Spintronic 2d materials: fundamentals and applications (materials today) wenqing liu (editor) - The

Page 1


Spintronic2DMaterials:Fundamentalsand Applications(MaterialsToday)WenqingLiu (Editor)

https://ebookmass.com/product/spintronic-2d-materialsfundamentals-and-applications-materials-today-wenqing-liueditor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Trapped: Brides of the Kindred Book 29 Faith Anderson

https://ebookmass.com/product/trapped-brides-of-the-kindredbook-29-faith-anderson/

ebookmass.com

Two-Dimensional-Materials-Based Membranes: Preparation, Characterization, and Applications Gongping Liu

https://ebookmass.com/product/two-dimensional-materials-basedmembranes-preparation-characterization-and-applications-gongping-liu/

ebookmass.com

Critical Materials (Materials Today) Alexander King

https://ebookmass.com/product/critical-materials-materials-todayalexander-king/

ebookmass.com

Food for Fifty (What’s New in Culinary & Hospitality) 14th Edition – Ebook PDF Version

https://ebookmass.com/product/food-for-fifty-whats-new-in-culinaryhospitality-14th-edition-ebook-pdf-version/

ebookmass.com

Statistics for Business and Economics : Metric Edition, 14th Edition Cengage South-Western

https://ebookmass.com/product/statistics-for-business-and-economicsmetric-edition-14th-edition-cengage-south-western/

ebookmass.com

Civilians Under Siege from Sarajevo to Troy 1st Edition Alex Dowdall

https://ebookmass.com/product/civilians-under-siege-from-sarajevo-totroy-1st-edition-alex-dowdall/

ebookmass.com

Globalisation, Education, and Reform in Brunei Darussalam 1st Edition Phan Le Ha

https://ebookmass.com/product/globalisation-education-and-reform-inbrunei-darussalam-1st-edition-phan-le-ha/

ebookmass.com

The Changing Role of SMEs in Global Business: Volume I: Paradigms of Opportunities and Challenges 1st ed. Edition

Alkis Thrassou

https://ebookmass.com/product/the-changing-role-of-smes-in-globalbusiness-volume-i-paradigms-of-opportunities-and-challenges-1st-ededition-alkis-thrassou/

ebookmass.com

Nostalgia Marketing. Rekindling the Past to Influence Consumer Choices Marco Pichierri

https://ebookmass.com/product/nostalgia-marketing-rekindling-the-pastto-influence-consumer-choices-marco-pichierri/

ebookmass.com

An Unexpected Earl Anna Harrington

https://ebookmass.com/product/an-unexpected-earl-anna-harrington/ ebookmass.com

RoyalHollowayUniversityofLondon,Egham,UnitedKingdom

UniversityofYork,Heslington,UnitedKingdom

YongbingXu

Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwriting fromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthan asmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityfor anyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromany useoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-08-102154-5

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionEditor: KaylaDosSantos

EditorialProjectManager: JoshuaMearns

ProductionProjectManager: SwapnaSrinivasan

CoverDesigner: ChristianJ.Bilbow

TypesetbyMPSLimited,Chennai,India

1.1Spinandspinordering.........................................................................................2

1.2Thediscoveryofgiantmagnetoresistanceandtunnelling

1.3Semiconductorspintronics:dilutemagneticsemiconductorandspin field-effecttransistor..........................................................................................11 1.42Dmaterialsandmagnetismin2Dmaterials...................................................16

2.1.1FromDiractoPauli

2.2.1Energydispersionandspintexture

2.2.3Quantumoscillations ................................................................................37

2.2.4Weakantilocalization ...............................................................................39

2.3Spin orbittransport...........................................................................................41

2.3.1Spin-chargeconversioneffects .................................................................41

2.3.2Persistentspinhelix ..................................................................................42

2.3.3Spinandchargepumping .........................................................................42

2.3.4Zitterbewegungeffect ...............................................................................43

2.3.5QuantumanomalousHallandmagnetoelectriceffects ..............................43

2.3.6Floquetphysicsinspin orbitcoupledsystems

2.4Rashbadevices...................................................................................................45

2.4.1Aharonov Casherinterferometer .............................................................45

2.4.2Datta Dasspinfield-effecttransistor .......................................................45

2.4.3Spin orbittorquesdevices .......................................................................47

2.4.4Spin orbitQubits.....................................................................................47

2.5Outlookandconclusion.....................................................................................47

Chapter3:Two-dimensionalferrovalleymaterials ..................................................65 Xin-WeiShen,HeHuandChun-GangDuan

3.1Valleytronicsin2Dhexagonallattices..............................................................65

3.2Valleypolarizationinducedbyexternalfields..................................................67

3.3Ferrovalleymaterialswithspontaneousvalleypolarization.............................70

3.3.1VSe2-Ferrovalleymaterialsinducedbyferromagnetism ...........................70

3.3.2BilayerVSe2-antiferrovalleymaterials......................................................77

3.3.3GeSe-Ferrovalleymaterialsinducedbyferroelectricity ............................83

3.4Summaryandoutlook........................................................................................90 References...................................................................................................................91

Chapter4:Ferromagnetismintwo-dimensionalmaterialsviadoping anddefectengineering .........................................................................95

YirenWangandJiabaoYi

4.1Introduction........................................................................................................95

4.2Ferromagnetismingraphene..............................................................................99

4.3Ferromagnetisminboronnitride.....................................................................101

4.4Ferromagnetisminphosphorene......................................................................105

4.5Ferromagnetismoftransition-metaldichalcogenide:MoS2 ............................110

4.6Ferromagnetismintwo-dimensionalmetaloxide:SnO..................................114

4.7Conclusionandprospective.............................................................................118

Chapter5:Charge-spinconversionin2Dsystems

YongPu

5.1Overview..........................................................................................................125 5.2Introduction......................................................................................................126

5.3Spingeneration.................................................................................................128

5.3.1Spin-polarizedchargecurrent .................................................................128

5.3.2 Spininjectionintononmagneticmaterials ..............................................129

5.3.3Purespincurrent .....................................................................................130

5.4Spindetection...................................................................................................131

5.4.1Spinaccumulationvoltage

5.4.2InversespinHalleffect ...........................................................................133

5.4.3Magnetoresistance ..................................................................................133

5.5Outlook.............................................................................................................135

5.5.1Newmaterialsandheterostructures ........................................................135

5.5.2Newtechniquesandcharacterizations.....................................................135

5.5.3Newdevicearchitecturesandfunctionalities ..........................................135

Chapter6:Magneticpropertiesofgraphene

NujiangTang,TaoTang,HongzhePan,YuanyuanSun,JieChen andYouweiDu

6.1Significanceofmagneticgraphene..................................................................137

6.2Primarytheoryofmagnetismofgraphene—Lieb’stheorem.........................138

6.3Generalmethodsforinducinglocalizedmagneticmomentsingraphene......139

6.3.1Vacancyapproach ..................................................................................139

6.3.2Edgeapproach

6.3.3Thesp3-typeapproach

6.4Conclusionandoutlook...................................................................................158 6.5Acknowledgments............................................................................................158

Chapter7:Experimentalobservationoflow-dimensionalmagnetismin graphenenanostructures ....................................................................163

MinghuPanandHuiYuan

7.1Introduction......................................................................................................163

7.2Electron electroninteractioningraphene......................................................164

7.3Magnetisminfinitegraphenefragment..........................................................167

7.4Edgesingraphenenanoribbons.......................................................................174

7.5Magnetisminducedbydefectsingraphenenanostructures............................183

7.6Summaryandoutlook......................................................................................187 References.................................................................................................................188

Chapter8:Magnetictopologicalinsulators:growth,structure,andproperties ........191

LiangHe,YafeiZhao,WenqingLiuandYongbingXu

8.1Introduction......................................................................................................192

8.2Crystalstructureandthinfilmgrownbymolecular-beamepitaxy................192

8.2.1Crystalstructures ....................................................................................192

8.2.2Thinfilmgrownbymolecular-beamepitaxy ..........................................193

8.3Magnetictopologicalinsulator........................................................................197

8.3.1Transitionmetal dopedtopologicalinsulator ........................................197

8.3.2Magneticproperties ................................................................................197

8.3.3Novelphenomenabasedonmagnetictopologicalinsulators ..................200

8.4Magneticproximityeffectintopologicalinsulator basedheterojunctions...201

8.4.1Topologicalinsulators/ferromagneticmetal ............................................201

8.4.2Topologicalinsulators/ferromagneticinsulators ......................................203

8.4.3Dopedtopologicalinsulators/ferromagneticmetal ..................................205

8.4.4Dopedtopologicalinsulators/ferromagneticinsulators ............................207

8.5Spin-transfertorque/spin orbitaltorqueintopologicalinsulators.................209

8.5.1Spin momentumlockingintopologicalinsulators ................................210

8.5.2Theoreticallypredictedspin-transfertorque/spin orbitaltorque intopologicalinsulators ..........................................................................214

8.5.3Spin orbitaltorqueintopologicalinsulators ..........................................215

8.5.4Magneticrandomaccessmemorybasedontopologicalinsulators ..........219

8.6Summaryandoutlook......................................................................................221

Chapter9:Growthandpropertiesofmagnetictwo-dimensionaltransition-metal chalcogenides .....................................................................................227 WenZhang,PingKwanJohnnyWong,RebekahChuaand AndrewThyeShenWee

9.1Introduction......................................................................................................228

9.2Fundamentalsofmolecularbeamepitaxyfortwo-dimensional transition-metalchalcogenides.........................................................................229

9.2.1Uniquenessofmolecularbeamepitaxy...................................................229

9.2.2ConceptofvanderWaalsepitaxy ..........................................................229

9.2.3TechnicalaspectsofvanderWaalsepitaxy............................................232

9.3Growthandpropertiesofmagnetictwo-dimensionaltransition-metal chalcogenides...................................................................................................233

9.3.1Extrinsicmagnetismintwo-dimensionaltransition-metal chalcogenides .........................................................................................233

9.3.2Intrinsicmagnetismintwo-dimensionaltransition-metal chalcogenides .........................................................................................234

9.4Opportunitiesandchallenges...........................................................................239

9.4.1FundamentalissuesofvanderWaalsepitaxy .........................................240

9.4.2Moleculardoping ....................................................................................241

9.4.3Hybridthree-dimensional/two-dimensionalstructures .............................241 9.5Summary...........................................................................................................242

Chapter10:Spin-valveeffectof2D-materialsbasedmagneticjunctions

MuhammadZahirIqbal

10.1Introduction....................................................................................................253

10.3Growthoftwo-dimensionalmaterialsanddevicefabrication......................258

10.4Tungstendisulfide basedspin-valvedevice................................................260 10.5Molybdenumdisulfide basedspin-valvedevice.........................................261

10.6Spin-valveeffectinFe3O4/MoS2/Fe3O4 ........................................................263

10.7Comparisonbetweentransitionmetaldichalcogenide’swithdifferent two-dimensionalmaterials-basedspinvalves...............................................264 10.8Summary.........................................................................................................268

Chapter11:Layeredtopologicalsemimetalsforspintronics ..................................273 XuefengWangandMinhaoZhang

11.1Introduction....................................................................................................273

11.1.1IntroductiontoSpintronics .................................................................273

11.1.2Topologicalsemimetals ......................................................................277 11.2Thestrongspin orbitalcouplingintopologicalsemimetals.......................285

11.3.1FermiarcsinWTe2 ............................................................................288

11.3.2FermiarcsinMoxW1 xTe2 ................................................................289

11.4Two-dimensionaltopologicalinsulators........................................................291

11.4.2Two-dimensionaltopologicalinsulatorsinWTe2 ...............................291

11.4.3Two-dimensionaltopologicalinsulatorsinZrTe5 ...............................292

11.5Majoranafermions.........................................................................................294

11.6Summaryandoutlook....................................................................................294

Listofcontributors

MatthewT.Bryan DepartmentofElectronicEngineering,RoyalHolloway,UniversityofLondon, Egham,UnitedKingdom

JieChen PhysicsDepartment,NationalLaboratoryofSolidStateMicrostructures,Jiangsu ProvincialKeyLaboratoryforNanotechnology,NanjingUniversity,Nanjing,P.R.China

RebekahChua DepartmentofPhysics,NationalUniversityofSingapore,2ScienceDrive3, Singapore,Singapore;NUSGraduateSchoolforIntegrativeSciencesandEngineering,Centrefor LifeSciences,NationalUniversityofSingapore,28MedicalDrive,Singapore,Singapore

YouweiDu PhysicsDepartment,NationalLaboratoryofSolidStateMicrostructures,Jiangsu ProvincialKeyLaboratoryforNanotechnology,NanjingUniversity,Nanjing,P.R.China

Chun-GangDuan StateKeyLaboratoryofPrecisionSpectroscopyandKeyLaboratoryofPolar MaterialsandDevices,MinistryofEducation,DepartmentofOptoelectronics,EastChinaNormal University,Shanghai,P.R.China;CollaborativeInnovationCenterofExtremeOptics,Shanxi University,Taiyuan,P.R.China

LiangHe York-NanjingJointCenter(YNJC)forSpintronicsandNanoengineering,Schoolof ElectronicsScienceandEngineering,NanjingUniversity,Nanjing,P.R.China

HeHu StateKeyLaboratoryofPrecisionSpectroscopyandKeyLaboratoryofPolarMaterialsand Devices,MinistryofEducation,DepartmentofOptoelectronics,EastChinaNormalUniversity, Shanghai,P.R.China

MuhammadZahirIqbal NanotechnologyResearchLaboratory,FacultyofEngineeringSciences, GIKInstituteofEngineeringSciencesandTechnology,Topi,Pakistan

WenqingLiu York-NanjingJointCenter(YNJC)forSpintronicsandNanoengineering,Schoolof ElectronicsScienceandEngineering,NanjingUniversity,Nanjing,P.R.China;Departmentof ElectronicEngineering,RoyalHolloway,UniversityofLondon,Egham,UnitedKingdom

AurelienManchon MaterialScienceandEngineering,PhysicalScienceandEngineeringDivision, KingAbdullahUniversityofScienceandTechnology,Thuwal,SaudiArabia

HongzhePan PhysicsDepartment,NationalLaboratoryofSolidStateMicrostructures,Jiangsu ProvincialKeyLaboratoryforNanotechnology,NanjingUniversity,Nanjing,P.R.China;Schoolof PhysicsandElectronicEngineering,LinyiUniversity,Linyi,P.R.China

MinghuPan SchoolofPhysics,HuazhongUniversityofScienceandTechnology,Wuhan, P.R.China

YongPu NanjingUniversityofPostsandTelecommunications,Nanjing,Jiangsu,China

Xin-WeiShen StateKeyLaboratoryofPrecisionSpectroscopyandKeyLaboratoryofPolar MaterialsandDevices,MinistryofEducation,DepartmentofOptoelectronics,EastChinaNormal University,Shanghai,P.R.China

YuanyuanSun PhysicsDepartment,NationalLaboratoryofSolidStateMicrostructures,Jiangsu ProvincialKeyLaboratoryforNanotechnology,NanjingUniversity,Nanjing,P.R.China;Schoolof PhysicsandElectronicEngineering,LinyiUniversity,Linyi,P.R.China

NujiangTang PhysicsDepartment,NationalLaboratoryofSolidStateMicrostructures,Jiangsu ProvincialKeyLaboratoryforNanotechnology,NanjingUniversity,Nanjing,P.R.China

TaoTang PhysicsDepartment,NationalLaboratoryofSolidStateMicrostructures,Jiangsu ProvincialKeyLaboratoryforNanotechnology,NanjingUniversity,Nanjing,P.R.China;Collegeof Science,GuilinUniversityofTechnology,Guilin,P.R.China

XuefengWang SchoolofElectronicScienceandEngineering,andCollaborativeInnovation CenterofAdvancedMicrostructures,NanjingUniversity,Nanjing,P.R.China

YirenWang SchoolofMaterialsScienceandEngineering,CentralSouthUniversity,Changsha, P.R.China

AndrewThyeShenWee DepartmentofPhysics,NationalUniversityofSingapore,2Science Drive3,Singapore,Singapore;CentreforAdvanced2DMaterials(CA2DM)andGraphene ResearchCentre(GRC),NationalUniversityofSingapore,6ScienceDrive2,Singapore,Singapore PingKwanJohnnyWong CentreforAdvanced2DMaterials(CA2DM)andGrapheneResearch Centre(GRC),NationalUniversityofSingapore,6ScienceDrive2,Singapore,Singapore YongbingXu York-NanjingJointCenter(YNJC)forSpintronicsandNanoengineering,Schoolof ElectronicsScienceandEngineering,NanjingUniversity,Nanjing,P.R.China;Departmentof ElectronicEngineering,TheUniversityofYork,York,UnitedKingdom;Spintronicsand NanodeviceLaboratory,DepartmentofElectronicEngineering,UniversityofYork,York,United Kingdom;Nanjing-YorkJointCenterinSpintronics,NanjingUniversity,Nanjing,China

JiabaoYi GlobalInnovativeCentreforAdvancedNanomaterials,SchoolofEngineering,The UniversityofNewcastle,Callaghan,NSW,Australia

HuiYuan SchoolofPhysics,HuazhongUniversityofScienceandTechnology,Wuhan, P.R.China

MinhaoZhang SchoolofElectronicScienceandEngineering,andCollaborativeInnovation CenterofAdvancedMicrostructures,NanjingUniversity,Nanjing,P.R.China

WenZhang DepartmentofPhysics,NationalUniversityofSingapore,2ScienceDrive3, Singapore,Singapore

YafeiZhao York-NanjingJointCenter(YNJC)forSpintronicsandNanoengineering,Schoolof ElectronicsScienceandEngineering,NanjingUniversity,Nanjing,P.R.China

Preface

“Spin”isanintrinsicformofangularmomentumuniversallycarriedbyelementary particles,compositeparticles,andatomicnuclei.Itisasolelyquantumphenomenonand hasnocounterpartinclassicalmechanics.Manyfundamentalquestionsoftheelectrons’ spinremainopenissuesuptothisdate:thespin orbitalcoupling,spin photoninteraction, andspin-wavetransmissiontonameafew.Significantly,thediscoveryofgiant magnetoresistanceeffect,celebratedbythe2007NobelPrize,hasgeneratedarevolutionary impactonthedatastoragetechnologies.Thistriggeredtheriseofspintronics,an interdisciplinarysubjectdedicatedforthestudyofspin-basedotherthanorinadditionto chargeonly basedphysicalphenomenaofelectronicsystems.

Two-dimensional(2D)materialswithstrongintrinsicspinfluctuationshaveintroducednew physicalparadigmsandenabledthedevelopmentofnovelspintronicdevices.These cleavablematerialsprovideanidealplatformforexploringspinorderinginthe2Dlimit, wherenewphenomenaareexpected,andrepresentasubstantialshiftinourabilityto controlandinvestigatenanoscalephases.Withsteadyimprovementingrowthtechniques, spintronic2Dmaterialscanbenowassembledinachosensequencewithone-atomic-plane precision.Combiningtheminverticalstacksfurtheroffersenormousamountofpossibilities tobroadentheversatilityof2Dmaterials,allowingforachievingunusualmaterial propertiesthatcannotbeobtainedotherwise.

Withcontributionsfromtheworld-leadingscientists,thisbookaimstoprovideanoverview oftheresearchinspintronic2Dmaterials.Thisstartswith2Dmagnetismfundamentaland coversthedevelopmentofthemostrepresentativespintronic2Dmaterialsuptodate.It providesbackground,introduction,thelatestresearchresults,andanextensivelistof referencesineachchapter.Itishopedthatthecollectionofthesematerialsinonebookwill enablethechallengesandresearchprogressin2Dspintronicstobeseenincontext,while theindividualchaptersaredesignedtobeself-contained.Theeditorswishtothankallthe authorsforwritingtheirchaptersandthededicatedElsevierpublicationteamforpublishing thebook.

Introductiontospintronicsand2D materials

WenqingLiu1,MatthewT.Bryan1 andYongbingXu2,3

1DepartmentofElectronicEngineering,RoyalHolloway,UniversityofLondon,Egham, UnitedKingdom, 2SpintronicsandNanodeviceLaboratory,DepartmentofElectronicEngineering, UniversityofYork,York,UnitedKingdom, 3Nanjing-YorkJointCenterinSpintronics,Nanjing University,Nanjing,China

ChapterOutline

1.1Spinandspinordering2

1.2Thediscoveryofgiantmagnetoresistanceandtunnellingmagnetoresistance7

1.3Semiconductorspintronics:dilutemagneticsemiconductorandspinfield-effect transistor11

1.42Dmaterialsandmagnetismin2Dmaterials16

1.5Overviewofthisbook22

References22

Spin-basedphenomenaarerichinfundamentalphysicsandimportanttoinformation technology.Manyaspectsofelectronspindynamicsremainopenquestions,including spin orbitalcoupling,spin photoninteraction,spinorderingatlowdimensions,andspinwavetransmissiontonameafew.Sincethediscoveryofthegiantmagnetoresistanceeffect (GMR),celebratedbythe2007NobelPrizeinPhysics,spin-basedelectronics—or “spintronics”asitquicklybecameknown—hasdevelopedintoaninterdisciplinaryfield dedicatedtothestudyofspin-basedeffectsratherthanpurelycharge-basedphysical phenomenapreviouslyassociatedwithelectronicsystems(Fig.1.1).Thiseventuallyledtoa revolutionaryimpactondeviceconcepts,particularlyindatastoragetechnologieswherethe introductionofspintronictechnologiesenabledarapidincreaseinthecapacityofharddrives. Inparallelwiththedevelopmentofspintronicsresearch,newtwo-dimensional(2D) materialshavebecomeavailable.Beginningwiththediscoveryofgraphene,acknowledged bythe2010NobelPrizeinPhysics,anumberof2Dmaterialshavebeenproducedwith uniquepropertiesnotseenelsewhere,eveninbulk(three-dimensional)analogsofthesame materials,duetoconfinementoftheirelectronicbandstructure.Combiningtheseproperties withspintronicscouldproducethenextrevolutioninelectronicstechnology,withpotential

https://doi.org/10.1016/B978-0-08-102154-5.00001-1

Spintronicscombinesthenonvolatileandremotesensingpropertiesofmagneticmaterialswith theprocessingfunctionalityofelectronics.

forminimalpowerdissipationorextremesensitivitytomagneticfields.Thisbookcovers recentadvancesinspintronic2Dmaterials,showinghowmagnetismandlow-dimensional electronicscanbecoupledtoproducenewdeviceconceptsandnovelapplications.

1.1Spinandspinordering

Spinisanintrinsicformofangularmomentumuniversallycarriedbyelementaryparticles, compositeparticlesandatomicnuclei.Itisasolelyquantumphenomenonandhasno counterpartinclassicalmechanics.Theearliestsignof“spin”canbetracedbacktothe 1880s,whenAlbertA.Michelsonobservedclosely-spaced,butdiscrete,linesinthe emissionspectraofsodiumgas.Whenatomicspectrawerefirstdiscovered,thesodium spectrumwasthoughttobedominatedbyabrightlineknownasthesodiumD-lineat wavelength λD 5 589.3nm.HoweverMichelsonwasabletoresolvethespectruminfiner detailandfoundthattheD-linewasinfactsplitintotwolines,namely λD1 5 589.6nmand λD2 5 589.0nm,calledthefinestructure.Today,weknowthatthesodiumD-linearises fromthetransitionfromthe3ptothe3slevels,withthefinestructurecausedbyslight differencesinenergylevelsofoppositespinsduetothespin orbitinteraction.

WhileMichelsondidnotrecognizespinastheoriginofthefinestructure,hisobservations markthebeginningofthestudyofspin-basedphenomena.FollowingJosephJ.Thomson’s discoveryoftheelectronasaparticlein1897,nextexperimentalhintofspincamein1912, whenFriedrichPaschenandErnstE.A.Backobservedthatinthepresenceofastrong magneticfieldthesodiumD1-andD2-linesfurthersplitintofourandsixlines, respectively.Thisfield-inducedsplittingoffinestructurespectraduetospin orbiteffects issometimesreferredtoastheanomalousZeemaneffect(orthePaschen—Backeffectat highfields).Inthefollowingyear,NielsBohrpublishedhisatomtheory,whichincluded quantizedenergyshellsandelectronorbitalmomentum.Itprovidedaframeworkto understandmanyofthenewquantumphenomenabeingdiscoveredatthetime,butstill

Figure1.1

lackedaspinangularmomentumterm.Quantizationofangularmomentumwas demonstratedbyOttoSternandWaltherGerlachin1922,bymeasuringthedeflectionofa collimatedbeamofgaseous,electricallyneutralsilveratomspassingthrougha nonhomogeneousmagneticfieldintotwodistinctbands(ratherthanthesingle,broadband expectedfromaclassicaldistributionofangularmomentum).Howeveritwasnotuntil 1925,whenSamuelGoudsmitandGeorgeUhlenbecksuggestedthattheelectronhadan intrinsicquantizedangularmomentum,thattheconceptofspinwasgraspedandusedto explainthefinestructure,andanomalousZeemaneffect.By1929,PaulA.M.Dirachad developedhistheoryofrelativisticquantummechanics,demonstratingthatunlikeorbital angularmomentum,electronicspinwasrestrictedtojusttwoquantizedvalues: S 56 1/2.

InexplainingtheanomalousZeemaneffect,electronicspinisdirectlylinkedtothe magneticmomentofeachatom.Indeed,spinisresponsibleformagneticorderingwithina crystalviaaquantummechanicalinteraction,calledexchange.Fundamentally,the exchangeinteractionmanifestsasanelectrostaticinteractionbetweenneighboringspins:by thePauliexclusionprinciple,particlesinidenticalquantumstatescannotoccupythesame position,soelectronsinthesamebandarerepellediftheyhavealignedspins.Thereforethe spatialdistributionofchargewithinthecrystalisdependentonthealignmentof neighboringspins.Naturally,theinteractionisreciprocal;thechargedistribution determinedbythecrystallatticeinfluencesspindirectiongivingrisetomagneto-crystalline anisotropy(havingapreferredmagnetization“easy”axisoraxes)andmechanical distortionsinthelatticemaycause,orbecausedby,changesinthespindirection(aneffect calledmagnetostriction).Stronginteractionbetweenanelectron’sspinandthemagnetic fielditexperiencesduetoitsorbitaroundachargednucleus(the“spin orbitinteraction”) cancreateanadditionalexchangeterm,calledtheDzyaloshinskii Moriyainteraction (DMI),whichactstoalignspinsperpendiculartoeachother.Sinceitcompeteswithnormal exchange,DMItendstointroduceatopologicalchiralitytoamagnet,favoringaparticular senseofspinrotationwhenevermagnetizationbecomesnonuniform.

Eachinteractioncontributestotheoverallenergyofthesystem,withthelowestenergy statedeterminingthemagnetizationprofile.Atafundamentallevel,theexchange Hamiltonian, H,maybedescribedbytheHeisenbergmodel:

where J istheexchangeconstantand si,j arenearest-neighborspins,andthesummationis overallnearest-neighborpairs.InasystemexhibitingaDMI,thisexchangeHamiltonianis augmentedwithaDMIterm:

where Dij isaconstantdescribingthestrengthoftheDMIbetweentheneighboringspins. AsanalternativetotheHamiltonianform,theexchangeenergydensity(neglectingDMI), Eex,maybeexpressedintermsofthematerialmagnetization, M:

where A istheexchangestiffness(proportionalto J ).Theexchangestiffnessisa measurablepropertyofamaterialandfund amentallyaffectsthemagneticordering. When A . 0,magnetizationdivergenceincreasestheenergy,soexchangeenergyis minimizedwhenneighboringspinsalignpar allelwitheachothertogiveferromagnetic ordering.Thereforeferromagneticmateria lscharacteristicallyhaveaspontaneousnet magneticmoment.

Whileexchangealignsspins,anisotropydeterminesthespindirectionality.Therearea numberofdifferent(andsometimescompeting)mechanismsthatinduceanisotropy,and thereforedeterminespinormagnetizationdirection.Magneto-crystallineanisotropy dominatesinmanymaterials,suchthatthealignmentdirectiondependsonthecrystal structure.Foruniaxialmaterials,magneto-crystallineenergy, EK,isgivenby:

whereascubicmaterialshave

where K1,2 areanisotropyconstantsthatdefinethestrengthofthealignment,and θ and φ arethesphericalpolarcoordinatedirections(withpolardirectionalignedwithaneasyaxis). Internaldemagnetizingfieldscausedbyfreesurfacepolesencouragedivergencein magnetization,resultingintheformationofdomainstructure(inwhichmagnetization withinadomainisaligned,butneighboringdomainsareunalignedandseparatedby boundariescalleddomainwalls)andalsoaneffectcalled“shapeanisotropy”that energeticallyfavorsmagnetizationalignedparalleltostructuralsurfacesandedges. Anisotropycanalsoarisefromexternalstimuli,suchasstress(magnetostriction),providing amechanismtotunemagneticbehaviorinsomematerials.

Incontrasttoferromagneticorder,materialswith A , 0haveantiferromagneticorderingin whichneighboringspinsarealignedantiparallelandthereisnonetmagnetization.Note thatnotallneighborsneedtobeantiparallel;anantiferromagnetmayenteranumberof differentantiferromagneticphasesdependingonstoichiometryandcrystalstructure (Fig.1.2A).Insomecases,theantiferromagneticstatebecomes“canted”andthespins misalignfromantiparallel,developingaslighttiltinonedirectiontogiveasmallnet magnetization(Fig.1.2B).Fromatheoreticalviewpoint,antiferromagnetsmaybe consideredastwosublatticesthathaveoppositemagnetizations(Fig.1.2A).This

Examplesof(A)commonantiferromagneticphases,(B)cantedantiferromagnetalignment,and (C)ferrimagneticconfiguration.Coloringindicatesthedifferentsublattices.

descriptionisalsousefultodescribeathirdmagneticorder,ferrimagnetism,wherethe sublatticesarealignedantiparallel,buthaveunequalmagnetizations(Fig.1.2C).

Magneticorderingcanalsobecausedbyinteractionsthatoccurindirectly,via intermediaries.Superexchangemayoccurbetweentwononneighboringmagneticatoms whentheyhaveacommonnonmagneticneighbor(Fig.1.3A).Inessence,theresponseof thenonmagneticatomtotheonemagneticatomaffectsitsinteractionwiththeother magneticatom,leadingtoanindirectexchangecouplingbetweenthemagneticatoms. Doubleexchangeoccursincompoundswithchemicalbondingstructurethatshares electronsbetweenatomsintheirgroundstate(Fig.1.3B).Sincethese“itinerant”electrons arenotlocalizedtoaparticularatomandsincespinispreservedastheelectronhopsfrom oneatomtothenext,theelectronsmediateexchangebetweenmagneticions.

Ruderman Kittel Kasuya Yosida(RKKY)interactionsinvolveexchangebetweencore electronslocalizedtoanatomandconductionelectrons [1],whicharenotlocalizedtoa particularatom(Fig.1.3C).Byinteractingwithseveralatoms,theelectronsinthe conductionbandmaycoupleatomsthatareseveralunitcellsapart.Importantly, progressivelyincreasingtheseparationbetweenatomsnotonlydiminishesthestrengthof theinteraction,butalsocausesoscillationsinthefavoredalignmentoftheatoms.Thatis dependingontheseparation,theRKKYinteractioncanpromoteeitherferromagneticor antiferromagneticspinalignment(Fig.1.3D).SinceRKKYinteractionsaremediatedby conductionelectrons,theyonlyoccurinconductivematerials.Insulatorsmayexperience long-rangeindirectmagneticorderingviavanVleckparamagnetism.Whereastheprevious indirectexchangemechanismsdiscussedinvolvedmaterialsintheirelectronicground states,thevanVleckmechanismoccursduetoexcitedstatesofvalenceelectrons (Fig.1.3E).Intheabsenceofotherinteractions,nocorrelationbetweenspinsof neighboringionsinthegroundstatewouldbeexpected.Howeverperturbingtheground

Figure1.2

Schematicdiagramsof(A)superexchangebetweenelectronsinoutershellsofmagneticionsviaa nonmagneticintermediary,(B)doubleexchangethroughhoppingofitinerantelectronsinouter shellsbetweenmagneticionsviaanonmagneticintermediary,(C)RKKYinteractionsbetween innercoreelectronsofmagneticions,viaexchangewithdelocalizedoutershellelectrons,(D)the variationoftheRKKYexchangeconstantwithdistancebetweeninteractingions(arrowsshowthe favoredspinalignmentbetweenions),and(E)thevanVleckmechanismofexchangebetweentwo ionsinarelaxedstatefollowingexcitationfromagroundstatewithrandomlyalignedspins.Inall figures,solidarrowsrepresentlocalizedspinsordirectexchangeinteractions,dottedarrows representspinsofitinerantelectronsorthehoppingthatmediatestheinteraction. RKKY, Ruderman Kittel Kasuya Yosida.

state(e.g.,bythermalexcitation)mayresultinthetransferofanelectronbetween neighboringatoms,formingeitheratriplet(S 5 1)orsinglet(S 5 0)statewithinthe unfilledshalloftherecipiention.Crucially,inthevanVleckmechanismtripletstatesare energeticallyfavored,promotingspinalignment [2].Uponrelaxationtothegroundstate, thealignedspinisretainedastheelectronmovesbacktoitsoriginalhostion,sothatthere isaneffectiveferromagneticcouplingbetweentheions.Althoughweakinmanymaterials, thevanVleckmechanismisveryimportantforunderstandingferromagnetismininsulators exhibitinginversionoftheconductionandvalencebands.

Anotherfactorthatplaysacriticalroleindeterminingmagneticorderistemperature.Many materialsmayadoptdifferentmagneticorderingatdifferenttemperatures.Crucially, magneticorderingislostinallmaterialsattemperaturesexceedingacharacteristicordering temperature,calledtheCurietemperatureinferromagneticmaterialsandtheNe ´ el temperatureinantiferromagnets.Abovetheorderingtemperature,materialsbecome

Figure1.3

Introductiontospintronicsand2Dmaterials7

paramagnetic;individualatomsretainmagneticmoments,butthereisnosystematic alignmentbetweenneighborsandthereforenospontaneousmagnetization.Whileindividual momentswillalignwithanappliedmagneticfield,inducingamagnetization,removalofthe fielddestroysthealignmentandthematerialwillreturntozeromagnetizationatremanence.

Materialsmayalsodisplayparamagnetic-likecharacteristicsbelowtheorderingtemperature iftheirdimensionsaresmall(wellbelowthesizeneededtoensuresingle-domain magnetization),aneffectcalledsuperparamagnetism.Superparamagnetismisthe mechanismofspontaneousmagneticreversalcausedbythermalperturbationsovercoming theenergybarrierbetweenmagneticstatesandisimportantwhenthethermalenergy(kBT, where kB istheBoltzmannconstant,and T isthetemperature)isgreaterthanaround 2.5% 4%oftheanisotropyenergy(KV,where K istheanisotropyconstant,and V isthe activationvolume,whichifreversedwillleadtothewholesamplemagnetization switching).Sincethermalfluctuationsarerandom,superparamagneticmagnetization reversalmaybeexpectedtooccurwithinatime-period, τ ,describedbythe Arrhenius Ne ´ elequation:

where f0 isacharacteristictime-scalecalledtheattemptfrequency(ontheorderof 1 100GHz).Whetherornotsuperparamagnetismisimportantdependsonthetime-scale overwhichstabilityisrequired.Intherecordingindustry,datamustbepreservedfor severalyears,sotheanisotropyenergymustbeatleast40 45 kBT [3].Practically, stabilitytimesrequiredforresearchismuchshortersosampleswithanisotropyenergyof 30 kBT maybeexpectedtoretaintheirmagneticstateduringmeasurements(lasting minutestohours).

1.2Thediscoveryofgiantmagnetoresistanceandtunnelling magnetoresistance

Foroverhalfacenturyafteritsdiscovery,spinwaslargelyneglectedfromelectronics applications.Thatchangedin1988,whengroupsledbyAlbertFert [4] andPeterGrunberg [5] independentlydiscoveredGMRandtriggeredthebirthofthefieldofspintronics,for whichtheywerelaterawardedthe2007NobelPrizeinPhysics.GMRisthedependenceof resistanceontherelativeorientationoftwomagneticlayersconnectedbyaconducting spacer.Theterm“giant”referstothefactthatthefirstGMRmeasurementsdemonstrated relativechangesinresistancethatwas10 100timeslargerthantheanisotropic magnetoresistance(variationofresistancewithalignmentbetweencurrentand magnetizationdirection)foundintheconstituentmaterials.AlthoughtheearliestGMR devicesweredemonstratedusingthecurrentinplanegeometry,GMRmayalsobeseenin

thecurrentperpendiculartoplane(CPP)geometry.Indeed,CPPdevicesdisplaylongerspin diffusionlengthandanevenlargerGMReffect [6].

Toprovideasimpletheoreticalundersta ndingofGMR,letusneglectresistance contributionsofthethinspacerlayerandconsideridenticalmagneticlayerssuchthat theonlydifferenceinresistanceisdueto thealignmentofthelayermagnetizations. Furthermore,letusrestrictthemagnetizationofeachmagneticlayertopointeither “up”or“down”andsplittheelectricalconductivityintotwoindependentchannels correspondingtospinspointingupanddown,withnegligiblemixingbetweenthe conductionchannels.AccordingtoMott’ss-dscatteringtheory [7] ,resistivityislow forspinsalignedwiththema gnetizationofthehostlayer( ρp )andhighforspin opposingthehostmagnetization( ρa ). Fig.1.4 showsthecircuitdiagramsofthis “two-current”modelfortheparallelandant iparallelalignmentofthemagneticlayers. Theequivalentresistancefortheparallel( Rmm )andantiparallel( Rmk )arrangements aregivenby:

Since ρp , ρa, Eq.1.7 showsthat Rmm , Rmk :greaterscatteringoccurswhenthemagnetic layersareantiparallel.Tocomparedifferentdevices,GMRisoftenexpressedasaratio:

IntheGMRstackscreatedbyFertandGru ¨ nberg,thecouplingbetweenthemagnetic layerswasantiferromagneticintheabsenceofamagneticfield.Highfieldswere neededtoovercometheantiparallelcouplingandalignthelayermagnetizationsto

Figure1.4

Schematicillustrationsandcorrespondingcircuitdiagramsoftwo-currentmodelinferromagnet (FM1)/(NM)/ferromagnet(FM2)trilayerswhentheferromagneticlayersare(A)parallel,and(B) antiparallel.Lowscatteringpathsaremarkedingreen;highscatteringpathsaremarkedinred. ρp istheresistivityofspinsalignedparallelwithhostmagnetization,and ρa istheresistivityofspins alignedantiparallelwithhostmagnetization. NM,nonmagneticspacer.

Figure1.5

Schematicdiagramofaspin-valvestructure.Alternativeconfigurationsfeaturean antiferromagneticpinninglayer.Modernspin-valvesalsoutilizeadditionalsublayerstothefree andpinnedlayerstoenhanceperformance [11]

achievethelowresistancestate.ShortlyafterthediscoveryofGMR,StuartS.P.Parkin developedanarchitecture,calledthespin-valve [8 10],whichenabledarbitrary alignmentbetweenthelayersatzero-fielda ndlow-fieldswitchingbetweenresistance states,pavingthewayforGMRtobeusedinpracticalapplications,notablyinhard diskdriveread-heads.Inspin-valves,ath irdmagnetic“pinning”layeriscoupledtothe basicGMRstructureviaathinconductingnonmagneticspacer( Fig.1.5).Duetothe thicknessofthenonmagneticspacer(labeledNM 2 in Fig.1.5 ),thepinninglayerand thebottom(“fixed”or“pinned”)layerofthebasicGMRstructurearestrongly antiferromagneticallycoupled.Thiscouplingcausesthepinnedlayertobemagnetically hard,requiringalargefieldtoinducemagneti zationreversal.Furthermore,thethickness ofthepinninglayermaybetailoredtocompensateforthemagnetizationintheother layerstogiveanegligiblemagneticmomentforthestructureasawholewheninthe lowresistancestate.Zero-fieldalignmentb etweenthepinnedandthetop(“free”)layers isdeterminedbyRKKYinteractions,enablin geitherparallel,antiparallelordecoupled remanentstatestobechosenduringfabrication,viacontrolofthespacerlayerthickness (NM1 in Fig.1.5 ).Underlowfields,themagnetizationofthemagneticallysoftfree layercanbereversedindependentlyofthepinnedlayertoswitchbetweenthehighand lowresistancestates.Figuratively,thismeansthespinofthefreelayerisusedlikea valvetoturnthecurrentthroughthedevice“on”or“off”.

TlthoughGMRiscreditedwithbeginningthespintronicsrevolution,itwasnotthefirst spin-engineeredphenomena.In1975MichelJullierereleasedabriefpaperdescribinga 14%differenceintheresistanceofatrilayerconsistingoftwoferromagnetsconnectedby an insulator (Fe/Ge/Coat4.2K) [12],whichwasalmostcompletelyoverlookedpriortothe discoveryofGMR(receivingjustthreecitations).Nowknownastunneling magnetoresistance(TMR),themagnetoresistancediscoveredbyJulliererequiresquantum tunnelinginorderforelectronstopassthroughtheinsulatinglayer.ThereforeTMR operatesthroughacompletelydifferentmechanismtoGMR,whichworksviaclassical diffusivescattering.

Figure1.6

Conceptualillustrationoftheoriginofdifferentialspinscatteringinamagnetictunneljunction, associatedwiththerelativeasymmetryintheDOSnearthe EF ofthetwoFMlayers. FM, ferromagnet; DOS,densityofstates.

Tunnelingcanonlyoccurwhenthereareavailablestatestotunnelinto,sothetunneling probabilityisdependentonthedensityofstates(DOS)neartheFermienergy,EF,ineach oftheferromagneticlayers.TheDOSisdividedbetweenthetwospin-states,leadingtoan asymmetryintheDOSofmagneticmaterials. Fig.1.6 presentsaconceptualillustrationof spintunnelingthroughtheinsulatinglayerofaTMRtrilayer(thestructure,analogousto thearchitectureoftheGMRspin-valve,isknownasamagnetictunneljunction,MTJ).Due totheasymmetryintheDOS,eachferromagneticlayerhasmorestatesavailableinone spinstatethantheother,correspondingtoitsmagnetizationdirection.Whenabiasvoltage isplacedacrosstheMTJ,theprobabilityoftunnelingthroughtheinsulatordependsonthe availabilityoffreestatesforeachspindirection.Ifthetwomagneticlayersareparallel (Fig.1.6,upperrow),theDOSforeachspin-stateissimilarinbothlayers,sotherewillbe manyavailablestates(forbothspin-channels)totunnelinto,resultinginalargetunneling currentandlowoverallresistance.Ontheotherhand,ifthelayersareantiparallel(Fig.1.6, lowerrow),thereisamismatchbetweenthesourceandsinkDOSofeachspinchannel:the majorityspin-channelinthesourcelayerhasfewerstatesavailableinthesinklayer, whereastheminorityspin-channelhasexcessofstatesavailableinthesinklayer,buttoo fewsourceelectronstofillthem.Thisbottleneckcausestheantiparallelmagnetization configurationtohaveahighresistance.

Despitethedifferencesinphysicalmechanism,thearchitectureunderlyingGMRandTMR isconceptuallysimilar,whichmaybewhyinterestinTMRgrewafterthediscoveryof GMR.Indeed,thetwo-currentmodeldescribedin Eqs.(1.7)and(1.8) mayreadilybe

appliedtoTMR.Comparingthemagnetoresistanceratios,TMRismuchstronger(with room-temperaturemagnetoresistanceratiosofupto600% [13])thanGMR(upto65%at roomtemperature [14]).Thisisaresultoftheextremesensitivityofthequantum mechanicalmechanism.Ontheotherhand,thesamesensitivitypresentsachallengefor manufacturingMTJsatindustrialscale [11],sinceminorvariationinthethicknessofthe insulatinglayercandramaticallyalterdeviceresistance.

BothGMRandTMRtechnologyhavebeencommerciallyexploitedintoharddiskdrive read-heads,andthisremainstheirpredominantrealization [15].Whenusedinfieldsensing, thefreelayerismadetolieorthogonaltothepinnedlayeratremanence,usingeithershape anisotropy,alocalizedbiasingfieldorweakpinning [11].Theorthogonalconfiguration enablesthesensorstooperatewithinalinearregime,sincethemagnetoresistanceis proportionaltotheprojectionofthefreelayermagnetizationalongthedirectionofthe pinnedlayermagnetization.

Beyondfieldsensinganddataread-outapplications,thebi-stablenatureofspinvalvesand MTJshasledtoGMRandTMRbeingimplementedformemorytechnologies.Sincethe magneticstateofGMRandTMRcellsisnonvolatile(thememorystateisretainedeven whenthepoweristurnedoff),iselectricallyaddressableandcanbeaccessedon nanosecondtimescales,therehasbeengreatresearcheffortinthedevelopmentofdevices capableofperformingasmagneticrandomaccessmemory(MRAM).Ifthepotentialof MRAMcouldberealized,itwouldproduceanewtypeofmemorythatcombinedfeatures ofmagneticharddiskdrives(nonvolatile,lowpower)withthoseofsemiconductingrandom accessmemory(fastread/writetimes,nomechanicalfailure).Howevercommercial realizationsofMRAMhavelaggedbehindsemiconductormemory,withtheleading producer,EverspinTechnologies,onlyannouncingpilotproductionof1GbMRAMinJune 2019.ThemainchallengestoincreasingMRAMdatadensityareswitchingindividualcells astheirfootprintdecreasesandthespacetakenupbyarchitecturesupportingtheMRAM cells,sincetransistorsareneededtocontrolcurrentpathsthroughthecells.Currently, MRAMdesignsmakeuseofspin-transfertorque(STT),acurrent-basedmechanismthat makesuseofthetransferofangularmomentumwhenspin-polarizedelectronsmovingfrom thepinnedlayer.FurtherprogressinMRAMtechnologywillrequireimprovementsinthe switchingcurrentorefficiencyofspintransferordiscoveryofalternativemechanismsthat canretaintheabilitytoswitchsmallercells.

1.3Semiconductorspintronics:dilutemagneticsemiconductorandspin field-effecttransistor

ThesuccessofGMRandTMRdevices(oftenclassifiedasthefirstgenerationofspintronic devices)hasinspiredahugeresearcheffortintospin-basedphenomena,reachingintofields

previouslyconsideredunrelatedtomagnetism.Oneofthemostfascinatingareasthathave developedhasfocussedoninducingandcontrollingspinpolarizationinnonmagneticor paramagneticsemiconductors.Semiconductorsdisplayenhancedspin-propertiescompared tometallicspintronicmaterials.Forexample,semiconductorelectronspinrelaxationtimes areseveralordersofmagnitudelongerthantheelectronmomentumandenergyrelaxation times [16],enablingelectronstopropagateupto100 μmwithoutlosingtheirspin coherence [17].Thisdemonstratesthatsemiconductorshavethepotentialtoefficiently transportspininformationoverlongchannellengths.Furthermore,carrierprofilesin semiconductorscanbemodifiedwithdopants,indicatingthatdevicepropertiescouldbe tailoredtowardspecificspintronicapplications.Dopingalsoopensupopportunitiesfor realizingnovelphysicalphenomena,suchasthegenerationofadissipationlessspincurrent intheabsenceofanetchargecurrent(thespinHalleffect) [18 20].Thesepromising properties,combinedwiththealreadyestablisheddominanceofnonspintronic semiconductorsinsignalprocessingandthecomputinghierarchy,indicatethatdevelopment ofspintronicsemiconductingtechnologycouldwellleadthenextgenerationofspintronic devices.

Broadly,therearethreestrategiesemployedtoinducespinpolarizationinsemiconductors. Firstly,hybridstructures,consistingofaferromagnetincontactwiththesemiconductor, provideamechanismofdirectspininjectionsincethespinpolarizationfromthe ferromagnetisretainedwhentheelectronsenterintothesemiconductor [21 23].Secondly, opticalpumpingbyirradiationwithcircularlypolarizedlighttakesadvantageofmagnetoopticaleffectstopreferentiallyexcitespinpolarizationwithinthesemiconductor [16,24]. Whereasbothofthesestrategiesmanipulatenonequilibriumelectrons,inthefinalstrategy generatesspinpolarizationbydopingwithmagneticionstocreateanewclassof semiconductorthathasamagneticmoment,theDMS [25].

Muchworkonhybridspintronicshasbeenstimulatedbytheideaofthespinfield-effect transistor(FET),firstproposedbySupriyoDattaandBiswajitDasin1990 [26].Similarly toaconventionalFET(suchasthemetal-oxide-semiconductorFET,MOSFET),thespin FETinjectselectronsfromasourceelectrodethroughatwo-dimensionalelectrongas (2DEG)channelthatcanbeelectricallygatedandintoasinkelectrode(Fig.1.7A). HoweverspinFETsfunctionthougharemarkablydifferentmechanismbecauseboththe sourceandsinkelectrodesareferromagnetic,providingadditionalcontrolbasedonthe electronicspin.Transportoftheelectronspinsisconfinedinthehighmobility2DEG channel,soisdependentontheappliedgatevoltage [27].Withoutbiasfromthegate,the relativemagnetizationdirectionsinthesourceanddraindominatetheconductivityinthe device(Fig.1.7B).Whenagatevoltageisappliedacrossthechannel,thespin-polarized electronsexperienceaneffectivemagneticfieldduetotheRashbaspin orbitinteraction, leadingtoaprecessionofspinandconsequentlyachangeinthespinpolarizationofthe current(Fig.1.7C).Thereforethegatevoltagemodulatestheamountofspin-scatteringat

Not-to-scaleschematicdiagramsof(A)thespinFETproposedbyDattaandDas [26],together withthespinpolarizationinthe2DEGchannelwith(B)nogatevoltageapplied,and(C)whena gatevoltageisusedtoinduceprecessionofthespinpolarizationinthe2DEG. FET,field-effect transistor; 2DEG,two-dimensionalelectrongas.

thesinkelectrodeandthereforethecurrentpassingthoughthetransistor.Sinceonlyasmall amountofenergyandashorttimeperiodsareneededtoswitchthecurrentthroughthe device(comparedtothatrequiredinaMOSFETwherethechannelneedstobeunder inversion),spinFETsareexpectedtocombinehighcomputingspeedwithlowpower consumption [27 30].

OneofthemajoradvantagesofthespinFETdesignisthatithasanall-electricaldevice design(allcontrolofspinexistswithinelectroniccircuits),soisintrinsicallycompatible withexistingcircuitarchitecture.Analternativemechanismofincorporatingall-electrical controlintoaspintronicdeviceistoutilize“nonlocal”devicegeometries. Fig.1.8 shows anexampleofanonlocaldevicewithdown-spin-polarizedcurrentinjectedatmagnetic electrodeM1andflowingthroughasemiconductorbetweenM1,andnonmagnetic electrodeNM1 [31,32].Sincethesemiconductorisnonmagnetic,theaccumulationofthe down-spinpolarizationaroundthemagneticinjectioncontactcausestheup-spin polarizationtodiffuseuniformlyawayfromthecontact(withoutchargeflow),both towardsNM1andtowardsthesecondnonmagneticelectrode,NM2.Crucially,theflowof up-spinpolarization(duetothediffusion)towardsNM2createsapotentialdifference, eventhoughnochargecurrentisflowing.Measurementofthevoltageacrossthesecond magneticelectrode,M2,andNM2is“nonlocal”becauseitisoutsideofthechargecurrent circuit(betweenM1andNM1).Sincespinpolarizationdiminisheswithdistancefromthe injectionpoint,andisnegligiblearoundNM2,thelackofmagnetizationinNM2doesnot

Figure1.7

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.