheTexasSea GrantProgram
NickStaresinic
References
Treece,G.D.,Fox,J.M.(Eds.),1993.Design,Operationand TrainingManualforanIntensiveCultureShrimp Hatchery. https://eos.ucs.uri.edu/seagrant_Linked_ Documents/tamu/noaa_12406_DS1.pdf.(Accessed25 May2019).
Treece,G.D.,Yates,M.E.(Eds.),1988.Laboratorymanual forthecultureofPenaeidshrimplarvae.TexasA&M UniversitySeaGrantCollegeProgram,TAMU-SG-88-202. Treece,G.D.,Yates,M.E.(Eds.),2000.Laboratorymanualfor thecultureofPenaeidshrimplarvae.TexasA&MUniversitySeaGrantCollegeProgram,TAMU-SG-88-202(R). Reprinted.
Acknowledgments
Thispublicationwassupportedinpart byanInstitutionalGrant(NA14AR4170102: “Seed-to-HarvestOperationsManual&TrainingProgramforIndoorBioFloc-Dominated Productionof Litopenaeusvannamei,thePacific WhiteShrimp”)totheTexasSeaGrantCollege ProgramfromtheNationalSeaGrantOffice, NationalOceanicandAtmosphericAdministration,U.S.DepartmentofCommerce.
Wewishtoacknowledgethecontributions andsupportofthefollowingpeopleand organizations:
Mr.CliffMorris,President&Founder,FloridaOrganicAquaculture,Fellsmere,Florida forprovidingmatchingfundsfortheabovementionedSeaGrantfunding.Wealsogreatly appreciatehisinitiativeandeffortsinhelping tobringthismanualtoitssuccessfulcompletion atacriticaljuncture.
Dr.PamelaPlotkin,Director,TexasSeaGrant CollegeProgram,CollegeStation,Texasforher monumentaleffortstoensurethecompletionof thismanual.
TexasA&MAgriLifeResearchforproviding thefacilityandfundingleadingtothegenerationoftheinformationsummarizedinthis manual.
ZeiglerBros.Inc.,Gardners,Pennsylvania andYSIInc.,YellowSpring,Ohioforverygenerouslyprovidingthetimelyfinancialsupport forprofessionallyrenderedpagelayout.
Mr.RodSantaAna,journalist,TexasA&M AgriLifeCommunications,Weslaco,Texasfor hiscontributiontoourshrimpresearchprogramandhisverywelcomehelpinproviding professionalpagelayoutservicesforanearlier version.
Mr.BobRosenberry,owner,Shrimp NewsInternational,forhismanyconstructive suggestionsandfordistributingapreviewofthis manualtohis9000-plusworldwidesubscribers.
Dr.DominickMendola,SeniorDevelopment Engineer,ScrippsInstitutionofOceanography, UniversityofCaliforniaSanDiego,SanDiego, Californiaforhisgreatinitiativeataparticularly criticaljunctureinthisproject.
Dr.DaleHunt,RegisteredPatentAttorney, SanDiego,Californiaforhisveryquickand indispensablehelpinaddressinguseoftheterm “mixotrophic”inthismanual.
Dr.SandraShumway,DepartmentofMarine Sciences,UniversityofConnecticut,Groton, Connecticutforhermonumentalinitiativein gettingthismanualbackincirculation.
Ms.PatriciaOsborn,Sr.AcquisitionsEditor andMs.LauraOkidi,EditorialProjectManager, atElsevierScience,ElsevierBookDivision,for theirprofessionalismandgeneroushelpinpublishingthismanual.
TheElsevierBookDivisionforundertaking thepublicationofthismanualandsupporting developmentoftheaquacultureindustryover manyyears.
TheU.S.MarineShrimpFarmingProgram, GulfCoastResearchConsortium,USDA, NationalInstituteofFoodandAgriculturefor partialfundingtodevelopsustainableand biosecureshrimpproductionmanagementpracticesforthePacificWhiteShrimp, Litopenaeus vannamei.
REVIEWERS
Wewouldliketoacknowledgethefollowing peoplewhohavecontributedtoimprovingthe contentandthequalityofthismanualbytheir criticalreadingandconstructivesuggestions:
Dr.JohnLeffler,formerDirector,Marine ResourcesResearchInstitute(MRRI),South CarolinaDepartmentofNaturalResources (SCDNR),SouthCarolina
Dr.RobertStickney,formerDirector,Texas SeaGrantCollegeProgram,College Station,Texas
Dr.JohnHargreaves,Aquaculture AssessmentsLLC,SanAntonio,Texas
Mr.WilliamBray,formerSeniorResearch AssociatewiththeTexasAgricultural ExperimentStationtheShrimpMariculture LabatPortAransas,Texas
Dr.TomZeigler,Chairman,ZeiglerBros.Inc. (ZBI),Gardners,Pennsylvaniaforhisvery usefulcommentsoniterationsofthemanual outline
Dr.DallasWeaver,Owner&President, ScientificHatcheries,HuntingtonBeach, Californiaforgenerouslytakingthetimeto providehisinsightfulreviewofAppendixV
CONTRIBUTORS
Dr.SusanLaramore,AssistantResearch ProfessorandHeadAquaticAnimalHealth Laboratory,HarborBranchOceanographic Institute,FloridaAtlanticUniversity,Florida, forhercontributiontoChapter12.
Dr.TomZeigler,Chairman,ZBI,Gardners, Pennsylvania,forhiscontributionto Chapter8and9.
Dr.CraigBrowdy,DirectorofResearch& DevelopmentZBI,forhisconstructiveadvice infinalizingthemanual.
Ms.CherylShew,GlobalShrimpSales Specialist,ZBI,forhercontributionto Chapters8and9.
Mr.LeeSchweikert,mydevotedand exceptionallytalentedformeremployeeof15 years,forhiscontributiontoChapter5.
Dr.PaulFrelierDVM,AquaticDisease Specialist,ThreeForks,Montana,forhis contributiontoChapter12.
Specialthanksareowedtothemany researchers,formerstudents,employees,and individualswhoworkedinourlaborcollaboratedwithusduringthelasttwoandahalf decades.Inparticularwewouldliketomention thefollowingpeople:
Mr.TimMorris,GeneralManager,American Mariculture,Inc.,St.JamesCity,FL,forhis usefulcommentsduringthepreparationof thismanual.Alsospecialthanksforhishard work,devotion,andhisoutstandingresearch supportovereightyearsofworkinmylab.
Dr.MehdiAli,AnalyticalChemistry LaboratoryManager,TheUniversityof NewMexico,Albuquerque,NewMexico, inappreciationofhisexpertiseandthe pleasureofworkingtogetherfor morethanadecadeandahalfondifferent aspectsofwaterqualityinshrimp culturesystems.
Dr.EudesCorreia,DistinguishProfessor, FederalRuralUniversityofPernambuco, DepartmentofFisheriesandAquaculture, Recife,Brazilforthequalityofhisresearch duringhissabbaticalinmyresearchfacility.
Dr.AndreBraga,Professor,Universidad Auto ´ nomadeBajaCalifornia,Instituteof OceanographicInvestigations,Ensenada, Mexico,Dr.DarianoKrummenauer, ResearchProfessor,MaricultureLab,Federal UniversityofRioGrande,Oceanography Institute,RioGrande,Brazil,andDr.Rodrigo Schveitzer,FederalUniversityofSaoPaulo, Professor,DepartmentofMarineSciences, Sa ˜ oPaulo,Brazilfortheirdedication,hard work,andthesignificantresearchresultsthey producedduringtheirprofessionaltraining atthefacility.
Mr.BobAdvent,owner,a3 All-Aqua Aeration,FarmingtonHills,Michiganforour jointresearchonhisa3 injectorsinbiofloc shrimpproductionsystemsandfordonating theinjectorsusedinthetwo100m3 raceway system.
Dr.AllenDavis,AlumniProfessor& Nutritionist,AuburnUniversity,Auburn, Alabamaformorethantwodecadesof workingtogetheronmanyresearchand commercialprojectsrelatedtoshrimp nutritionandsuper-intensiveproduction systemsofnativeandexoticshrimpspecies withnowaterexchange.
Mr.JoshWilkenfeld,formerAssistant ResearchScientist,TexasA&MAgriLife ResearchMaricultureLabatFlourBluff, CorpusChristi,Texasforourmanyyearsof workingtogetherandhistireless contributionstothedevelopmentofbioflocdominatedproductionpracticesfornative andexoticshrimp.
Dr.RyanGandy,ResearchScientist,Fishand WildlifeResearchInstitute,St.Petersburg, Floridaforthemanyproductiveyearsof researchwithnativeandexoticshrimpatthe facility.
MyVerySpecialthanksarereservedformy wifeRuthieandmychildrenforputtingupwith myworkaholicnature.Iloveyouall.
Theauthorsofthismanualaresolelyresponsiblefortheaccuracyofthestatementsandinterpretationscontainedherein.Thesedonotnecessarily reflecttheviewsofthereviewers,NationalSea Grant,TexasSeaGrant,TexasAgriLifeResearch, TexasA&MUniversitySystemortheElsevierBook Division.
Allphotospresentedwithoutcreditwere takenbyformerTexasA&MAgriLifeResearch staffmembers.
1 Introduction
1.1DEVELOPMENTOFBIOFLOC TECHNOLOGYFORSHRIMP PRODUCTION
Inthe1980s,mostshrimpfarmsaroundthe worldweremanagedasextensiveorsemiintensivepondswithlowpostlarvae(PL)stocking densities(2–5PL/m2),lowyields(0.05–0.1kg/ m2),andhighdailywaterexchangeofupto 100%(buttypically10%–15%).Whenevera waterqualityproblemarose—suchashigh levelsofammonia,lowdissolvedoxygen,dense algaeblooms,oroutbreaksofdiseaseorparasiticorganisms—itsimplywasflushedaway byreplacingalargefractionofpoor-quality waterwithfreshlypumped“clean”water.This practiceexportswaterqualityproblemstothe localenvironment,compromisingthehealthof thesurroundingaquaticecosystemandthe qualityofintakewaterpumpedbydownstream aquaculturefarms.Thistypeofwaterquality managementclearlyisunsustainable.
• TauraSyndromeVirus(TSV)infectedshrimp inpondsintheTauraRiverareaofEcuador andrapidlyspreadtootherpartsofthe country.
• WhiteSpotSyndromeVirus(WSSV)started inAsia,arrivedintheUnitedStatesin1995 andcontinuestocauseproblemsinMexico andmanyothercountries.
• EarlyMortalitySyndrome(EMS),alsocalled AcuteHepatopancreaticNecrosisDisease (AHPND),beganinChinain2009and subsequentlyspreadtoThailand,Vietnam, andMexico.
Thisnaturallypromptedmuchgreaterattentiontobiosecurity,whichnowbecameacentral concernofshrimpproducers.Acommon responsetocontrollingdiseaseoutbreakswas toaddasecureholdingreservoirtoisolate disease-freebroodstock.Inaddition,many farmsbegantreatingincomingwater.Inadramaticbreakwithcontemporarypractices,some establishedfarmsevenundertookamajor reconfigurationfromtraditionalflow-through towater-reusesystems.
Manyoftheseflow-throughsystemsgraduallyevolvedtowardsmallerponds(<10ha) withgreaterstockingdensities(5–20PL/m2) andgreateryields(upto0.3kg/m2).Thisinitiallyworkedverywell,butin1988 Monodon baculovirus (MBV)infectedshrimpfarmsinTaiwan.Otherviralandbacterialdiseasessoon followedandthisexactedaheavytollonthe worldwideshrimpaquacultureindustrywell intothe1990s.Someexamplesofnoteworthy diseasesinclude:
Overthissameperiod,effortsweremadeto developaviablemarineshrimpfarmingindustryintheUnitedStates.TheemergingUSindustrywasfacedwithovercominganumberof obstacles,foremostofwhichisalimitedgrowingseason.Significantlyhigherlaborcosts, higherenergycosts,lackofsuitablecoastalland, andmorestringentenvironmentalregulations thaninmanyshrimpproducingcountriesalso contributedtothecompetitivechallenge.
Withlimitedpotentialfordevelopmentof year-roundpondculture,researchfocusedon cost-effectiverecirculatingaquaculturesystems (RAS)thatoperateatmuchhigherbiomass (>5kg/m3)andwithminimalwaterexchange (<10%/day).Becausethesesystemsuseconsiderablylesslandandwaterthantraditional ponds,theypromisedenhancedsustainability, greaterbiosecurity,andaregularsupplyof ultra-fresh,high-qualityshrimptodomestic markets.
Achievingthisobjectivemotivatedadvances inanumberofrelatedareas,especiallydevelopmentofgeneticallyimprovedlinesofcommercialshrimpspeciesthataremoretolerantof elevatedstockingdensities,advancedaeration equipmentandtechniques,efficientammonia managementprocedures,andmanufactured dryfeedsspeciallyformulatedforuseinhighdensityclosedsystems.Regardinggenetically improvedshrimp,manygenerationsofselective breedingresultedintheproductionofspecific pathogenfree(SPF)stocksofPacificWhite Shrimp Litopenaeusvannamei. Thisspecieshas sincerisentobecometheprimaryspeciesculturedinpondsandclosedsystemsaroundthe world.Thesegeneticlineshavebeenakeyreasonforachievementofthemuchhigheryields inmodernaquaculturesystems.
RASmaybeclassifiedinseveralways.One thatisusefulforpresentpurposesdistinguishes betweenthosethatraisethetargetspeciesseparatelyfromthebio-treatmentprocessesand thoseinwhichthetargetspeciesisraisedin thesamewatervolumeasthebio-treatment organisms.
Thefirstincludestypical“clearwater”and IMTA(IntegratedMulti-TrophicAquaculture) systems,bothofwhichmaintainseparatecompartmentsforgrow-outandremovalofdissolvedinorganicnitrogen.Clearwatersystems useatraditionalbiofilter(Timmonsand Ebeling,2013)andIMTAusesmacroalgaeand bivalvesforessentialwater-treatmenttasks (Samochaetal.,2015).
Inthesecondcategory,thetargetspeciesis raisedtogetherwithorganismsthatremove ammoniaandrecyclewasteproducts.These maybeamixtureofphytoplanktoninso-called greenwatersystems,orflocaggregateswith theirmicrobialcommunityin“brownwater” systems.Thebioflocsystemthatisthesubject ofthismanualbelongstothelattertype.
1.2THEBEGINNINGSOFBIOFLOC
Ingeneralterms,flocculationisaphysical processbywhich,underfavorableconditions, smallparticlessuspendedinafluidcoalesceto formaggregates.Ithaslongbeenemployedin wastewatertreatmentandhasanevenlonger historyinfoodprocessing,especiallyinbeer andcheeseproduction.
Oneofthefirstreferencesinthepopularscientificliteraturetowhatnowisreferredtoas “biofloc”bytheaquaculturecommunitymight betracedtoashortpieceentitled“FoodBubbles”thatappearedintheNovember1964issue ofthe ScientificAmerican magazine.Itintroduced whatpreviouslywasanunappreciatedpathin themarinefoodweb:wave-generatedbubbles thatstimulatedformationoforganic-richaggregates.Thearticlestated:
...moleculesfromthevastsupplyoforganicchemicalsdissolvedinseawateradhereinlargenumbers tothe“airbubbles”two-dimensionalboundary layers.Theyformclumpsoforganicmaterialthat areeatenbythesmallestmembersofthemarineanimalpopulation.Itwaspointedoutthatthequantityof organicmatterintheoceansisatleast50timesgreater thanthatcontainedinalllivingplankton.