Spectral theory and differential operators d.e. edmunds - Instantly access the full ebook content in

Page 1


https://ebookmass.com/product/spectral-theory-and-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Ulam stability of operators Brzd■k

https://ebookmass.com/product/ulam-stability-of-operators-brzd%c8%a9k/

ebookmass.com

Graph Spectral Image Processing Gene Cheung

https://ebookmass.com/product/graph-spectral-image-processing-genecheung/

ebookmass.com

Transforms and Partial Differential Equations T. Veerarajan

https://ebookmass.com/product/transforms-and-partial-differentialequations-t-veerarajan/

ebookmass.com

Principles of auditing & other assurance services 20. edition Edition Pany

https://ebookmass.com/product/principles-of-auditing-other-assuranceservices-20-edition-edition-pany/

ebookmass.com

Geometric Patterns with Creative Coding 1st Edition Selcuk Artut

https://ebookmass.com/product/geometric-patterns-with-creativecoding-1st-edition-selcuk-artut/

ebookmass.com

International Business 3rd Edition Klaus Meyer

https://ebookmass.com/product/international-business-3rd-editionklaus-meyer/

ebookmass.com

Principles of Information Security 6th Edition Whitman

https://ebookmass.com/product/principles-of-information-security-6thedition-whitman/

ebookmass.com

Cowboy Heat Wave Kim Redford

https://ebookmass.com/product/cowboy-heat-wave-kim-redford-3/

ebookmass.com

The Infographic Guide to Medicine Neeral L. Shah

https://ebookmass.com/product/the-infographic-guide-to-medicineneeral-l-shah/

ebookmass.com

Driven by Intention: Own Your Purpose, Gain Power, and Pursue Your Passion as a Woman at Work Michelle GadsdenWilliams

https://ebookmass.com/product/driven-by-intention-own-your-purposegain-power-and-pursue-your-passion-as-a-woman-at-work-michellegadsden-williams/ ebookmass.com

oxfordmathematicalmonographs

SeriesEditors

J.M.BALLW.T.GOWERSN.J.HITCHIN

L.NIRENBERGR.PENROSEA.WILES

Forafulllistoftitlespleasevisit

http://ukcatalogue.oup.com/category/academic/series/science/maths/omm.do

DonaldsonandKronheimer: TheGeometryofFour-Manifolds,paperback

Woodhouse: GeometricQuantization,SecondEdition,paperback

Hirschfeld: ProjectiveGeometriesoverFiniteFields,SecondEdition

EvansandKawahigashi: QuantumSymmetriesofOperatorAlgebras

Klingen: ArithmeticalSimilarities:PrimeDecompositionandFiniteGroupTheory

MatsuzakiandTaniguchi: HyperbolicManifoldsandKleinianGroups

Macdonald: SymmetricFunctionsandHallPolynomials,SecondEdition,paperback

Catto,LeBris,andLions: MathematicalTheoryofThermodynamicLimits:Thomas-Fermi TypeModels

McDuffandSalamon: IntroductiontoSymplecticTopology,paperback

Holschneider: Wavelets:AnAnalysisTool,paperback

Goldman: ComplexHyperbolicGeometry

ColbournandRosa: TripleSystems

Kozlov,Maz’ya,andMovchan: AsymptoticAnalysisofFieldsinMulti-Structures

Maugin: NonlinearWavesinElasticCrystals

DassiosandKleinman: LowFrequencyScattering

Ambrosio,Fusco,andPallara: FunctionsofBoundedVariationandFreeDiscontinuity Problems

SlavyanovandLay: SpecialFunctions:AUnifiedTheoryBasedonSingularities

Joyce: CompactManifoldswithSpecialHolonomy

CarboneandSemmes: AGraphicApologyforSymmetryandImplicitness

Boos: ClassicalandModernMethodsinSummability

HigsonandRoe: AnalyticK-Homology

Semmes: SomeNovelTypesofFractalGeometry

IwaniecandMartin: GeometricFunctionTheoryandNon-linearAnalysis

JohnsonandLapidus: TheFeynmanIntegralandFeynman’sOperationalCalculus, paperback

LyonsandQian: SystemControlandRoughPaths

Ranicki: AlgebraicandGeometricSurgery

Ehrenpreis: TheUniversalityoftheRadonTransform

LennoxandRobinson: TheTheoryofInfiniteSolubleGroups

Ivanov: TheFourthJankoGroup

Huybrechts: Fourier-MukaiTransformsinAlgebraicGeometry

Hida: HilbertModularFormsandIwasawaTheory

BoffiandBuchsbaum: ThreadingHomologyThroughAlgebra

Vazquez: ThePorousMediumEquation

Benzoni-GavageandSerre: Multi-dimensionalHyperbolicPartialDifferentialEquations

Calegari: FoliationsandtheGeometryof3-Manifolds

BoyerandGalicki: SasakianGeometry

Choquet-Bruhat: GeneralRelativityandtheEinsteinEquations

IgnaczakandOstoja-Starzewski: ThermoelasticitywithFiniteWaveSpeeds

Scott: TracesandDeterminantsofPseudodifferentialOperators

FranchiandLeJan: HyperbolicDynamicsandBrownianMotion:AnIntroduction

Jain,Srivastava,andTuganbaev: CyclicModulesandtheStructureofRings

Ringström: OntheTopologyandFutureStabilityoftheUniverse

Johnson,Lapidus,andNielsen: Feynman’sOperationalCalculusandBeyond:NoncommutativityandTime-Ordering

EdmundsandEvans: SpectralTheoryandDifferentialOperators,SecondEdition

SpectralTheoryandDifferentialOperators

secondedition

D.E.EDMUNDS

ProfessorofMathematics, UniversityofSussex

W.D.EVANS

ProfessorofMathematics, UniversityofCardiff

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©D.E.EdmundsandW.D.Evans2018

Themoralrightsoftheauthorshavebeenasserted

FirstEditionpublishedin1987

SecondEditionpublishedin2018

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData

Dataavailable

LibraryofCongressControlNumber:2017962078

ISBN978–0–19–881205–0

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

To RoseandMari

PREFACETOSECONDEDITION

Sincethepublicationofthefirsteditionofthisbookin1987,thetheoryhasdeveloped rapidly:newandimportanttopicshaveappearedandoldthemesareviewedwithgreater perspective.However,thecoreofthebookcontainsmaterialofcontinuingimportancethat isrelativelyunaffectedbysuchevents.Thiseditiondiffersfromthefirstbyvirtueofthe correctionofaflockofminorerrorsandimprovementsofvariousproofs.Inaddition,it containsNotesattheendsofmostchapters.Theseareintendedtogivethereadersome ideaofavarietyofrecentdevelopments,andprovidereferencesthatenablemoredetailed accountstobeaccessed.TheemphasisintheseNotesnaturallyreflectsourinterestsand limitationsofourknowledge.

Additionalreferencesinthebibliographyareindicatedas A[·].

PREFACETOFIRSTEDITION

TherelationshipbetweentheclassicaltheoryofcompactoperatorsinBanachorHilbert spacesandthestudyofboundary-valueproblemsforellipticdifferentialequationshas beenasymbioticone,eachhavingaprofoundeffectontheother.IntheL2 theoryof ellipticdifferentialequationswithsmoothcoefficientsandonboundeddomainsin Rn ,the problemofeigenfunctionexpansionsrestsuponthefactthatthereisanaturallyoccurring operatorwithacompactself-adjointresolventtowhichtheabstracttheorymaybeapplied withgreatsuccess.Ontheotherhand,theearlyworkofFredholm,Hilbert,Riesz,and Schmidt,forexample,wasstimulatedbytheneedsofproblemsinintegralanddifferential equations.Thetheoryofcompactself-adjointoperatorsinHilbertspaceisparticularlyrich, butwhenonedropstheself-adjointness,substantialdifficultiesappear:theeigenvalues(if any)maybenon-real,and,whatisveryimportantfromthepointofviewofapplications, thereisnoMax–MinPrincipleofprovenusefulnessfortheeigenvalues;furthermore,the questionofwhethertheeigenfunctionsformabasisfortheunderlyingHilbertspaceis thenmuchmorecomplex.WhenweconsidercompactlinearoperatorsactinginaBanach space,asisoftennecessaryinconnectionwithnon-linearproblemsforexample,evengreater difficultiesappear:toobtaininformationabouteigenvaluesindirectmethodsoftenhaveto beadopted.Inrecentyearsmuchworkhasbeendoneinthisarea,relatingeigenvaluesto moregeometricalquantitiessuchasapproximationnumbersandentropynumbers.This workisnotlimitedtopurelyabstracttheory:muchefforthasbeenputintotheestimationof suchnumbersforembeddingmapsbetweenSobolevspaces,thegroupintheSovietUnion ledbyBirmanandSolomjakbeingespeciallyactiveinthisarea.Theseembeddingmaps provideanaturallinkbetweentheabstracttheoryandproblemsindifferential(andintegral)equations.Boundary-valueproblemsforellipticdifferentialequationsonunbounded domainsorwithsingularcoefficientsnecessitatethestudyofnon-compactoperators.In suchcasesthespectrumdoesnotconsistwhollyofeigenvaluesbutalsohasanon-trivial componentcalledtheessentialspectrum.Intheliteraturetherearemanydifferentwaysof lookingattheessentialspectrum,butwhicheverwayisfollowedastudyofFredholmand semi-Fredholmoperatorsisrequired.AnotableresultinthisareaisthatduetoNussbaum and(independently)LebowandSchechter:theradiusoftheessentialspectrumisthesame forallthecommonlyuseddefinitionsofessentialspectrum.Thisbringsinthenotionofthe measureofnon-compactnessofanoperator,whichisitselfrelatedtotheentropynumbers mentionedearlier.

Inordertoapplytheabstracttheorytoboundary-valueproblemsforellipticdifferential equationsthefirsttaskistodetermineanappropriatefunctionspaceandanoperatorthat isanaturalrealizationoftheproblem.Forlinearellipticproblemsthenaturalsettingisan L2 space,andinthisbookweconcentrateontheL2 theoryforgeneralsecondorderelliptic equationswitheitherDirichletorNeumannboundaryconditions.

inanopenset Ω in Rn ,with n 1,andset

for φ and ψ inC∞ 0 (Ω) orC∞ 0 (Rn ),thechoicedependingontheboundaryconditions underconsideration.Ifthenumericalrangeof t ,namelytheset

liesinasectorinthecomplexplanewithanglelessthan π,onecaninvokethetheoryof sesquilinearformstoobtainanoperator T whosespectrumlieswithintheaforementioned sectorandthatdescribestheboundary-valueproblemassociatedwith τ inaweaksense.If Θ(t ) doesnotlieinasectorothertechniqueshavetobefound.Inthiscasewecanmakeuse ofthepowerfulmethodswhichhavebeendevelopedtotackletheproblemofdetermining sufficiencyconditionsfortheoperator T0 definedbyaformallysymmetric τ onC∞ 0 (Ω) to haveauniqueself-adjointextensioninL2 (Ω),aproblemthathasattractedagreatdealof attentionovertheyears,particularlybecauseofitsimportanceinquantummechanics.An importantexampleisKato’sdistributionalinequality,whichmakesitpossibletoworkwith coefficientshavingminimallocalrequirements.Oncetheoperatorhasbeenobtained,the nextstepistoanalyseitsspectrum.Fornon-self-adjointoperatorsthelocationofthevarious essentialspectraisoftenasmuchasonecanrealisticallyhopeforintheabsenceofthe powerfultoolsavailablewhentheoperatorsareself-adjoint,notablytheSpectralTheorem andMax–MinPrinciple.Perturbationmethodsareeffectiveindeterminingthedependence oftheessentialspectraonthecoefficientsof τ ,theeffectofthesemethodsbeingtoreduce theproblemtooneinvolvingasimplerdifferentialexpression.Thegeometricalproperties of Ω thenbecomeprominentandthepropertiesoftheembeddingmapsbetweenSobolev spacesthatoccurnaturallyachieveaspecialsignificance.Inthisthenotionofcapacityhas acentralrole,afacthighlightedintheworkofMolcanov,Maz’ja,andothersintheSoviet Union.Toobtaininformationabouttheeigenvaluesoneusuallyhastoresorttotheindirect methodsdevelopedintheabstracttheory.Forinstance,knowledgeofthesingularnumbers of T ,i.e.theeigenvaluesofthenon-negativeself-adjointoperator |T |,providesinformation aboutthe l p classoftheeigenvaluesof T .

Ourmainobjectiveinthisbookistopresentsomeoftheresultsthathavebeenobtained duringthelastdecadeorsoinconnectionwiththeproblemsdescribedintheprevious paragraphs.OntheabstractsidewedealwithoperatorsinBanachspaceswheneverpossible, especiallyassomeofthemostnotableachievementscanonlybeappreciatedinthiscontext. WespecializetoHilbertspacesintheworkonellipticdifferentialequationsreportedon,

chieflybecauseitisintheframeworkoftheL2 theorythatmostoftherelevantrecent advanceshavebeenmade.Furthermore,fortheL p theorywith p = 2wehavenothing substantialtoaddtowhatiscontainedinthebooksbyGoldberg[104]andSchechter [210].Despitethis,whenwepreparetoolsliketheembeddingtheoremsandresultson capacity,weworkwithL p spacesifthiscanbedonewithoutmuchadditionalstrain.Inan areaasbroadasthis,oneisforcedtobeselectiveinone’schoiceoftopicsand,inevitably, importantomissionshavetobemade.Wesayverylittleabouteigenfunctionsandexpansion theorems,forinstance,butwehaveaclearconscienceaboutthisbecausewhatwecouldsay isadequatelycoveredinthebookbyGohbergandKrein[103].Inanycase,ourbookis alreadylongenough.

Thebookisprimarilydesignedforthemathematician,althoughwehopethatother scientistswillalsofindsomethingofinteresttothemhereandwehavekeptthisgoal inmindwhilewritingit.Thelanguageofthebookisfunctionalanalysis,andasound basicknowledgeofBanachandHilbertspacetheoryisneeded.Somefamiliaritywiththe Lebesgueintegralandtheelementsofthetheoryofdifferentialequationswouldbehelpful, butonlythebarestessentialsareassumed.Wehavedispensedwithachapterofpreliminaries infavourofremindersinthebodyofthetext,andwherenecessarywerefertootherbooks forbackgroundmaterial.

Mostoftheabstracttheoryisdevelopedinthefirstfourchapters.Chapters1and2 dealwithboundedlinearoperatorsinBanachspaces,themainthemesbeingtheessential spectraandthepropertiesofvariousnumberslikeentropynumbersandapproximation numbersassociatedwiththeboundedlinearoperators.InChapter3closedlinearoperators arestudied,particularemphasisbeinggiventothebehaviouroftheirdeficiencyindices andFredholmindexwhentheoperatorsareextendedorareperturbed.Weillustratethe abstractresultswithacomprehensiveaccountofgeneralsecond-orderquasi-differential equations,andthiscoverstheWeyllimit-point,limit-circletheoryforformallysymmetric equations,andalsoitsextensionsbySimsandZhikhartoformally J -self-adjointequations. SesquilinearformsinHilbertspacesarethesubjectofChapter4.Thebasicresultsarethe Lax–MilgramTheoremforboundedcoerciveformsandtherepresentationtheoremsfor sectorialforms.Also,thereareperturbationresultsfortheformsofgeneralself-adjoint and m-sectorialoperatorswhichhaveanimportantroletoplaylaterinthelocationof theessentialspectraofdifferentialoperators.Anotherresultthatwillbeimportantlateris Stampacchia’sgeneralizationoftheLax–MilgramTheoremtovariationalinequalities.

InChapter5wegiveatreatmentofSobolevspaces.Apartfromtheirintrinsicinterest, thesespacesareanindispensibletoolforanyworkonpartialdifferentialequations,and muchofwhatisdoneinsubsequentchaptershingesonChapter5.Furthermore,Sobolev spacesareanidealtestinggroundforexaminingsomeoftheabstractnotionsdiscussedinthe earlychaptersandaccordinglywedevotesomespacetothedeterminationofthemeasures ofnon-compactnessandtheapproximationnumbersofembeddingmapsbetweenSobolev spaces.

Theremainingchaptersdealmainlywithsecond-orderellipticdifferentialoperators.The weakorgeneralizedformsoftheDirichletandNeumannboundary-valueproblemsare definedandstudiedinChapter6.ThematerialinChapter6ismainlyrelevanttobounded opensets Ω in Rn whentheunderlyingoperatorshavecompactresolventsinL2 ( ),

inwhichcasethespectraconsistwhollyofeigenvalues.AlsoincludedisStampacchia’s weakmaximumprinciple,andthisleadsnaturallytothenotionofcapacity.Second-order operatorsonarbitraryopensets Ω arethethemeofChapter7.Underweakconditions onthecoefficientsofthedifferentialexpression,wedescribethreedifferenttechniques fordeterminingtheDirichletandNeumannoperators.ThefirstappliestheFirstRepresentationTheoremtosectorialforms,thesecondisonedevelopedbyKatobasedonhis celebrateddistributionalinequality,andthethirdhasitsrootsintheworkofLevinsonand Titchmarshontheessentialself-adjointnessoftheoperatordefinedby + q onC∞ 0 ( ) when q isreal.Schrödingeroperatorsareanimportantspecialcase,especiallyofthethird classofoperatorsdiscussed,andsomeoftheresultsobtainedforhighlyoscillatorypotentials areanticipatedbythequantum-mechanicalinterpretationoftheproblem.

ThecentralresultofChapter8isMolcanov’snecessaryandsufficientconditionforthe self-adjointrealizationof + q (q realandboundedbelow)tohaveawhollydiscrete spectrum.Thisnecessitatesthestudyofcapacityand,inthewakeofthemainresult,wealso obtainnecessaryandsufficientconditionsfortheembeddingW 1,p 0 (Ω) → Lp (Ω) tobe compactandforimportantintegralinequalities(likethePoincaréinequality)tohold.

InChapter9westudytheessentialspectraofclosedoperatorsinBanachandHilbert spacesandthenusetheabstracttheorytolocatethevariousessentialspectraofconstant coefficientdifferentialoperatorsinL2 (Rn ) andL2 (0, ∞).Inthecasewhenthecoefficients arenotconstantausefultoolforordinarydifferentialoperatorsistheso-calledDecompositionPrinciple,whichimpliesthattheessentialspectradependonlyonthebehaviourof thecoefficientsatinfinity.ForpartialdifferentialoperatorsaDecompositionPrincipleis obtainedinChapter10asaperturbationresultandthisisthenusedtolocatetheessential spectraofthegeneralsecond-orderoperatorsinL2 (Ω) discussedinChapter8.Weanalyse thedependenceoftheessentialspectraon Ω intwodifferentways.Inthefirsttheresultsare describedintermsofcapacityandsequencesofcubesthatintersect Ω .Thesecondinvolves theuseofameandistancefunction m(x),whichisameasureofthedistanceof x tothe boundaryof Ω ,andanintegralinequalityobtainedbyE.B.Davies.Thisenablesustogive estimatesforthefirsteigenvalueandtheleastpointoftheessentialspectrumoftheDirichlet problemfor on Ω .

Thelasttwochaptersareconcernedwiththeeigenvaluesandsingularvaluesofthe DirichletandNeumannproblemsfor + q.Thecaseof q real,andhenceself-adjoint operators,istreatedinChapter11,themainresultbeingaglobalestimateforN(λ),the numberofeigenvalueslessthan λ when λ isbelowtheessentialspectrum.Fromthis estimateasymptoticformulaearederivedforN(λ) whenthespectrumisdiscreteand λ →∞ andwhenthenegativespectrumisdiscreteand λ → 0 .Wealsoobtainthe Cwikel–Lieb–RosenblyjumestimateforN(λ) when q ∈ Ln/2 (Rn ) with n 3,andinclude theelegantLi–Yauproofofthelatterresult.InChapter12 q iscomplex,andglobaland asymptoticestimatesareobtainedforM(λ),thenumberofsingularvalueslessthan λ.From theseestimatesthe l p -classofthesingularnumbersandeigenvaluesarederived.

Chaptersaredividedintosections,andsomesectionsintosubsections.Forexample, §1.3.2meanssubsection2-ofsection3ofChapter1;itissimplywrittenas§3.2when referredtowithinthesamechapterandas§2whenreferredtowithinthesamesection. Theorems,Corollaries,Lemmas,Propositions,andRemarksarenumberedconsecutively

withineachsection.Theorem1.2.3meansTheorem2.3in§2ofChapter1andisreferred tosimplyasTheorem2.3withinthesamechapter.Formulaearenumberedconsecutively withineachsection;(1.2.3)meansthethirdequationof§2ofChapter1andisreferredtoas (2.3)withinthesamechapter.Thesymbol indicatestheendofthestatementofaresult and indicatestheendofaproof.

Therearealsoaglossaryoftermsandnotation,abibliography,andanindex.

Wehavemadenosystematicattempttogointothecomplicatedhistoryoftheresults presentedhere,buthopethatthereferencesprovidedwillbehelpfultothereaderinterested inthebackgroundofthematerial.

Itisapleasuretoacknowledgethehelpwehavereceivedfrommanycolleaguesand inparticularfromRobinDyer,EdwardFraenkel,andDesmondHarris.Weareespecially indebtedtoHansTriebel,whoreadthewholemanuscriptandofferedinvaluablecomments.

Brightonand D.E.E

Cardiff W.D.E

June1986

4SesquilinearFormsinHilbertSpaces

1BoundedCoerciveFormsandtheLax-MilgramTheorem169 2SectorialForms173

3ThePolarDecompositionofClosedOperators181

4FormsofGeneralSelf-AdjointOperatorsandtheirPerturbations184

5PerturbationofSectorialForms193

6VariationalInequalities198

5SobolevSpaces

4.5EmbeddingTheoremsforW

5.2AFormulafor α(I ) and ˜ β(I ) where

7Second-OrderDifferentialOperatorsonArbitraryOpenSets

1Quasi-m-SectorialDirichletandNeumannOperators331

4SchrödingerOperatorswithStronglySingularPotentials388 5FurtherRemarksonSelf-AdjointnessandQuantumMechanics392

(Rn )

7Constant-CoefficientOperatorsinL2 (0, ∞)

11GlobalandAsymptoticEstimatesfortheEigenvalues

1TheMax–MinPrincipleforSemi-Bounded,Self-AdjointOperators498

2.2VariationofEigenvalues

12EstimatesfortheSingularValuesof

BASICNOTATION

B(x, r ):openballin Rn ,centre x andradius r .

C:complexplane; C± ={z ∈ C :imz ≷ 0}; Cn : n-dimensionalcomplexspace; R:real line; Rn : n-dimensionalEuclideanspace.

Rn + = Rn \{0}

Di u = ∂ u/∂ xi ;if α = (α1 , ... , αn ) with αi non-negativeintegers, Dα u =

where |α |= α1 + ... + αn .

Ω :anopensetin Rn ; Ω isa domain ifitisalsoconnected.

∂Ω :boundaryof Ω ; Ω :closureof Ω ; Ω c = Rn \Ω .

Ω ⊂⊂ Ω : Ω isacompactsubsetof Ω .

dist (x, ∂Ω):distancefrom x to Ω c .

N:positiveintegers; N0 = N ∪{0}; Z:allintegers.

f (t ) g (t ) as t → a:thereexistpositiveconstants c1 , c2 suchthat c1 f (t )/g (t ) c2 for |t a| ( = 0) smallenough,if a ∈ R;andforlargeenough ±t if a =±∞

T G :restrictionoftheoperator(orfunction) T toset G

f + = max (f ,0), f =− min(f ,0).

A ⊂ B forsets A, B allowsfor A = B.

Embedding:aboundedlinearinjectivemapofaBanachspace X toanothersuchspace Y .

lp (1 p ∞):complexsequencespacewithnorm (ξj ) p = ( |ξj |p )1/p when1 p < ∞ and (ξj ) ∞ = sup j |ξj | when p =∞.

c0 := {(ξj ) ∈ l∞ :lim j ξj = 0}.

ωn :volumeoftheunitballin Rn ,i.e. ωn = π n/2 (1+ 1 2 n) .

LinearOperatorsinBanachSpaces

Threemainthemesrunthroughthischapter:compactlinearoperators,measuresofnoncompactness,andFredholmandsemi-Fredholmmaps.Eachtopicisofconsiderableintrinsicinterest;ourobjectisnotonlytomakethisapparentbutalsotoestablishconnections betweenthethemessoastoderiveresultsthatwillbeofgreatinterestlater.Onesuchresult isaformulafortheradiusre (T ) oftheessentialspectrumofaboundedlinearmap T .

ThetheoryofcompactlinearoperatorsactinginaBanachspacehasaclassicalcorethat willbefamiliartomany,andinviewofthiswepassratherquicklyoverit.Perhapsless wellknownistheconceptofthemeasureofnon-compactnessofasetandofamap,a notionduetoKuratowski[151],whointroduceditin1930forsubsetsofametricspace. Theidealaymoreorlessdormantuntil1955,whenDarbo[46]showedhowitcould beusedtoobtainasignificantgeneralizationofSchauder’sfixed-pointtheorem.Since thattime,substantialadvanceshavebeenmadebothinthetheoryandinapplications, althoughthebulkofapplicationshavebeentoordinaryratherthantopartialdifferential equations.Wetrytoredressthebalancelateroninthebookbyuseoftheformulaforre (T ) inourdiscussionoftheessentialspectrumofvariouspartialdifferentialoperators.The interactionbetweenmeasuresofnon-compactnessandsemi-Fredholmmapsisofcrucial importanceinthederivationofthisformula,andaccordinglywedevotesometimeto thisinterplay.

1.CompactLinearMaps

Allvectorspacesthatwillbementionedwillbeassumedtobeoverthecomplexfield,unless otherwisestated.ThenormonanormedvectorspaceXwillusuallybedenotedby • X , orby • ifnoambiguityispossible.

GivenanyBanachspaces X and Y ,thevectorspaceofallboundedlinearmapsfrom X to Y willbedenotedby B (X , Y ),orby B (X ) if X = Y ;withthenorm • definedby T = sup{ Tx : x 1}, B (X , Y ) isaBanachspace.Itisnaturaltotrytodistinguish membersof B (X , Y ) thathaveparticularlygoodproperties.Compactlinearmapscome intothiscategory,sincetheyhavepropertiesreminiscentoflinearmapsactingbetween finite-dimensionalspaces.

SpectralTheoryandDifferentialOperators,2nd edition,D.E.EdmundsandW.D.Evans2018. ©D.E.EdmundsandW.D.Evans,2018.Published2018byOxfordUniversityPress.

Definition1.1. LetXandYbeBanachspacesandletT : X → Ybelinear.ThemapTissaid tobe compact if,andonlyif,foranyboundedsubsetBofX,theclosure T (B) ofT (B) is compact.

Evidently T iscompactif,andonlyif,givenanyboundedsequence (xn ) in X ,thesequence (Txn ) containsaconvergentsubsequence.Notealsothatif T iscompact,itiscontinuous, sinceotherwisetherewouldbeasequence (xn ) in X suchthat xn = 1forall n ∈ N,and Txn →∞ as n →∞,whichisimpossible.

Examples.

(i) IfT ∈ B (X , Y ) andthedimensionoftherange R (T ) := T (X ) ofT, dim R (T ),is finite,thenTmustbecompact,sinceifBisaboundedsubsetofXthen T (B) isclosed andbounded,andhencecompact.

(ii) Noteveryboundedlinearmapiscompact:takeX = Y = l2 ,foreachn ∈ N lete(n) be theelementofl2 withmthcoordinate δmn (equalto1ifm = n,and0otherwise),and observethattheidentitymapofl2 toitselfiscontinuousbutnotcompact,becausethe sequence (e(n) ) hasnoconvergentsubsequence.

(iii) Leta,b ∈ R,b > a,J = [a, b],andsupposethatk:J × J → C iscontinuousonJ × J; define

(Kx)(s) =

(s, t )x(t ) dt

foralls ∈ JandforallxintheBanachspaceC(J ) ofallcontinuouscomplex-valued functionsonJ(withnorm • givenby x = max {|x(s)| : s ∈ J }).ThenKisalinear mapofC(J ) intoitself,andinfact,Kiscompact.Toseethis,setM = max {|k(s, t )| : s,t ∈ J };then Kx M (b a) x forallx ∈ C(J ),andsoifBisaboundedsubset ofC(J ) thenK (B) isbounded.Moreover,foralls1 ,s2 ∈ Jandanyx ∈ C(J ), |(Kx)(

Thus,givenany ε > 0,thereexistsa δ> 0 suchthat |(Kx)(s1 ) (Kx)(s2 )| < ε if x 1 and |s1 s2 | <δ(s1 , s2 ∈ J ).Hence {Kx : x ∈ C(J ), x 1} isequicontinuousandbounded,andthusrelativelycompact,bytheArzela–AscoliTheorem(cf. Yosida[265],p.85).

Denoteby K (X , Y ) thefamilyofallcompactlinearmapsfrom X to Y ,andput K (X ) = K (X , X ).Thefollowingpropositionisawell-knownconsequenceofthe definitionofcompactness:

Proposition1.2. LetX,Y,ZbeBanachspaces.Then K (X , Y ) isaclosedlinearsubspaceof B (X , Y );ifT1 ∈ B (X , Y ) andT2 ∈ B (Y , Z) thenT2 T1 iscompactifeitherT1 orT2 is compact.

Thispropositionimpliesthat K (X ) isaclosedtwo-sidedidealintheBanachalgebra B (X )

Ithasalreadybeennotedthatif T ∈ B (X , Y ) isof finiterank,thatis,dim R (T )< ∞, then T ∈ K (X , Y ).Inparticular, B (X , Y ) = K (X , Y ) ifeither X or Y isfinite-dimensional. Thefollowingresultcomplementsthis,andthrowsnewlightonExample(ii)above.

Theorem1.3. LetXbeaBanachspaceandsupposethattheidentitymapofXtoitselfis compact.ThendimX < ∞.

Thisfollowsdirectlyfromthefollowinglemma:

Lemma1.4. Let (Xn ) beasequenceoffinite-dimensionallinearsubspacesofaBanachspaceX suchthatforalln ∈ N,Xn ⊂ Xn+1 andXn = Xn+1 .Thengivenanyn ∈ N withn 2, thereexistsxn ∈ Xn ,with xn = 1,suchthat xn x 1 forallx ∈ Xn 1 .Inparticular, xn xm 1 whenm < n;thesequence (xn ) hasnoconvergentsubsequences.

Proof. Let yn ∈ Xn \Xn 1 .Thefunction y → y yn ispositiveandcontinuouson Xn 1 andapproachesinfinityas y →∞;henceithasaminimum,at zn ∈ Xn 1 ,say,and 0 < zn yn x + zn yn forany x ∈ Xn 1 .Thepoint xn := (yn zn )/ yn zn thenhasalltherequired properties. ✷

Arelatedresultisthefollowing:

Lemma1.5(Riesz’sLemma). LetMbeaproper,closed,linearsubspaceofanormedvector spaceX.Then,givenany θ ∈ (0,1),thereisanelementxθ ∈ Xsuchthat xθ = 1 anddist (xθ , M ) θ

Proof. Let x ∈ X \M .Since M isclosed, d := dist (x, M )> 0.Thus,givenany θ ∈ (0,1), thereexists mθ ∈ M suchthat x mθ d/θ .Theelement xθ := (x mθ )/ x mθ hasallthepropertiesneeded. ✷

Compactnessofalinearmapispreservedbythetakingoftheadjoint.Beforethis resultisgiveninaformalway,someremarksaboutnotationaredesirable.Givenany normedvectorspace X ,bythe adjointspaceX ∗ of X ismeantthesetofall conjugate linear continuousfunctionalson X ;thatis, f ∈ X ∗ if,andonlyif, f : X → C iscontinuousand f (α x + β y) = α f (x) + β f (y) forall α , β ∈ C andall x, y ∈ X .Ourchoiceof conjugatelinear functionals,ratherthanthemorecommon linear functionals,isdictatedsolelybythe conveniencethatwillresultlateroninthebook.Withtheusualdefinitionsofadditionand multiplicationbyscalars,theadjointspace X ∗ becomesaBanachspacewhengiventhenorm • definedby

f = sup{|(f , x)| : x = 1},

where (f , x) isthevalueof f at x.(Thisisoftendenotedby f (x) asabove.Strictlyspeaking, weshouldwrite (f , x)X ,butthesubscriptwillbeomittedifnoambiguityispossible.The sameomissionwillbemadeforinnerproductsinaHilbertspace.)Givenany T ∈ B (X , Y ),

theadjointof T isthemap T ∗ ∈ B (Y ∗ , X ∗ ) definedby (T ∗ g , x) = (g , Tx) forall g ∈ Y ∗ and x ∈ X ;notethat (α S + β T )∗ = α S∗ + β T ∗ forall α , β ∈ C andall S, T ∈ B (X , Y ).These conventionsaboutadjointswillapplyevenwhentheunderlyingspacesareHilbertspaces, andtherewillthereforebenoneoftheusualawkwardnessaboutthedistinctionbetween Banach-spaceandHilbert-spaceadjointsofamapthathastobemadewhenlinear,rather thanconjugate-linear,functionalsareused.Ofcourse,manyoftheresultstobegivenbelow wouldalsoholdhad X ∗ beendefinedtobethespaceofallcontinuouslinearfunctionals on X .NotethattheRieszRepresentationTheorem(cf.Taylor[231],Theorem4.81-C) enablesanyHilbertspace H tobeidentifiedwith H ∗ ;andthatinviewofthis,givenany T ∈ B (H1 , H2 )(H1 and H2 beingHilbertspaces), T ∗ ∈ B (H2 , H1 ).If H1 = H2 = H thenboth T and T ∗ belongto B (H ):themap T issaidtobe self-adjoint if T = T ∗

Theorem1.6. LetXandYbeBanachspacesandletT ∈ B (X , Y ).ThenT ∈ K (X , Y ) if,and onlyif,T ∗ ∈ K (Y ∗ , X ∗ ).

Thewell-knownproofmaybefoundinYosida[265],p.282. Thenotionoftheadjointofamap T willalsobeneededwhen T isunbounded.Thuslet D (T ) bealinearsubspaceof X thatis dense in X (i.e. D (T ) = X ) andlet T : D (T ) → Y be linear.Let D (T ∗ ) ={g ∈ Y ∗ :thereexists f ∈ X ∗ suchthat (f , x) = (g , Tx) forall x ∈ D (T )}; theadjoint T ∗ of T isthemap T ∗ : D (T ∗ ) → X ∗ definedby T ∗ g = f ,i.e. (T ∗ g , x) = (g , Tx) forall x ∈ D (T ) andall g ∈ D (T ∗ ).Notethatitisessentialthat D (T ) bedensein X for T ∗ tobewell-defined.Amoredetaileddiscussionofself-adjointmapsinaHilbertspacewill begivenin§3.4.

Next,theresultsoftheFredholm–Riesz–Schaudertheoryofcompactlinearmapswill begiven;thistheoryextendsinamostdirectwaythetheoryoflinearmapsinfinitedimensionalspaces.Thecompletepicturefollowsfromaseriesofauxiliaryresults,anumber ofwhichareofinterestintheirownright.Throughoutthediscussion X willstandfora non-trivial(thatis ={0})Banachspace, I willbetheidentitymapfrom X to X ,and,given any T ∈ B (X ) andany λ ∈ C,weshallwrite Tλ for T λI .Thenotionsofthe resolvent set andthe spectrum ofalinearmapwillalsobeneeded;thesewillbeexplainedinterms ofalinearmap S fromalinearsubspace D (S) of X to X .Theresolventset, ρ(S),of S isdefinedtobe {λ ∈ C : (S λI ) 1 existsandbelongsto B (X )}; C\ρ(S) iscalledthe spectrumof S andiswrittenas σ(S).Threedisjointsubsetsof σ(S) aredistinguished: the pointspectrum σp (S) := {λ ∈ σ(S) : S λI isnotinjective},the continuousspectrum σc (S) := {λ ∈ σ(S) : S λI isinjective,(S λI ) D (S) isdensein X butnotequalto X },and the residualspectrum σr (S) := {λ ∈ σ(S) : S λI isinjective, (S λI )D (S) isnotdensein X }.Theelementsof σp (S) are,ofcourse, eigenvalues of S.Ingeneralthethreesubsetsofthe spectrumgivenabovedonotexhaust σ(S);itisconceivablethat (S λI ) 1 couldexist,have domain X andyetbeunbounded.However,thispathologycannotoccurinanimportant case,namely,when S is closed:recallthatalinearmap T fromalinearsubspace D (T ) of X toanormedvectorspace Y issaidtobeclosedifits graph G (T ) := {{x, Tx} : x ∈ D (T )} isaclosedsubsetoftheproductspace X × Y ,when X × Y isgiventhenorm • definedby

{x, y} = ( x 2 + y 2 ) 1 2

Itiseasytoseethat T isclosedif,andonlyif,givenanysequence (xn ) in D (T ) suchthat xn → x and Txn → y,itfollowsthat x ∈ D (T ) and Tx = y.Formoredetailsonthesetopics, seeKato[134]III-5,6.Finally,wewrite N (T ) forthe kernel of T ,i.e. {x ∈ D (T ) : Tx = 0}, andsetnul T = dim N (T );nul T isthe nullity of T .

Theorem1.7. LetT ∈ K (X ) andsupposethat λ ∈ C\{0}.Then

(i) if R (Tλ ) = XthenTλ isinjectiveandT 1 λ ∈ B (X );

(ii) R (Tλ ) isclosed;

(iii) ifTλ isinjective,T 1 λ ∈ B (X );

(iv) either λ ∈ ρ(T ),inwhichcase R (Tλ ) = X,or λ ∈ σp (T ),inwhichcase R (Tλ ) isaproperclosedlinearsubspaceofX;

(v) nulTλ < ∞

Definition1.8. LetT ∈ B (X ) andsupposethat λ ∈ σp (T ).Thegeometricmultiplicityof λ isdefinedtobenulTλ .

Theorem1.9. LetT ∈ K (X ).Then σp (T ) isatmostcountableandhasnoaccumulationpointexceptpossibly0.Eachpointof σ(T )\{0} isaneigenvalueoffinitegeometric multiplicity.

Itisworthremarkingthatifdim X =∞ then0 ∈ σ(T ) forall T ∈ K (X ).Tosee this,supposethat0 ∈ ρ(T ) forsome T ∈ K (X );then T 1 ∈ B (X ) andso I = TT 1 iscompact.Theorem1.3nowgivesthedesiredcontradiction. Atthisstagetheadjoint T ∗ of T makesanimportantentrance.If T ∈ K (X ),ithas alreadybeenobservedthat T ∗ ∈ K (X ∗ );anditiseasytoseethat σ(T ) := σ(T ∗ ) ={λ : λ ∈ σ(T ∗ )},compactnessnotbeingneededforthislatterresult.Itfollowsthatif λ ∈ C\{0}, then λ ∈ σp (T ) if,andonlyif, λ ∈ σp (T ∗ ).

Theorem1.10. LetT ∈ K (X ) andlet λ ∈ C\{0}.Then nul Tλ = nul T ∗ λ .

Theseresultsmaybecombinedtogivethefollowingtheorem,generallyknownasthe FredholmAlternativeTheorem:

Theorem1.11. LetT ∈ K (X ) andlet λ ∈ C\{0}.Thenthenon-homogeneousequations

haveuniquesolutionsforanyy ∈ Xandanyx∗ ∈ X ∗ if,andonlyif,thehomogeneous equations

haveonlythezerosolutions.Ifoneofthesehomogeneousequationshasanon-zerosolution thentheybothhavethesamefinitenumberoflinearlyindependentsolutions,andinthiscase (1.1)and(1.2)havesolutionsif,andonlyif,yandx∗ areorthogonaltoallthesolutionsof

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.