https://ebookmass.com/product/sustainable-alternatives-for-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Visions and Strategies for a Sustainable Economy: Theoretical and Policy Alternatives Nikolaos Karagiannis https://ebookmass.com/product/visions-and-strategies-for-asustainable-economy-theoretical-and-policy-alternatives-nikolaoskaragiannis/ ebookmass.com
Future Propulsion Systems and Energy Sources in Sustainable Aviation Farokhi
https://ebookmass.com/product/future-propulsion-systems-and-energysources-in-sustainable-aviation-farokhi/
ebookmass.com
Sustainable Aviation Technology and Operations: Research and Innovation Perspectives Roberto Sabatini
https://ebookmass.com/product/sustainable-aviation-technology-andoperations-research-and-innovation-perspectives-roberto-sabatini/
ebookmass.com
The Devil's Own Game Annie Hogsett https://ebookmass.com/product/the-devils-own-game-annie-hogsett-2/
ebookmass.com
Control of Mechatronic Systems Patrick O. J. Kaltjob https://ebookmass.com/product/control-of-mechatronic-systems-patricko-j-kaltjob/
ebookmass.com
The Christmas Blessing: A One-of-a-Kind Nativity Story about the Love That Brings Us Together Erin Guendelsberger
https://ebookmass.com/product/the-christmas-blessing-a-one-of-a-kindnativity-story-about-the-love-that-brings-us-together-eringuendelsberger/
ebookmass.com
Fundamentals of electric circuits Sixth Edition Alexander Charles K
https://ebookmass.com/product/fundamentals-of-electric-circuits-sixthedition-alexander-charles-k/
ebookmass.com
Data Assimilation for the Geosciences. From Theory to Application 1st Edition Edition Steven J. Fletcher (Auth.)
https://ebookmass.com/product/data-assimilation-for-the-geosciencesfrom-theory-to-application-1st-edition-edition-steven-j-fletcher-auth/
ebookmass.com
Enhancing Adobe Acrobat Forms with JavaScript : Take Your Forms to the Next Level! 1st Edition Jennifer Harder
https://ebookmass.com/product/enhancing-adobe-acrobat-forms-withjavascript-take-your-forms-to-the-next-level-1st-edition-jenniferharder/
ebookmass.com
https://ebookmass.com/product/without-saying-goodbye-laura-jarratt/
ebookmass.com
SUSTAINABLE ALTERNATIVESFOR AVIATIONFUELS SUSTAINABLE ALTERNATIVES FORAVIATIONFUELS Editedby
ABUYOUSUF
DepartmentofChemicalEngineering&PolymerScience, ShahjalalUniversityofScienceandTechnology,Sylhet-3114, Bangladesh
CRISTINAGONZALEZ-FERNANDEZ BiotechnologicalProcessesUnit,IMDEAEnergy,Móstoles,Spain
DepartmentofChemicalEngineeringandEnvironmental Technology,SchoolofIndustrialEngineering,Valladolid University,Valladolid,Spain
InstituteofSustainableProcesses,Valladolid,Spain
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2022ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwriting fromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissions policiesandourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensing Agency,canbefoundatourwebsite: www.elsevier.com/permissions
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanas maybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityfor anyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfrom anyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.
ISBN:978-0-323-85715-4
ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: CharlotteCockle
AcquisitionsEditor: PeterAdamson
EditorialProjectManager: ChrisHockaday
ProductionProjectManager: SuryaNarayananJayachandran
CoverDesigner: VictoriaPearsonEsser
TypesetbySTRAIVE,India
Dedication To MydearwifeSharminSultana childrenYaraShanumandIbrahAnum whohavebeendeprivedofmyattentionowingtothisbook -AbuYousuf
To Allresearchers,policymakers,andstakeholdersworkingforamoresustainableworld -CristinaGonzalez-Fernandez
1.Conversionpathwaysforbiomass-derivedaviationfuels1
AhasanulKarim,M.AmirulIslam,AbdullahNayeem,andAbuYousuf
2.Thermochemicalconversionofagriculturalwastetobiojetfuel27 NicolasVela-García,DavidBolonio,María-JesúsGarcía-Martínez,MarceloF.Ortega, andLaureanoCanoira
Introduction
3.Conversionoflignin-derivedbio-oiltobio-jetfuel49
MajidSaidiandPanteaMoradi
4.Mainfeedstockforsustainablealternativefuelsforaviation69 V^ anyaMarciaDuartePasa,CristianeAlmeidaScaldadaferri,andHenriquedosSantosOliveira
3 Aviationbiofuelfeedstocks Lipids73
4 Aviationbiofuelfeedstocks:Sugarandstarchycrops84
5 Lignocellulosicbiomass90
6 Conclusion 97 References 98
5.Advancedbiorefineriesfortheproductionofrenewableaviationfuel103 AraceliGuadalupeRomero-Izquierdo,ClaudiaGutierrez-Antonio,FernandoIsrael Gómez-Castro,andSalvadorHernández
1 Introduction 103
2 Productionprocessesofrenewableaviationfuel105
3 Biorefineriestoproducerenewableaviationfuel111
4 Futuretrendsintheproductionofrenewableaviationfuelthroughbiorefineries116
5 Conclusions 119 Acknowledgments120 References 120
6.Roleofcatalystsinsustainableproductionofbiojetfuelfromrenewable feedstocks125
AbuYousuf,Md.AnisurRahman,MohammadJalilurRahman,andMd.ShahadatHossain
1 Introduction 125
2 Rolesofcatalystondifferentfeedstock127
3 Rolesofcatalystondifferentstagesofbiojetfuelproduction155
4 Futurelook 164
7.Biojetfuelsandemissions177
ReyesGarcía-Contreras,JoseA.Soriano,ArántzazuGómez,andPabloFernández-Yáñez
1 Biojetfuelsproperties177
2 Biojetfuelsemissionsinjetengines183
3 Biojetfuelsemissionsincompressionignitionengines188
4 Strengthsandweaknessesoftheuseofbiojetfuels196 References 196
8.Governanceandpolicydevelopmentsforsustainableaviationfuels201 MarinaEfthymiouandTimRyley
1 Introduction 201
2 Governanceofsustainableaviationfuels203
QingYangandFuyingChen
10.Sustainabilitytensionsandopportunitiesforaviationbiofuel productioninBrazil237
MarPalmerosParada,WimH.vanderPutten,LuukA.M.vanderWielen,PatriciaOsseweijer, MarkvanLoosdrecht,FarahnazPashaeiKamali,andJohnA.Posada 1
Contributors DavidBolonio
DepartmentofEnergyandFuels,SchoolofMiningandEnergyEngineering,Universidad PolitecnicadeMadrid,Madrid,Spain
LaureanoCanoira
DepartmentofEnergyandFuels,SchoolofMiningandEnergyEngineering,Universidad PolitecnicadeMadrid,Madrid,Spain
FuyingChen
StateKeyLaboratoryofCoalCombustion,HuazhongUniversityofScienceandTechnology, Wuhan,Hubei,PRChina
HenriquedosSantosOliveira
DepartmentofChemistry,InstituteofExactSciences,FederalUniversityofMinasGerais,Belo Horizonte,MinasGerais,Brazil
MarinaEfthymiou
DublinCityUniversityBusinessSchool,Dublin,Ireland
PabloFerna ´ ndez-Ya ´ n ˜ ez
SchoolofIndustrialandAerospaceEngineeringofToledo,UniversityofCastilla-LaMancha, CiudadReal,Spain
ReyesGarcı´a-Contreras
SchoolofIndustrialandAerospaceEngineeringofToledo,UniversityofCastilla-LaMancha, CiudadReal,Spain
Marı´a-Jesu ´ sGarcı´a-Martı ´ nez
DepartmentofEnergyandFuels,SchoolofMiningandEnergyEngineering,Universidad PolitecnicadeMadrid,Madrid,Spain
Ara ´ ntzazuGo ´ mez
SchoolofIndustrialandAerospaceEngineeringofToledo,UniversityofCastilla-LaMancha, CiudadReal,Spain
FernandoIsraelGo ´ mez-Castro
ChemicalEngineeringDepartment,NaturalandExactSciencesDivision,CampusGuanajuato, UniversityofGuanajuato,Guanajuato,Guanajuato,Mexico
ClaudiaGutierrez-Antonio
EngineeringSchool,AutonomousUniversityofQueretaro,ElMarques,Queretaro,Mexico
SalvadorHerna ´ ndez
ChemicalEngineeringDepartment,NaturalandExactSciencesDivision,CampusGuanajuato, UniversityofGuanajuato,Guanajuato,Guanajuato,Mexico
Md.ShahadatHossain
DepartmentofChemicalEngineeringandPolymerScience,ShahjalalUniversityofScienceand Technology,Sylhet,Bangladesh
M.AmirulIslam
LaboratoryforQuantumSemiconductorsandPhoton-basedBioNanotechnology,Department ofElectricalandComputerEngineering,FacultyofEngineering,UniversitedeSherbrooke, Sherbrooke,QC,Canada
AhasanulKarim
DepartmentofSoilSciencesandAgri-foodEngineering,UniversiteLaval,Quebec,QC,Canada
PanteaMoradi
SchoolofChemistry,CollegeofScience,UniversityofTehran,Tehran,Iran
AbdullahNayeem
DepartmentofChemicalEngineering,CollegeofEngineering,UniversitiMalaysiaPahang, Gambang,Pahang,Malaysia
MarceloF.Ortega
DepartmentofEnergyandFuels,SchoolofMiningandEnergyEngineering,Universidad PolitecnicadeMadrid,Madrid,Spain
PatriciaOsseweijer
DepartmentofBiotechnology,DelftUniversityofTechnology,Delft,TheNetherlands
MarPalmerosParada
DepartmentofBiotechnology,DelftUniversityofTechnology,Delft,TheNetherlands
V^ anyaMarciaDuartePasa
DepartmentofChemistry,InstituteofExactSciences,FederalUniversityofMinasGerais,Belo Horizonte,MinasGerais,Brazil
FarahnazPashaeiKamali
DepartmentofBiotechnology,DelftUniversityofTechnology,Delft,TheNetherlands
JohnA.Posada
DepartmentofBiotechnology,DelftUniversityofTechnology,Delft,TheNetherlands
Md.AnisurRahman
DepartmentofChemicalEngineeringandPolymerScience,ShahjalalUniversityofScienceand Technology,Sylhet,Bangladesh
MohammadJalilurRahman
DepartmentofChemistry,ShahjalalUniversityofScienceandTechnology,Sylhet,Bangladesh
AraceliGuadalupeRomero-Izquierdo EngineeringSchool,AutonomousUniversityofQueretaro,ElMarques,Queretaro,Mexico
TimRyley
GriffithAviation,SchoolofEngineering&BuiltEnvironment,GriffithUniversity,Brisbane, QLD,Australia
MajidSaidi SchoolofChemistry,CollegeofScience,UniversityofTehran,Tehran,Iran
CristianeAlmeidaScaldadaferri
CollegeofEngineeringandPhysicalSciences,EnergyandBioproductsResearchInstitute,Aston University,Birmingham,UnitedKingdom
JoseA.Soriano
SchoolofIndustrialandAerospaceEngineeringofToledo,UniversityofCastilla-LaMancha, CiudadReal,Spain
WimH.vanderPutten DepartmentofTerrestrialEcology,NetherlandsInstituteofEcology,Wageningen,The Netherlands
LuukA.M.vanderWielen
DepartmentofBiotechnology,DelftUniversityofTechnology,Delft,TheNetherlands;Bernal Institute,UniversityofLimerick,Limerick,Ireland
MarkvanLoosdrecht DepartmentofBiotechnology,DelftUniversityofTechnology,Delft,TheNetherlands
NicolasVela-Garcı ´ a DepartmentofChemicalEngineering,InstituteforDevelopmentofAlternativeEnergiesand MaterialsIDEMA,UniversidadSanFranciscodeQuito,Quito,Ecuador
QingYang
StateKeyLaboratoryofCoalCombustion,HuazhongUniversityofScienceandTechnology, Wuhan,Hubei;China-EUInstituteforCleanandRenewableEnergy,HuazhongUniversityof ScienceandTechnology,Wuhan,PRChina;JohnA.PaulsonSchoolofEngineeringand AppliedSciences,HarvardUniversity,Cambridge,MA,UnitedStates
AbuYousuf
DepartmentofChemicalEngineeringandPolymerScience,ShahjalalUniversityofScienceand Technology,Sylhet,Bangladesh
Preface Environmentalpollutionandglobalwarmingaregreatconcernscausedbythecombustionoffossilfuels.Biofuelsareproposedaspotentialalternativesforfossilfuelsinthe transportationsector.Recently,biofuelshavebeenintroducedintheaviationtransportationsector.Yet,theuseofbiofuelsislimitedduetothelackofacommerciallyviable andattractiveproductionmethod.Biojetfuel,alsoknownassyntheticparaffinickerosene(SPK),iscomposedofrenewablehydrocarbonswhosepropertiesarealmostsimilar tothatoffossiljetfuel.ThecombustionofSPKproduceslowerCO2 emissionsthanfossil jetfuel.Therefore,biojetfuelhasbeenidentifiedbytheInternationalAirTransport Association(IATA)asthemostviablealternativetosubstitutefossilfuelsinaviation.
Biojetfuelcanbesynthesizedfromvarioussourcesofbiomassthroughdifferentprocessingrouteslikeoleochemical,thermochemical,andbiochemical.Biomassthatcanbe usedfortheproductionofbiojetfuelaretriglycerides,lignocellulosicbiomass,sugar,and starchyfeedstock.Allofthecarbonsourcesusedasfeedstockshaveadvantagesanddisadvantages.Triglycerides-basedfeedstockslikecanolaoil,jatrophaoil,soybeanoil,and castoroilareexpensivebutrequirelow-costprocessing.Bycontrast,low-costmaterials likelignocellulosicbiomass,themostabundantorganicmaterialsontheearth,require longprocessingstepsthatresultinincreaseofcost.Therefore,theselectionofthebest productionprocesswilldependontheavailabilityoftherawmaterials,lowprocessing cost,andindustrialviability.
Noneofthebooksavailableinthemarketfocusonbiojetfuelsfromtechnical,economic,environmental,societal,andpolicyaspectsunderasingletitle.Thisbook, SustainableAlternativesforAviationFuels,providesanin-depthdescriptionofthemain challengesfortheproductionofalternativeaviationfuelsforbothresearchersandindustries.Inparticular,thebookfocusesonthebiojetfuelprocesspathway,feedstock availability,conceptualprocessdesign,processeconomics,engineperformance,technoeconomicanalysis,environmentalissues,policydesign,andsustainabilityofalternative aviationfueltechnology.
Chapter1 explainsthefourpredominantpathwaystoproducerenewablejetfuels includingoil-to-jet,alcohols-to-jet,sugar-to-jet,andsyngas-to-jetpathways.Thechapterillustratestheconceptualprocessandaddressesthekeychallengesofthesepathwaysin detail.
Chapter2 comprehensivelyassessesthepotentialofASTM-approvedroutesforbiojetfuelproductionfromagriculturalwastes.Itemphasizesthethermochemicalandbiochemicalconversionroutesoflignocellulosicagriculturalwastes/residuesfrom oleaginouscropsandtheirpotentialuseinbiojetfuelproduction.
Chapter3 providesanoverviewofthereactionnetworkandtheeffectofoperating parametersonthepropertiesoflignin-derivedjetfuelhydrocarbonrange.Toinvestigate thereactionnetwork,thechapterprovidesabriefreviewoftheeffectofvariablecatalysts onproductdistributionandadetailedsummaryusingtheinvestigatedprimaryandsecondaryproducts.
Chapter4 presentsarangeofmaterialsthatcanbeusedasfeedstockfordifferent productionprocessesofsustainableaviationfuels(SAFs).InordertoacceleratetheproductionofSAFs,thechapterextensivelydiscussesthebiomassproductionchainsand wasteprocessingtoconvertfattymaterialsandforest,agriculture,industrial,andmunicipalwastesintobiokerosene.
Chapter5 focusesontheproductionofrenewableaviationfuelinbiorefinery schemes.Italsoincludesthemaininformationabouttheindividualproductionprocesses.
Chapter6 summarizesthedifferenttypesofcatalystsalongwiththeircatalyticreactionmechanismusedinthecatalyticconversionofdifferentbiomassfeedstockstobiojet fuel.Thechapteralsoaddressesthelimitationsassociatedwithsomecatalyticprocesses andsuggestspossiblefutureresearchdirections.
Chapter7 evaluatestheeffectofbiojetfuelsonemissionsinaircraftenginesfromthe viewpointofthecompositionandmainphysicochemicalpropertiesandtheemissions associatedwithbiofuelsinjetenginesandcompressionignitionengines.
Chapter8 focusesonthegovernanceandpolicydevelopmentsratherthanthetechnicalaspectsofSAFproduction.Thechapterstartswithanintroductoryargumentabout theenvironmentalneedforSAFgovernanceandpolicy.Thesubsequentsectionsoutline thegovernancesurroundingSAFandprovideamorespecificpolicyframework,followedbysomeongoingpolicylessonsfromrecentdevelopments.
Chapter9 summarizesthebiomassfeedstocksavailableforaviationfuelandtheir conversionpaths.Then,thetechnical,economic,andenvironmentalimpactsofbiojet fuelarereviewedfromtheperspectiveoflifecycleassessment.
Chapter10 presentsanovelcontext-dependentex-antesustainabilityanalysisofaviationbiofuelproductionfocusedonthesoutheastregionofBrazil,whichincludeseconomic,environmental,andsocietalaspects.Basedoninputsfromlocalstakeholdersand sustainabilityliterature,eightaspectsofsustainabilityaredescribed:climatechange,commercialacceptability,efficiency,energysecurity,investmentsecurity,profitability,social development,andsoilsustainability.
Researchersandscientistswithstrongacademicbackgroundsandpracticalexperienceshavesharedthethoughtsandfindingsoftheirinvestigationsinthisbook.We believethebookwillenrichtheforesightofcurrentresearchersandindustrialistswho arededicatedlyworkingonSAFs.
CristinaGonzalez-Fernandez Madrid,Spain
AbuYousuf Sylhet,Bangladesh
Acknowledgments Weexpressourgratitudetoallthedistinguishedauthorsfortheirthoughtfulcontributionsthathaveaddedtothesuccessofthisbookproject.Theirpatienceanddiligencein revisingthefirstdraftofthechaptersafteradaptingthesuggestionsandcommentsare highlyappreciated.
Weacknowledgethesolicitouscontributionsofallthereviewerswhospenttheir valuabletimeinaconstructiveandprofessionalmannertoimprovethequalityof thebook.
WearegratefultothestaffatElsevier,particularlyDr.PeterW.Adamson(Acquisitions EditorforRenewableEnergy),whoprovideduswithtremendoussupportthroughout theprojectandforhisgreatideasandencouragingthoughts.WealsoacknowledgeLetı´cia Lima(EditorialProjectManager),ChrisHockaday(EditorialProjectManager),and SrinivasanBhaskaran(CopyrightsCoordinator)fortheirearnesthandlingofthebook.
Conversionpathwaysforbiomassderivedaviationfuels AhasanulKarima,M.AmirulIslamb,AbdullahNayeemc,andAbuYousufd aDepartmentofSoilSciencesandAgri-foodEngineering,UniversiteLaval,Quebec,QC,Canada bLaboratoryforQuantumSemiconductorsandPhoton-basedBioNanotechnology,DepartmentofElectricalandComputer Engineering,FacultyofEngineering,UniversitedeSherbrooke,Sherbrooke,QC,Canada cDepartmentofChemicalEngineering,CollegeofEngineering,UniversitiMalaysiaPahang,Gambang,Pahang,Malaysia dDepartmentofChemicalEngineeringandPolymerScience,ShahjalalUniversityofScienceandTechnology,Sylhet,Bangladesh
1.Introduction Theutilizationoffossilfuelssuchastransportationfuelshasresultedinanincreaseof atmosphericgreenhousegasesparticularlycarbondioxide(CO2) [1].Numerousinitiatives,includingtheexpansionofbiomass-basedrenewableenergyresourceshavebeen introducedtolowertheCO2 emissions [2].Severalcountriesandautomobileindustries haveavisiontopartiallyorcompletelyreplacegasolinefueledjetsbysole-electricor hybridalternatives [3].However,thefossilfuelresourcesarestillbeingusedasmain sourceintheaviationindustry.Notably,thecurrentenergysourceforjetfuelisamixture ofhydrocarbonparaffins,isoparaffins,aromatics,andcycloalkanes,withdefinedcarbon chainlengthsandproperties [4,5].
Thedemandforjetfueliscontinuouslyincreasingdaybyday.Anannualincreaseof about5%isprojectedby2050accordingtothepredictionofInternationalAirTransport Association(IATA) [2,6].Furthermore,thefleetnumberandsizewillbecometriplein thenexttwodecades [7,8].Inthelast20years,thetotalconsumptionofjetfuelbyairlinesamplifiedfrom260millionto340millionperyear [2].Itisprojectedthatthefleet sizewillincreasefrom340milliontomorethan500millionperyearby2026 [9].Inthis context,therenewableaviationfuelcouldbeapotentialreplacementtodecreaseCO2 emissionsandachievethegoalsofdecarbonizationin2050 [10,11].Theliterature showedthatbiojetfuel(orrenewablejetfuel(RJF))producedfromrenewablefeedstocks coulddrasticallyreduce( 80%)emissionofgreenhousegases [12,13].Therefore,the demandforRJFhasstimulatedfortheaviationtransportation [14]
Generally,theaviation-fuelisamixtureofdifferenthydrocarbons,suchasbranched chainisoalkanes,n-paraffins,aromatics,andcyclicalkanes [15].However,thecarbon numbersandmolecularweightsofthefuelsubstantiallydependontherefineryprocess anddistributionofmolecularsizerangingfromC8 toC16 [16].Ingeneral,therenewable
feedstocks,especiallybiomassareregardedasapotentialsubstituteoffossilfortheaviationindustry [17].ThecommonbiomassfeedstocksforRJFproductionareclassified intofourpredominantgroups,includingcellulosicmaterials,oilcrops,sugarsand starch,andwastes [18].ThesefeedstockscanbeconvertedintoRJFusingseveralpathways(Fig.1),suchassugar-to-jet,gas-to-jet,alcohol-to-jet,andoil-to-jet [15,19]. Theseconversiontechniqueshavebeenextensivelyusedbytheindustries,particularly theoil-to-jetpathway,whichinvolvesthehydro-processingmethod.Hydroprocessingtechnologyisconsideredmoreadvantageousthantheotherconversion pathwaysasitisassociatedwiththeutilizationoflow-qualityfeedstocks [20,21].However,inbiomass-basedRJFproduction,themainproblemisthatthebiomassinherentlycontainsawidevarietyofcomponentsrangingfromlowtohighmolecular weightsintheirstructure.AccordingtotheEuropeanUnion(EU)andAmericanSocietyforTestingMaterials(ASTM)standards [22],theoxygenmustbeseparatedfrom RJFhydrocarbonscomprisingasmallcarbonchainlength,whichischallengingincurrentconversionpathways.Thus,theseconstraintslimittheapplicationofbiomassbasedprocessestoproducebiojetfuel.
Inthiscontext,severalinitiativeshavebeentakentoenhancetheproductionofbiomassderivedbiojetfuel.Inadditiontothat,biojetfuelhasrenewedattentionduetothe environmentalandeconomicaspects.Thus,significantresearchworkshavebeenconductedincludingvariousprocessingtechnologies(thermochemical,bio-chemical,and chemo-catalyticconversion)andproductrecoverypathways.However,researchfocus shouldbegivenfordevelopingefficienttechnologytoconvertthelipidfeedstocks andsaccharides,includingcomplexstructuredlignocellulosicbiomass(LCB)feedstocks intoRJF [23,24].Inthischapter,theproductionpathwaysforRJFfromdifferentfeedstocksarecomprehensivelydiscussed.Moreover,RJFassociatedproductssuchasisoparaffinblends,aromatics,orcycloalkanes,etc.producedbythepathwaysarealsoreviewed inthischapter.
Fig.1 Thecommonbiomassfeedstocksandtheirconversionpathwaysforrenewablejetfuel(RJF) production.
2.Conversionpathwaysofbiojetfuel 2.1Oiltojetfuel Oiltojet(OTJ)conversionpathwaycanbecategorizedintothreeprocesses:(a)hydroprocessedrenewablejet(HRJ)ortermedashydro-processedestersandfattyacids (HEFA);(b)catalytichydro-thermolysis(CHT),whichisalsoknownashydrothermal liquefaction(HTL);and(c)hydro-treateddepolymerizedcellulosicjet(HDCJ)orfamiliarizedasfastpyrolysisupgradationtojetfuel.However,onlyHRJ/HEFAconversion pathwayproductsarenowpermittedforblendingandachievedASTM-specifiedcertification [19].Triglyceride-basedfeedstocksareusedbothintheHRJandCHTpathways althoughtheproductionprocessesforfreefattyacids(FFAs)aredifferent.TheFFAsare formedviathermalhydrolysisintheCHTprocesswhiletheyareproducedthroughthe cleavageofpropaneglyceridesintheHRJprocess.Ontheotherhand,thebio-oilsare generatedbypyrolyzingthebiomassfeedstocksintheHDCJconversionprocess.Furthermore,theconversionpathwaysofjetfuelproductioncanfluctuatebasedonthe oilfeedstocktypes.Forinstance,animalfats,cookingoil,andvegetableoilsaresuitable feedstocksforHEFA/HRJprocesswhereasalgaloilsoroilfromplantsourcesareconsideredefficientforCHT/HTLprocess [13].However,thedownstreamhydrotreatmentmethodsareidenticalforallthreeprocesses [19]
2.1.1Hydro-processedrenewablejet HRJorHEFAistheprocessofbiojetfuelproductionbyhydro-treatingthetriglycerides, unsaturatedorsaturatedfattyacidsofusedcookingoils,animalfats,andvegetableoils. Thefuelproducedbythistechniquecouldbedirectlyusedintheflightengineseven withoutblending.Notably,theHEFAproducedbiojetfuelshavebeenusedinthe USmilitaryflights [25].Intermsofproperties,thefuelissimilartotheconventional petroleum-basedfuel.Itcontainshighthermalstabilityandcetanenumber,goodcold flowbehaviors,lowtailpipe/greenhousegasemissions,andlowsulfurandaromatic content [26,27].AgraphicalrepresentationofHEFA/HRJprocessflowispresented in Fig.2.Themethodcanusuallybesplitupintotwophases.
(1) Thefirststageistoconverttheunsaturatedfattyacidsandtriglyceridesintosaturated fattyacidsthroughthecatalytichydrogenation.Inthisstep,a β-hydrogeneliminationreactionofthetriglyceridesisoccurredtoproduceafattyacid [28].Generally, renewableoilsandfatsthatpossessvariousdegreesofunsaturationandrequirea hydro-generationprocessforsaturatingdoublebonds.Toconverttheglycerides andliquid-phaseunsaturatedfattyacidsintosaturatedfattyacids,thecatalytic hydro-generationprocessisusedasacommontechnique [29].Thesaturatedfatty acidsarethenconvertedintoalkanescontainingC15–C18 straightchainby hydro-de-oxygenationandde-carboxylation [30].Thecommonby-productsare propane,H2O,CO2,andCO.Theoxidesandzeolitessupportedbynoblemetals
Fig.2 Oil-to-jet(OTJ)conversionpathwaysincludinghydro-processedrenewablejet(HRJ),catalytichydro-thermolysis(CH),andhydro-treated depolymerizedcellulosicjet(HDCJ)tojetfuel.
weretheearly-developedcatalystsforthisstep.Later,otheralternativessuchassome transitionmetalsincludingCo,Ni,Mo,ortheirsupportedbimetalliccompositesare usedaswell [31–33]
(2) Crackingwithisomerizationreactionsisthesecondstep.Inthisstage,thealkanes havingde-oxygenatedstraightchainsareselectivelyhydro-crackedanddeepisomerizedtoproducemixedliquidfuelscontaininghighlybranchedalkanes. VariouscatalystsincludingNi,Ptorotheractivatedcarbonsupportedprecious alloys,i.e.,Al2O3,zeolitemolecularsievesareusedtofacilitatethereactioninthis step [34,35].ThezeolitesupportedNicatalystshowedoutstandingactivities,however,anovercrackingandlowisomersyieldwereseenforthestrongacidiccatalysts. Finally,afterafractionationprocess,thehydro-isomerizationandhydro-cracking processesaredonetoisolatethemixedliquidfuelstoparaffinickerosene (HRJ-SPK)(jetfuel),naphtha,paraffinicdiesel,andlightgases [13].Generally, thebiojetfuelsshouldhaveasuperiorflashpointaswellasexcellentcoldflowpropertiestomeetthejetfuelspecification [19].Thus,itisemergenttohydro-crackand hydro-isomerizethenormalparaffinsthatareproducedfromde-oxygenationtoa syntheticparaffinickerosene(SPK),aproductwithcarbonchainsrangingfrom C9–C15 [27].Notably,thecrackingandisomerizationreactionsareeithersequential orsimultaneous [29].Theisomerizationprocesstakesthestraight-chainhydrocarbonstoturnthemintothebranchedstructuresforreducingthefreezingpointto meetthejetfuelstandard [36].Primarily,thehydrocrackingreactionsincludecrackingandsaturationofparaffins.However,overcrackingmayresultinlowyieldsofjet fuel-rangealkanesandhighyieldsoflightspeciesrangingfromC1 toC4 andnaphtha rangingfromC5 toC8.Botharetheoutofjetfuelrangeandhavelowereconomic valuecomparedtodieselorjetfuel [19].Furthermore,thehightemperature (250–260°C)andpressureareusuallyrequiredinthisprocess.Theglycerol by-productpurificationprocessisenergyintensivethatisaddingcosttothe overallprocess,however,thiscouldbeoffsetbyglycerolsellingvalueduetoitsvariousapplicationsinthepharmaceutical,technical,andpersonalcareproduct industries [37]
2.1.2Catalytichydro-thermolysisprocess CHTorHTLisanalternativepathwayforjetfuelproductionfromalgalorplantoil. AppliedResearchAssociates,Inc.hasdevelopedthispathwaytoproduce“renewable, aromatics,anddrop-in”typesoffuelwhichiswell-knownas“ReadiDiesel”or “ReadiJet” [38].Triglyceridesareconvertedintoabranched,straightchainandcyclic hydrocarbonmixtureduringthehydrothermalprocessthroughaseriesofchemicalreactions(Fig.2),includingcracking,hydrolysis,isomerization,decarboxylation,andcyclization [39].ThetemperaturerangeandpressureoftheCHTpathwayaremaintained between450°Cand475°Candaround210bar,respectively [19].Oxygenatedspecies,
carboxylicacids,andunsaturatedmoleculescanbeproducedinthisprocess,whichare thentransferredtothehydro-treatmentprocessaftercompletingthedecarboxylation processtosaturateandremoveoxygen.Theproducts(rangingfromC6 toC28)including n-alkanes,cycloalkanes,isoalkanes,andaromaticscouldbeobtainedaftertreatment, whichrequirethefractionationprocesstoseparatedieselfuel,jetfuel,andnaphtha [13].
AnintegratedCHTprocessingconceptwassuggestedbyLietal. [39] toconvert triglyceridesobtainedfromthecropoilstononesterbiofuels(Table1).Itconsistsofthree stepssuchastriglyceridespretreatment,CHTconversion,andpostrefiningprocesses. Thepretreatmentssuchasconjugation,cyclization,andcross-linkingareappliedto enhancethemolecularstructures.DuringtheCHTconversion,theproductsgothrough acrackingandhydrolysisreactioninthepresenceofH2Oandcatalysts.Thereafter,the morestableandlow-molecular-weightcarboxylicacids(C7 orless)andglycerolproducedfromtriglyceridehydrolysisundergodecarboxylationanddehydrationprocess toformalkenes.Finally,alkanesareobtainedfromstraight-chain,branchedandcycloolefinsthroughthepostrefininghydrotreatmentandfractionation.Highlevelofcyclics andaromaticsisoneoftheimportantcharacteristicsofCHTbiofuel.Tung-oil-based biofuelsoriginatedfromtheCHprocesscontainupto60%aromatics,whichcanbea desirableingredientforfuelblendsincludingbiofuelsderivedfromotherprocesses [39].ASTMandmilitary(MIL)specificationsarefulfilledforthejetfuelobtainedfrom theCHTmethodduetoitsoutstandingcombustionquality,stability,andcoldflowcharacteristics [19].Accordingtothepreviousresearchreports,varioustriglyceridefeedstocks suchastungoil,soybeanoil,camelinaoil,andjatrophaoilcanbeusedtoproducebiojet fuelsusingtheCHTprocess [19]
2.1.3Hydro-processeddepolymerizedcellulosicjet HDCJisanewtechnologyforoilupgradationbyconvertingcellulosicbiomassintodiesel,gasoline,andjetfuels,whichwasestablishedbyKior.Ittransformsbio-oils,generated frompyrolysisorhydrothermaltreatmentofLCBintojetfuelusinghydrotreatment [40] Biomasspyrolysisoilsusuallycontainunattractivepropertiessuchaslowenergydensity, inadequatethermalinstability,andhighcorrosivitybecauseofhighoxygencontent [41]. Therefore,theseoilsrequiresomehydro-treatingprocessestobetransformedintojetfuel rangedproducts(Fig.2).Biojetfuelcanbeproducedfromvariousbiomassfeedstocks, suchassugarcanebagasse,forestresidue,cornstover,switchgrass,algaebiomass,and guineagrass,etc.canproducethroughthisconversionpathway [42,43]
Ingeneral,atwo-stephydro-processingisthekeytechnologytoupgradebio-oil.At first,catalystshelptohydrotreatthebio-oilundermildconditions.Secondly,traditional hydrogenationset-upwithcatalystsisusedtoachievehydrocarbonfuelunderhightemperature [44].Wangetal. [45] usedpyrolysistechniquetocovertstrawstalkoilsinto dieselandjetfuelviaathree-stepreactions.Bio-oilwascrackedthroughacatalyticpathwaytoobtainlightolefinsandlow-carbonaromatics.Later,aromatichydrocarbons
Table1 Mainprocessingstepstoconverttriglyceridesintononesterbiofuels.
ProcessingstepsTypicalconditionsReactionsPurpose
1.Catalyticconjugation170°C,atmospheric,4–8h, Ni/Ccatalysts
- Isomerizationofpolyunsaturatedfattyacidstoshiftdouble bondsintoconjugatedform
2.Cyclization/crosslinking 170–240°C,15bar, <1h (a) Diels-Alderadditionof alkenestotheconjugatedfatty acids
(b) Cross-linkingamongdifferent fattyacidsatdoublebonds
- Preparationforcyclizationvia Diels-Alderreaction
- Creationofcyclicsandmolecular matrixwithlowdegreesofcrosslinking
3.Catalytichydro thermolysis
240–450°C,15–250bar, 1–40min,water/ oil ¼ 1:5–5:1,catalysts
(a) Crackingandhydrolysisofthe modifiedoilmixturewiththe helpofwaterandcatalysts
(b) Catalyticdecarboxylation/ dehydration(seesteps4and5 below)
4a.Catalytic decarboxylation/ dehydration
4b.C3 andC4 decarboxylation andC2,C3,andC4 dehydration
5.Soybeanwaste anaerobic fermentation
6.Postrefining hydrotreating fractionation
330–450°C,15–250bar, 5–40min,catalysts
330–450°C,15–250bar, 5–40min,catalysts
37°C,atmospheric,6–12h, pH5.0–5.5
<400°C, <1000psig,Co Mocatalyst,1–2LHSV
- Removalofcarboxylicgroups offattyacids,andremovalof hydroxylgroupsfromthecarbonbackbone
- Eradicationofcarboxylicgroups ofthevolatileacids,andremoval ofhydroxylgroupsofthe alcohols
- Productionofmicrobial hydrogen
- Convertstraight-chain, branched,andcycloolefinsinto correspondingalkanes
- Formationofaspectrumof straight,branched,cyclic,and aromaticmolecules,withaminimumgasproducts
- Deoxygenationtoincreasefuel energycontent
- Supplyofalkenesforthe cyclizationstep
- SupplyofH2 forthehydrogenationandbyproductsforalkene production
- Necessarytoachievethermal stabilityrequiredforjetfuel
ReproducedwithpermissionfromL.Li,E.Coppola,J.Rine,J.L.Miller,D.Walker,Catalytichydrothermalconversionoftriglyceridestonon-ester biofuels,EnergyFuels 24(2)(2010)1305–1315.Copyright2010,AmericanChemicalSociety.