Simulation and optimization in process engineering : the benefit of mathematical methods in applicat

Page 1


Simulationandoptimizationinprocessengineering :thebenefitofmathematicalmethodsin applicationsofthechemicalindustry1stEdition MichaelBortz

https://ebookmass.com/product/simulation-and-optimizationin-process-engineering-the-benefit-of-mathematical-methodsin-applications-of-the-chemical-industry-1st-editionmichael-bortz/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Chemical Engineering Process Simulation 1st Edition

Nishanth G. Chemmangattuvalappil

https://ebookmass.com/product/chemical-engineering-processsimulation-1st-edition-nishanth-g-chemmangattuvalappil/

ebookmass.com

Applications of Nanofluids in Chemical and Bio-medical Process Industry Shriram S. Sonawane

https://ebookmass.com/product/applications-of-nanofluids-in-chemicaland-bio-medical-process-industry-shriram-s-sonawane/

ebookmass.com

Chemical Engineering Process Simulation 2nd Edition

Dominic C.Y. Foo

https://ebookmass.com/product/chemical-engineering-processsimulation-2nd-edition-dominic-c-y-foo/

ebookmass.com

Sister

Style:

The Politics of Appearance for Black Women Political Elites Nadia E. Brown

https://ebookmass.com/product/sister-style-the-politics-of-appearancefor-black-women-political-elites-nadia-e-brown/

ebookmass.com

El oscuro adiós de Teresa Lanza Toni Hill

https://ebookmass.com/product/el-oscuro-adios-de-teresa-lanza-tonihill/

ebookmass.com

Managerial economics Fifteenth Edition Eric Bentzen

https://ebookmass.com/product/managerial-economics-fifteenth-editioneric-bentzen/

ebookmass.com

Prince of Endless Tides (Darkmourn Universe Book 4) Ben Alderson

https://ebookmass.com/product/prince-of-endless-tides-darkmournuniverse-book-4-ben-alderson/

ebookmass.com

The Book Woman of Troublesome Creek Kim Michele Richardson

https://ebookmass.com/product/the-book-woman-of-troublesome-creek-kimmichele-richardson/

ebookmass.com

Deja Review: Pharmacology 3rd Edition Edition Jessica Darnobid

https://ebookmass.com/product/deja-review-pharmacology-3rd-editionedition-jessica-darnobid/

ebookmass.com

Salt, Fat and Sugar Reduction Maurice O'Sullivan

https://ebookmass.com/product/salt-fat-and-sugar-reduction-mauriceosullivan/

ebookmass.com

SimulationandOptimization inProcessEngineering

Simulation andOptimization inProcessEngineering

TheBenefitofMathematicalMethods inApplicationsoftheChemicalIndustry

Prof.Dr.MichaelBortz

Dr.NorbertAsprion

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensing Agency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-85043-8

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

EditorialProjectManager: JudithClarissePunzalan

ProductionProjectManager: BharatwajVaratharajan

CoverDesigner: MatthewLimbert

TypesetbySTRAIVE,India

1.Predictionandcorrelationofphysicalproperties includingtransportandinterfacialproperties withthePC-SAFTequationofstate JonasMairhoferandJoachimGross

2.Don’tsearch—Solve!Processoptimizationmodeling withIDAES

LorenzT.Biegler,DavidC.Miller,andChineduO.Okoli

3.Thinkingmulticriteria—Ajackknifewhenitcomesto optimization

NorbertAsprionandMichaelBortz

1.Introduction 57

1.1Shortaccountonmulticriteriaoptimization57

2.Processdesign 60

2.1Continuousdesignvariables61

2.2Discretealternatives62

2.3Theimpactofuncertainties64

2.4Extensiontooptimalcontrol68

3.Modeladjustment,modelcomparisonandmodel-based designofexperiments 69

4.Integratedmodelingandenergeticoptimizationof thesteelmakingprocessinelectricarcfurnaces:An industrialapplication

Jesu ´ sD.Herna ´ ndez,LucaOnofri,andSebastianEngell

1.Introduction 77

2.Electricarcfurnaceprocessmodel 79 2.1HybridEAFprocessmodel79

3.Dynamicoptimizationofthemeltingprofiles 87

3.1Problemstatement87

3.2Ageneralformulationofthedynamicoptimization problem88

3.3Formulationofthedynamicoptimizationproblem oftheEAFprocess88

4.Solutionusingcontrolvectorparametrization 89

4.1Numericalsolutionofthemodel89

4.2Terminationconditions91

4.3Modelvalidationandparameterestimation91

4.4Numericalsolutionoftheoptimizationproblem94

4.5Batchtimeconstraint94

5.Resultsanddiscussions 95

5.1Numericalcasestudy95

5.2Resultsfortherealindustrialprocess97

6.Conclusions 98 References 99

5.Solventrecoverybybatchdistillation—Applicationof multivariatesensitivitystudiestohighdimensional multiobjectiveoptimizationproblems

JanC.Schoneberger,DanielStaak,andJurgenRarey

1.Introduction 101

1.1Separationofacetoneandmethanol102

1.2Continuousseparationprocesses102

1.3Batchprocessesforseparation103

2.Problemdefinition 103

2.1Productspecificationsandconstraints103 2.2Descriptionoftheplant103

3.Literaturereview 106

4.Methodology 109

4.1Heuristicsfortheselectionofasuitablemultipurpose plant109

4.2Toolforrunningflowsheetsimulations110

4.3Algorithmsforoptimizingflowsheet simulations110

4.4Toolforrunningmultivariatesensitivity studies111

5.Setupoftheflowsheetsimulation 111 5.1Thermodynamicmodels111 5.2Screeningmodel112 5.3Low-fidelitymodel115 5.4High-fidelitymodel115

6.Results 117 6.1Screeningmodel117 6.2Low-fidelitymodel121 6.3High-fidelitymodel131 6.4Economicevaluation137 7.Summary

6.Modelingandoptimizingdynamicnetworks: Applicationsinprocessengineeringandenergy supply

JanMohring,JochenSchmid,JarosławWlazło, RaoulHeese,ThomasGerlach,ThomasKochenburger, andMichaelBortz

5.Conclusion

7.Theuseofdigitaltwinstoovercomelow-redundancy problemsinprocessdatareconciliation

FilippoBisotti,AndreaGaleazzi,FrancescoGallo, andFlavioManenti

1.Introduction 161

2.Datareconciliation 163

2.1Variableclassification163

2.2Steady-statedatareconciliation(DR)163

2.3Grosserrordetection165

2.4Grosserroreffectandhowtohandle165

2.5Grosserrordetection:Statisticalmethods166

2.6GEstatisticaldetectionalgorithms167

2.7Numericalmethodforlow-redundantsystem167

3.Clevermeanandclevervariance(cmandcv) 168

4.Medianandmad 170

4.1Dynamicdatareconciliation171

4.2Movingtime-windowapproach172

4.3SolutionofDDRwithorthogonalmatrix173

4.4Implementationandtheroleofdigitaltwin175

5.Industrialcasestudy:ItelyumRegenerationamine washingunit 177

5.1Processdescription177

5.2Assumptions179

6.Results 180

6.1Steady-statedatareconciliationresultsdiscussion180

6.2Grosserrordetectionresultsdiscussion186

6.3Dynamicdatareconciliationcasestudy:Aminetank dynamics189

7.Conclusions 195

7.1Steady-statedatareconciliation195

7.2Dynamicdatareconciliation(DDR)196 Acknowledgments 198 References 198

8.Real-timeoptimizationofbatchprocessesvia optimizingfeedbackcontrol

1.Introduction 201

2.Representationofbatchprocesses 203

2.1Distinguishingfeatures203

2.2Mathematicalmodels203

2.3Staticviewofabatchprocess204

3.Numericaloptimizationofbatchprocesses 205

3.1Problemformulation:Dynamicoptimization206

3.2Reformulationofadynamicoptimizationproblemasa staticoptimizationproblem206

3.3Batch-to-batchsolution:Staticoptimization207

3.4Effectofplant-modelmismatch208

4.Feedback-basedoptimizationofuncertainbatch processes 209

4.1Offlineactivity:Determinethefeedbackstructure209

4.2Real-timeactivities:Implementfeedbackcontrol211

5.Illustrativeexample:Batchdistillationcolumn 213

5.1Industrialbatchdistillationcolumn213

5.2Processmodel215

5.3Inputparameterizationoftheimpurityfraction216

5.4Controldesignandperformance218

6.Conclusions

9.Oneconomicoperationofswitchablechlor-alkali electrolysisfordemand-sidemanagement KosanRoh,LuisaC.Bree,KarenPerrey,AndreasBulan, andAlexanderMitsos

1.Introduction 226

2.Operationalmodeswitchingofchlor-alkalielectrolysis

3.Mathematicalformulationforoptimalsizingandoperation ofswitchablechlor-alkalielectrolysis

3.1Operationalmodetransition230

3.2Massbalance231 3.3Powerdemand231

3.4Rampingconstraints232 3.5Costfunction233

4.Casestudy 233

4.1Optimaloperationalbehaviorofswitchablechlor-alkali electrolysis234

4.2Comparisonofswitchablechlor-alkalielectrolysis tootherflexibilityoptions234

4.3Simultaneousoptimizationofplantoversizingand operation238

5.Conclusion

10.Optimalexperimentdesignfordynamicprocesses

SatyajeetBhonsale,PhilippeNimmegeers, SimenAkkermans,DriesTelen,IoannaStamati, FilipLogist,andJanF.M.VanImpe

1.Introduction 243

2.Optimalexperimentdesignformodelstructure discrimination 246 2.1OED/SDinpractice248

Contents

3.Optimalexperimentdesignforparameterestimation 251

3.1Computingparametervariance-covariancematrix252

3.2OED/PEasanoptimalcontrolproblem254

3.3OED/PEinpractice257

4.Advanceddevelopmentsinoptimalexperimentdesign 257

4.1Robustoptimalexperimentdesignforparameter estimation257

4.2Multicriterionoptimalexperimentdesign263

5.Conclusions 268 References

11.Characterizationofreactionsandgrowthin automatedcontinuousflowandbioreactor platforms—FromlinearDoEtomodel-based approaches

TilmanBarz,JulianKager,ChristophHerwig, PeterNeubauer,MarianoNicolasCruzBournazou, andFedericoGalvanin

1.Introduction 273

2.Miniaturizedplatformsandapplications 275

2.1Continuous-flowmicroreactorplatformsinsynthetic chemistry275

2.2Bioreactorplatformswithautomaticliquidhandling277

2.3ApplicationsofDoE,self-optimization,andmbOED—A bibliographicalreview283 2.4Summary297

3.Specialaspectsandchallenges 298

3.1Staticvsdynamicexperimentalconditions298

3.2SequentialplanningandupdatinginmbOED301

3.3Parameteridentifiability303

3.4Bayesianstatistics304

3.5Mathematicalmodeling,softwareandalgorithms306

4.Industryview 310

4.1 mbOED software,flexibility,usability,andrequired expertknowledge311

5.Discussionandconclusions 312 References 313

12.Productdevelopmentinamulticriteriacontext

PhilippSuss,GregorFoltin,MelanieHeidgen, DavidHajnal,JorgeDiaz,HergenSchultze, JochenGattermayer,andStefanLehner

1.Introduction 321 2.Modelfitting 322

2.1Generatingthedata:Designofexperiments323

3.Multicriteriaoptimizationanddecision-making 326

4.Approximatingthesetofefficientproductdesigns

7.Application:Designinganexteriorpaintrecipe

13.Dispatchingforbatchchemicalprocessesusing Monte-Carlosimulations—Apracticalapproachto schedulinginoperations

HeinerAckermann,MichaelHelmling,StefanHoeser, NeeleLeith € auser,MiguelA.Romero-Valle, CarlosTellaeche,andChristianWeiß

1.Introduction

2.Proposedsolution

3.Implementation

3.1Importantstepsfortheimplementationofourdecision supporttoolinpractice357 3.2Thefinalapplication359

4.Beyondreal-timeoperativescheduling

4.1Usecase1:Predictionoffutureeventsandplantstates360 4.2Usecase2:What-ifanalysesforplantexpansion/ optimization361

5.Conclusionsandoutlook

14.ApplicationsoftheRTNschedulingmodelinthe chemicalindustry

HectorD.Perez,SatyajithAmaran,ShachitS.Iyer, JohnM.Wassick,andIgnacioE.Grossmann

1.Introduction

2.ReviewofRTNmodel

2.1Discrete-timerepresentation370 2.2Continuous-timerepresentation372

2.3Discrete-timevscontinuous-time376

3.Industry-leddevelopments

Contributors

Numbersinparenthesisindicatethepagesonwhichtheauthors’contributionsbegin.

HeinerAckermann (339),FraunhoferITWM,Kaiserslautern,Germany

SimenAkkermans (243),BioTeC+,DepartmentofChemicalEngineering,Technology CampusGent,KULeuven,Ghent,Belgium

SatyajithAmaran (365),TheDowChemicalCompany,Midland,MI,UnitedStates

MichaelAmrhein (201),OnlineControl,Lausanne,Switzerland

NorbertAsprion (57),BASFSE,Ludwigshafen,Germany

TilmanBarz (273),CenterforEnergy,AITAustrianInstituteofTechnologyGmbH, Vienna,Austria;KIWI-biolab,DepartmentofBiotechnology,Technische UniversitatBerlin,Berlin,Germany

SatyajeetBhonsale (243),BioTeC+,DepartmentofChemicalEngineering,Technology CampusGent,KULeuven,Ghent,Belgium

LorenzT.Biegler (33),DepartmentofChemicalEngineering,CarnegieMellon University,Pittsburgh,PA,UnitedStates

FilippoBisotti (161),PolitecnicodiMilano,CMICDept.“GiulioNatta”,Centrefor SustainableProcessEngineeringResearch(SuPER),Milano,Italy

DominiqueBonvin (201),Laboratoired’Automatique,EPFL,Lausanne,Switzerland

MichaelBortz (57,143),FraunhoferInstituteforIndustrialMathematics(ITWM), Kaiserslautern,Germany

MarianoNicolasCruzBournazou (273),KIWI-biolab,DepartmentofBiotechnology, TechnischeUniversitatBerlin,Berlin,Germany;DataHowAG,Dubendorf, Switzerland

LuisaC.Bree (225),ProcessSystemsEngineering(AVT.SVT),RWTHAachen University,Aachen,Germany

AndreasBulan (225),CovestroDeutschlandAG,Leverkusen,Germany

JorgeDiaz (321),BASFSE,Ludwigshafen,Germany

SebastianEngell (77),ProcessDynamicsandOperationsGroup,Departmentof BiochemicalandChemicalEngineering,TUDortmundUniversity,Dortmund, Germany

GregorFoltin (321),FraunhoferInstituteforIndustrialMathematics(ITWM), Kaiserslautern,Germany

GregoryFranc ¸ ois (201),HES-SOValais-Wallis,Sion,Switzerland

AndreaGaleazzi (161),PolitecnicodiMilano,CMICDept.“GiulioNatta”,Centrefor SustainableProcessEngineeringResearch(SuPER),Milano,Italy

FrancescoGallo (161),ItelyumRegenerations.r.l,Lodi,Italy

FedericoGalvanin (273),DepartmentofChemicalEngineering,UniversityCollege London(UCL),London,UnitedKingdom

JochenGattermayer (321),BASFSE,Ludwigshafen,Germany

ThomasGerlach (143),BayerAG,BuildingE41,Leverkusen,Germany

JoachimGross (1),InstituteofThermodynamicsandThermalProcessEngineering, UniversityofStuttgart,Stuttgart,Germany

IgnacioE.Grossmann (365),CarnegieMellonUniversity,Pittsburgh,PA,United States

DavidHajnal (321),BASFSE,Ludwigshafen,Germany

RaoulHeese (143),FraunhoferInstituteforIndustrialMathematics(ITWM), Kaiserslautern,Germany

MelanieHeidgen (321),FraunhoferInstituteforIndustrialMathematics(ITWM), Kaiserslautern,Germany

MichaelHelmling (339),FraunhoferITWM,Kaiserslautern,Germany

Jesu ´ sD.Herna ´ ndez (77),ProcessDynamicsandOperationsGroup,Departmentof BiochemicalandChemicalEngineering,TUDortmundUniversity,Dortmund, Germany;AcciaiSpecialiTerni(AST),Terni,Italy

ChristophHerwig (273),InstituteofChemical,EnvironmentalandBioscience Engineering,TechnischeUniversit€ atWien,Vienna,Austria

StefanHoeser (339),BASFItaliaS.p.A.,PontecchioMarconi,Italy

ShachitS.Iyer (365),TheDowChemicalCompany,Midland,MI,UnitedStates

JulianKager (273),CompetenceCenterCHASEGmbH,Linz,Austria

ThomasKochenburger (143),BayerAG,BuildingE41,Leverkusen,Germany

StefanLehner (321),BASFSE,Ludwigshafen,Germany

NeeleLeith€ auser (339),FraunhoferITWM,Kaiserslautern,Germany

FilipLogist (243),BioTeC+,DepartmentofChemicalEngineering,Technology CampusGent,KULeuven,Ghent,Belgium

JonasMairhofer (1),BASFSE,Ludwigshafen,Germany

FlavioManenti (161),PolitecnicodiMilano,CMICDept.“GiulioNatta”,Centrefor SustainableProcessEngineeringResearch(SuPER),Milano,Italy

DavidC.Miller (33),NationalEnergyTechnologyLaboratory,Pittsburgh,PA,United States

AlexanderMitsos (225),ProcessSystemsEngineering(AVT.SVT),RWTHAachen University,Aachen,Germany;JARA-ENERGY,Aachen,Germany;Instituteof EnergyandClimateResearch:EnergySystemsEngineering(IEK-10), ForschungszentrumJulichGmbH,Julich,Germany

JanMohring (143),FraunhoferInstituteforIndustrialMathematics(ITWM), Kaiserslautern,Germany

PeterNeubauer (273),KIWI-biolab,DepartmentofBiotechnology,Technische Universit€ atBerlin,Berlin,Germany

PhilippeNimmegeers (243),BioTeC+,DepartmentofChemicalEngineering, TechnologyCampusGent,KULeuven,Ghent,Belgium

ChineduO.Okoli (33),NationalEnergyTechnologyLaboratory,Pittsburgh,PA, UnitedStates

LucaOnofri (77),AcciaiSpecialiTerni(AST),Terni,Italy

HectorD.Perez (365),CarnegieMellonUniversity,Pittsburgh,PA,UnitedStates

KarenPerrey (225),CovestroDeutschlandAG,Leverkusen,Germany

JurgenRarey (101),RareytecCo.,Ltd,NakhonRatchasima,Thailand

GianlucaRizzi (201),OnlineControl,Lausanne,Switzerland

KosanRoh (225),ProcessSystemsEngineering(AVT.SVT),RWTHAachen University,Aachen,Germany;DepartmentofChemicalEngineeringandApplied Chemistry,ChungnamNationalUniversity,Daejeon,RepublicofKorea

MiguelA.Romero-Valle (339),BASFSE,Ludwigshafen,Germany

JochenSchmid (143),FraunhoferInstituteforIndustrialMathematics(ITWM), Kaiserslautern,Germany

JanC.Sch€ oneberger (101),ChemstationsEuropeGmbH,Berlin,Germany

HergenSchultze (321),BASFSE,Ludwigshafen,Germany

DanielStaak (101),LonzaAG,Visp,Switzerland

IoannaStamati (243),BioTeC+,DepartmentofChemicalEngineering,Technology CampusGent,KULeuven,Ghent,Belgium

PhilippSuss (321),FraunhoferInstituteforIndustrialMathematics(ITWM), Kaiserslautern,Germany

DriesTelen (243),BioTeC+,DepartmentofChemicalEngineering,Technology CampusGent,KULeuven,Ghent,Belgium

CarlosTellaeche (339),BASFSE,Ludwigshafen,Germany

JanF.M.VanImpe (243),BioTeC+,DepartmentofChemicalEngineering, TechnologyCampusGent,KULeuven,Ghent,Belgium

JohnM.Wassick (365),TheDowChemicalCompany,Midland,MI,UnitedStates

ChristianWeiß (339),FraunhoferITWM,Kaiserslautern,Germany

JarosławWlazło (143),FraunhoferInstituteforIndustrialMathematics(ITWM), Kaiserslautern,Germany

Preface

Knowledge-anddata-basedmodeling,inconjunctionwithsettingupnewtechnicalsolutions,formthebasisofprogressdrivenbyengineers.Ahighdegreeof domainexpertiseisnecessarytoarriveatnewinsightsandideasthathavea substantialpracticalimpact.

Asopposedtohighlyspecializedengineers,mathematiciansaimtofind context-freestructuralrelations,provetheexistenceofsolutions,anddesign algorithmstoidentifythem.Themoregeneralmathematicalstatementsare, thehighertheirconsideredvalue.

Theideaforthisbookisrootedintheconvictionthatsubstantialbenefitscan arisewhenthesetwoworlds—thedomain-drivenengineeringworldandthe method-drivenmathematicalworld—comeintocontact.Thesebenefitscan betwofoldasexplainedinthefollowing.

Ontheonehand,fromascientificpointofview,mathematicalunderstandingofmodelsandtheirstructurescangeneratenewsolutionsforengineering problems.Thewayhowamodelisformulatedcanhaveasignificantimpact onwhetherandhowexistingsolutionscanberevealedalgorithmically.Furthermore,real-worldproblemsposedbyengineerscanchallengemathematical methodsandgowellbeyondwhatareconsideredasexamplesinmathematical textbooks.

Ontheotherhand,fromapracticalpointofview,significantprogresscan resultfromthispairing.Iftheapplicationofmathematicalmethodsleadsto morereliable,moreversatile,andmoreapplicablemodelpredictions,lesstrial anderrorisnecessary,andthetimeneededtoarriveatimprovements—ofwhateverkindthesemaybe—canbereduceddramatically.Eventually,thisisthe verypromiseofmodel-basedsimulationandoptimization:thatpredictions canbemadeforhighlycomplex,nonlinearsystemsonhowtoachievehighutilityatnotmorethanthenecessarycosts.

Thisbookhighlightsapplicationsfromchemicalengineeringthatshowhow mathematicaladvancesinsimulationandoptimizationleadtosubstantial impactintherealworld.Theorderofthechaptersfollowsthedifferentscales involvedinchemicalengineering,rangingfromsubstancepropertiesoverunit andflowsheetmodels,bothinthesteadystateanddynamically,uptoorganizationalquestionswhenitcomestoschedulingandproductionplanning.

xviii Preface

Throughoutthebook,thereaderwilldiscoverhowmathematicalstructure hiddeninmodels,insimulationandoptimizationtasks,isexploitedtoarriveat newinsights.Wehopethatthisbookwillbeaninspirationforbothengineers andmathematicianschallengedbyreal-worldproblems.

MichaelBortzandNorbertAsprion KaiserslauternandLudwigshafen

Chapter1

Predictionandcorrelation ofphysicalpropertiesincluding transportandinterfacial propertieswiththePC-SAFT equationofstate

JonasMairhofera andJoachimGrossb

aBASFSE,Ludwigshafen,Germany, bInstituteofThermodynamicsandThermalProcess Engineering,UniversityofStuttgart,Stuttgart,Germany

Thereliabilityofaprocesssimulation,toalargeextent,isdeterminedbythe fitnessoftheappliedphysicalpropertymodel.Adequatemodelsarerequired formanydifferentphysicalproperties:thesimulationofadistillationcolumn usingtheequilibriumstageapproachmayrequireamodelforactivitycoefficients,vaporpressure,enthalpy,andpossiblyvaporphasefugacitycoefficients. Rate-basedprocessmodels,inaddition,needtransportpropertiessuchasviscosity,thermalconductivity,ordiffusioncoefficientsasinput.Inordertodeterminevolumeflowsfrommassormolarflows,forexampleforequipment sizing,thedensityofastreamneedstobeknown.Furthermore,entropyplays animportantroleinthesimulationofcompressorsorpumps,etc.Highdemands areplacedonthephysicalpropertymodels:theyhavetoaccuratelycorrelate availableexperimentaldata,butalsoshowrobustnessinextrapolatingover largerangesoftemperatureandpressure.Theyhavetobeabletomodelthe thermodynamicbehaviorofspeciesandmixturesexhibitingcomplexmolecular interactions.Atthesametime,theycannotbearbitrarilycomplexinorderto ensurereliablenumericalsolutionsandtoavoidprohibitivelylongruntimes ofaprocesssimulation.

Severalalternativesexistforprovidingtherequiredphysicalproperties.One ofthemostwidelyusedapproachesinaprocesssimulationisinapplyingan activitycoefficientmodel,suchasthe nonrandomtwo-liquidmodel (NRTL) [1] formodelingtheliquidphasenonidealityincombinationwithdedicated, usuallyempiricalcorrelationsforthepure-componentvaporpressures,liquid

https://doi.org/10.1016/B978-0-323-85043-8.00002-7

andvaporphaseheatcapacities,liquiddensityandfurtherrequiredproperties. Thegasphaseismostoftenapproximatedasanidealgas.Thisapproach showsseveraldrawbacks:itisnotsuitedforhigh-pressureapplicationsbecause thepressuredependenceoftheactivitycoefficientsisusuallyneglected,and theidealgasapproximationwillnotbejustified.Thenonidealityofthegas phasethenalsohastobeaddressedincalculatingthevaporenthalpy.Furthermore,specialtreatmentisnecessaryforcomponentswithacriticaltemperature lowerthanthesimulationtemperature.

Anequationofstatemodelcomplementedwithexpressionsforidealgas heatcapacitiesofallpurespeciescanprovideallstaticthermodynamicproperties.Furthermore,modelsfortransportcoefficients,suchasviscosity,thermal conductivity,ordiffusioncoefficients,existwhichbuildonoutputsofan equationofstate.However,simplecubicequationsofstatesuchasthePengRobinson [2] orSoave-Redlich-Kwong [3] equationsofstatecanonlybe appliedtosimplemoleculesandingeneral,donotproduceresultsthatareaccurateenoughforallrequiredpropertiesinmostreal-worldprocessessimulation applications.Theneedformoreaccuratethermodynamicmodelsapplicable alsotomoleculesshowingcomplexmolecularinteractionssuchashydrogenbondingorpolarinteractionsledtothedevelopmentofmoresophisticated, physically-basedequationsofstatesuchasthe statisticalassociatingfluidtheory (SAFT)developedbyChapmanetal. [4,5] andJacksonetal. [6] basedon theworkofWertheim [7–10].SAFTleadstoanexpressionfortheresidual Helmholtzenergy Ares(T,ρ,x) ¼ A(T,ρ,x) Aig(T,ρ,x),where Aig denotesthe Helmholtzenergyoftheidealgasattemperature T,numberdensity ρ andmole fractions x.Thevalueof Ares isobtainedasthesumofdifferentcontributions. Eachcontributiontakesintoaccountaspecifictypeofmolecularinteraction. ThedifferentHelmholtzenergycontributionsaredevelopedusingperturbation theorywhich(undersuitableconditions)allowstoobtainthethermodynamic propertiesofatargetfluidwithspecifiedinteractionpotentialfromthepropertiesofareferencefluidwithasimplerinteractionpotentialandknownproperties.TheadvantageofSAFTisthatitallowstoincludeacontributionforhighly directionalattractiveinteractionssuchashydrogen-bondingwhichmakesita suitablechoiceformodelingthepropertiesofmolecules(andtheirmixtures) exhibitingsuchcomplexmolecularinteractions.DifferentSAFT-typeequationsofstatecanbederiveddependingonthechoiceofreferencefluidand interactionpotentialofthetargetfluid.

AdetaileddescriptionofthefundamentalsofSAFTcanbefoundinthebook bySolana [11].AcomprehensivelistofsuccessfulapplicationsofSAFT-type equationsofstatetocomplexsystemsincludingpolarandassociatingmolecules,polymers,ionicliquids,pharmaceuticalsaswellasbio-moleculescan befoundinreviewarticles [12–18].

Thescopeofthischapteristointroducethe perturbed-chainstatisticalassociatingfluidtheory (PC-SAFT).Theequationstoimplementthemodelare givenin Section1.Thedeterminationofmeaningfulpure-componentand binaryinteractionparametersisthetopicof Section2 Section3 presents

group-contributionmethodsforPC-SAFTwhichallowtopredictthemodel parametersinthefrequentlyencounteredsituationthatnotenoughexperimental dataisavailableforagivenmolecule,thuspreventingparameterregression. Finally, Sections4and5 areconcernedwithcorrelatingorpredictingthetransportandinterfacialproperties,respectively.

1ModelequationsofPC-SAFT

InthecaseofPC-SAFTdevelopedbyGrossandSadowski [19–21],the hard-chainfluidisusedasthereference.Eachchainismadeupof m bonded hard-spheresegmentsofdiameterparameter σ .Attractiveinteractionssuch asdispersiveinteractionsorhydrogenbondingbetweenthechainsarethen addedasperturbationstothispurely-repulsivereferencefluid.ThedimensionlessresidualHelmholtzenergy a res ≡ Ares/NkT withmoleculenumber N and Boltzmann’sconstant k isobtainedas ares ¼ ahc + adisp + aassoc + add + aqq + adq (1.1)

TheHelmholtzenergyhasseveralcontributions,namelythehard-chainreferencefluid, a hc,thechangeinHelmholtzenergyduetodispersiveinteractions betweenthechains, adisp,highlydirectionalattractiveinteractionssuchas hydrogen-bonding, a assoc,anddipole-dipole,quadrupole-quadrupoleaswell asdipole-quadrupoleinteractions.Withpolarcontributionsincluded,themodel isusuallyreferredtoas perturbed-chainpolarstatisticalassociatingfluidtheory (PCP-SAFT).Inthefollowingsection,thevarioustermsofEq. (1.1) willbe presentedforamixtureattemperature T,numberdensity ρ,andmolefractionof component i, xi.Usingbasicthermodynamicrelationships,allotherthermodynamicpropertiescanbeobtainedasderivativesof a res . TheHelmholtzenergyofthehard-chainfluidisgivenby

where a hs denotestheHelmholtzenergyofthehard-spherefluid.Theaverage segmentnumberofthemixtureiscalculatedas m ¼ Pi xi mi with mi asthenumberofsegmentsonachainofcomponents i.Wenotethatparameter mi isin SAFTmodelsrelaxedtobeareal-valued(ratherthaninteger-valued) parameter.

Thevalueof a hs isobtainedfromtheaccurateequationofstateforthehardspherefluidpresentedbyBoublı´k [22] andMansoorietal. [23]

withdensitymeasures ζ n definedas

Here, di denotesthetemperature-dependentsegmentdiameterofcomponent i di T ðÞ¼ σ i 1 0:12exp

withthedispersiveinteractionenergy εi/k betweensegmentswithinthechainof component i.Furthermore,theradialdistributionfunctionofthehard-sphere fluidatcontactdistanceiscalculatedas

ThecontributiontotheHelmholtzenergyduetodispersiveinteractions betweenthechainmoleculesisdevelopedasaperturbationtothehard-chain referencefluidusingthesecond-orderperturbationtheoryofBarkerandHenderson [24,25] extendedtochainfluids [19] andaperturbationpotentialof Lennard-Jonestype,with

Thecontributionsoffirstandsecond-orderareobtainedas

andpackingfraction η ¼ ζ 3.Thevaluesfor εij and σ ij aredeterminedfromthe Lorentz-Berthelotcombiningrulesas εij ¼ εi εj p and σ ij ¼ 0.5(σ i + σ j).Asdiscussedin Section2.2,itisoftennecessarytointroduceadjustablebinaryinteractionparameters(BIP)forcalculating εij and σ ij inordertoimprovethe descriptionofmixtureproperties.Theperturbationapproachrequirestheevaluationofintegralsoverthepair-correlationfunctionofthereferencefluidand theperturbationpotential.InPC-SAFT,theseintegralsareapproximatedas power-seriesindensity

withcoefficients ai m ðÞ and bi m ðÞ thatdependsontheaveragesegmentnumberofthemixture.Asimplebutaccurate [19] dependenceonsegment-number wastakeninanalogytoachain-formationtheorybyLiuandHu [26],as

Themodelconstants a0i, a1i, a2i aswellas b0i, b1i,and b2i wereadjustedto experimentalvaporpressureandPvT-dataof n-alkanes.Theirvaluescanbe foundintheoriginalpublication [20].

Inordertoincludehighlydirectionalattractiveinteractionssuchashydrogenbonds,associationsitesareplacedonthechainmolecules.Thesesitescan beofdifferenttypesandonlyinteractionsbetweencertainsitetypesareallowed tooccur.Sitetypescanforexamplerepresentelectrondonorsoracceptors. Interactionsarethenallowedbetweenadonorandanacceptorsitebutnot betweentwodonorortwoacceptorsites.Earlyclassificationofassociation-site schemesforseveralimportantchemicalfamiliescanbefoundintheworkof HuangandRadosz [27].ThefinalexpressionfortheHelmholtzenergycontributionduetoassociationis

where Γi denotesthesetofassociationsiteslocatedonamoleculeofspecies i and χ i A isthefractionofnonbondedassociationsites A onmoleculesoftype i.Thevalueof χ i A hastobedeterminedbysolvingthesetofnonlinearequations givenby

Here, εAi, Bj HB and κ Ai, Bj HB denotetheassociationstrengthbetweensite A on moleculesofcomponent i andsite B onmoleculesofcomponent j andthe dimensionlessvolumeinwhichassociationbetweenthetwositescanoccur, respectively.TheirvaluesareobtainedfromthefollowingcombiningrulessuggestedbyWolbachandSandler [28]

Strictlyspeaking,combiningruleshavenosoundjustificationforcrossassociationsbetweentwo(self-)associatingmolecules i and j (asopposedto dispersiveinteractions,whereapproximationscanbemadetoderivethe Berthelot-Lorentzcombiningrules).Cross-associationscanbedetermined throughquantummechanicalcalculations.Inmanypracticalapplications,however,thesimplecombiningrules,Eqs. (1.18)and(1.19),canproducesuitable approximationsofthecross-associationparameters.Clearly,binaryinteraction parametersmaybeintroducedinEqs. (1.18)and(1.19) toimproveresults,see Section2.2.EfficientschemestosolveEq. (1.16) andtodeterminederivatives of a assoc havebeendevelopedforexamplebyMichelsen [29],Michelsenand Hendriks [30],Tanetal. [31],andLangenbachandEnders [32].

Inmixturesofself-associatingmolecules i withmolecules j thatdonotselfassociatewhich,however,provideprotondonororacceptorsitesthatcanform cross-hydrogenbondswithmoleculesoftype i,itisoftenadvisabletoassigna nonzerovaluefor κ Ai, Bj HB tocomponent j [33].Pure-componentresultsforcomponent j remainunchangedbecausethevaluefor εAi, Bj HB issettozero.However, themodelnowtakesthecross-associationbetweenmolecules i and j into accountbecauseboth,cross-associationvolume, κ Ai, Bj HB ,aswellascrossassociationenergy, εAi, Bj HB ,arenonzero.Tofine-tunemixtureresultsaftera (moreorlessarbitrary)valueforassociationvolumewasassignedtocomponent j,BIPmaybeintroducedaspresentedin Section2.2.

Helmholtzenergycontributionsforpolarmoleculesweredeveloped,among others,byGross [34] forquadrupole-quadrupoleinteractions,GrossandVrabec [35] fordipole-dipoleinteractions,andVrabecandGross [36] fordipolequadrupoleinteractions.Inallthreecases,theresultingexpressionsare obtainedfromathird-orderperturbationapproachpresentedbyStelletal. [37,38] extendedtothetwo-centerLennard-Jonesfluid.ThethreepolarHelmholtzenergycontributionsaresimilarinstructureandonlytheexpressionfor thedipole-dipolecontribution a dd ispresentedhere.Thereaderisreferredtothe originalpublicationsfordetailsonthequadrupole-quadrupoleterm, aqq,andthe dipole-quadrupolecontribution, adq.

Fordipole-dipoleinteractions,theHelmholtzenergyisgivenastheresultof thethird-orderperturbationinPadeapproximation

Thesecondandthird-orderperturbationtermsare

and add 3 ¼ 4

Thedimensionlesssquareddipolemomentisobtainedas

withdipolemomentofcomponent i, μi.Theperturbationapproachrequiresthe evaluationofintegralsoverthepair-correlationandthree-bodycorrelation functionsofthereferencefluid.Theseintegralsareapproximatedassimple powerfunctionsofdimensionlesspackingfraction η:

and

Thecoefficients an,ij, bn,ij,and cn,ijk dependonchainlength m as

Thefollowingcombiningrulesareusedfor mij and mijk

Themodelconstants a0

wereadjustedto theresultsofmolecularsimulationsofStolletal. [39].Theirvaluescanbe foundintheoriginalpublication.Insummary,amoleculeofcomponent i thatismodeledasnonassociatingandnonpolarischaracterizedbythree pure-componentmodelparameters:segmentnumber mi,segmentdiameter parameter σ i,anddispersiveenergy εi.Toincludeassociation,twomoreparametersarerequired:associationstrength εAi, Bj HB andassociationvolume κ Ai, Bj HB .The polarcontributionsrequirethevalueforthedipoleorquadrupolemoment.For both,literaturevaluescanbeused.

2Parameterization

2.1Pure-componentparameters

Thegoalintheadjustmentofpure-componentparametersis,ofcourse,the accuratedescriptionofthepropertiesofinterest.Thesimplestwaytoachieve thisistoincludeexperimentaldataforthetargetpropertiesintheparameter regression.Ifonlydataforotherpropertiesareavailable,onehastomakesure, thatparametersadjustedtothisdataallowsatisfyingpredictionsoftheprimary propertiesofinterest.

Whenchoosingthepropertiestoincludeforparameteroptimization,ithas tobeensuredthatthesepropertiesindeeddefineallmodelparameterswell.For example,inthePC-SAFTmodelforanonassociating,nonpolarmolecule,the valuesforenthalpyofevaporationandcriticaltemperaturedonotdependonthe valueoftheparameter σ andthePitzeracentricfactor ω isonlyafunctionof segmentnumber m [40].

Also,limitationsofequationsofstatesuchasPC-SAFTtoaccuratelyreproducethecriticalregionhavetobekeptinmind,anddatainthevicinityofthe criticalpointisusuallyexcludedfromtheparameteroptimization.

MostparametersetsfoundintheliteratureforPC-SAFTwereadjustedto experimentaldataforvaporpressure, p s,andliquiddensity, ρl.Otherstudies includedataforspeedofsound,surfacetension [41,42],fractionofnonbonded associationsites [43],orresultsofmolecularsimulations [41].Toaddressthe conflictthatexistsbetweenthesubobjectivesofdescribingdifferentthermodynamicpropertiesaccurately,theparameteradjustmenthasbeenperformedasa multicriteriaoptimizationproblem [42,44]

Arecentstudy [45] ontheparameteradjustmentfornonassociating,nonpolarmolecules,concludedthatitisindeedsufficienttousecombineddatafor p s and ρl inordertoobtainparametervaluesfor m, σ ,and ε thatallowtheaccurate calculationofthetargetpropertiesvaporpressure,saturated-liquiddensity, ρl s , enthalpyofevaporation, Δ hlv,aswellassaturated-liquidheatcapacity, cp l, s ,a setthatismostrelevantforprocesssimulation.Reportedaveragedeviationsfor adatabaseofmorethanathousandnonassociating,nonpolarmoleculeswith parametersadjustedtovaporpressureandsaturated-liquiddensityaccountto only0.97%for p s,0.85%for ρl s,3.04%for Δ hlv and3.35%for cp l, s [45] TheliteraturesurveyofZhuetal. [46] evaluatestheperformanceofseveral equationsofstatetoreproduceheatcapacitiesandspeedofsoundfornonassociatingaswellasassociatingmoleculessuchasalcoholsandwater.Thestudy showsthatpredictionsofPC-SAFTwithparametersadjustedtovaporpressure andliquiddensityforthesederivativepropertiescanstillbeinsatisfactory agreementwithexperimentaldata.However,largerdeviationshavetobe expectedthanfornonassociatingmolecules.Furthermore,resultsaresensitive tothechoiceoftheassociationscheme [47,48].Theremedyincaseswithlarger deviationsofthepredictedderivativepropertiesistoincludethesepropertiesin theparameteroptimizationasdemonstrated,e.g.,intheworkofOliveiraetal.

[49].Furthermore,aconsiderableefforthasbeenundertakentoreducethenumberofmodelparametersthatneedtobeadjusted,especiallyinthecaseofmoleculesmodeledasassociatingfluids,wherefivemodelparametersneedtobe determinedanddifferentlocalandshallowminimaareoftenobserved.These approachesincludetheuseofgeneralizedpure-componentparametersfor membersofthesamechemicalfamily [50],establishingcorrelationsforthe parametersofmoleculesofhomologousseries [51–53],performingsensitivity analysisandfixingtheleast-sensibleparameter [54],determiningthevalueof singleparameters,oftentheassociationenergy,byindependentmethodssuch asabinitiocalculations [55–57],molecularsimulation [58] orCOSMO-RS [53] orestablishingalinkbetweentheparametersofPC-SAFTandthoseofcubic EOS [59].SpecialroutestodeterminePC-SAFTparametershavebeendevelopedforpolymers,wherevaporpressuredataareunavailable [60,61] orfor petroleumfractionswithunspecifiedcomponents [62].Maybethemostimportantapproachtoalleviatingtheneedfordeterminingpure-componentparametersisingroup-contributionmethods,asdescribedbelow,in Section3

2.2Binaryinteractionparameters

Inmixtureswheredispersiveinteractionsarethedominantpartoftheattractive intermolecularpotentials,oftenaccurateresultscanbeobtainedwithout introducingbinaryinteractionparameters(BIP)inthecombiningrulesfor

εij, σ ij, εAi, Bj HB ,and κ Ai, Bj HB .However,formanymixturesofindustrialinterest, BIPisnecessarytoimprovemixtureresults.Inthissection,commonlyapplied BIPispresentedanditisdiscussedhowmeaningfulvaluescanbeobtained.

Thedispersiveenergybetweenmoleculesoftype i andmoleculesoftype j, εij,canbecorrectedwithBIP kij,as

AfurtherBIPfordispersiveenergy, lij,whichisespeciallyusefulforcorrelatingliquid-liquidequilibriaissometimesusedasacorrectiontothevalue of σ ij as

Alternatively,TangandGross [63] proposedanasymmetricmixingrule whereaBIPactsonthedoublesuminthefirst-orderperturbationtermof thedispersivecontribution, a1 disp,Eq. (1.8)

Betweentwospeciesmodeledasassociatingmolecules,additionalBIP, kijHB and lijHB,canbeintroducedinthecombiningrulesfortheassociationenergyand volume:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.