Skills in mathematics algebra for iit jee main and advanced arihant dr. s k goyal s k goyal - The eb

Page 1


https://ebookmass.com/product/skills-in-mathematics-algebra-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Physical Chemistry for JEE (Advanced): Part 1, 3rd edition K. S. Verma

https://ebookmass.com/product/physical-chemistry-for-jee-advancedpart-1-3rd-edition-k-s-verma/

ebookmass.com

Inorganic Chemistry for JEE (Advanced): Part 2, 3rd edition K. S. Verma

https://ebookmass.com/product/inorganic-chemistry-for-jee-advancedpart-2-3rd-edition-k-s-verma/

ebookmass.com

Inorganic Chemistry for JEE (Advanced): Part 1, 3rd edition DPP K. S. Verma

https://ebookmass.com/product/inorganic-chemistry-for-jee-advancedpart-1-3rd-edition-dpp-k-s-verma/

ebookmass.com

eTextbook 978-0078117183 Adolescence 16th Edition

https://ebookmass.com/product/etextbook-978-0078117183-adolescence16th-edition/

ebookmass.com

Wreckless Katie Golding

https://ebookmass.com/product/wreckless-katie-golding-4/

ebookmass.com

You've Always Been Mine: A Second Chance Standalone Romance (Lawson Lovers Series Book 3) Britt Mckenna

https://ebookmass.com/product/youve-always-been-mine-a-second-chancestandalone-romance-lawson-lovers-series-book-3-britt-mckenna/

ebookmass.com

Big Data and Public Policy: Course, Content and Outcome Rebecca Moody

https://ebookmass.com/product/big-data-and-public-policy-coursecontent-and-outcome-rebecca-moody-2/

ebookmass.com

Mayo Clinic Critical and Neurocritical Care Board Review Eelco F.M. Wijdicks Md

https://ebookmass.com/product/mayo-clinic-critical-and-neurocriticalcare-board-review-eelco-f-m-wijdicks-md/

ebookmass.com

Microeconomics, 22nd Edition Campbell R. Mcconnell

https://ebookmass.com/product/microeconomics-22nd-edition-campbell-rmcconnell/

ebookmass.com

https://ebookmass.com/product/the-dharma-in-dna-insights-at-theintersection-of-biology-and-buddhism-dee-denver/

ebookmass.com

Algebra

With Sessionwise Theory & Exercises

Algebra

With Sessionwise Theory & Exercises

SK Goyal

ARIHANT PRAKASHAN (Series), MEERUT

© AUTHOR

No part of this publication may be re-produced, stored in a retrieval system or by any means, electronic mechanical, photocopying, recording, scanning, web or otherwise without the written permission of the publisher. Arihant has obtained all the information in this book from the sources believed to be reliable and true. However, Arihant or its editors or authors or illustrators don’t take any responsibility for the absolute accuracy of any information published, and the damages or loss suffered thereupon.

All disputes subject to Meerut (UP) jurisdiction only.

Administrative & Production Offices

Regd.Office

‘Ramchhaya’ 4577/15, Agarwal Road, Darya Ganj, New Delhi -110002 Tele: 011- 47630600, 43518550

HeadOffice

Kalindi, TP Nagar, Meerut (UP) - 250002 Tel: 0121-7156203, 7156204

Sales & Support Offices

Agra, Ahmedabad, Bengaluru, Bareilly, Chennai, Delhi, Guwahati, Hyderabad, Jaipur, Jhansi, Kolkata, Lucknow, Nagpur & Pune.

ISBN : 978-93-25298-63-7

For further information about the books published by Arihant, log on to www.arihantbooks.com or e-mail at info@arihantbooks.com Follow us on PO No : TXT-XX-XXXXXXX-X-XX

Published by Arihant Publications (India) Ltd.

PREFACE

‘‘THE ALGEBRAIC SUM OF ALL THE TRANSFORMATIONS OCCURRING IN A CYCLICAL PROCESS CAN ONLY BE POSITIVE, OR, AS AN EXTREME CASE EQUAL TO NOTHING’’ MEANS IF YOU CONTINUOUSLY PUT YOUR EFFORTS ON AN ASPECT YOU HAVE VERY GOOD CHANCE OF POSITIVE OUTCOME i.e. SUCCESS

It is a matter of great pride and honour for me to have received such an overwhelming response to the previous editions of this book from the readers. In a way, this has inspired me to revise this book thoroughly as per the changed pattern of JEE Main & Advanced. I have tried to make the contents more relevant as per the needs of students, many topics have been re-written, a lot of new problems of new types have been added in etcetc. All possible efforts are made to remove all the printing errors that had crept in previous editions. The book is now in such a shape that the students would feel at ease while going through the problems, which will in turn clear their concepts too

A Summary of changes that have been made in Revised & Enlarged Edition

— Theory has been completely updated so as to accommodate all the changes made in JEE Syllabus & Pattern in recent years.

— The most important point about this new edition is, now the whole text matter of each chapter has been divided into small sessions with exercise in each session. In this way the reader will be able to go through the whole chapter in a systematic way.

— Just after completion of theory, Solved Examples of all JEE types have been given, providing the students a complete understanding of all the formats of JEE questions & the level of difficulty of questions generally asked in JEE.

— Along with exercises given with each session, a complete cumulative exercises have been given at the end of each chapter so as to give the students complete practice for JEE along with the assessment of knowledge that they have gained with the study of the chapter

— Last 13 Years questions asked in JEE Main & Adv, IIT-JEE & AIEEE have been covered in all the chapters.

However I have made the best efforts and put my all Algebra teaching experience in revising this book Still I am looking forward to get the valuable suggestions and criticism from my own fraternity i.e. the fraternity of JEE teachers.

I would also like to motivate the students to send their suggestions or the changes that they want to be incorporated in this book.

All the suggestions given by you all will be kept in prime focus at the time of next revision of the book.

CONTENTS

COMPLEX NUMBERS 1.

LEARNING PART

Session 1

— Integral Powers of Iota (i)

— Switch System Theory

Session 2

— Definition of Complex Number

— Conjugate Complex Numbers

— Representation of a Complex Number in Various Forms

Session 3

— amp (z)– amp (–z)=± p, According as amp (z) is Positive or Negative

— Square Root of a Complex Number

— Solution of Complex Equations

— De-Moivre’s Theorem

— Cube Roots of Unity

THEORY OF EQUATIONS 2.

LEARNING PART

Session 1

— Polynomial in One Variable

— Identity

— Linear Equation

— Quadratic Equations

— Standard Quadratic Equation

Session 2

— Transformation of Quadratic Equations

— Condition for Common Roots

Session 3

— Quadratic Expression

— Wavy Curve Method

— Condition for Resolution into Linear Factors

— Location of Roots (Interval in which Roots Lie)

Session 4

— nth Root of Unity

1-102

— Vector Representation of Complex Numbers

— Geometrical Representation of Algebraic Operation on Complex Numbers

— Rotation Theorem (Coni Method)

— Shifting the Origin in Case of Complex Numbers

— Inverse Points

— Dot and Cross Product

— Use of Complex Numbers in Coordinate Geometry

PRACTICE PART

— JEE Type Examples

— Chapter Exercises

103-206

Session 4

— Equations of Higher Degree

— Rational Algebraic Inequalities

— Roots of Equation with the Help of Graphs

Session 5

— Irrational Equations

— Irrational Inequations

— Exponential Equations

— Exponential Inequations

— Logarithmic Equations

— Logarithmic Inequations

PRACTICE PART

— JEE Type Examples

— Chapter Exercises

3.

SEQUENCES AND SERIES

LEARNING PART

Session 1

— Sequence

— Series

— Progression

Session 2

— Arithmetic Progression

Session 3

— Geometric Sequence or Geometric Progression

Session 4

— Harmonic Sequence or Harmonic Progression

4.

LOGARITHMS AND THEIR PROPERTIES

LEARNING PART

Session 1

— Definition

— Characteristic and Mantissa

Session 2

— Principle Properties of Logarithm

5.

PERMUTATIONS AND COMBINATIONS

LEARNING PART

Session 1

— Fundamental Principle of Counting

— Factorial Notation

Session 2

— Divisibility Test

— Principle of Inclusion and Exclusion

— Permutation

Session 3

— Number of Permutations Under Certain Conditions

— Circular Permutations

— Restricted Circular Permutations

Session 4

— Combination

— Restricted Combinations

207-312

Session 5

— Mean

Session 6

— Arithmetico-Geometric Series (AGS)

— Sigma (S) Notation

— Natural Numbers

Session 7

— Application to Problems of Maxima and Minima

PRACTICE PART

— JEE Type Examples

— Chapter Exercises

313-358

Session 3

— Properties of Monotonocity of Logarithm

— Graphs of Logarithmic Functions

PRACTICE PART

— JEE Type Examples

— Chapter Exercises

359-436

Session 5

— Combinations from Identical Objects

Session 6

— Arrangement in Groups

— Multinomial Theorem

— Multiplying Synthetically

Session 7

— Rank in a Dictionary

— Gap Method [when particular objects are never together]

PRACTICE PART

— JEE Type Examples

— Chapter Exercises

6.

BINOMIAL THEOREM

LEARNING PART

Session 1

— Binomial Theorem for Positive Integral Index

— Pascal’s Triangle

Session 2

— General Term

— Middle Terms

— Greatest Term

— Trinomial Expansion

Session 3

— Two Important Theorems

— Divisibility Problems

7.

DETERMINANTS

LEARNING PART

Session 1

— Definition of Determinants

— Expansion of Determinant

— Sarrus Rule for Expansion

— Window Rule for Expansion

Session 2

— Minors and Cofactors

— Use of Determinants in Coordinate Geometry

— Properties of Determinants

Session 3

— Examples on Largest Value of a Third Order Determinant

— Multiplication of Two Determinants of the Same Order

8.

MATRICES

LEARNING PART

Session 1

— Definition

— Types of Matrices

— Difference Between aMatrix and a Determinant

— Equal Matrices

— Operations of Matrices

— Various Kinds of Matrices

437-518

Session 4

— Use of Complex Numbers in Binomial Theorem

— Multinomial Theorem

— Use of Differentiation

— Use of Integration

— When Each Term is Summation Contains the Product of Two Binomial Coefficients or Square of Binomial Coefficients

— Binomial Inside Binomial

— Sum of the Series

PRACTICE PART

— JEE Type Examples

— Chapter Exercises

519-604

— System of Linear Equations

— Cramer’s Rule

— Nature of Solutions of System of Linear Equations

— System of Homogeneous Linear Equations

Session 4

— Differentiation of Determinant

— Integration of a Determinant

— Walli’s Formula

— Use of S in Determinant

PRACTICE PART

— JEE Type Examples

— Chapter Exercises

605-690

Session 2

— Transpose of a Matrix

— Symmetric Matrix

— Orthogonal Matrix

— Complex Conjugate (or Conjugate) of a Matrix

— Hermitian Matrix

— Unitary Matrix

— Determinant of a Matrix

— Singular and Non-Singular Matrices

Session 3

— Adjoint of a Matrix

— Inverse of a Matrix

— Elementary Row Operations

— Equivalent Matrices

— Matrix Polynomial

— Use of Mathematical Induction

9.

PROBABILITY

LEARNING PART

Session 1

— Some Basic Definitions

— Mathematical or Priori or Classical Definition of Probability

— Odds in Favours and Odds Against the Event

Session 2

— Some Important Symbols

— Conditional Probability

Session 3

— Total Probability Theorem

— Baye’s Theorem or Inverse Probability

10.

MATHEMATICAL INDUCTION

LEARNING PART

— Introduction

— Statement

— Mathematical Statement

11.

SETS, RELATIONS AND FUNCTIONS

LEARNING PART

Session 1

— Definition of Sets

— Representation of a Set

— Different Types of Sets

— Laws and Theorems

— Venn Diagrams (Euler-Venn Diagrams)

Session 2

— Ordered Pair

— Definition of Relation

— Ordered Relation

— Composition of Two Relations

Session 4

— Solutions of Linear Simultaneous Equations Using Matrix Method

PRACTICE PART

— JEE Type Examples

— Chapter Exercises

691-760

Session 4

— Binomial Theorem on Probability

— Poisson Distribution

— Expectation

— Multinomial Theorem

— Uncountable Uniform Spaces

PRACTICE PART

— JEE Type Examples

— Chapter Exercises

761-784

PRACTICE PART

— JEE Type Examples

— Chapter Exercises

785-836

Session 3

— Definition of Function

— Domain, Codomain and Range

— Composition of Mapping

— Equivalence Classes

— Partition of Set

— Congruences

PRACTICE PART

— JEE Type Examples

— Chapter Exercises

SYLLABUS

JEE MAIN

Unit I Sets, Relations and Functions

Sets and their representation, Union, intersection and complement of sets and their algebraic properties, Power set, Relation, Types of relations, equivalence relations, functions, one-one, into and onto functions, composition of functions

Unit II Complex Numbers

Complex numbers as ordered pairs of reals, Representation of complex numbers in the form a+ib and their representation in a plane, Argand diagram, algebra of complex numbers, modulus and argument (or amplitude) of a complex number, square root of a complex number, triangle inequality

Unit III Matrices and Determinants

Matrices, algebra of matrices, types of matrices, determinants and matrices of order two and three. Properties of determinants, evaluation of deter-minants, area of triangles using determinants. Adjoint and evaluation of inverse of a square matrix using determinants and elementary transformations, Test of consistency and solution of simultaneous linear equations in two or three variables using determinants and matrices

Unit IV Permutations and Combinations

Fundamental principle of counting, permutation as an arrangement and combination as selection, Meaning of P(n,r) and C (n,r), simple applications

Unit V Mathematical Induction

Principle of Mathematical Induction and its simple applications.

Unit VI Binomial Theorem and its Simple Applications

Binomial theorem for a positive integral index, general term and middle term, properties of Binomial coefficients and simple applications.

Unit VII Sequences and Series

Arithmetic and Geometric progressions, insertion of arithmetic, geometric means between two given

numbers. Relation between AM and GM Sum upto n 2 3 terms of special series: ∑ n, ∑ n , ∑n . ArithmeticoGeometric progression.

Unit VIII Probability

Probability of an event, addition and multiplication theorems of probability, Baye’s theorem, probability distribution of a random variate, Bernoulli and Binomial distribution.

JEE ADVANCED

Algebra

Algebra of complex numbers, addition, multiplication, conjugation, polar representation, properties of modulus and principal argument, triangle inequality, cube roots of unity, geometric interpretations.

Quadratic equations with real coefficients, relations between roots and coefficients, formation of quadratic equations with given roots, symmetric functions of roots.

Arithmetic, geometric and harmonic progressions, arithmetic, geometric and harmonic means, sums of finite arithmetic and geometric progressions, infinite geometric series, sums of squares and cubes of the first n natural numbers

Logarithms and their Properties

Permutations and combinations, Binomial theorem for a positive integral index, properties of binomial coefficients

Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, determinant of a square matrix of order up to three, inverse of a square matrix of order up to three, properties of these matrix operations, diagonal, symmetric and skew-symmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables.

Addition and multiplication rules of probability, conditional probability, independence of events, computation of probability of events using permutations and combinations

01 CHAPTER ComplexNumbers

LearningPart

Session1

● IntegralPowersofIota(i)

● SwitchSystemTheory

Session2

● DefinitionofComplexNumber

● ConjugateComplexNumbers

● RepresentationofaComplexNumberinVariousForms

Session3

● amp () z amp (), z Accordingasamp () z isPositiveorNegative

● SquareRootofaComplexNumber

● SolutionofComplexEquations

● De-Moivre’sTheorem

● CubeRootsofUnity

Session4

● nthRootofUnity

● VectorRepresentationofComplexNumbers

● GeometricalRepresentationofAlgebraicOperationonComplexNumbers

● RotationTheorem(ConiMethod)

● ShiftingtheOrigininCaseofComplexNumbers

● InversePoints

● DotandCrossProduct

● UseofComplexNumbersinCoordinateGeometry

PracticePart

● JEETypeExamples

● ChapterExercises ArihantonYourMobile! Exerciseswiththesymbolcanbepractisedonyourmobile.Seeinsidecoverpagetoactivateforfree.

2 TextbookofAlgebra

Thesquareofanyrealnumber,whetherpositive,negative orzero,isalwaysnon-negativei.e. x 2 0 forall xR. Therefore,therewillbenorealvalueof x , whichwhen squared,willgiveanegativenumber.

Thus,theequation x 2 10 isnotsatisfiedforanyreal valueof x .‘Euler’wasthefirstMathematicianto introducethesymbol i (read‘Iota’)forthesquarerootof 1withtheproperty i 2 1 Thetheoryofcomplex numberwaslaterondevelopedbyGaussandHamilton. AccordingtoHamilton,‘‘Imaginarynumberisthat numberwhosesquareisanegativenumber’’.Hence,the equation x 2 10

x 2 1 or x 1 (in the sense of arithmetic, 1 has no meaning). Symbolically, 1 isdenotedby i (thefirstletterofthe word‘Imaginary’).

Solutions of x 2 10 are xi

Also, i istheunitofcomplexnumber,since i ispresentin everycomplexnumber.Generally,if a ispositivequantity, then

i

IntegralPowersofIota () i

(i)If the index of i is whole number, then i 0 1, ii 1 , i 2211 (), iiii 32 , ii4222()()11

To find the value of i n () n 4 First divide n by 4.

Let q be the quotient and r be the remainder. i.e. 4) ( nq 4q r

Remark

aia, where a is positive quantity. Keeping this result in mind, the following computation is correct abiaibiabab 2 where, a and b are positive real numbers. But the computation, ababab()()||||is wrong. Because the property, abab is valid only when atleast one of a and b is non-negative. If a and b are both negative, then abab

❙ Example1. Isthefollowingcomputationcorrect? Ifnot,givethecorrectcomputation.

23236 ()()

Sol. No,

If a and b arebothnegativerealnumbers,then abab Here, ab23 and 2323()()6

❙ Example2. Astudentwritestheformula abab Then,hesubstitutes a 1 and b 1 andfinds 11 Explain,whereheiswrong.

Sol. Since, a and b arebothnegative,therefore abab Infact a and b arebothnegative,thenwehave abab

❙ Example3. Explainthefallacy 1111111 ii ()() .

Sol. If a and b arebothnegative,then abab|||| 1111||||1

nqr 4

When,03 r

iiiiii nqrqrqrr 44 1 ()()()()

In general, iiii nnn 4414211 ,,, ii n 43 for any whole number n

(ii)If the index of i is a negative integer, then i i i i i i 1 2 1 1 , i i 2 2 1 1, i i i i i 3 34 1 , i i 4 4 11 1 1, etc.

❙ Example4. Evaluate.

(i) i 1998

(ii) i 9999

(iii) (), 1 43 n nN

Sol. (i)1998leavesremainder2,whenitisdividedby4. i.e.41998499 ) ( 1996 2 ii19982 1

Aliter

i i i 1998 2000 2 1 1 1

(ii)9999leavesremainder3,whenitisdividedby4. i.e.499992499 ) ( 9996 3

i ii i i i i 9999 999934 11 1

Aliter

i i i i i i 9999 999910000 1 1

(iii)43 n leavesremainder3,whenitisdividedby4. i.e.,443 ) ( nn 4 3 n iii n 433

Now,()()() 1 434343 nnn ii () i i Aliter ()() 1 434343 nnn ii ()ii n 43 ()() 1 n i i

❙ Example5. Findthevalueof 1 2462 iiii n ..., where inN 1and.

Sol. Q 111111 2462 iiii nn ......()

Case I If n is odd, then 1 2462 iiii n ...1111110 ...

Case II If n is even, then 1111111 2462 iiii n

❙ Example6. If a i 1 2 , where i 1, thenfindthe valueof a1929

Sol. Q a iii 2 2 2 1 2 12 2

112 2 i i aaaaaai 192919282964964 ()() ai()4241 ai()4241 a

❙ Example7. Dividing fz() by zi, where i 1, we obtaintheremainder i anddividingitby zi, weget theremainder 1 i Findtheremainderuponthe divisionof fz() by z 2 1

Sol. zi 0 zi

Remainder, when fz() is divided by ()zii i.e. fii()(i) and remainder, when fz() is divided by ()zi 11 i.e. fii ()1[] Qzizi0(ii)

Since, z 2 1 is a quadratic expression, therefore remainder when fz() is divided by z 2 1, will be in general a linear expression.Let gz() be the quotient and azb (where a and b are complex numbers) be the remainder, when fz() is divided by z 2 1

Then, fzzgzazb ()()() 2 1 K (iii) fiigiaibaib ()()() 2 1 or aibi [from Eq. (i)] K (iv) and fiigiaib ()()() 2 1 aib or aibi1[from Eq. (ii)] …(v) FromEqs. (iv) and (v), we get bi 1 2 and a i 2

Hence, required remainder azb 1 2 1 2 izi

TheSumofFourConsecutive Powersof i (Iota) isZero

If nI and i 1,then iiiiiiii nnnnn12323 1() iii n () 11 0

Remark 1. frfrp rp m r mp ()() 1 1 1 2. frfrp rp m r mp ()() 1 1 1

4 TextbookofAlgebra

❙ Example8. Findthevalueof n nnii 1 1 13 () () where ,i 1

Sol. Q n nn n nn n iiii 1 13 1 1 13 1 1 13 ()()() ii00 2 i 1 Q n n n nii 2 13 2 13 1 00 and (threesetsoffourconsecutivepowersof) i

❙ Example9. Findthevalueof n n i 0 100 ! (, where i 1).

Sol. n!isdivisibleby4, n 4 n n n n ii 4

1 97 3 !()! iii 000 97 ...times97…(i)

n n n n n n !!! 0

0 3 4 100 iiii 0123 97 !!!! [from Eq. (i)] iiii 1126 97 ii 1197 952i

❙ Example10. Findthevalueof r n r i 1 47 () where ,i 1 .

Sol.

10[() n 1setsoffourconsecutivepowersof i ] 1

❙ Example11. Showthatthepolynomial xxxx pqrs 4414243 isdivisibleby xxx 32 1, where pqrsN ,,,.

Sol. Let fxxxxx pqrs () 4414243 and xxxxx 322111 ()() ()()() xixix 1 , where i 1

Now, fiiiii pqrs () 4414243 1 23iii 0

[sum of four consecutive powers of i is zero] fiiiii pqrs ()()()()()4414243 1 123 ()()() iii 110 ii and f pqrs ()()()()() 111114414243

11110

Hence, by division theorem, fx() is divisible by xxx 32 1

SwitchSystemTheory (FindingDigitintheUnit’sPlace)

Wecandeterminethedigitintheunit’splacein a b ,where abN,.Iflastdigitof a are015,, and6,then digitsintheunit’splaceof a b are0,1,5and6 respectively,forall bN .

Powersof2

222222222 123456789 ,,,,,,,,,...thedigitsinunit’splace ofdifferentpowersof2areasfollows: 248624862 ,,,,,,,,,... (period being 4)

123012301...(switch number)

(Theremainderwhen b isdividedby4,canbe1or2or3or0). Then,presstheswitchnumberandthenwegetthedigit inunit’splaceof a b (justabovetheswitchnumber)i.e. ‘pressthenumberandgettheanswer’.

❙ Example12. Whatisthedigitintheunit’splaceof () 5172 11327 ?

Sol. Here,lastdigitof a is2. Theremainderwhen11327isdividedby4,is3.Then, pressswitchnumber3andthenweget8. Hence,thedigitintheunit’splaceof ()51728 11327 is .

Powersof3

33333333 12345678 ,,,,,,,,... thedigitsinunit’splaceof differentpowersof3areasfollows: 39713971 ,,,,,,,,...(period being 4)

12301230...(switch number)

Theremainderwhen b isdividedby4,canbe1or2or3 or0.Now,presstheswitchnumberandgettheunit’s placedigit(justabove).

❙ Example13. Whatisthedigitintheunit’splace of () 143 86 ?

Sol. Here,lastdigitof a is3. Theremainderwhen86isdividedby4,is2. Then,pressswitchnumber2andthenweget9. Hence,thedigitintheunit’splaceof ()1439 86 is.

Powersof4

44444 12345 ,,,,,...thedigitsinunit’splaceofdifferent powersof4areasfollows: 46464 ,,,,,...(periodbeing2)

10101... (switch number)

Theremainderwhen b isdividedby2,canbe1or0.Now, presstheswitchnumberandgettheunit’splacedigit (justabovetheswitchnumber).

❙ Example14. Whatisthedigitinunit’splaceof () 1354 22222 ?

Sol. Here,lastdigitof a is4.

Theremainderwhen22222isdividedby2,is0.Then, pressswitchnumber0andthenweget6.

Hence,thedigitintheunit’splaceof ()13546 22222 is

Powersof7

77777777 12345678 ,,,,,,,,... thedigitsinunit’splaceof differentpowersof7areasfollows: 79317931 ,,,,,,,,...(period being 4)

12301230...(switch number)

(Theremainderwhen b isdividedby4,canbe1or2or3 or0).Now,presstheswitchnumberandgettheunit’s placedigit(justabove).

❙ Example15. Whatisthedigitintheunit’splaceof () 13057 941120579 ?

Sol. Here,lastdigitof a is7.

Theremainderwhen941120579isdividedby4,is3.Then, pressswitchnumber3andthenweget3.

Hence,thedigitintheunit’splaceof ()13057is3 941120579 .

Powersof8

88888888 12345678 ,,,,,,,,...thedigitsinunit’splaceof differentpowersof8areasfollows: 84268426 ,,,,,,,,...(period being 4)

12301230...(switch number)

Theremainderwhen b isdividedby4,canbe1or2or3 or0.

Now,presstheswitchnumberandgettheunit’splace digit(justabovetheswitchnumber).

❙ Example16. Whatisthedigitintheunit’splaceof () 1008 786 ?

Sol. Here,lastdigitof a is8.

Theremainderwhen786isdividedby4,is2.Then,press switchnumber2andthenweget4.

Hence,thedigitintheunit’splaceof () 1008 786 is4

Powersof9

99999 12345 ,,,,,...thedigitsinunit’splaceofdifferent powersof9areasfollows: 91919 ,,,,,...(periodbeing2)

10101...(switch number)

Theremainderwhen b isdividedby2,canbe1or0. Now,presstheswitchnumberandgettheunit’splace digit(justabovetheswitchnumber).

❙ Example17. Whatisthedigitintheunit’splaceof () 2419 111213 ?

Sol. Here,lastdigitof a is9.

Theremainderwhen111213isdividedby2,is1.Then, pressswitchnumber1andthenweget9.

Hence,thedigitintheunit’splaceof () 2419 111213 is9

6 TextbookofAlgebra

#L ExerciseforSession1

1 If ()() 112221iinnn (where,1) i for all those n, which are (a) even (b) odd (c) multiple of 3 (d) None of these

2 If i 1, the number of values of iinn for different nI is

(a) 1

(b) 2 (c) 3

(d) 4

3 If a 0 and b 0, then ab is equal to (where, i 1)

(a) ab

(c) ab

4 Consider the following statements.

(b) abi

(d) None of these

Sii 1 62349 :()()() where, i 1 S2 4949 :()()()()

S3 4936:()()

Of these statements, the incorrectone is

(a) S1 only

S4 :366

(b) S2 only (c) S3 only

(d) None of these

5 The value of n n i 0 50 21 ()! (where, i 1) is

(a) i

(b) 47 i (c) 48 i (d) 0

6 The value of r r i 3 1003 () where i 1is

(a) 1

(b) 1 (c) i (d) i

7 The digit in the unit’s place of () 153 98 is

(a) 1

(b) 3 (c) 7 (d) 9

8 The digit in the unit’s place of () 141414 12121 is

(a) 4

(b) 6 (c) 3 (d) 1

Session2

DefinitionofComplexNumber,ConjugateComplex Numbers,RepresentationofaComplexNumberin VariousForms

DefinitionofComplexNumber

Anumberoftheform aib,where abR , and i 1,is calleda complexnumber. Itisdenotedby z i.e. zaib

Acomplexnumbermayalsobedefinedasanorderedpair ofrealnumbers;andmaybedenotedbythesymbol(a, b). Ifwewrite zab(,),then a iscalledtherealpartand b is theimaginarypartofthecomplexnumber z andmaybe denotedbyRe() z andIm(z),respectivelyi.e., azRe() and bzIm()

Twocomplexnumbersaresaidtobeequal,ifandonlyif theirrealpartsandimaginarypartsareseparatelyequal. Thus, aibcid ac and bd where, abcdR ,,, and i 1 i.e. zz12

ReRe()() zz12 and ImIm()() zz12

ImportantPropertiesofComplexNumbers

1.The complex numbers do not possess the property of order, i.e., () aib or () cid is not defined. For example, 9632 ii makes no sense.

2.A real number a can be written as ai 0.Therefore, every real number can be considered as a complex number, whose imaginary part is zero. Thus, the set of real numbers (R) is a proper subset of the complex numbers() C i.e. RC Hence, the complex number system is NWIQRC

3.A complex number z is said to be purelyreal,ifIm() z 0; and is said to be purelyimaginary, ifRe() z 0. The complex number000 i is both purely real and purely imaginary.

4.In real number system, ab22 0 ab 0.

But if z 1 and z 2 are complex numbers, then zz 1 2 2 2 0 does not imply zz12 0

For example, zi 1 1 and zi 2 1

Here, zz1200 , But zzii 1 2 2 2 2211 ()() 1212 22 iiii

22 2 i 22 0

However, if product of two complex numbers is zero, then atleastone of them must be zero, same as in case of real numbers.

If zz12 0,then zz1200 , or z 1 0, z 2 0 or zz1200 ,

AlgebraicOperationson ComplexNumbers

Lettwocomplexnumbersbe zaib 1 and zcid 2 , where abcdR ,,, and i 1

1.Addition zzaibcid 12 ()() acibd ()()

2.Subtraction zzaibcid 12 ()() ()() acibd

3.Multiplication zzaibcid 12 ()() aciadibcibd 2 aciadbcbd () ()() acbdiadbc

4.Division z z aib cid cid cid 1 2 () () () ()

[multiplying numerator and denominator by cid whereatleastone of c and d is non-zero] aciadibcibd cid 2 22()() acibcadbd cid () 222 ()() acbdibcad cd22 () () () () acbd cd i bcad cd 2222

Remark 1 1 i i i and 1 1 i i i, where i 1.

PropertiesofAlgebraicOperations onComplexNumbers

Let zz12 , and z 3 beanythreecomplexnumbers. Then,theiralgebraicoperationssatisfythefollowing properties:

PropertiesofAdditionofComplexNumbers

(i) Closure law zz12 is a complex number.

(ii) Commutative law zzzz 1221

(iii) Associative law ()() zzzzzz 123123

8 TextbookofAlgebra

(iv) Additive identity zzz 00 , then0 is called the additive identity.

(v) Additive inverse z is called the additive inverse of z, i.e. zz()0.

PropertiesofMultiplication ofComplexNumbers

(i) Closure law zz12 is a complex number.

(ii) Commutative law zzzz 1221

(iii) Associative law ()() zzzzzz 123123

(iv) Multiplicativeidentity zzz11,then1is calledthemultiplicativeidentity.

(v) Multiplicative inverse If z is a non-zero complex number, then 1 z is called the multiplicative inverse of z i.e. z. 1 1 1 zz z

(vi) Multiplication is distributive with respect to addition zzzzzzz 1231213 ()

ConjugateComplexNumbers

Thecomplexnumbers zabaib (,) and zabaib (,) ,where a and b arerealnumbers, i 1 and b 0,aresaidtobecomplexconjugateofeach other(here,thecomplexconjugateisobtainedbyjust changingthesignof i).

Notethat,sum ()() aibaib 2a,whichisreal.

Andproduct ()() aibaib aib22 ()

aib222 ab22 1()

ab22 , which is real.

Geometrically, z is the mirror image of z along real axis on argandplane.

Remark

Let zaibab,,00 (,) ab (III quadrant )

Imaginaryaxis

Then, zaib (,) ab (II quadrant). Now,

(i)If z lies in I quadrant, then z lies in IV quadrant and vice-versa.

(ii)If z lies in II quadrant, then z lies in III quadrant and vice-versa.

PropertiesofConjugate ComplexNumbers

Let z, z 1 and z 2 becomplexnumbers.Then,

(i) ()zz

(ii) zzz2Re()

(iii) zzz2Im()

(iv) zz 0 zz z is purely imaginary.

(v) zz 0 zz z is purely real.

(vi) zzzz 1212 Ingeneral, zzzzzzzz nn123123

(vii) zzzz 1212

In general, zzzzzzzz nn123123

(viii) z z z z z 1 2 1 2 2 0 ,

(ix) zz nn ()

(x) zzzzzzzz 12121212 22Re()Re()

(xi)If zfzz(,), 12 then zfzz(,) 12

❙ Example 18. If x i y i i 3 3 3 3 , where xyR , and i 1,findthevaluesof x and y

Sol. Q x i y i i 3 3 3 3

()()()()()() xiyiiii 333333 ()() 39339310 xxiiyyiii ()() 331810 xyiyxi

On comparing real and imaginary parts, we get 33180 xy xy 6…(i) and yx 10...(ii)

On solvingEqs. (i) and (ii), we get x 2, y 8

❙ Example19. If (), aibpiq 5 where i 1, provethat () biaqip 5 .

Sol. Q ()aibpiq 5 ()aibpiq 5 ()() aibpiq 5

()() iaibipiq 252 [] Qi 2 1

()()()() ibiaiqip 55

()()()() ibiaiqip 5 ()() biaqip 5

❙ Example20. Findtheleastpositiveintegralvalueof n,forwhich 1 1 i i n , where i 1,ispurely imaginarywithpositiveimaginarypart.

Sol. 1 1 1 1 1 1 i i i i i i nn 12 2 2 ii n 112 2 i n

() i n Imaginary n 135,,,... for positive imaginary part n 3.

❙ Example21. Ifthemultiplicativeinverseofa complexnumberis ()/3419 i ,where i 1,find complexnumber.

Sol. Let z bethecomplexnumber.

Then, z i34 19 1 or z i i i 19 34 34 ()34 () ()

1934 19 () i () 34i

❙ Example22. Findreal ,suchthat 32 12 i i sin sin , where i 1,is

(i)purelyreal.(ii)purelyimaginary.

Sol. Let z i i 32 12 sin sin

On multiplying numerator and denominator by conjugate of denominator, z ii ii (sin)(sin) (sin)(sin) 3212 1212 (sin)sin (sin) 348 14 2 2 i (sin) (sin) (sin) (sin) 34 14 8 14 2 22 i

(i)Forpurelyreal, Im() z 0 8 14 0 2 sin sin orsin0 n , nI

(ii)Forpurelyimaginary, Re() z 0 (sin) (sin 34 14 0 2 2 or340 2 sin

orsinsin 2 2 2 3 4 3 23 nnI 3 ,

❙ Example23. Findrealvaluesof x and y forwhich thecomplexnumbers 3 2 ixy and xyi 2 4 , where i 1,areconjugatetoeachother.

Sol. Given,34 22 ixyxyi 34 22 ixyxyi

On comparing real and imaginary parts, we get xy 2 3…(i) and xy 2 4…(ii)

From Eq. (ii), we get x y 2 4

Then,43 y y puttinginEq.(i) x y 2 4 yy 2 340()() yy410 y 41, For y 4, x 2 1 x 1 For y 1, x 2 4[impossible] x 1, y 4

❙ Example24. If x 524,findthevalueof xxxx 432 935 4.

Sol. Since, x 524 xi 54 ()() xi 5422 xx 2 102516 xx 2 10410…(i)

Now, xxxxxxxx 24322 104193544 xxx 432 1041 xxx xxx 32 32 64 1041 4404 440164 2 2 xx xx 160 xxxx 4329354 ()() xxxx 2210414160 0160160[from Eq. (i)]

❙ Example25.Let z beacomplexnumbersatisfying theequation zizi 2 320 (), where R and i 1.Supposetheequationhasarealroot,findthe non-realroot.

Sol. Letbetherealroot.Then, 2 32()ii

()() 2 320 i

On comparing real and imaginary parts, we get 2 30…(i)

20…(ii)

From Eq. (ii),2

Let other root be.

Then,3 i 23 i 1 i

Hence, the non-real root is 1 i

RepresentationofaComplex NumberinVariousForms

CartesianForm (GeometricalRepresentation)

Everycomplexnumber zxiy,where xyR , and i 1,canberepresentedbyapointinthecartesian planeknownascomplexplane(Argandplane)bythe orderedpair(,). xy

ModulusandArgumentofa ComplexNumber

Let zxiyxy(,) for all xyR , and i 1

Argumentof z willbe , , and 2 accordingasthepoint z liesinI,II,IIIandIV quadrantsrespectively,where tan 1 y x .

❙ Example26. Findtheargumentsof zi 1 55 , zi 2 44 , zi 3 33 and zi 4 22 , where i 1

Sol. Since, zzzz 1234 ,,andliesinI,II,IIIandIVquadrants respectively.Theargumentsaregivenby arg()tantan z1 11 5 5 1

Thelength OP iscalledmodulusofthecomplexnumber z denotedby z , i.e. OPrzxy() 22 andif(,)(,), xy 00 then iscalledtheargumentor amplitudeof z,

i.e. tan 1 y x [anglemadeby OP withpositive X-axis] or arg()tan(/) zyx 1

Also,argumentofacomplexnumberisnotunique,since if isavalueoftheargument,soalsois2n ,where nI Butusually,wetakeonlythatvalueforwhich 02 Anytwoargumentsofacomplexnumberdiffer by2n

PrincipalValueoftheArgument

Thevalue oftheargumentwhichsatisfiestheinequality iscalledthe principalvalue oftheargument. If zxiyxy(,), xyR , and i 1,then arg()tan z y x 1 alwaysgivestheprincipalvalue.It dependsonthequadrantinwhichthepoint(,) xy lies.

(i) (,) xy first quadrant xy00 ,.

The principal value of arg()tan z y x 1 It is an acute angle and positive.

(ii) (,) xy second quadrant xy00 ,. The principal value of arg() z tan 1 y x

It is an obtuse angle and positive. (iii) (,) xy third quadrant xy00 ,.

The principal value of arg() z tan 1 y x

It is an obtuse angle and negative. (iv) (,) xy fourth quadrant xy00 , The principal value of arg() z tan 1 y x

It is an acute angle and negative.

❙ Example27. Findtheprincipalvaluesofthe argumentsof zi 1 22 , zi 2 33 , zi 3 44 and zi 4 55 , where i 1

Sol. Since, zzz123 ,,and z 4 liesinI,II,IIIandIVquadrants respectively.Theprincipalvaluesoftheargumentsare givenby

(x) zzzzzz 121212 Chap01ComplexNumbers 11 y x (,) xy Y X Realaxis X ′ Y ′ Imaginary axis O θ y x (,) xy Y X Realaxis X ′ Y ′ Imaginary axis O θ y x (,) xy Y X Realaxis X ′ Y ′ Imaginary axis

5 5 ortan,tan,tan,tan 1111 1111 or 44 ,,,or 4 3 4 3 44 ,,,

Hence, the principal values of the arguments of zzz123 ,, and z 4 are 4 3 4 3 44 ,,,, respectively.

Remark

1.Unless otherwise stated, amp z implies principal value of the argument.

2.Argument of the complex number 0 is not defined.

3.If zzzz 1212 andarg()arg(). zz 12

4.Ifarg() z 2or 2, z is purely imaginary.

5.Ifarg() z 0 or , z is purely real.

❙ Example28. Findtheargumentandtheprincipal valueoftheargumentofthecomplexnumber z i ii 2 41 2() , where i 1

Sol. Since, z i ii 2 41 2() 2 412 2 6 2 i iii

z lies in IV quadrant.

Here,tantan11 1 3 1 6 2 arg()tan z 222 1

Hence, principal value of arg ()tan z 1 2

PropertiesofModulus

(i) zz00,iff z 0 and z 0,iff z 0

(ii) zzz Re() and zzz Im()

(iii) zzzz

(iv) zzz 2

(v) zzzz 1212

In general, zzzzzzzz nn123123......

(vi) z z z z 1 2 1 2 () z 2 0

(vii) zzzz 1212

In general, zzzzzz n 12312 ... zz n 3 ...

(viii) zzzz 1212

(ix) zz n n

12 TextbookofAlgebra

Thus, zz12 || is the greatest possible value of zz12 and |||| zz12 is the least possible value of zz12

(xi) zzzzzzzz 12 2 12121 2 2 2 ()() () zzzz1212 or zzzz 1 2 2 2 12 2Re()

(xii) zzzzzz 12121212 2 cos(),where 11arg() z and 22arg() z

(xiii) || zzzz z z 12 2 1 2 2 2 1 2 ispurely imaginary.

(xiv) zzzzzz 12 2 12 2 1 2 2 2 2 {}

(xv) azbzbzazab 12 2 12 2 22 ()() zz 1 2 2 2 , where abR ,

(xvi)Unimodulari.e., unit modulus

If z isunimodular, then z 1.In case ofunimodular, let ziR cossin, and i 1

Remark

1.If fz() isunimodular, then fz() 1and let fzi ()cossin , R and i 1

2. z z is always aunimodularcomplex number, if z 0

(xvii)The multiplicative inverse of a non-zero complex number z is same as its reciprocal and is given by 1 2 z z zz z z

❙ Example29. If i i [,,,,,, 012345 6] and sinsinsinsin 1 4 2 3 3 2 4 zzzz

sin, 5 2 showthat 3 4 1 z

Sol. Giventhat, sinsinsinsinsin 1 4 2 3 3 2 45 2 zzzz or 2 1 4 2 3 3 2 45sinsinsinsinsin zzzz

2 1 4 2 3 3 2 sinsinsinzzz

sinsin45 z [byproperty(vii)]

2 1 4 2 3 3 2 sinsinsinzzz

sinsin45 z [by property (v)]

2 1 4 2 3 3 2 sinsinsinzzz

sinsin45 z [by property (ix)] …(i)

But given, i [,] 06

sin, i 0 1 2 , i.e.0 1 2 sin i Inequality Eq. (i) becomes, 2

1

1 2 432 zzzz 3 432 zzzz 3 2342 zzzzzz zz 34 ... 3 234 zzzz

3 1 z z [here, || z 1] 33 zz 34 z z 3 4

Hence, 3 4 1 z [||] Q z 1

❙ Example30. If zi22,findthegreatest andleastvaluesof || z ,where i 1.

Sol. Giventhat, zi22…(i) Q zizi22[by property (x)] ziz25…(ii)

FromEqs. (i) and (ii), we get zzi522 z 52 252 z 5252 z

Hence, greatest value of z is52 and least value of z is52

❙ Example31. If z isanycomplexnumbersuch that z 43, findthegreatestvalueof z 1.

Sol. Q zz143 () ()() zz4343 z 43

336[] Q z 43

z 16

Hence, the greatest value of z 1is 6.

❙ Example32. If zz1212 ,, z 3 3 and 946 123123 zzzzzz , findthevalueof zzz123 .

Sol. Q z1 1 z1 2 1

zz11 1 1 1 1 z z

zz 22 2 24 zz22 4 4

2 2 z z and zz 33 2 39 ||

zz33 9 9 3 3 z z and given946 123123 zzzzzz

zzz zzz 123 321 941 6

zzzzzz 123321 6 Q 149 1 1 2 2 3 3 z z z z z z ,and 1236 123 zzz

zzz 123 1[||||] Q zz

❙ Example33.Provethat

zzzzzz 121212 1 2 () 1 2 1212() zzzz .

Sol. RHS 1 2 1 2 12121212 ()() zzzzzzzz

zzzzzzzz 12121212 2 2 2 2 1 2 12 2 12 2 {} zzzz 1 2 2 1 2 2 2 .{} zz [ by property (xiv)]

zz12 LHS

❙ Example34. zz12 and aretwocomplexnumbers, suchthat zz zz 12 12 2 2 isunimodular,while z 2 isnot unimodular.Find ||. z 1

Sol. Here, zz zz 12 12 2 2 1

zz zz 12 12 2 2 1[byproperty(vi)]

zzzz 1212 22

zzzz 12 2 12 2 22

()()()() zzzzzzzz 12121212 2222 [by property (iv)]

()()()() zzzzzzzz 12121212 2222

zzzzzzzz 11122122 224 42212121122 zzzzzzzz

zzzz 1 2 2 2 1 2 2 2 44

zzzz 1 2 1 2 2 2 2 2 440

zz 1 2 2 2 410

But z 2 1[given] z1 2 4

Hence, z1 2

PropertiesofArguments

(i)arg() zz12 arg() z 1 arg()zk 2 2 , kI

In general, arg(...) zzzz n 123 argargarg()()() zzz 123 ...() arg zk n 2 , kI.

(ii)arg z z 1 2 arg() z 1 arg()zk 2 2 , kI

(iii)arg z z 2 arg()zk 2 , kI

(iv)arg()zn n . arg()zk 2 , kI, where proper value of k must be chosen, so thatRHSlies in(,]

(v)If arg z z 2 1 ,then arg z z n 1 2 2 , where nI

(vi)arg() z arg (z)

❙ Example35.Ifarg () z 1 17 18 andarg (), z 2 7 18 find

theprincipalargumentof zz12 and (/). zz12

Sol. arg () zz12 arg () z1 arg ()zk 2 2 17 18 7 18 2k

3 2k 4 3 2 2 3 [for k 1] and arg z z 1 2 arg () z1 arg ()zk 2 2 17 18 7 18 2k 10 18 2k

5 9 0 5 9 [for k 0]

14 TextbookofAlgebra

❙ Example36. If z 1 and z 2 areconjugatetoeach other,findtheprincipalargumentof () zz12

Sol. Q z1 and z 2 areconjugatetoeachotheri.e., zz21, therefore, zzzzz 12111 2

arg () zz12 arg () z1 2 arg[negative real number]

❙ Example37. Let z beanynon-zerocomplex number,thenfindthevalueofarg () z arg (). z

Sol. arg () z arg () z arg () zz arg () z 2 arg[positive real number]

0

(a) MixedPropertiesofModulus andArguments

(i) zzzz 1212 argarg()() zz 12 (ii) zzzz 1212 arg()arg() zz 12

Proof (i)Letarg() z 1 and arg() z 2 zzzz 1212

On squaring both sides, we get zzzzzz 12 2 1 2 2 2 12 2

zzzz 1 2 2 2 12 2 cos () zzzz 1 2 2 2 12 2 cos() 1 0 or argarg()() zz 12

(ii) Q |||||| zzzz 1212

On squaring both sides, we get zzzzzz 12 2 1 2 2 2 12 2

zzzz 1 2 2 2 12 2 cos()

zzzz 1 2 2 2 12 2 cos() 1 or arg()arg() zz 12

(b) TrigonometricorPolaror ModulusArgumentFormofa ComplexNumber

Let zxiy,where xyR , and i 1, z isrepresented by Pxy(,) intheargandplane.

Pxy(,) y x O Imaginaryaxis M Realaxis θ Y X

Bygeometricalrepresentation,

OPxyz () 22

POMzarg()

In OPM, xOPPOMzz cos()cos(arg) and yOPPOMzz sin()sin(arg)

Q zxiy

zzziz (cos(arg)sin(arg)) or zri(cossin) zri(cossin)

where, rz and principal value of arg(). z

Remark

1.cossin i is also written as CiS . 2. Remember 100 cossin i 1cossin i iicossin 22 iicossin 22

❙ Example38. Writethepolarformof 1 2 3 2 i (where, i 1).

Sol. Let z i 1 2 3 2 .Since, 1 2 3 2 ,liesinIIIquadrant.

Remark

1. zzzzzz 121212 arg()arg()

2. zzzzzz 121212 arg()arg()

3. zzzz 1212 arg()arg(),zzzz 12 1 2 2 and z z 1 2 are purely imaginary.

Principal value of arg()tan/ / z 1 32 12 tan 1 3 3 2 3 and z 1 2 3 2 2 2 1 4 3 4 11 Polar form of zzziz [cos(arg)sin(arg)]

i.e. 1 2 3 2 2 3 2 3 i i cossin

(c) Euler’sForm

If R and i 1,then ei i cossin isknownas Euler’sidentity.

Now, ei i cossin

Let ze i z 1 and arg() z Also, ee ii 2cos and ee ii 2i sin and if , R and i 1,then

(i) eee ii i 2 2 2 cos

ee ii 2 2 cos and arg() ee ii 2

(ii) eeei ii i 2 2 2 sin

ee ii 2 2 sin and arg() ee ii 22 [] Qie i 2

Remark

1. ee ii122 2/ cos (Remember)

2. eei ii122 2/ sin (Remember)

3. e e i i i 1 1 2 tan(/) (Remember)

4.If zrezr i ; , thenarg(),zzre i

5.If zz0 1, then zze i 0

❙ Example39. Giventhat z 11, where z isapoint ontheargandplane,showthat z z iz 2 tan(arg) , where i 1

Sol. Given, z 11

ze i 1 zee ii122 cos(/) arg()/ z 2…(i) LHS z z e e i i 212 1 e e i i 1 1 i tan(/) 2 iztan(arg)RHS[from Eq. (i)]

❙ Example40. Let z beanon-realcomplexnumber

lyingon z 1, provethat z i z i z 1 2 1 2 tan arg() tan arg() () where, i 1

Sol. Given, z 1 ze i …(i) arg() z …(ii) RHS 1 2 1 2 i z i z tanarg() tanarg() 12 12 i i tan(/) tan(/)[from Eq. (ii)]

cos/sin/ cos/sin/ 22 22 i i e e i i / / 2 2

e i z LHS[from Eq. (i)]

❙ Example41. Provethat tanln i aib aib ab ab 2 22

(,) where abRiand1 .

Sol. Q aib aib aib aib 1[||||] Q zz

Let aib aib e i …(i)

Bycomponendoanddividendo, we get ()() ()() aibaib aibaib e e i i 1 1 b a ii tan(/) 2 ortan 2 b a …(ii)

LHStanln i aib aib

tan(ln()) ie i [from Eq. (i)] tan() ii tan 22 12 2 tan/ tan/ 2 1 2 (/) (/) ba ba [from Eq. (ii)]

2 22 ab ab RHS

ApplicationsofEuler’sForm

If xyR ,, and i 1,then let zxiy [cartesian form] zi(cossin) [polar form] ze i [Euler’s form]

(i) ProductofTwoComplexNumbers Lettwocomplexnumbersbe

zze i 11 1 || and zze i 22 2 || , where 12 , R and i 1

zzzeze ii 1212 12 zze i 12 12 ()

zzi 121212 (cos()sin())

Thus, zzzz 1212 and arg() zz1212 arg()arg() zz 12

(ii) DivisionofTwoComplexNumbers Lettwocomplexnumbersbe

zze i 11 1 and zze i 22 2 , where 12 , R and i 1

z z ze ze z z e i i i 1 2 1 2 1 2 1 2 12 () z z i 1 2 1212 (cos()sin())

Thus, z z z z z 1 2 1 2 2 0 ,() and arg z z 1 2 12 arg()arg() zz 12

(iii) LogarithmofaComplexNumber

log()log() ee i zze loglog() ee i ze

log e zi logarg() e ziz

So,thegeneralvalueof log() e z log() e zni 2 (arg) z .

❙ Example42. If m and x aretworealnumbersand i 1, provethat e xi xi mix m 2 1 1 1 1 cot .

Sol. Letcot, 1 x thencot x

LHS e xi xi mix m 2 1 1 1 cot e i i mi m 2 1 1 cot cot

e ii ii mi m 2 (cot) (cot) e i i mi m 2 cossin cossin

e e e mi i i m 2 ee miim22()

ee mimi22 e 0 1RHS

❙ Example43. If z and w aretwonon-zerocomplex numberssuchthat zw and arg()arg() zw , provethat z w

Sol. Letarg(), w thenarg() z zzziz (cos(arg)sin(arg)) zi(cos()sin()) zi(cossin) zi(cossin)

wwiw (cos(arg)sin(arg)) wwiw (cos(arg)sin(arg)) wwiw (cos(arg)sin(arg)) w

❙ Example44. Express () 1 i i ,(where, i 1)inthe form AiB

Sol. Let AiBi i () 1

On taking logarithm both sides, we get log()log() eeAiBii 1

i i e log21 22

ii e logcossin 2 44

ie e i log() 2 4 ie ee i (loglog) 2 4 i i e 1 2 2 4 log i e 2 2 4 log AiBe i e 2 2 4 log ee i e 4 log / 2 12 eiee 4 (cos(log)sin(log)) //221212 eieee 44 coslogsinlog 1 2 1 2

❙ Example45. If sin(log), e i iaib where i 1, find a and b, henceandfind cos(log). e i i

Sol. aibi e i sin(log)sin(log) ii e sin((logarg)) iiii e sin((log())) ii e 12 sin((( ii 0 / 2)))sin(21 ab10 , Now,cos(log)sin(log) e i e iii 1 2 11110 2 ()()

Aliter

Q iee iii ()22

sin(log)sin(log) e i e ie 2 sinlog 2 e e

sin(21 aib [given] ab10 , andcos(log)cos(log) e i e ie 2 coslog 2 e e cos 2 0

❙ Example46. Findthegeneralvalueof log() 2 5i , where i 1.

Sol. logloglog 2 5 5 2 i i e e 1 2 552 log{logarg()} e e iiini 1 2 5 2 2 log{log}, e e i ninI

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Skills in mathematics algebra for iit jee main and advanced arihant dr. s k goyal s k goyal - The eb by Education Libraries - Issuu