Single skin and double skin concrete filled tubular structures : analysis and design mohamed elchala

Page 1


https://ebookmass.com/product/single-skin-and-double-skin-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Reinforced Concrete Structures Analysis and Design (2nd Edition) David A Fanella

https://ebookmass.com/product/reinforced-concrete-structures-analysisand-design-2nd-edition-david-a-fanella/

ebookmass.com

Analysis and Design of Prestressed Concrete Di Hu

https://ebookmass.com/product/analysis-and-design-of-prestressedconcrete-di-hu/

ebookmass.com

Design of Concrete Structures 15th Edition, (Ebook PDF)

https://ebookmass.com/product/design-of-concrete-structures-15thedition-ebook-pdf/

ebookmass.com

First Class Teaching: 10 Lessons You Don't Learn in College Michelle Emerson

https://ebookmass.com/product/first-class-teaching-10-lessons-youdont-learn-in-college-michelle-emerson/

ebookmass.com

Organization Theory and Design (MindTap Course List) –

Ebook PDF Version

https://ebookmass.com/product/organization-theory-and-design-mindtapcourse-list-ebook-pdf-version/

ebookmass.com

Devil's Ride West David Nix

https://ebookmass.com/product/devils-ride-west-david-nix-2/

ebookmass.com

Wicked Beauty Katee Robert

https://ebookmass.com/product/wicked-beauty-katee-robert/

ebookmass.com

The Anthropology of Islamic Law: Education, Ethics, and Legal Interpretation at Egypt's Al-Azhar Aria Nakissa

https://ebookmass.com/product/the-anthropology-of-islamic-laweducation-ethics-and-legal-interpretation-at-egypts-al-azhar-arianakissa/

ebookmass.com

Into the Dark Fiona Cummins

https://ebookmass.com/product/into-the-dark-fiona-cummins/

ebookmass.com

https://ebookmass.com/product/eco-cities-and-green-transport-1stedition-huapu-lu/

ebookmass.com

SINGLESKINANDDOUBLESKIN CONCRETEFILLEDTUBULAR STRUCTURES

SINGLESKINAND DOUBLESKIN CONCRETEFILLED

TUBULAR STRUCTURES

ANALYSISANDDESIGN

MOHAMED ELCHALAKANI

UniversityofWesternAustralia,Perth,Australia

POURIA AYOUGH

UniversityofMalaya,KualaLumpur,Malaysia

BO YANG

ChongqingUniversity,Chongqing,China

WoodheadPublishingisanimprintofElsevier

TheOfficers ’ MessBusinessCentre,RoystonRoad,Duxford,CB224QH, UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom

Copyright © 2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,orany informationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchasthe CopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedunder copyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperiments describedherein.Inusingsuchinformationormethodstheyshouldbemindfulof theirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-323-85596-9

ForinformationonallWoodheadPublishingpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: GlynJones

EditorialProjectManager: GabrielaD.Capille

ProductionProjectManager: SuryaNarayananJayachandran

CoverDesigner: ChristianJ.Bilbow

Acknowledgmentsvii

1.Introduction

1.1Introduction2

1.2AdvantagesofCFSTandCFDSTmembers2

1.3ErectionofCFSTandCFDSTcolumns5

1.4Applicationsofcompositemembers6

1.5Internationaldesignguidelines15 1.6Material15 References24

2.Experimentaltests

2.1Introduction30

2.2Cross-sectionalshapes33

2.3Experiments33

2.4Effectiveparameters39

2.5Failuremodes41

2.6Stiffenersincompositecolumns72

2.7Sizeeffects90

2.8Hollowratio100

2.9Effectsoftheconfinementfactor102

2.10Effectsofthematerialproperties105

2.11Loadeccentricity113

2.12Theroleoftheinnersteeltube119

2.13Materialimperfections125

2.14Effectsofpreloadandlong-termsustainedload153 References163

3.Analyticalmethods

3.1Introduction168

3.2Stress strainresponseofmaterials168

3.3Creepmodelforconcrete279

3.4CreepanalysisofCFSTcolumns284

3.5Aconstitutivemodelforcomputingthelateralstrainofconfinedconcrete298

3.6Axialandlateralstress strainresponseofCFSTcolumn305

3.7Ananalyticalaxialstress strainmodelforcircularCFSTcolumns308

3.8Pathdependentstress strainmodelforCFSTcolumns314

3.9Elastic-plasticmodelforthestress strainresponseofCFSTcolumns321

3.10Strengthenhancementinducedduringcoldforming332 References335

4.Numericalmethods

4.1Introduction343

4.2Numericalmodelingofconfinedconcrete343

4.3Investigatingthebehaviorofcompositemembersthrough numericalanalysis384 References533

5.Designrulesandstandards

5.1Limitationsofdesignregulationsonthestrengthofmaterialsandsection slenderness542

5.2Compressivedesignstrengthofcompositemembersbasedondesign guidelines546

5.3Momentdesignstrengthofcompositemembersbasedondesignguidelines577

5.4CFSTmembersundercombinedaxialloadingandbending609

5.5Strengthofcompositemembersbasedonresearchworks635

5.6Localbucklingofsteelplates678

5.7Furtherdiscussiononlocalbucklingofsteelplatesinrectangular CFSTcolumnsunderaxialcompression706

5.8CompressivestrengthofCFSTstubcolumnswithstiffeners732

5.9CompressivestrengthofCFSTstubcolumnswithlocalcorrosions776

5.10Straincompatibilitybetweenthesteeltubeandtheconcretecore785 References786

6.Futureresearch

6.1Introduction793

6.2Materialproperties795

6.3Geometricproperties798

6.4Nonuniformconfinement799

6.5Fireperformanceofcompositemembers801

6.6Stiffenedcompositemembers801

6.7Environmentallysustainablematerial805 References808 Index813

Acknowledgments

Theauthorswouldliketoacknowledgethepeoplewhohelpedtoprepare andreviewthemanuscript:Laila,Aya,YaseenandFaroukElchalakanifor reviewing Chapters1to6;ProfMostafaFahmiHassaneinforproviding materialsin Chapters1to6;DrMinhaoDongforprovingexperimental resultsin Chapter2;A/ProfSabrinaFawziaforreviewing Chapters5 and6;andDrShovonaKhursuforreviewing Chapters4and5

Theauthorsaregratefulfortheadviceoncompositestructures receivedfromeminentresearchersincivilengineeringfromdifferent partsoftheworld,includingProfSherifEl-TawilfromMichiganUniversity;ProfAlaaMorsyfromArabAcademyforScience,Technology,and MaritimeTransport;ProfMetwaliAbuHamadfromCairoUniversity; ProfSherifSafarandProfEzz-EldinSayedAhmedfromtheAmerican UniversityinCairo;ProfXiao-LingZhaofromUNSW/MonashUniversity;ProfGangadharaPrustyandProfSerkanSaydamfromUNSW;Prof NieShidongfromChongqingUniversity;DrShageaAlqawzai,ProfKang Chen,ProfLeShen,andDrMiaoDingfromChongqingUniversity; A/ProfNorHafizahRamliSulongandDrSabrinaFawziafromQUT; A/ProfZainahBintiIbrahimfromtheUniversityofMalaya;ProfAllan ManalofromUSQ;ProfHuaYang,ProfLanhuiGuo,andProfWeiZhou fromHarbinInstituteofTechnology;A/ProfMuhamadHadifromWollongongUniversity;DrMohamedAlifromtheUniversityofAdelaide; ProfEmadGad,ProfRiadhAl-Mahaidi,andProfJaySanjayanfrom SwinburneUniversity;ProfMostafaHassaneinfromTantaUniversity; ProfTong-BoShaofromSichuanUniversity;ProfDilumFernandoand DrChrisBecketfromtheUniversityofEdinburgh;ProfHongHao, DrThongPham,andDrWensuChenfromCurtinUniversity;ProfJingsi HufromHunanUniversity;ProfBrianUyandDrMichaelBambachfrom theUniversityofSydney;DrAfaqAhmedfromTaxilaUniversity;Prof SherifYehiafromAmericanUniversityinSharjah;andfinallyProfAli KarrechandDrMinhaoDongfromtheUniversityofWesternAustralia; andProfTianyuXiefromSouthChinaUniversityofTechnology.

Finally,wewishtothankourfamiliesfortheirsupportandunderstandingduringthemanyyearsthatwehavebeenundertakingresearch oncompositestructuresattheUniversityofWesternAustralia,theUniversityofMalaya,andChongqingUniversityduringthepreparationof thisbook.

PraisebetoAllah,theLordoftheworlds,theBeneficent,theMerciful, MasteroftheDayofRequital,TheedoweserveandTheedowebeseech forhelp.

Guideusontherightpath,thepathofthoseuponwhomThouhast bestowedfavours.Notthoseuponwhomwrathisbroughtdown,nor thosewhogoastray.

TheHolyQuran,SurahAl-Fatiha.

1.1Introduction

Theterm‘compositestructures’refertostructuresinwhichdifferent materialssuchastimber,steel,concrete,andmasonryareusedsimultaneouslyforconstruction.Themostcommontypeofcomposite constructionisthesimultaneoususeofsteelandconcretetoformsteelconcretecompositestructures.Steel-concretecompositestructuralmembersareknownaseconomicmembersandhavebeenusedtoconstruct variousstructuretypes.Itisaverywell-knownfactthatsteelmembersare susceptibletobuckling,whiletheirtensilestrengthisremarkable. Conversely,plainconcretememberscanwithstandalargemagnitudeof compressiveforce;however,theirtensilestrengthisdeficient.Therefore, thesimultaneoususeofsteelandconcreteallowsthestructuraldesigners totakeadvantageofsteelandconcreteandneutralizeeachmaterial’s drawbackbyusingtheothermaterial.Bytakingthisviewpoint,most structuralmemberssuchasslabs,columns,beams,andtrussescanbe constructedusingsteel-concretecompositemembers.Themainfocusof thecurrentbookistounderstandthestructuralbehaviorofconcrete-filled steeltubular(CFST)membersandconcrete-filleddoubleskinsteel tubular(CFDST)membersasoneofthemostrecentformsofcomposite members.Otherstructuralmembersarebeyondthescopeofthisbook.

1.2AdvantagesofCFSTandCFDSTmembers

Priortothedevelopmentofstructuraldesigncodesandregulations,a deepunderstandingofthebehaviorofstructuralmembersandknowing theperformanceandtheirfailuremechanismundertheconsidered loadingconditionarerequired.Usingtheavailablecodestodesign structuralmemberswithoutunderstandingtheirmaterialandstructural behaviorturnsmathematicalformulasintosetsofvagueconcepts. Therefore,theresultsoftheexperimentaltestsperformedonCFSTand CFDSTmembersarepresentedinthisbooktoshowtherealstructural behaviorofmembers.Certainly,experimentaltestsprovidevaluable informationregardingthebehaviorofstructuralmembers.However,for thoroughlyassessingtheinfluenceofdifferentparameterssuchas members’geometricandmaterialproperties,loadingconditions,initial geometricimperfections,andresidualstress,itisrequiredtofabricatea largenumberofspecimensintheadvancedstructuralengineeringlaboratories,whichcanbetime-consumingandexpensive.Recentimprovementsinthecapacitiesofcomputersinperformingcomplex mathematicalcalculations,aswellasthedevelopmentoffiniteelement (FE)softwarelikeABAQUSandANSYS,allowresearchersandstructural

engineerstoprofoundlyinvestigatethestructuralperformanceofmembersandstudytheirphysicalbehavior.Asaresult,thebehaviorofCFST andCFDSTmembersarestudiedthroughtheresultscapturedfromthe nonlinearFEanalysisinthisbook.AfterabasicunderstandingofCFST andCFDSTmembers’behavior,theavailableinternationaldesign regulationsfordesigningCFSTandCFDSTcolumns,beams,andbeamcolumnsareintroduced.Additionally,themostrecentdesignmodels developedbasedontheexperimentalandnumericalanalysisof compositemembersareincludedinthisbook.Designexamplesof compositemembersareutilizedwidelythroughoutthebook.

CFSTmembersconsistofahollowsteeltubefilledwiththeconcrete core,withorwithoutsteelreinforcementbars.Comparedwithhollow steelsectionsorthereinforcedconcrete(RC),thestructuralperformance ofCFSTmembers,suchastheirductility,compressive,bending,torsional strengths,fireresistance,andenergyabsorptioncapacities,areremarkablybetter.Besides,steeltubescanalsoactasconcreteformworkduring theconstructionprocesstoreducethetimeandcostofconstruction.These advantagesofCFSTmembersoverconventionalsteeltubeshaverecently attractedtheattentionofcivilengineersandhaveledtotheirwideusein recentstructures.TheideologybehindtheuseofCFSTmembersisthat theconcretecorecanavoidordelaythelocalbucklinginthesteeltubes. Besides,thebrittlebehavioroftheconcretematerialcanbehighly enhancedbytheconfinementeffectprovidedbythesteeltube. Fig.1.1 showsthecomparisonbetweendifferentsteeltubessuchassquare hollowsection(SHS),circularhollowsection(CHS),squareCFST,and circularCFST,basedontheiraxialstrengthundercompression.The compressivestrengthoftheconcreteusedinthesesteeltubeswasaround 40MPa.Besides,theschematicviewoftheaxialload-displacement

FIGURE1.1

FIGURE1.2 Comparisonbetweentheaxialcompressivebehaviorofsteelhollow sections,CFST,RC,andplainconcrete. Developmentsandadvancedapplicationsofconcrete-filled steeltubular(CFST)structures:members.JConstructSteelRes2014;100:211 228. https://doi.org/ 10.1016/j.jcsr.2014.04.016

responsesofCFST,RC,plainconcrete,andhollowsteelsectionispresentedin Fig.1.2.Itcanberecognizedfromthefiguresthatfillingthesteel tubewithconcretecouldhighlyenhancethecompressivecapacityofthe column.Inaddition,confiningtheconcretewiththesteeltubeimproved theresidualstrengthandductilityofthecolumn.

DespitetheadvantagesofCFSTmembers,theyalsohavesomedisadvantages,whichareasfollows:

1. Theoutersteelusuallytakesalargepartoftheexternalaxialloadas comparedtotheconcretecorebecauseofitshigherstiffnessunder compositeaction.

2. Theconcretecoreclosetotheneutralaxishasaninsignificant contributiontotheflexuralstrength.

3. Thecontributionoftheconcretecoreinenhancingthetorsional strengthisinsignificant.

4. Theinitialelasticdilationofconcreteunderaxialcompressionis relativelysmall,andthustheconfiningpressureprovidedbythe steeltubetoconcreteisrelativelylowduringtheelasticstage.

5. Theheavyself-weightoftheconcretecanlimittheperformanceof CFSTduetothestrength-to-weightratio.

Fromtheabovediscussion,itisquiteclearthatthecentralpartofthe concretecoreoftheCFSTcolumncaneffectivelybereplacedbyanother smallerhollowsteeltubewithsimilaraxial,flexural,andtorsional

1.3ErectionofCFSTandCFDSTcolumns

strength.ThisformofcolumnconstructionisknownastheCFDST columns.CFDSTmemberspossessseveraladvantagesoverthatofthe CFSTcolumn,whichcouldbesummarizedasfollows:

1. CFDSThavehigherflexuralandtorsionalstrengthascomparedto theCFSTmembers.Additionally,theirstrength-to-weightratiois improvedsignificantlybyreplacingthecentralconcretewithasteel tubeofamuchsmallercross-sectionalarea.Moreover,theinnertube expandslaterallyundercompressionloading,and,hencethe confiningpressureprovidedtotheconcretealsoincreases. Consequently,theinitialconfiningpressurebuildsupmorerapidly inCFDSTascomparedtoCFSTmemberssothattheirelastic strengthandstiffnessareenhanced.

2. CFDSTmemberscontainlessconcrete,whichcreatesamore sustainableenvironmentbyreducingtheembodiedenergylevels ofthemember.

3. Thecavityinsidetheinnertubeprovidesadryatmospherefor facilitiesorutilitiessuchaspowercables,telecommunicationlines, anddrainagepipes.Therefore,CFDSTmembersarechieflyuseful formaritimestructures.

1.3ErectionofCFSTandCFDSTcolumns

Duringtheconstruction,theinnertubeoftheCFDSTcolumniserected first.Thisisthenfollowedbytheerectionoftheoutertube.Afterthe erectionofbothtubes,theconcreteispouredinbetweenthem. Fig.1.3

FIGURE1.3 ErectionofCFDSTcolumns.(a)duringconstructionand(b)connection details. Developmentsandadvancedapplicationsofconcrete-filledsteeltubular(CFST)structures: members.JConstructSteelRes2014;100:211 228. https://doi.org/10.1016/j.jcsr.2014.04.016.

from[7]providestheerectionprocessofCFDSTcolumnsusedintransmissiontowers.Theplatesandboltsareusedtofixthepositionofthe tubes,whiletheflangesonbothendsofeachtubeareusedtoconnectit withitsextension.AsimilarprocedureisusedtoconstructCFSTcolumns, exceptthattheinnersteeltubeisnotinstalled.

Fabricationofhollowsteeltubescanbedonebyweldingsteelsheetsor usingthehot-rolledorcold-formedprocess.Dependingonthecrosssectionofthesteeltubes,differentshapesofcompositememberscanbe constructed,asshownin Fig.1.4

1.4Applicationsofcompositemembers

AppropriatestructuralperformanceofCFSTandCFDSTmembershas convincedstructuralengineerstousethemindifferenttypesofstructures likeindustrialstructures,structuralframes,electricitytransmittingpoles, andspatialconstructions.InChina,forexample,CFSTmembershave beenusedformorethan50years.In1996,structuraldesignersofsubway stationsinBeijingusedCFSTmembersastheprimarycolumns.Theuse ofCFSTmembersfortheconstructionofpowerplantbuildingsbacksto the1970s[7].Historically,theconceptof“doubleskin”composite constructionwasdevisedforuseinsubmergedtubetunnels[12].Agraph presentingthecross-sectionofthedoubleskincompositeconstructionis shownin Fig.1.5.Thiscross-sectionwasusedforthefirsttimeintheKobe MinatojimaSubmergedTunnelinJapan.Inthissection,someexamples fromtheuseofCFSTandCFDSTmembersinpracticearepresented.

Inthe1980s,andbyacceleratingthebuildinghigh-risestructures, structuralengineersdesignedandbuiltmanybuildingsusingCFST membersinBeijingandFujian,Chinatoreducethecolumns’size[9].

CFSTmembersaretypicallyservedasthecolumnsofcompositeframe systemsforbearingcompressiveloads,andtheyaregenerallyconnected tosteelorRCbeams.Toimprovethelateralresistanceofhigh-rise buildings,CFSTcompositeframestructuresaredesignedbyemploying RCcoretubesorsteelshearwallsasthelateralloadresistingsystem.The hybridstructuralsystemsconsistingofCFSTcolumnswiththecoretubes

FIGURE1.4 Differentshapesofcompositemembers.

FIGURE1.5 Exampleofsubmergedtub etunnelcrosssection. https://www. nipponsteel.com/result.html#/?ajaxUrl ¼%2F%2Fmf2apr01.marsflag.com%2Fnipponsteel__ all__customelement%2Fx_search.x &ct ¼&d ¼&doctype ¼all &htmlLang &imgsize ¼1 &page ¼ 1 &pagemax ¼10 &q ¼Development%20of%20sandwich-structure%20submerged%20tunnel% 20tube%20production%20method &sort ¼0 .

orshearwallsbenefitfromappropriatestiffnessandductility.Theperformedcyclictestonthebuildingsystemdepictedin Fig.1.6 from[8] indicatedthattheframe’sfirst-orderdampingratiosareintherangeof 0.03and0.035.

OneoftheearliestusesofCFSTmembersinhigh-risebuildingsisat SEGPlazainShenzhen,China,shownin Fig.1.7 from[7].Thebuilding has71floorswithaheightofalmost292m,inwhichcircularhollow sectionswithadiameterof1600mmandthesteelwallthicknessof28mm werefabricatedbyQ345steelandfilledwithC60concrete.Inthisproject, thesteelsectionsofthecolumnsweretransferredtothesite.Theshipped steelpartswereinthelengthsofthreestories.Aftertheinstallationof hollowsteelsections,steelI-beamswereconnectedtocolumnsusing bolts.Later,setsofcolumn-beamweretransferredtotheirexactlocation. Atthesametime,thedeckfloorswerefabricated.Theuseofthisstrategy allowedengineerstoconstructtwo-and-a-halffloorseachweek.Thefast constructionprocessofthisprojectprovestheefficiencyofcomposite structures.ComparisonofresultsshowedthattheuseofCFSTcolumns enabledstructuraldesignersofthisprojectreducetherequiredsteel materialandpreventtheuseofverythicksteelplates.Ifhollowsteel sectionswereused,therequiredsteelmaterialwouldbetwiceasmuchas thatusedforthefabricatedCFSTcolumns.TheSEGPlazaisthefirst super-high-risebuildinginChinainwhichcircularCFSTmemberswere used[13].

FIGURE1.6 Schematicviewofacompositestructuralsystemforhigh-risebuildings. Developmentsandadvancedapplicationsofconcrete-filledsteeltubular(CFST)structures:members.J ConstructSteelRes2004;100:211 228. https://doi.org/10.1016/j.jcsr.2014.04.016

Despitethebetterconfinementeffectprovidedbycircularsteeltubes andtheiraestheticproperties,theeaseoffabricationofbeam-to-column connectionsinrectangularcompositecolumnshasmadethempopularin compositeframes.RuifengInternationalCommercialBuildinginHangzhou,China,isshownin Fig.1.8 reproducedfrom[7]and[61],inwhich squareCFSTmemberswereusedascolumns.Theprojectconsistedoftwo towers.Thewestonehas24floorswithaheightof84.3m,andtheeast onehas15floorswithaheightof55.5m.ThecombinationofCFST compositeframesandthelateralresistancesystemofRCshearwallshas beenusedinthishybridstructuralsysteminwhichtheCFSTcolumns haveadepthof600mmandthesteelplatethicknessrangingfrom28to 16mm.

TheCantonTowerinGuangzhou,China,isamultipurposeobservationtowerthatconsistsofaspacelatticecompositeframetwistingaround anRCcore,asshownin Fig.1.9.Themainbodyofthestructurehasa 454mheight,andtheoverallheightofthetoweris600m.Twenty-four inclinedCFSTmembershavebeenemployedfortheconstructionof thistower.Themaximumdiameterofthesteeltubeis2000mm,andthe maximumwallthicknessofthetubeis50mm.

FIGURE1.7 SEGplazainShenzhen,China. Developmentsandadvancedapplicationsof concrete-filledsteeltubular(CFST)structures:members.JConstructSteelRes2004;100: 211 228. https://doi.org/10.1016/j.jcsr.2014.04.016.

Themassivecompressiveforcesinhigh-risestructurescanleadtoa largerequiredcolumncross-section.Themegacompositecolumncanbe usedtodealwiththeheavyaxialload,asshownin Fig.1.10 from[7].The crosssectionofthecolumnissplitintovariouschampersusinginternal webs.Theapplicationofinternalweb,longitudinalstiffeners,andreinforcingtiebarsimprovesthestabilityofsteelplates.Puringconcreteis performedusingventholesandmanholes.Ifthemember’scross-section islarge,itmaybenecessarytouseshearconnectorstoguaranteethe appropriateloadtransferbetweensteelandconcrete.Z15TowerinBeijing,China,withaheightof528m,hasbeenconstructedusingmega CFSTcolumns.

Theadvantagesofcompositememberscanbeexploitedinvariouskinds ofbridges,i.e.,archbridges,suspensionbridges,cable-stayedbridges,and trussbridges.Theycanbeusedfortheconstructionofpiers,towers,arches, aswellasthedecksystemofbridges.Differentbridgestructuresinwhich compositemembersareusedareshownin Fig.1.11 from[7].

FIGURE1.8 RuifengInternationalCommercialBuildinginHangzhou,China. Developmentsandadvancedapplicationsofconcrete-filledsteeltubular(CFST)structures:members.J ConstructSteelRes2004;100:211 228. https://doi.org/10.1016/j.jcsr.2014.04.016.

TheWangchangEastRiverBridgewithamainspanof2misthefirst archbridgeinChina,whereCFSTmemberswereused,asshownin Fig.1.12 reproducedfrom[7].Thecentralarchhasadumbbellshape cross-sectionwithatotaldepthof2m.C30concretewasusedforfilling thehollowsteelsectionsofbothtopandbottomchordswithadiameterof 800mmandawallthicknessof10mm.Asuperiorbenefitofadopting CFSTmembersinarchbridgesisthatthehollowsteeltubesactasthe permanentframeworkfortheconcrete,whichcanremarkablydecrease thetimeandcostofconstruction.Additionally,theinherentstabilityof thearchtubularstructureeliminatestheneedforatemporarybridgeto installthecompositearch.Theerectionofthecompositearchbridgecan bedoneusingrelativelysimpleconstructiontechnologyduetothelow

FIGURE1.9 Cantontower. GuangzhouTower.2009. https://commons.wikimedia.org/wiki/ File:Guangzhou_Tower2009.jpg

FIGURE1.10 MegaCFSTcolumncrosssection. Developmentsandadvancedapplicationsof concrete-filledsteeltubular(CFST)structures:members.JConstructSteelRes2014;100:211 228. https://doi.org/10.1016/j.jcsr.2014.04.016

FIGURE1.11 Applicationsofcompositemembersinbridges. Developmentsandadvanced applicationsofconcrete-filledsteeltubular(CFST)structures:members.JConstructSteelRes2014; 100:211 228. https://doi.org/10.1016/j.jcsr.2014.04.016

FIGURE1.12 WangchangEastRiverBridge,China. Developmentsandadvancedapplicationsofconcrete-filledsteeltubular(CFST)structures:members.JConstructSteelRes2014;100: 211 228. https://doi.org/10.1016/j.jcsr.2014.04.016.

weightofthehollowsteeltubes.Cantileverlaunchingtechniquesand horizontalorvertical“swing”techniquesarethemosttypicaltechniques forconstructingcompositearchbridges.

Anotherapplicationofcompositemembersisinsubwaystations. Columnsinsubwaystationsaregenerallysubjectedtosignificant

compressiveloads,anddesigningthemusinghollowsteelsectionsorRC membersmayleadtolargecross-sections.Therefore,structuralengineers oftheQianmensubwaystationinBeijing,Japan,employedcircularCFST columnsintheirdesign.Similarly,lines2and9ofthesubwaystationin Tianjin,China,havebeenconstructedusingcircularCFSTcolumns,as shownin Fig.1.13 reproducedfrom[7].

Compositememberscanalsobeemployedinindustrialbuildings.The useofcircularCFSTcolumnsinapowerplantworkshopisshownin Fig.1.14 from[7].Comparedtohollowsteelcolumns,theuseofCFST columnsinthisprojecthalvedtheconsumptionofsteelmaterials[7].

Compositememberscanbeutilizedintheconstructionofelectricity transmissionpylons.Thelong-spantransmissiontowerinZhoushan, China,withaheightof370m,isthebiggestelectricitytowersglobally,as shownin Fig.1.15 from[7].Fortheconstructionofthistower,atubular latticewithfourCFSTcolumnswithadiameterof2000mmhasbeen used.Recently,CFDSTmembershavebeenusedintheconstructionof electricalnetworkinfrastructures,asshownin Fig.1.16 from[7].

FIGURE1.13 Applicationofcompositemembersinsubwaystations. Developmentsand advancedapplicationsofconcrete-filledsteeltubular(CFST)structures:members.JConstructSteel Res2014;100:211 228. https://doi.org/10.1016/j.jcsr.2014.04.016

FIGURE1.14 Applicationofcompositemembersinapowerplantworkshop. Developmentsandadvancedapplicationsofconcrete-filledsteeltubular(CFST)structures:members.J ConstructSteelRes2014;100:211 228. https://doi.org/10.1016/j.jcsr.2014.04.016

FIGURE1.15 Zhoushanelectricitytransmissiontower. Developmentsandadvancedapplicationsofconcrete-filledsteeltubular(CFST)structures:members.JConstructSteelRes2014;100: 211 228. https://doi.org/10.1016/j.jcsr.2014.04.016.

FIGURE1.16 ApplicationofCFDSTcolumnsintheelectricitytransmissiontower. Developmentsandadvancedapplicationsofconcrete-filledsteeltubular(CFST)structures:members.J ConstructSteelRes2014;100:211 228. https://doi.org/10.1016/j.jcsr.2014.04.016

1.5Internationaldesignguidelines

Differentwell-knowninternationaldesignregulationslikeAmerican steeldesigncodeAISC360-16[1],BritishbridgecodeBS5400[11], JapanesecodeAIJ[2],ChinesecodeDBJ13-51[3],AustraliancodeAS5100 [10],andEuropeancodeEC4[5]supporttheuseofCFSTstructures. However,nodesigncodeshavebeendevelopedtocoverthedesignof CFDSTmembers.Therefore,structuralengineerstypicallyhavetomodify themodelsrecommendedforCFSTmemberstodesignCFDSTmembers. Forthesakeofsimplicity,thecodesarenamed“AISC360-16”,“BS5400,” “DBJ13-51,”“AS5100,”and“EC4”inthisbook.

1.6Material

Asdiscussedabove,aCFSTmemberconsistsofahollowsteelsection withaninfilledconcretecore.Thesteeltube’sfabricationcanbedone

TABLE1.1 Typesofconcreteusedforcompositecolumns.

Concrete NotationReferences

Polymerconcrete PC [47,48]

NormalstrengthconcreteNSC[20,24,30,32,41 44,52,62,63]

HighstrengthconcreteHSC[15,20,25,29 32,34,39 42,44 46,51 53,62]

Ultra-high-strength concrete UHSC[29,30,40 42,49]

Rubberizedconcrete RuC[17 19,22,23,33,59]

Self-compactingconcreteSCC[14,21,26 29,35,36,50]

Seawaterandseasand concrete SWSSC[37]

Grout GR [38] 1.Introduction

usingweldingsteelplates,hot-rolling,orcoldformingsteelmaterial.The steeltubecanbefabricatedusingmildcarbonsteel,highstrengthsteel, stainlesssteel,high-performancefire-resistantsteel,andaluminum.The employedconcretematerialcanbeanormalstrengthconcrete(NC),high strengthconcrete(HSC),ultra-high-strengthconcrete(UHSC),orselfconsolidatingconcrete(SCC).Otherconcretetypes,suchaspolymer concrete(PC)orevenrubberizedconcrete(RuC),canalsobeapplied.

Table1.1 summarizesthemostrecentexperimentalandnumericalstudies conductedoncompositecolumnsusingdifferenttypesofconcrete material.However,designregulationsprovidesomelimitationsforusing steelandconcretematerial,whichareaddressedinthissection.

1.6.1Steel

1.6.1.1AS5100part6

AS5100onlycoversstructuresbuiltbysteelmaterial,havingayield strengthoflessthan450MPa.Besides,thesteelelementsshouldhavea thicknessofatleast3mm.Symmetricalsteelsectionshavingayield strengthofnotmorethan350MPamustbeemployed.Besides,the slendernessofthesteelplatemustsatisfytheyieldslendernesslimit.

1.6.1.2BS5400part5

BS5400allowstheuseofcircularandrectangularhollowsteelsections forthefabricationofcompositemembers.Thehollowsteelsectionsmust besymmetrical,andsteelgradesofS275orS355shallbeusedinaccordancewithstandardsEN10025[4]orEN10210[16].Also,theslenderness ofthesteelplatemustsatisfytheyieldslendernesslimit.

1.6.1.3DBJ13-51

AccordingtoDBG13-51,thesteelmaterialusedforCFSTmembers shallbeinaccordancewiththesteeldesigncodeGB50017[54].Foursteel gradesofQ235,Q345,Q390,andQ420canbeemployedbasedonthe Chinesecode.

1.6.1.4Eurocode4

EC4referstoclauses3.1and3.2ofEurocode3Part1.1[6]forthesteel materiallimitation.BasedonEC4,themaximumsteelyieldstressmustbe lessthan460MPa.

1.6.1.5AISC360-16

AS360-16allowstheuseofcircularandrectangularhollowsteelsectionsforthefabricationofcompositemembers.Thesteelyieldstrength forthefabricationofhollowsteelsectionsmustbelimitedto525MPa. Theminimumallowableyieldstressfy andtensilestrengthfu defined bydesigncodesarelistedin Table1.2 forsteelplates[4,17,55,58], Table1.3 forhot-rolledhollowsteelsections[16],and Table1.4 forcold-rolledhollow steelsections[56,59,61].Itcanberecognizedfromtablesthatfy ranging from200to460MPaandfu rangingfrom300to720MPa.Thetensile strength-to-yieldstressfu .fy ratioisintherangeof1.11and1.96.

1.6.2Concrete

1.6.2.1AS5100

AccordingtoAS5100,concretehavingnormalstrengthanddensity, basedontherequirementsofAS5100Part5,mustbeused,andthesizeof theaggregateshouldbelimitedto20mm.Inaddition,ifsteelreinforcementbarsarerequired,theymustmeetAS5100Part5.Thecharacteristic compressivecylinderstrengthat28daysrangesfrom25to65MPa. Besides,thesaturatedsurface-drydensityoftheconcreteshouldbeinthe rangeof2100 2800/m3.AccordingtoAS5100,themodulusofelasticity oftheconcreteisgovernedby:

wheretheterm r denotesthedensityoftheconcreteand fcm istheaverage amountofconcretecompressivestrengthattherelevantage.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.