Semi-LagrangianAdvectionMethodsandTheir ApplicationsinGeoscience1stEditionStevenJ. Fletcher
https://ebookmass.com/product/semi-lagrangian-advectionmethods-and-their-applications-in-geoscience-1st-editionsteven-j-fletcher/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Data Assimilation for the Geosciences. From Theory to Application 1st Edition Edition Steven J. Fletcher (Auth.)
https://ebookmass.com/product/data-assimilation-for-the-geosciencesfrom-theory-to-application-1st-edition-edition-steven-j-fletcher-auth/
ebookmass.com
Data Assimilation for the Geosciences: From Theory to Application 2nd Edition Steven J. Fletcher
https://ebookmass.com/product/data-assimilation-for-the-geosciencesfrom-theory-to-application-2nd-edition-steven-j-fletcher/
ebookmass.com
Tribology of Graphene: Simulation Methods, Preparation Methods, and Their Applications Oleksiy V. Penkov
https://ebookmass.com/product/tribology-of-graphene-simulationmethods-preparation-methods-and-their-applications-oleksiy-v-penkov/
ebookmass.com
Ophthalmology Secrets Janice A. Gault
https://ebookmass.com/product/ophthalmology-secrets-janice-a-gault/
ebookmass.com
https://ebookmass.com/product/beguiled-by-her-mainely-books-clubbook-7-chelsea-m-cameron/
ebookmass.com
Greek and Roman Technology: A Sourcebook of Translated Greek and Roman Texts 2nd Edition Andrew N. Sherwood
https://ebookmass.com/product/greek-and-roman-technology-a-sourcebookof-translated-greek-and-roman-texts-2nd-edition-andrew-n-sherwood/
ebookmass.com
Medieval Arms and Armour: A Sourcebook, Volume I: The Fourteenth Century Ralph Moffat
https://ebookmass.com/product/medieval-arms-and-armour-a-sourcebookvolume-i-the-fourteenth-century-ralph-moffat/
ebookmass.com
Feinde John Grisham
https://ebookmass.com/product/feinde-john-grisham/
ebookmass.com
GOVT 10: Principles of American Government 10th Edition
Edward I. Sidlow
https://ebookmass.com/product/govt-10-principles-of-americangovernment-10th-edition-edward-i-sidlow/
ebookmass.com
Mary, Countess of Derby, and the Politics of Victorian Britain Jennifer Davey
https://ebookmass.com/product/mary-countess-of-derby-and-the-politicsof-victorian-britain-jennifer-davey/
ebookmass.com
SEMI-LAGRANGIANADVECTION METHODSANDTHEIRAPPLICATIONS INGEOSCIENCE SEMI-LAGRANGIAN ADVECTION METHODSAND THEIR APPLICATIONS INGEOSCIENCE StevenJ.Fletcher
ResearchScientistIII
CooperativeInstituteforResearchintheAtmosphere(CIRA) ColoradoStateUniversity FortCollins,CO,UnitedStates
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom
50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2020ElsevierInc.Allrightsreserved.
MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission.
TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook.
Thisbook’suseordiscussionofMATLAB® softwareorrelatedproductsdoesnotconstituteendorsementorsponsorshipby TheMathWorksofaparticularpedagogicalapproachorparticularuseoftheMATLAB® software.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite: www.elsevier.com/permissions.
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-12-817222-3
ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: CandiceJanco
AcquisitionEditor: AmyShapiro
EditorialProjectManager: RubySmith
ProductionProjectManager: VigneshTamil
Designer: MatthewLimbert
TypesetbyVTeX
1.Introduction
Contents 2.Eulerianmodelingofadvectionproblems
2.1Continuousformoftheadvection equation7
2.2Finitedifferenceapproximationtothe Eulerianformulationoftheadvection equation14
2.3Implicitschemes49
2.4Predictor–correctormethods65
2.5Summary66
3.Stability,consistency,andconvergence ofEulerianadvectionbased numericalmethods
3.1Truncationerror69
3.2Dispersionanddissipationerrors77
3.3Amplitudeandphaseerrors78
3.4Stability81
3.5Quantifyingthepropertiesoftheexplicit finitedifferenceschemes87
3.6Linearmultistepmethods96
3.7Consistencyandstabilityofexplicit Runge–Kuttamethods100
3.8Implicitschemes102
3.9Predictor–correctormethods107
3.10Summary108
4.Historyofsemi-Lagrangianmethods
4.1Fjørtoft(1952)paper111
4.2Welander(1955)paper115
4.3Wiin-Nielsen(1959)paper120
4.4Robert’s(1981)paper124
4.5Summary127
5.Semi-Lagrangianmethodsforlinear advectionproblems
5.1DerivationoftheLagrangianformfor advection129
5.2Derivationofthesemi-Lagrangian approach131
5.3Semi-Lagrangianadvectionofthebell curve135
5.4Semi-Lagrangianadvectionofthestep function140
5.5Summary145
6.Interpolationmethods
6.1Lagrangeinterpolationpolynomials148
6.2Newtondivideddifferenceinterpolation polynomials158
6.3Hermiteinterpolatingpolynomials163
6.4Cubicsplineinterpolation polynomials166
6.5Summary172
7.Stabilityandconsistencyanalysis ofsemi-Lagrangianmethodsforthe linearproblem
7.1Stabilityofsemi-Lagrangian schemes175
7.2StabilityanalysisofLagrangeinterpolation polynomials177
7.3StabilityanalysisofthecubicHermite semi-Lagrangianinterpolation scheme190
7.4Stabilityanalysisofthecubicspline semi-Lagrangianinterpolation scheme195
7.5Consistencyanalysisofsemi-Lagrangian schemes199
7.6Summary203
8.Advectionwithnonconstantvelocities
8.1Semi-Lagrangianapproachesforlinear nonconstantadvectionvelocity205
8.2Twoandthreetimelevelschemes209
8.3Semi-Lagrangianapproximationsto nonlinearadvection219
8.4NonlinearinstabilityI224
8.5NonlinearinstabilityII226
8.6Boundaryconditionsforlimitarea models230
8.7Summary234
9.Nonzeroforcings 9.1Methodsofcharacteristics approach236
9.2Semi-implicitintegration241
9.3Semi-implicitsemi-Lagrangian (SISL)243
9.4Spatialaveraging246
9.5Optimalaccuracyassociatedwith uncenteringtimeaverages247
9.6Semi-Lagrangiantrajectoriesanddiscrete modes252
9.7Time-splitting258
9.8Boundaryconditionsforthe advection-adjustmentequation261
9.9Summary266
10.Semi-Lagrangianmethodsfor two-dimensionalproblems
10.1Bivariateinterpolationmethods269
10.2Gridconfigurations276
10.3Semi-implicitsemi-Lagrangianfinite differencesintwodimensions280
10.4Nonlinearshallowwaterequations284
10.5Finiteelementbasedsemi-Lagrangian method287
10.6Semi-Lagrangianintegrationinflux form294
10.7Semi-Lagrangianintegrationwithfinite volumes302
10.8Semi-Lagrangianadvectioninflowswith rotationanddeformation307
10.9Eliminatingtheinterpolation311
10.10Semi-Lagrangianapproachwithocean circulationmodels318
10.11Transparentboundaryconditions320
10.12Testcasesfortwo-dimensional semi-Lagrangianmethods331
10.13Semi-Lagrangianmethodswiththe2D quasi-geostrophicpotentialvorticity(Eady model)335
10.14Summary346
11.Semi-Lagrangianmethodsfor three-dimensionalproblems
11.1Trivariateinterpolationmethods351
11.2Semi-Lagrangianadvectionintheprimitive equations355
11.33Dfluxformsemi-Lagrangian360
11.4Three-dimensionalfullyelasticEuler equationswithsemi-Lagrangian361
11.5Sensitivitytodeparturepoint calculations368
11.6Consistencyofsemi-Lagrangiantrajectory calculations372
11.7Semi-implicitEulerianLagrangianfinite elements(SELFE)374
11.8Summary380
12.Semi-Lagrangianmethodsonasphere
12.1Vectoroperatorsinspherical coordinates381
12.2Griddevelopmentforasphere383
12.3Grid-pointrepresentationsofthe sphere388
12.4Spectralmodeling394
12.5Semi-Lagrangianandalternatingdirection implicit(SLADI)scheme413
12.6Globalsemi-Lagrangianmodelingofthe shallowwaterequations416
12.7Spectralmodelingoftheshallowwater equations435
12.8Semi-implicitsemi-Lagrangianschemeon thesphere442
12.9RemovingtheHelmholtzequation447
12.10Stableextrapolationtwo-time-levelscheme (SETTLS)449
12.11Fluxformonasphere456
12.12Numericaltestcasesforthesphere464
12.13Summary468
13.Shape-preservingandmass-conserving semi-Lagrangianapproaches
13.1Shape-preservingsemi-Lagrangian advection471
13.2Cascadeinterpolation482
13.3Semi-Lagrangianinherentlyconservingand efficientscheme(SLICE)493
13.4Flux-formsemi-Lagrangianspectralelement approach521
13.5Conservativesemi-LagrangianHWENO methodfortheVlasovequations527
13.6Summary540
14.Tangentlinearmodelingandadjointsof semi-Lagrangianmethods
14.1Derivationofthelinearizedmodel541
14.2Adjoints542
14.3Testofthetangentlinearandadjoint models545
14.4Differentiatingthecodetoderivethe adjoint546
14.5Tangentlinearapproximationsto semi-Lagrangianschemes548
14.6Perturbationforecastmodeling559
14.7Sensitivityofadjointofsemi-Lagrangian integrationtodeparturepoint iterations562
14.8Summary566
15.Applicationsofsemi-Lagrangian methodsinthegeosciences
15.1Atmosphericsciences569
15.2Atmosphericchemistry576
15.3Hydrologicalandocean applications580
15.4Earth’smantleandinterior586
15.5Otherapplications591
15.6Summary592
16.Solutionstoselectexercises
Bibliography 597 Index 605
1 Introduction Advectionplaysavitalpartinmanydifferentformsofgeophysicalmodelingthatcanaffect everybody,everydayinsomeform.Advection,initslinearornonlinearform,affectsthe weatherandoceanforecasts,riversedimentaswellaschemicaltransport,alongwiththe solarwindforecast,modelingofmagmaflows,andhydrothermaltransport.Aninaccurate forecastinanyofthesesituationscouldleadtoquitecatastrophic,andlifethreatening,results.
Moisturetransportforanonshoreflow,ifmiscalculated,couldleadtoamisleadingforecastofanextremerainevent,whichinturncouldleadtoaflashfloodwarningnotbeing issued.TheonsetofthetornadoseasonintheUnitedStates’Midwestispartiallydependent ontheadvectionofthewarmmoistairfromtheGulfofMexicointothecontinent.Anover-, orunder-,predictionofthisadvectioncouldleadtoverydifferentoutcomeswhichcould indicatesevere,ornotsevere,weather.
Aswesawin2010,theeruptionofEyjafjallajökullinIcelandledtotheshutdownofthe NorthAtlanticairspaceforoveraweekbecausethenumericalweatherpredictioncenters didnothavegoodenoughmodelsforthetransportoftheash.Sincethentherehavebeen majordevelopmentsinthisarea,particularlyintransportasaformofadvection,wheresemiLagrangianapproacheshavebeendeveloped.
Thestatementaboveindicatesthatadvectionisalsoreferredtoasatransportproblemin atmosphericchemistry,sedimenttransportinriversandoceanmodeling.Ifwegobelowthe Earth’ssurface,whenweareconcernedwithtemperature,advectionisoftenreferredtoas convectionmodeling.Advectionalsooccursinspacethroughtheionosphereaswellassolar windinteractionswiththemagnetosphere.
ApproximationsofadvectionintheearlynumericalweatherpredictionswereconsideredintheEulerianformwhichisassociatedwithmodelingtheflowasitpassesapoint. Ontheotherhand,theLagrangianformulationdeals withtheflow.Bothapproacheshave advantagesanddisadvantages.Intheearlynumericalweatherprediction,themodelingof advectionintheEulerianformwaseitherdoneusingafinitedifferenceorfiniteelementformulation.Theproblemsthatwereobservedinthoseearlyattemptswereassociatedwiththe Courant–Friedrichs–Lewy,or CFLcondition,whichisassociatedwiththe stability ofthe numericalscheme.Effectively,thisconditionsplacesarestrictiononthesizeofthetimestep, aswellasthegridorelementsize.
Itwasshownearlyoninnumericalweatherpredictionthatthisconditioncouldleadto veryunstableforecastsifitwasnotmet,butthisrestrictedthesizeofthetimestep,whichin turnpreventedrunninglongerforecastsasthecomputationalresourceswerenotavailableto
runatsuchafinetemporalresolution.Therewasalsotheproblemofdampingwithcertain Eulerian-basedfinitedifferenceschemes.
IfweweretoconsidertheLagrangianframework,wewouldstartwithasetofparticles, followthemintime,andthenapplythenumericalapproximationtothedifferentialoperators there.Theproblemwiththisapproachisthattheparticlescouldbecometoofarapart,which isnotpracticaltoachieveviableapproximations.WeshowacopyofFig.2fromWelander [198]inFig. 1.1,whichillustratesthisproblem.
FIGURE1.1 CopyoftheLagrangiandeformationplot,Fig.2fromWelander,1955:Studiesonthegeneraldevelopmentofmotioninatwo-dimensionalidealfluid, Tellus, 17,141–156. https://www.tandfonline.com/doi/abs/10. 3402/tellusa.v7i2.8797 https://creativecommons.org/licenses/by/4.0/
TheadvantageoftheLagrangianapproachisthatthevalueoftheparticlefollowingthe trajectoryisconstant.However,wecannotkeeptrackofalltheseparticles,butwewould likesomeformofatechniquethatutilizesthis.Herecomesemi-Lagrangianapproaches.The basisofsemi-LagrangianapproachesisthatwehaveafixedEuleriangridwithknownvalues ofthefieldatthesegridpointsattime t n andweknowthelocationofthegridpointsat t n+1 , butwedonotknowwhatisthevalueofthefieldthere.
TheLagrangianformoftheadvectionequation,whichyouwillseethroughoutthebook, isgivenby
Dψ Dt = 0, subjecttothekinematicequation
D x Dt = u, where u isreferredtoastheadvectionvelocity.
Thesemi-Lagrangianapproachamountstosayingthatthesecondequationabovetellsus howfartheparticlehastraveledinoneortwotimestepswithoutforcing.Whereasthefirst equation,whenintegratedwithrespecttotime,tellsusthatthevalueofthefieldat t n 1 , or t n ,dependingonwhetheroneusesatwoorthreetimeleveldiscretizationforthetime derivative,isthevalueofthetraceratthe arrivalpoint at t n+1 .Theproblemwehaveisthat wearenotguaranteedthatthe departurepoint willbeatagridpointat t n or t n 1 .Thevalue of ψ canbefoundthroughinterpolationbutwehavetobecarefulwhichorder,andwhat properties,wewishtheinterpolationpolynomialtosatisfy.Thisisthefinitedifferencepoint ofview;thereisalsoasimilarviewwiththefiniteelementapproachwhereitnotapointbut anelementtodealwith.Finally,therearethefluxformandfinitevolumeapproachesthat conservepropertiesofthefieldbetweenthetimelevels.
Giventhismotivation,wenowmoveontobrieflysummarizewhatwehaveineachchaptertoaddressthesituationdescribedabove.Wefinishwithapplicationsofsemi-Lagrangian approachesinthegeosciences,followedbysolutionstoselectexercises.
InChapter 2 westartbyshowingderivationsoftheadvection/transportequationsand showthecharacteristicsbasedapproachwhichwillenableustomoveontothesemiLagrangianapproaches.WewillpresentdifferentexplicitandimplicitEulerian-basedfinite differenceschemesanddemostratetheperformanceoftheseschemeswithasmoothGaussianbelladvection,aswellaswithadiscontinuousstepfunction.
Chapter 3 coversthedifferentpropertiesoftheEulerian-basedfinitedifferencescheme, whereweshallintroducedifferentformsofstability,convergence,andconsistency.Wewill lookatdispersionanddiffusionpropertiesofthedifferentschemessothatweknowtheir likelyperformance.
GiventhebehavioroftheEulerianscheme,wemoveontothehistoryoftheideastowardsadoptingasemi-LagrangianapproachinChapter 4;weshouldnoteherethatthe semi-Lagrangianapproachwasreferredtoinitiallyasquasi-Lagrangian,buttheschemesare alsoreferredtoas Eulerian–Lagrangian approach,andinsomedisciplinesasa particletrajectorytracking.
InChapter 5 wewillintroducethesemi-Lagrangianapproachforthelinearonedimensionalscalaradvectionandshowitsperformancewithdifferentorderofinterpolation fortheadvectionoftheGaussianbellcurveandthestepfunction.
Giventhatwerequireinterpolationpolynomials,weshallintroducedifferentformsof interpolationpolynomialsinChapter 6,andshowtheirperformancesinreconstructingthe bellcurveandstepfunctionwithdifferentnumberofinterpolationpointstoillustratehow welltheapproximationsimprovewiththenumberofpoints.
Thenextstageoftheintroductionofthesemi-Lagrangianapproachesistoconsiderhow todetermineiftherearerestrictionsonthetimeandspacestepsofthedifferentschemes;this isaccomplishedinChapter 7.
Thepropertiesandtechniquestoperformthesemi-Lagrangianintegrationsofarhave beenintendedfortheconstantvelocityandzeroforcingone-dimensionalscalarproblem. InChapter 8 wewillintroducethetechniquesthatarerequiredtobeabletosolvethecase wherethetrajectoryvelocityisnolongerconstant,whichimpliesthatwehavetoestimate thevelocityalongthetrajectory,butalsotoevaluatethevelocityatthedeparturepointinan implicititerativesolution.Wewillconsidereithertwoorthreetimelevelschemesandlook atthepropertiesofbothoftheseapproaches.
InChapter 9 wewillintroducethesituationwherewehaveaforcingtermontherighthandsideoftheadvectionequations.Therearemanydifferentformsofadvectionproblems thathavenonzeroforcingterms,andgiventhedynamicalsituationthatisbeingconsidered, theapproachtodealwiththesesituationscouldleadtononphysicalmodesbeingexcitedin thenumericalsolution.Awidelyusedapproachtodealwiththissituationisreferredtoas thesemi-implicitsemi-Lagrangian(SISL)method,wherenonlineartermsaretreatedasexplicit,whilethelineartermsaretreatedimplicitly.Weshallintroducethistechniquealong withothertechniquesthathavebeendevelopedovertheyearstostabilizeandincreasethe efficientlyofthesemi-Lagrangianintegrationwhenaforcingtermispresent.
Wemoveontothetwo-dimensionalprobleminChapter 10.Inthischapterweshallintroducethetechniquesofbivariateinterpolationtoestimatethevalueofthefieldatthe departurepoint,alongwiththestabilityanalysisintwodimensions.Weshallalsointroducedifferentstaggeredhorizontalandverticalgridsthatarequiteoftenusedfornumerical modeling.Weshallalsolookattwo-dimensionalapproximationsfornonconstantvelocities, aswellasfornonzeroforcingtermswherethedeparturepointnowisinanarea,element,or cellforthefinitedifference,finiteelements,orfinitevolume/fluxformapproaches.Weshall alsopresentsometestcasesthatarefrequentlyusedtoanalyzetheperformanceofnewdevelopmentsinsemi-Lagrangiantheory.Finally,weshallshowanexampleofsemi-Lagrangian advectionwiththeEadymodelwhichdescribesbaroclinicinstabilityinan x –z planeapproximationoftheatmosphere.
Thenextstepistointroducethethirddimensionfortheadvectionproblem,whichwe doinChapter 11.Inthischapterweshallextendtheideasfromthepreviouschaptersto thethree-dimensionalproblem.Weconsiderthecasethatweneedtointerpolatetoadeparturepointinthreedimensions.Weshallintroducesomedifferentverticalcoordinatesystems thatareusedinoperationalnumericalweatherpredictionsystems,aswellasinoceanmodeling.Weshallconsiderfinitedifference,finiteelement,andfinitevolumeapproaches,all asanextensionoftheflux-formfromthelastchapteronchemicaltransport.Werevisitthe assumptionsofonlyneedingtwoiterationstofindthedeparturepoint,aswellasbeinginconsistentintheorderofthevelocityinterpolation,comparedtothefields’interpolationto thedeparturepoint.
Aswedonotliveonacube,weneedtolookathowwecanextendthetechniqueto sphericalcoordinates,andwedothisinChapter 12.Hereweshallintroducesemi-Lagrangian developmentonthesphere.Thischaptercomprisesoftwoparts:thefirstintroduceshow thevectorcalculustransferstosphericalcoordinates,projections,numericalgrids,aswellas introducesthetheoryofspectralmethods.Thesecondpartdescribeshowsemi-Lagrangian
theoryisappliedtodifferentmodelsinsphericalcoordinatesandmultipledimensions,where wewillpresentfinitedifferenceandfinitevolumeapproaches,aswellassemi-Lagrangian methodswithspectralmethods.
Oneoftheproblemsthathasbeennoticedinthestandardfinitedifferenceapproachto thesemi-Lagrangianmethodsisthattheymaynotpreservetheshapeoftheobjectbeing advected;itmayalsoberequiredthatthe mass isconserved.InChapter 13 wewillintroduce differenttechniquesthathavebeendevelopedtoensurethatthesemi-Lagrangianscheme canpreservetheshapeofthebodybeingadvected,toavoidtheGibbsphenomenaofunderandovershoots.WeshallintroducethecascadeinterpolationmethodsbetweenEulerianand Lagrangiangrids,alongwithdifferentfinitevolumeapproachesthatenabletheconservation ofmasseitherlocallyofglobally.WewillalsointroduceSLICEwhichisafinitevolumebased schemeutilizingthecascadeinterpolation.ThechapterfinishesbyintroducingtheVlasov familyofnonlinearPDEsandtheHWENOapproachtosolvethem.
Inthelasttheoreticalchapter,Chapter 14,weshallintroducetheconceptofthetangent linearmodel,alongwithadjoints.Weshallalsointroducethenotionofdifferentiatingthe codetoobtaintheadjointratherthanderivingitanalytically.Wewillalsointroducetheperturbationforecastmodelwhichisseenasanalternativetothetangentlinearapproximation. Afterwardswewillapplyallthesetechniquestosemi-Lagrangianmethods,wherewewill seethatthereisanimportantpropertyinthederivationthatputsalimitonthesizeofthe variationinthedeparturepointandtheinterpolation.
Thepenultimatechapterofthebook,Chapter 15,willpresetdifferentapplicationsofsemiLagrangian,Eulerian–Lagrangian,andquasi-Lagrangianapproachesforsolvingadvection, convection,transport,Navier–Stokes,andVlasov–Maxwellequations.Wewillshowapplicationsinnumericalweatherandoceanprediction,hydrologyglaciermovement,volcanicash transport,airpollution,oceanridgehydrothermalmodels,tonameafew,toshowhowfar fetchingsemi-Lagrangianmethodsareused.Thefinalchapeterissolutionstoselectexercises.
Thatbeingsaid,wenowmoveontolearnaboutsemi-Lagrangianadvectionmethodsand theirapplicationsingeosciences.
Eulerianmodelingofadvection problems Asweshallmentionagainsoon,therearedifferentwaysofdescribingthemovementofa particle.Itcanbewithrespecttotheparticleitself,oritcanbewithrespecttotheparticles goingpastacertainfixedpoint.Itisthelatterdescriptionthatthenexttwochaptersare concernedwith.Inthischapterweshallpresentdifferentnumericalapproximationstothe one-dimensionalconstant-velocityadvectionequation.Forsomeofthenumericalschemes, weshallpresentplotsoftheirperformancewith advecting aGaussianbellcurveandadiscontinuousstepfunctionaroundaperiodicdomain.Weshallseesomebehaviorsoftheschemes thatweshallquantifyandverifyinthenextchapter.Westartthischapternowwithabrief summaryoftheone-,two-,andthree-dimensionalgeneralEulerianformsoftheadvection equation,followedbyacoupleofbriefderivationsoftheadvectionequation.
2.1Continuousformoftheadvectionequation Therearetwoapproachesthatcanbeusedtodescribetheprocessofadvection:Eulerian, wherewehaveavolumeelementthatisfixedinspaceinasetframeofreference,orLagrangian,wherethesurfaceofthevolumeelementis co-moving withthefluid,inthefluid’s frameofreference.ThusinEulerianmodelingofadvectionweareconsideringtheproblem oftheflowpastapoint,andassuchthecontinuousone-dimensionalgenerallinearadvection modelisgivenbythepartialdifferentialequation
(x,t )
+ u (x,t )
where ψ (x,t ) isthedependentvariable, t istime, x isthespatialcoordinate, u (x,t ) isthe advectionvelocity,whichcanbeafunctionofbothspaceandtime,andfinally, f (x,t ) is referredtoasthe forcingterm.Notethattheforcingtermcanbezero,linear,ornonlinear. Theadvectionvelocitycanalsobeconstant,linear,ornonlinear.
Ifwenowthinkthatthereisafieldthatistwo-dimensional,meaningthatitcanmovein bothhorizontaldirections,orinonehorizontalandtheverticaldirections,thenthereisan associatedversionoftheadvectionequationintwodimensions.Forexample,ifweconsider thehorizontalcase,thentheassociatedtwo-dimensionalpartialdifferentialequationforthis
situationisgivenby ∂ψ (x,y,t )
+ u (x,y,t ) ∂ψ (x,y,t )
(x,y,t )
)
)
where v (x,y,t ) istheadvectionvelocityinthe y direction,butitcanbeafunctionofthe otherspatialcoordinate.Finally,ifweareconsideringathree-dimensionalfieldthenitis possiblethatitcanbeadvectedwithrespecttoallthreespatialcoordinatesinaCartesian formulation,oranyothercoordinatesystem,andtheassociatedpartialdifferentialequation forthissituationisgivenby ∂ψ (x,y,z,t )
+ u (x,y,z,t )
(x,y,z,t )
w (x,y,z,t )
(x,y,z,t )
+ v (x,y,z,t )
(x,y,z,t )
where w (x,y,z,t ) istheadvectionvelocityintheverticaldirection.Notethatallthreeadvectingvelocitiescanbefunctionsofallthreespatialdimensions,alongwithtime.
Forthemultidimensionalequationsabove,(2.2)and(2.3),itispossibletosimplifythese equationsusingvector-differentialnotationas
isthespatial
gradientoperatorgivenby
Wenowconsiderhowtoderivetheone-dimensionaladvectionequationthatwepresented above.Weshallpresenttwodifferentapproaches:onebasedonadynamicaldescriptionof thesituation,andonethatusesamoremathematicalargument.
2.1.1Derivationoftheone-dimensionalEulerianadvectionequation Asjustmentioned,inthissectionweshallpresenttwodifferentapproachestoderivethe one-dimensionaladvectionequation.Weshouldnoteherethattheadvectionequationhas manydifferentnames,itisquiteoftenreferredtoasthetransportequation,butitisalso referredtoastheconvectionequation,alongwithbeingassociatedwiththewaveequation. Thefirstderivationthatweconsiderhereisadynamics-basedapproachemployingtheideas ofmassconservation,continuity,andincompressibility.
Massconservationderivationoftheadvectionequation Atthebeginningofthischapterwereferredtoavolumeelement,whichwewillnow denoteas dV asshowninFig. 2.1,where P (x,y,z) isthecentroidofthevolumeelement.As weareconsideringtheEulerianformulation,wehavethatthesidesofthevolumeelement
arefixedinspace.Therefore,wewishtoconsiderthesituationwherewehaveaflowinand outofthevolumeelementthroughthesides.
FIGURE2.1 Schematicofagenericvolumeelement, dV
Ifwedenotethemassdensityatthepoint P (x,y,z) as ρ (x,y,z),whichrepresentsthe massdividedbythevolume,thenweassumethatitisanaverage,andnearlyuniformmass densityinallof dV .Thusthetotalmass, M ,thatiswithin dv isgivenbytheintegralquantity
Thenextassumptionthatwemakeisthattherearenosourcesorsinksofmasswithin dV .As suchwehavethat dM dt representstherateatwhichmassentersorexitsthevolumethrough thesurface dS .
Whenweareconsideringthethree-dimensionalvolume,therearemultiplesurfacesofthe volume,assuchwehaveasideofthevolumedenotedby d S,andtheunitnormalvectordenotedby n,whereitisassumedthatthenormalvectorpoints“out”ofthevolumeelement. Thenextimportantquantitythatwehavetointroduceisthe flux ofthemass,whichrepresentsmassperunitarea,perunittime,thatwehavepassingthroughasurface,andwhichis givenby ρ v,where v isthefluidvelocity.
Wenowrequirethatthemassperunittimethatisflowingthroughthesideofthevolume, d S,begivenby ρ v d S ≡ ρ v ndS ,andthusthetotalrateofflowofmassoutofthe volumeelement dV isgivenbythesumofthemassperunittimeflowingthrougheachof thesurfaces/facesofthevolumeelement.Thusincontinuousformthisisgivenbythesurface integrals
Asmentionedbefore,wehave dM dt representingtherateatwhichmassisenteringor exitingthevolumeelementthroughthesurface,andassuchwerequire(2.6)tobeequalto
2.Eulerianmodelingofadvectionproblems
dM dt ,whichimpliesthat
AsweareconsideringafixedEuleriansurface,weareabletobringthetotaltimederivative d dt insidethevolumeintegralasapartialderivative,whichthengivesus
Whiletheexpressionin(2.8)maylookquiteintimidating,wenowintroduceatheoremthat willhelpushere.Thistheoremisreferredtoas Gauss’Theorem andisstatedbelow.
Theorem2.1 (Gauss’Theorem). Let V bearegioninspacewithboundary ∂V .Thenthevolume integralofthedivergence ∇· F of F over V andthesurfaceintegralof F overtheboundary ∂V of V arerelatedby
Gauss’Theoremisquiteoftenreferredtoasthe divergencetheorem,wherethetheoremis themathematicalexpressionforthephysicalsituationthat,intheabsenceofthecreationor destructionofmatter,thedensitywithinaregionofspacecanchangeonlybyhavingitflow inoroutfromtheregionthroughitsboundary,whichisthesituationthatwehavehere.
UponapplyingGauss’theoremtothesituationabove,weobtain
Therefore,wenowhave
Werequiretheexpressionin(2.11)toholdforallarbitraryshapedvolumes,andthustheonly waythattheintegralequationin(2.11)canbesatisfiedisiftheintegrandisequaltozero.This thenimpliesthat
Eq.(2.12)isreferredtoasthe continuityequation,whereitisdescribingthe conservation ofmass withintheEulerianframeofreference.Wecanseethatthisisalmosttheadvection equationthatwepresentedearlier,butwehavetomakeonemoreassumption,namelythat thefluidisincompressible,whichimpliesthatthedensitywithinthevolumeisconstant. Anotherwayofinterpretingthisassumptionisthatthedivergenceoftheflowvelocityis
zero.Mathematicallythenon-divergenceofthevelocityfieldisequivalentto ∇· v = 0.Ifwe nowexpandtheterm ∇· (ρ v) wehave
(ρ
ρ, wherewecanseethatwerequirethedivergenceofthevelocity.Usingtheincompressibility assumptionresultsinthecontinuityequationforanincompressiblefluidas
whichisthevectorialformofthethree-dimensionaladvectionequationthatwepresented in(2.4),butwherethereisnoexternalforcingterm.
Taylorseriesexpansionderivationoftheone-dimensionaladvectionequation
Thisderivationoftheadvectionequationisfortheone-dimensionsituation,whichstarts byconsideringtheone-dimensionaldriftofanincompressiblefluid.Therefore,let ψ (x,t ) representaparticledensitythatonlychangesduetoadvectionprocessessothat
Ifwenowassumethat t issufficientlysmallsothatwecanapplyaTaylorseriesexpansion toeithersideof(2.14),thenweobtain,tofirstorder,
whichsimplifiesto
where u isanonzeroconstantvelocity.
Asanasidehere,weshouldnotethataswearedealingwithapartialdifferentialequation.Therearethreedifferenttypesthatapartialdifferentialequationcanbe:hyperbolic, parabolic,orelliptical,whichrepresentmanydifferentphysicalandgeophysicalprocesses. Thepartialdifferentialequationin(2.16)ishyperbolic.Thustheuniquesolutionof(2.16)is determinedbyaninitialcondition,denotedby
,suchthat
and
Oneapproachtosolvetheproblemaboveisbythe MethodofCharacteristics.
2.1.2Methodsofcharacteristics
Thefirstthingtonoticehereisthattheadvectionequationin(2.16)canbefactorizedas
Thenextstepistotransform x , t tonewvariables r , s suchthatthederivativetransformsas
Ifitispossibletointroducethischangeofvariable,thenwewouldhavethat ∂ψ ∂r = 0,where thisequationiseasiertosolve.Therefore,ifwelet x = x (r,s ) and t = t (r,s ),then,applying thechainrule,weobtain
Ifwenowcompare(2.20)with(2.18),weseethat ∂x ∂r = u and ∂t ∂r = 1.Integratingthese twoequationsresultsin x = ur + q (s ) and t = r + p (s ).Wenowusethe s dependenceby applyingthepropertythattheinitialconditionsspecifythesolutionalongthe x -axis.Tomake theapplicationoftheinitialconditionsinthetransformedspace,weintroducethecondition thatthe x -axisat t = 0 transformsontothe s -axis (r = 0);specifically,weneed r = 0,implying that t = 0 and x = s .Thusbysetting r = 0 and t = 0,wehave q (s ) = s and p (s ) = 0,implying that
(2.21)
Thenextstepistoinvertthetransformationabove,whichresultsin r = t and s = x ut , whichthenenableustowrite(2.18)intheform ∂ψ
= 0,implyingthat ψ = ψ (s ) = ψ (x ut ).
Giventheinitialconditions,wethereforecanconcludethatthesolutionoftheadvection problemis
Therefore,theexpressionin(2.22)definesatravelingwavethatmoveswithspeed u,andit isalsoseenthatthesolutionisconstantalongthelinesoftheform x ut = β where β is aconstant.Theselinesarereferredtoasthe characteristics forthepartialdifferentialequation,andthemethodthatwasappliedheretofindthesolutionisknownasthe methodof characteristics
InFig. 2.2 wehaveanillustrationoftheappearanceofthecharacteristicsfortheadvection equation,wereweseethatthecharacteristicsaredefinedbytheirvalueastheycrossthe x -axis,butthenhavethatvaluealongthewholepath.
Tohelpillustratethisapproach,weshallconsidertheexampleofastepfunction,which weshallrevisitmanytimesthroughoutthebookindifferentforms.Theinitialconditionsthat definethestepfunctionshowninFig. 2.3 aregivenby
Thusfrom(2.22)thesolutionis
FIGURE2.2 Exampleoftheconstantcharacteristicsfortheone-dimensionallinear,constantvelocity,advection partialdifferentialequation,withinitialconditions ψ (x, 0) = (x )
FIGURE2.3 Schematicofadvectingastepfunctionstartingatinitialtimeinthetopplot,andthenafteratimeof 1inthelowerplot.
2.Eulerianmodelingofadvectionproblems orequivalently,
0 (x ) = 1,ut ≤ x ≤ 1 + ut, 0,x<ut,x> 1 + ut. (2.25)
InFig. 2.3 wehavepresentedboththeinitialstepfunction,asmentionedabove,andthe stepfunctionatafuturetime t ,wherethesolutionistheoriginalstepfunctionthathasbeen movedtotheinterval ut ≤ x ≤ 1 + ut
Thereareafewpropertiesofthelinearconstantvelocityequationthatareusefulwhen assessingtheperformanceofthenumericalapproximationtoit:
1. Theinitialprofileispreserved;thisistrueforjumpsanddiscontinuities.
2. Theinformationoftheinitialprofiletravelsatspeed u,andtheassociateddirectionofthe travelisone-wayonly.
3. Thesolutionatagivenspatiallocation x andattime t isentirelydeterminedbythevalues oftheinitialconditionsat x = x ut .Wehaveprovidedaschematicofthissituationin Fig. 2.4.
FIGURE2.4 Schematicofback-tracingofthecharacteristicstotheinitialconditionfromthepoint x, t .
GiventhecontinuousEulerianapproachforadvection,wenowconsiderseveraldifferent numericalapproximationtotheone-dimensionallinearadvectionequationwithconstant velocity.Theapproachesthatweshallshowinthenextsectionarereferredtoa finitedifferencing scheme,wherewewillpresentexplicitandimplicitschemes,andacombinationof thetwo,whichcanbemultistepalgorithmsreferredtoaspredictor–correctormethods.
2.2FinitedifferenceapproximationstotheEulerianformulationofthe advectionequation
Inthissectionweshallintroducemanydifferentapproximationstothelinear,zero-forcing versionoftheone-dimensionaladvectionequation.Thefirstthingthatwehavetointroduce hereistheconceptofthenumericalgridforbothtimeandspace.
InFig. 2.5 wehavepresentedauniformdistributedsetofgridpoints,whereforthissetup wehaveequalspacingintimeandspace,althoughweshouldnotethatspacinginthetemporaldirectionisnotalwaysthesamesizeasthatinthespatialdirection.Wecanseethat
thereisadistancebetweenthepointsinbothtimeandspace.Thedistancebetweenthegrid pointsinthe x -directionisdenotedby x ,whereasthedistancebetweenthetimegridpoints isdenotedby t ,andtheyarereferredtoasthegridspacingandtimestep,respectively.
Illustrationofanumericalgrid.
Ifwestartwiththespatialdirection,thenweintroducetheindex i forthe x direction,while forthetemporaldirectionwithhavetheindex n.Thusatpoint (i,n) wehaveanumerical approximationtothecontinuoustracer, ψ (x,t ),as ψ (xi ,t n ),whichisusuallydenotedby ψ n i ,for i = 1, 2,...,I and n = 0, 1,...,N .Pleasenotethatthesuperscript n heredoesnot representapowerofthefunction,itissimplythetemporalindex.Therefore,ifweconsider the x directionderivative,thenwecouldusethefollowingapproximation:
wheretheapproximationin(2.26)isreferredtoasan upwind scheme. Itisalsopossibletodefineanupwindschemeforthetemporalderivativeforthenumerical approximationtothetimecomponentaswell,whichisgivenby
Theapproachespresentedhereareexamplesofwhatisreferredtoas finitedifference approximationstothegradientsofthefieldinthepartialdifferentialequation.Giventhe conceptofthegridpointsintroducedabove,weshallnowpresentaseriesofdifferentexplicitnumericalandimplicitnumericalschemes,andtheschemesthatcombineexplicitand implicitfeaturesfortheEulerianformulationoftheone-dimensionaladvectionequation.
2.2.1UpwindforwardEuler
Dependingonthesignoftheadvectivevelocity,wecandefinetwodifferentversionsof thisscheme.If u> 0,thentheversionofthe forwardEuler approximationisbaseduponthe upwindapproximationtothespatialderivativepresentedabovecombinedwiththetemporal
FIGURE2.5
2.Eulerianmodelingofadvectionproblems approximationaboveaswell,whichresultsin
Toimplementthisnumericalschemepresentedin(2.28),werearrange(2.28)as
where C ≡ u x t isreferredtoasthe Courantnumber,whichwillbecomeimportantinthe nextchapter.
InFig. 2.6 wehavepresentedthestencil,whichisthesetofpointsthatareusedinthis approximation,fortheforwardEuler,usinganupwindapproach,scheme.Itshouldbenoted thatforwardEulerreferstotheforwardapproximationofthetemporalcomponent.Forall ofthestencilplotsthatweshowinthischapter,thegreencirclesarethosethatareusedto createthatfinitedifferencescheme.
FIGURE2.6 IllustrationofthestencilfortheupwindforwardEulerfinitedifferencescheme.
Iftheadvectivevelocityis u< 0,thenwecandefineadownwindapproximationtothe spatialderivative,andifweusetheforwardEulerapproximationforthetimecomponent, thenweobtain
Toimplementthisnumericalschemepresentedin(2.30),werearrangeitas
Notes:(1)Thereasonwhytheschemein(2.30)isnotreferredtoasthebackwardEuleris becausethatnamebelongstotheimplicitversionsofthetimederivativethatweshallpresent later.(2)Eqs.(2.28)and(2.30)arereferredtoasthe differenceequations forthecontinuous partialdifferentialequation.
Throughoutthischapterweshallassesstheperformanceofsomeoftheadvectionschemes withtheadvectionofastepfunction,aswellasaGaussianbellcurve.Beforethatweinvestigatesomepropertiesofeachschemeinthenextchapter.Aswesawearlier,thecharacteristics
2.2.FinitedifferenceapproximationstotheEulerianformulationoftheadvectionequation 17
tellusthattheshapesshouldsimplybemovingalong,withoutanydistortions,withadvectionspeed u,withoutslowingdownorspeedingup.
UpwindforwardEulerwiththebellcurve Forthefirstsetofplotsforthistestcase,weshallconsideranadvectionspeedof u = 1, andspatialandtemporalgridspacingof x = t = 0 1 units.Thebellcurveisdefinedby
wheretheparameter μ determineswherethebellisinitiallycentered,and σ determinesthe spreadofthecurve.WeshouldnotethatthisissimilartothedefinitionoftheGaussian distribution,exceptthatwedonothavethenormalizingfactorof 1
2πσ
Forthedemonstrationsthatwepresentinthischapter,weuse μ = 5,implyingthatthebell willinitiallybecenteredat x = 5,and σ = 0.5.TheinitialprofileispresentedinFig. 2.7.
FIGURE2.7 Plotofthetruebellcurveforthesituationwhen μ = 5 and σ = 0 5 at t = 0
GiventheinformationpresentedhereweknowthattheCourantnumberforthisconfigurationis C ≡ u t x = 1.Weareusingaspatialdomainof x ∈ [0, 10],andatemporaldomainof 0 ≤ t ≤ 10.Thismeansthatthereare101 x gridpointsand101 t pointsforthisconfiguration. Weareusingaperiodicityconditionastheboundaryconditionsforeitherendofthedomain,
2.Eulerianmodelingofadvectionproblems andwiththeadvectionspeedof 1,thisthenmeansthatthebellcurvecantakeonecomplete circuitofthedomaininthistime.
Weareabletoplotthetruesolutionateverytimestepasweknowthatitisgivenby
where n istheindexforthespecifictimestepthatthenumericalmodeisat.Thiswillenable ustoquantifythe error associatedwitheachnumericalscheme.
InFig. 2.8 wehaveplottedboththetrueandnumericalsolutionsfortheconfiguration shownatevery10timesteps.Weshouldpointoutthatthereisnoerrorinthisplot,simply since,when C = 1,theupwindforwardEulerapproximatesthecontinuousbellfunctionvery well.
FIGURE2.8 Plotofthetruebellcurve,inred,andthenumericalsolutionfromtheupwindforwardEulerscheme for tn = 10 t, 20 t,..., 90 t steps.
Wewillnowlookattheeffectsofchangingthespatialstepsize.InFig. 2.9 wehavepresentedasimilarplottothatinFig. 2.8,butnowwehavethesituationwhere C = 1 25,which ariseskeeping t = 0 1 buthavingincreasedtheresolutionofthe x directionto x = 0 08 Whilethischangemaynotseemlikeabigdeal,wecanseefromFig. 2.9 thatweareno longermaintainingthestructureofthebellcurves.Wecanclearlyseesomedampingofthe curvewithin20timesteps,andthat,bythetimewearriveat70timessteps(panel7),wecan clearlyseethatthesolutionisstartingtodisplaysomefeaturebehindthebellcurve,andby 90timesstepswecanseedistortionsbothbehindthewaveandalsotravelingfurtherbehind thecurve.Thiscouldindicatearelationshipbetween C , t ,and x .
FIGURE2.9 PlotoftheupwindforwardEulerschemeforthebellcurvewhentheCourantnumberis C = 1 25.
Thenextsetofplotsthatwepresentforthissituationwiththisnumericalschemearefor thecasewhenwehave C = 0 5.Herewearetryingtosavesomestoragespaceandalsospeed upthenumericalintegration.Wehavekept t = 0.1,butnow x = 0.2.Thefirstfeature tonoticeinFig. 2.10 isthattheupwindforwardEulerschemeshowwhatisreferredtoas damping ofthebellcurveastimegoeson;onapositivenote,wecanseethattheschemeisnot outofphase withthetruesolution.Therefore,byreducingthenumberofspatialgridpoints, wehaveactivatedanotherfeatureofthenumericalschemethatwasnotpresentwhenwe hada higherspatialresolution.
Asmentionedearlier,thisupwindforwardEulerissupposedtobeusedwhen u> 0,and wenowpresentaplotoftheaffectsofapplyingthisschemewhen u< 0.InFig. 2.11 wehave plottedtheresultsat10and20timesstepsofapplyingtheupwindforwardEulerscheme when u< 0.Weseethatafter10timessteps,thenumericalsolutionsisstartingtogooutof phasewiththetruesolution,andisalsointroducingan amplitudeerror,aswellasovershoots. However,only10timestepslater,weseethatthenumericalsolutionisnothinglikethetrue solutionandisstartingtoblowup.Therewasnopointinproducingoneofthesetsof9plots forthiscaseastheschemebecamecompletelyunstableafterafewtimesteps.
Wenowmoveontothediscontinuouscaseofthestepfunctionwiththesamesetupused heretoseetheimpactthatdiscontinuitieshaveontheperformanceoftheupwindforward Eulerscheme.