Self-healing polymer-based systems 1st edition sabu thomas - Own the ebook now and start reading ins

Page 1


https://ebookmass.com/product/self-healing-polymer-based-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Polymer Nanocomposite Membranes for Pervaporation 1st Edition Sabu Thomas

https://ebookmass.com/product/polymer-nanocomposite-membranes-forpervaporation-1st-edition-sabu-thomas/

ebookmass.com

Wool Fiber Reinforced Polymer Composites Sabu Thomas

https://ebookmass.com/product/wool-fiber-reinforced-polymercomposites-sabu-thomas/

ebookmass.com

Handbook of Chitin and Chitosan: Volume 3: Chitin- and Chitosan-based Polymer Materials for Various Applications Sabu Thomas (Editor)

https://ebookmass.com/product/handbook-of-chitin-and-chitosanvolume-3-chitin-and-chitosan-based-polymer-materials-for-variousapplications-sabu-thomas-editor/ ebookmass.com

Simple and Efficient Programming with C#: Skills to Build Applications with Visual Studio and .NET 2nd Edition

Vaskaran Sarcar

https://ebookmass.com/product/simple-and-efficient-programming-with-cskills-to-build-applications-with-visual-studio-and-net-2nd-editionvaskaran-sarcar/ ebookmass.com

The Kaplan Chronicles: Volume 4 H.M. Wolfe

https://ebookmass.com/product/the-kaplan-chronicles-volume-4-h-mwolfe/

ebookmass.com

A study of using E10 and E85 under direct dual fuel stratification (DDFS) strategy: Exploring the effects of the reactivity-stratification and diffusion-limited injection on emissions and performance in an E10/diesel DDFS engine Saeid Shirvani

https://ebookmass.com/product/a-study-of-using-e10-and-e85-underdirect-dual-fuel-stratification-ddfs-strategy-exploring-the-effectsof-the-reactivity-stratification-and-diffusion-limited-injection-onemissions-and-performance/ ebookmass.com

Leadership Wholeness, Volume 1: A Model of Spiritual Intelligence Thomas Thakadipuram

https://ebookmass.com/product/leadership-wholeness-volume-1-a-modelof-spiritual-intelligence-thomas-thakadipuram/

ebookmass.com

McCurnin's Clinical Textbook for Veterinary Technicians and Nurses E-Book 10th Edition Bassert & Joanna M.

https://ebookmass.com/product/mccurnins-clinical-textbook-forveterinary-technicians-and-nurses-e-book-10th-edition-bassertjoanna-m/ ebookmass.com

Junqueira's Basic Histology: Text and Atlas, 16th Edition

Anthony L. Mescher

https://ebookmass.com/product/junqueiras-basic-histology-text-andatlas-16th-edition-anthony-l-mescher/

ebookmass.com

Sosipatra of Pergamum: Philosopher and Oracle (WOMEN IN ANTIQUITY) Heidi Marx

https://ebookmass.com/product/sosipatra-of-pergamum-philosopher-andoracle-women-in-antiquity-heidi-marx/

ebookmass.com

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanas maybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityfor anyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuse oroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-818450-9

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: EdwardPayne

EditorialProjectManager: CharlotteRowley

ProductionProjectManager: SojanP.Pazhayattil

CoverDesigner: VictoriaPearson

TypesetbyMPSLimited,Chennai,India

Listofcontributorsix

1.Self-healingpolymericsystems— fundamentals,stateofart,and challenges1

AnuSurendranandSabuThomas

1.1Introduction1

1.2Roleofnanofillersinself-healingpolymeric systems6

1.3Keydevelopmentsinthefieldofself-healing polymericsystems8

1.4Challengesforfabricatingself-healingmaterials basedonpolymericsystems11

1.5Conclusions13

References13

2.Typesofchemistriesinvolvedin self-healingpolymericsystems17

2.1Introduction:chemicalaspectsinself-healing process17

2.2Keyrequirementsofself-healingprocess18

2.3Dynamiccovalentnetworkinself-healing20

2.4ThermoreversibleDiels Alderandretro Diels Alderchemistry20

2.5Photoinducedself-healing: [2 1 2] cycloaddition 25

2.6Chemicaltransformationsinvolvedin self-healing26

2.7Reversiblecovalentreactioninvolvedin self-healing29

2.8Chemicaltransformationsthroughinvolved reactioninself-healing36

2.9Supramolecularnoncovalentinteraction39

2.10Chemistriesinvolvedinmicrocapsule-based self-healingpolymericsystem60

2.11Conclusions64

References65

3.Self-healingpolymers:fromgeneral basicstomechanisticaspects75

3.1Introduction75

3.2Generalmechanismofself-healing polymers76

3.3Conceptsforthedesignofself-healing polymers79

3.4Extrinsicself-healingpolymers79

3.5Intrinsicself-healingpolymers82

3.6Othermechanisticaspects89

3.7Conclusions90 References91

4.Shapememory-assistedself-healing polymersystems95

WenjingWu,JamesEkeocha,ChristopherEllingford, SreeniNarayanaKurupandChaoyingWan

4.1Introduction95

4.2Shapememoryandself-healing mechanisms96

4.3Shapememory-assistedself-healing107

4.4Applications116

4.5Conclusions118 References118

5.Characterizationofself-healing polymericmaterials123

SaiedNouriKhorasaniandRasoulEsmaeelyNeisiany

5.1Introduction123

5.2Methodsforevaluatingself-healing behaviorofthepolymericcomposites124

5.3Methodsforevaluatingself-healing behaviorofthepolymericcoatings129

5.4Summaryandoutlook135 References136

6.Roleofnanoparticlesinself-healingof polymericsystems141

JunfengSu

6.1Introduction141

6.2Self-healingpolymerusingmetal nanoparticles143

6.3Self-healingpolymerusinginorganic nanoparticles144

6.4Self-healingpolymerusingorganic nanoparticles148

6.5Furtheradvice162

References163

7.Self-healingbiomaterialsbasedon polymericsystems167

7.1Introduction167

7.2Self-healingbiomaterialsintissue engineering168

7.3Self-healingbiomaterialsindrug/genedelivery systems188

7.4Self-healingfunctionalsurfaces191

7.5Thecharacterizationofself-healing194

7.6Newopportunitiesandchallenges195

Acknowledgments200

References200

8.Self-healingDiels Alderengineered thermosets209

8.1Fundamentalsofself-healing209

8.2Typesofself-healingsystems210

8.3Diels Alderreaction210

8.4Diels Alder-basedhealablethermosets214

8.5Summaryandoutlook225

References227

9.Self-healingpolymericcoatings containingmicrocapsulesfilledwith activematerials235

S.MojtabaMirabediniandFarhadAlizadegan

9.1Introduction235

9.2Requirementsfordesigningaself-healing coating236

9.3Microcapsule-basedself-healingsystems237

9.4Microcapsulepreparationmethods245

9.5Materialsselectionforcoreandshell componentsofmicrocapsules248

9.6Limitationsandshortcomingsof microcapsule-embeddedcoatings252

9.7Summary253

References254

10.Capsule-basedself-healingpolymers andcomposites259

MariaKosarli,DimitriosBekas,KyriakiTsirkaand AlkiviadisS.Paipetis

10.1Introduction259

10.2Capsulesynthesisandcharacterization260

10.3Self-healingpolymersandcomposites267

10.4Self-healingcoatings273

10.5Conclusionsandfuturetrends274

References275

11.Ionomersasself-healing materials279

S.MojtabaMirabediniandFarhadAlizadegan

11.1Introduction279

11.2Materials,chemistry,andfundamentals280 11.3Theself-healingmechanisms283

11.4Activationmethods284

11.5Applications284

11.6Summary288

References288

12.Self-healingmaterialsutilizing supramolecularinteractions293

JamesF.Reuther,RandallA.Scanga,AliShahrokhinaand PriyankaBiswas

12.1Intrinsicself-healingsystems293

12.2Main-chainsupramolecularpolymers297

12.3Self-healingmaterialsdrivenbymetal coordination305

12.4Self-healingmediatedbyelectrostatic interactions322

12.5Host guestinteractionsinself-healing materials332

12.6Dynamiccovalentself-healingmaterials340

12.7Hydrogenbondinginself-healing systems351

12.8Conclusionsandfutureoutlook356 References356

13.Self-healinghydrogels369

ImtiazHussainandGuodongFu

13.1Introduction369

13.2Self-healing371

13.3Self-healinganditscharacterization371

13.4Chemistryinvolvedinintrinsic self-healing372

13.5Self-healingprocess378

13.6Classificationofself-healinghydrogels379

13.7Mechanismofself-healingofhydrogels381

13.8Factorsimpactonself-healing mechanism384

13.9Sacrificialbonds385

13.10Natureandmechanismsofsacrificial bonds385

13.11Inspiredsacrificialbondsinartificial polymericmaterials386

13.12Sacrificialbondsinhydrogels387

13.13Metal ligandpolymerhydrogels390

13.14Self-healinggelsmechanismbasedon constitutionaldynamicchemistry392

13.15Naturalpolymer-basedhydrogels392

13.16Recentdevelopmentinmiscellaneous applicationfields408 References413

14.Acontinuummechanicsapproachto thehealingefficiencyofextrinsic self-healingpolymers425

AmirShojaeiandGuoqiangLi

14.1Introduction425

14.2Finitedeformationkinematics:elastic,plastic, damage,andhealinginpolymers429

14.3Plasticdeformationinpolymers431

14.4Continuumdamageandhealing mechanics434

14.5Physicallyconsistentevolutionlawsforthe damageandhealingprocesses442

14.6Concludingremarks450 References451

15.Self-healingfiber-reinforcedpolymer compositesfortheirpotentialstructural applications455

NazrulIslamKhanandSudiptaHalder

15.1Introduction455

15.2Scopeofself-healinginfiber-reinforced polymercomposites456

15.3Extrinsicself-healingapproachesfor fiber-reinforcedpolymercomposites460

15.4Intrinsicself-healingapproachfor fiber-reinforcedpolymercomposites463

15.5ThermoreversiblehealingofFRP465

15.6Assessmentofself-healingefficiencyfor fiber-reinforcedpolymercomposites466

15.7Conclusions468

Acknowledgments468

References468

16.Self-healingpolymericcoatingfor corrosioninhibitionandfatigue repair473

VikasS.Hakke,UdayD.bagale,ShirishH.Sonawane, DipakPinjari,S.ManigandanandShriramSonawane

16.1Backgroundofself-healingandcorrosion inhibition473

16.2Self-healingandcorrosioninhibitor materials474

16.3Casestudyforself-healingmaterialand corrosioninhibitors478

16.4Polymercapsules-basedself-healingcoatingfor corrosioninhibition484

16.5Nanocontainer-basedself-healingapproachfor corrosioninhibition487

16.6Clay-basedself-healingmaterialsforcorrosion inhibition489 Conclusions490 References490

17.Applicationsofself-healingpolymeric systems495

JomonJoy,ElssaGeorge,S.AnasandSabuThomas

17.1Introduction495

17.2Applicationinwoundhealing496

17.3Applicationintissueengineering498

17.4Applicationinthree-dimensionalprinting499

17.5Applicationindrugdelivery500

17.6Applicationinanticorrosioncoating501

17.7Applicationinelectronicapplication503

17.8Applicationinaerospaceapplications506

17.9Conclusions508 References508

Index515

ListofContributors

FarhadAlizadegan IranPolymerand PetrochemicalInstitute,Tehran,Iran

S.Anas SchoolofChemicalSciences,Mahatma GandhiUniversity,Kottayam,India; AdvancedMolecularMaterialsResearch Centre,MahatmaGandhiUniversity, Kottayam,India

UdayD.bagale DepartmentofChemical Engineering,NationalInstituteof Technology,Warangal,India

DimitriosBekas StructuralIntegrityand HealthMonitoringGroup,Departmentof Aeronautics,ImperialCollegeLondon,South KensingtonCampus,London,United Kingdom

PriyankaBiswas DepartmentofChemistry, UniversityofMassachusettsLowell,MA, UnitedStates

JamesEkeocha InternationalInstitutefor NanocompositesManufacturing,University ofWarwick,Coventry,UnitedKingdom

ChristopherEllingford InternationalInstitute forNanocompositesManufacturing, UniversityofWarwick,Coventry,United Kingdom

GuodongFu SchoolofChemistryand ChemicalEngineeringSoutheastUniversity, Nanjing,P.R.China

ElssaGeorge SchoolofChemicalSciences, MahatmaGandhiUniversity,Kottayam, India

BaolinGuo FrontierInstituteofScienceand Technology,StateKeyLaboratoryfor MechanicalBehaviorofMaterials,Xi’an JiaotongUniversity,Xi’an,P.R.China

MartinD.Hager LaboratoryforOrganicand MacromolecularChemistry(IOMC), FriedrichSchillerUniversityJena,Jena,

Germany;JenaCenterforSoftMatter(JCSM), FriedrichSchillerUniversityJena,Jena, Germany

VikasS.Hakke DepartmentofChemical Engineering,NationalInstituteof Technology,Warangal,India

SudiptaHalder DepartmentofMechanical Engineering,NationalInstituteofTechnology Silchar,Silchar,India;DepartmentofCivil, ConstructionandEnvironmental Engineering,TheUniversityofAlabama Engineering,Tuscaloosa,AL,UnitedStates

ImtiazHussain SchoolofChemistryand ChemicalEngineeringSoutheastUniversity, Nanjing,P.R.China;CollegeofScience, NanjingForestryUniversity,Nanjing,P.R. China

JomonJoy SchoolofChemicalSciences, MahatmaGandhiUniversity,Kottayam, India

ZeinabKarami BiobasedMonomersand PolymersDivision,Adhesive&Resin Department,IranPolymerandPetrochemical Institute,Tehran,Iran

NazrulIslamKhan DepartmentofMechanical Engineering,NationalInstituteofTechnology Silchar,Silchar,India;Departmentof MechanicalEngineering,GMRIT,Srikakulam, India

SaiedNouriKhorasani Departmentof ChemicalEngineering,IsfahanUniversityof Technology,Isfahan,Iran

MariaKosarli DepartmentofMaterialsScience &Engineering,UniversityofIoannina, Ioannina,Greece

SreeniNarayanaKurup InternationalInstitute forNanocompositesManufacturing,University ofWarwick,Coventry,UnitedKingdom

GuoqiangLi DepartmentofMechanical Engineering,LouisianaStateUniversity, BatonRouge,LA,UnitedStates

DebaprasadMandal Departmentof Chemistry,IndianInstituteofTechnology Ropar,Rupnagar,India

S.Manigandan DepartmentofChemical Engineering,IndianInstituteofTechnology, Ropar,India

S.MojtabaMirabedini IranPolymerand PetrochemicalInstitute,Tehran,Iran

RasoulEsmaeelyNeisiany Departmentof MaterialsandPolymerEngineering,Faculty ofEngineering,HakimSabzevariUniversity, Sabzevar,Iran

AnilK.Padhan DepartmentofChemistry, IndianInstituteofTechnologyRopar, Rupnagar,India

AlkiviadisS.Paipetis Departmentof MaterialsScience&Engineering,University ofIoannina,Ioannina,Greece

DipakPinjari NationalCenterfor NanoscienceandNanotechnology,University ofMumbai,Mumbai,India

JamesF.Reuther DepartmentofChemistry, UniversityofMassachusettsLowell,MA, UnitedStates

RandallA.Scanga DepartmentofChemistry, UniversityofMassachusettsLowell,MA, UnitedStates

AliShahrokhina DepartmentofChemistry, UniversityofMassachusettsLowell,MA, UnitedStates

AmirShojaei VarianMedicalSystems,Palo Alto,CA,UnitedStates;Departmentof MechanicalEngineering,LouisianaState University,BatonRouge,LA,UnitedStates

ShirishH.Sonawane DepartmentofChemical Engineering,NationalInstituteof Technology,Warangal,India

ShriramSonawane DepartmentofChemical Engineering,VisvesvarayaNationalInstitute ofTechnology,Nagpur,India

JunfengSu DepartmentofPolymerScience, SchoolofMaterialScienceandEngineering, TianjinPolytechnicUniversity,Tianjin, P.R.China

AnuSurendran InternationalandInter UniversityCentreforNanoscienceand Nanotechnology,MahatmaGandhi University,Kottayam,India

SabuThomas SchoolofChemicalSciences, MahatmaGandhiUniversity,Kottayam, India;InternationalandInterUniversity CentreforNanoscienceandNanotechnology, MahatmaGandhiUniversity,Kottayam, India

KyriakiTsirka DepartmentofMaterials Science&Engineering,Universityof Ioannina,Ioannina,Greece

ChaoyingWan InternationalInstitutefor NanocompositesManufacturing,University ofWarwick,Coventry,UnitedKingdom

WenjingWu InternationalInstitutefor NanocompositesManufacturing,University ofWarwick,Coventry,UnitedKingdom; AerospaceResearchInstituteofMaterials& ProcessingTechnology,Beijing,P.R.China

RuiYu FrontierInstituteofScienceand Technology,StateKeyLaboratoryfor MechanicalBehaviorofMaterials,Xi’an JiaotongUniversity,Xi’an,P.R.China

StefanZechel LaboratoryforOrganicand MacromolecularChemistry(IOMC), FriedrichSchillerUniversityJena,Jena, Germany;JenaCenterforSoftMatter(JCSM), FriedrichSchillerUniversityJena,Jena, Germany

MohammadJalalZohuriaan-Mehr Biobased MonomersandPolymersDivision,Adhesive &ResinDepartment,IranPolymerand PetrochemicalInstitute,Tehran,Iran

MohsenZolghadr SchoolofChemistry, UniversityofTehran,Tehran,Iran

Self-healingpolymericsystems— fundamentals,stateofart,and challenges

AnuSurendran1 andSabuThomas1,2

1InternationalandInterUniversityCentreforNanoscienceandNanotechnology, MahatmaGandhiUniversity,Kottayam,India 2SchoolofChemicalSciences, MahatmaGandhiUniversity,Kottayam,India

1.1Introduction

Thepotentialapplicationsofthepolymericsystemsarefastadvancingintherecentyears invariousstructuralapplicationssuchasaerospace,defense,andconstructionindustries. Thedamagetriggeredbyvariousfactorssuchasmechanical,thermal,andchemicalfactors hasseriousimplicationsonthestructuralintegrity,performance,andlifespanofthematerial.Avisiblefailurecouldbeeasilydetected,whereasstructurallevelmicrocracksremained undetected.Asurgeinthepresentunderstandingofthemicrostructureandfailuremechanismhaseffectedinexploringstrategiesforaddressingthefatigueresponseofthematerial [1].Theprerequisiteforself-healingisthatdamagetriggersself-healingbygeneratinga mobilephasewhichcoversthedamagezonebyeitherphysicalorchemicalinteractions. Oneofthemilestoneswasthedevelopmentofsmartmaterialswherethe“damagecould automateahealingresponseinthematerial” [2].Thedamagerepaircostsarehigher,time consuming,andsometimesdifficulttomonitorifitoccursinthemicrostructurelevel.

Self-healingoccursbyeitherautonomicornonautonomicbasedonthetypeofresponse todamage.Autonomicresponsedoesnotrequireanyexternalstimuli;damageitselfinitiatesthehealingprocess.Nonautonomichealingrequiresanexternalstimulussuchaslight orheatforinitiationofself-healingprocess.Anotherwaytoexpresstheclassofselfhealingmaterialsisas“extrinsic”and“intrinsic”self-healingmaterials.Extrinsicselfhealingimpliestheencapsulationofmicro-ornanocapsulesintothematerialduringthe initialfabricationresultinginthehealing.Thehealingactionistriggeredbytheruptureof

thesecapsulesinthepathofcracks,causingthereleaseofhealingagentsontothecrack site.Intrinsicself-healingdoesnotrequireanyencapsulationofhealingagents.Itrather occursbythephysical/chemicalinteractionsestablishedbetweenthecrackinterfaces whichimparttheself-healingaction.

Theabilitytofunctionalizationhaspavedthewayforinducingself-healingproperty forpolymericsystems.Alsotheinherentpotentialtoaccommodatehealingagentsinthe apparentlylargervolumeofmacromolecularchainnetworkalsofacilitatestheeasinessto induceself-healingproperty.Suchself-healingmaterialsfindpotentialapplicationsin automobile,civil,andaerospaceapplications.Self-healingmaterialsmanagestoreducethe damagerepaircostandeconomicburdenenhancingthelifetimeandmaterialreliability. Thedemandsforsuchsmartermaterialsareboomingandhenceresearchersshowtremendousinterestinfabricatinganddesigningmaterialswithself-healingproperty.

1.1.1Extrinsicself-healinginpolymericsystems

Extrinsicself-healinghasbeenfacilitatedtopolymericmaterialsforrecoveringtheoriginalpropertiesofthematerialsatreasonablecostafterdamage.Extrinsicself-healing impliesonthreeapproachesbasedonmicro/nanocapsulesembedment,hollowfiber embedment,andmicrovascularsystem.Inmicroencapsulationtechnique,healingagentis embeddedorphaseseparatedwithinthematrixsothathealingoccurswithoutexternal intervention.Acatalystisalsoincorporatedintothematrix.Thecrackrupturesthemicro/ nanocapsulescausingthereleaseofhealingagentintothematrix.Thereleasedhealing agenttraversesinthematrixthroughthecapillaryaction,whichcomeintocontactwith thecatalystcausingpolymerizationandfurtherclearsthedamage.Thedisadvantageof thistechniqueisthatitcauseslimitedhealingactionduetothesmallamountofhealing agent.Thereforemultiplehealingactionsarenotpossiblewiththemicro/nanocapsules. Bondandcoworkersdemonstratedself-healingutilizingthehollowglassfiberswhichcontainshealingagent [3 5].Hollowglassfiberapproachencapsulatesmorehealingagent andalsocouldreinforcethematrixandmostlypreferredthanmicroencapsulatedselfhealingapproach.Bondetal. [4] observedapparentrestorationofcompressivestrengthin epoxyresin-bondedhollowglassfiber.Fiberswithlargediameterandincreasedhollow fractionhaveincrementaleffecttothestrengthdeterminedunderaxialcompressiveloading.About97%ofthemechanicalstrengthwasrestoredafterinvestigationofimpactpropertiesfollowedbyfour-pointbendflexuraltesting [3]. Fig.1.1[6] representstheschematic representationofself-healingviahollowfibers. Fig.1.2 representstherepresentationof self-healingbymicro/nanocapsules.Microvascularsystemmimicsthebiologicalvascular systeminplantsandanimalswithacontinuoussupplyofhealingagentthroughacentralizednetwork.Thecrack-induceddeliveryofhealantstothematerialfurnishesmultiple healingabilitiesandrestorestheproperties [7].Thecontinuousdeliveryofhealingagentin thethree-dimensionalmicrovascularsystemsopenedupnewavenuesforrepeatablehealing instructuralcomponents.Ofthethreeautonomichealingsystems,microvascularhealing systemsoftenhavehighestefficiency.

Self-healingusingmicrovascularinterpenetratingnetworkswasfabricatedinepoxy resinsviadualinkdepositionandverticalinkwriting [9].Healingefficiencyof50%was 2

One-part resin

Polymer matrix

Hollow fiber

Resin system

Hardener system

Hollow fiber

Resin system

Micro encapsulated hardener

Hollow fiber

FIGURE1.1 Schematicrepresentationofselfhealingbyhollowfibers [6].Source: Reprinted fromS.Bleay,C.Loader,V.Hawyes,L. Humberstone,P.Curtis,Asmartrepairsystemfor polymermatrixcomposites.Compos.PartAAppl. Sci.Manuf.32(2001)1767 1776.doi:10.1016/ S1359-835X(01)00020-3,Copyright(2001),withpermissionfromElsevier.

retainedevenafter30consecutivehealingcycles.Nancyetal. [10] developedtwosetsof independentvascularnetworks;onecomprisingofresinpartandothercomprisingof aminecuringagentwasembeddedinthepolymersubstratecoating.Thehealingcomponentsgotwickedundercapillaryactioninthedamagesiteandclosethecrackduetothe reactionoftheresinandcuringagent.Coaxialelectrospinningtechniqueswereutilizedfor incorporationoflinseedoil,aself-healingagentingrapheneoxide(GO)-reinforcedpolyacrylonitrile(PAN)shells [11].GOdecoratedPANfiberswereincorporatedintoPUcoatings.Whencrackforms,linseedoilwillbereleasedandwillreactwithoxygenandgets solidifiedcoveringthecrack.Moreover,GOhadimprovedthethermalstabilityofthe material.

1.1.2Intrinsicself-healinginpolymericsystems

Thisisaclassofnonautonomichealingsystemwhichrequiresexternalstimuliforselfhealing.Thisinvolveshealingprocessviabondruptureandbondreformationandcould beoperatedovermultipletimes.Chemicalreactionsandmolecularinteractionswhichcan beactivatedbyheat,light,electricalenergy,andmagnetismareexamplesforsuchsystems.Intrinsicself-healingisbasedonthepresenceofparticularreversiblechemical bonds.Since,intrinsicreversibilityofthesechemicalbondsenablesmultiplehealing responsesatthesamelocation.

ThermallyreversibleDiels Alder(DA)reactionsaremostwidelyusedforfabricating thermallyreversibleself-healingsystems.DAreactionrepresentstheclassof[4 1 2]cycloadditionreactionwhichoccursbetweenadieneandadienophile.Alkenesandalkynes attachedtoelectronwithdrawinggroupsaremostlyusedasadienophiletobringabout thereactionwithadiene.Furan maleimidechemistryismostlywidelyusedinthermally reversibleself-healingpolymericsystems.Petersonetal. [12] utilizedDAclickchemistry fordevelopingareversiblycross-linkgelasself-healingsiteintraditionalepoxy-amine reaction.Thehealingcouldberepeatedforaboutfivecyclesand21%ofthecomposite

FIGURE1.2 Schematicrepresentationofmicro/nanocapsule-embeddedself-healingsystems [8].Source: ReprintedfromM.Samadzadeh,S.H.Boura,M.Peikari,S.M.Kasiriha,A.Ashrafi,Areviewonself-healingcoatingsbased onmicro/nanocapsules.Prog.Org.Coat.68(2010)159 164.doi:10.1016/J.PORGCOAT.2010.01.006,Copyright(2010), withpermissionfromElsevier.

strengthwasrecoveredafterthefirsthealingcycle.Bowmanetal. [13] observedinterconversionsoffuranandmaleimideandobservedthatreversibleconversionsoccurredat74% at85 Cto24%at155 C,inacross-linkedpolymericsystem.Parketal. [14] fabricateda novelself-mendable bis-maleimidetetrafuran(2MEP4F),basedonDAreactionchemistry. Multipleself-healingafterelectricalresistiveheatingandshapememoryeffectswere observedforthesefunctionalcomposites.2MEP4Fpolymersrestoredmolecularstructure andretainedthesimilarorslightlyimprovedfractureresistancepropertiesbythermally reversibleDAandretro-DAchemistry [15].

Anthracene maleimideDAsystemwerealsostudiedbymanyresearchersforfabricatingthermallyreversibleself-healingsystems [16,17].Poly(ethyleneterephthalate)copolymerscontaininganthracenestructuralunitsaremodifiedbyDAreactionswith maleimideswasfoundtobethermallyreversibleat250 C [16].Syrettetal. [18] reported thesynthesisofnovelwell-definedlinearandstarmethylmethacrylatepolymersbearing anthracene maleimideDAadductswithintheirmacromolecularbackboneexhibitingselfhealingproperties.Anevaluationoftheirabilitytocleaveonheatingto200 Candto reformonslowcoolingbacktoambienttemperaturewasobserved.H1NMRspectra revealedtwonewsignalsat6.49and5.3ppm,notpreviouslyseeninthespectraofthe DApolymerswereobservedaftertheretro-DAprocess.Thereformedproductformed wasamixtureof endo and exo isomericDAlinkers.Thermallystableself-healingpolymer basedonDAreactionbetweenanthraceneandmaleimidewerefabricatedbyYoshieetal. [19].Here,self-healingwasaccomplishedatroomtemperaturebyDAadditionreaction andretroDAreversereactionwasinducedbymechanicalstress.Wangetal. [20] reported

theself-healingofpolyurethaneelastomerbasedonDAreactionbetweenfuranandbismaleimideendcappedgroupsandobtainedanefficiencyof81%aftertensilebreak recovery.

Thermoreversiblereactionsatthealkoxyaminejunctionalsoserveasamethodto induceself-healingpropertiesandrestorationofcracksinthepolymericchain.The dynamicequilibriumofC ONbondinalkoxyamineincorporatedepoxycuredwith diethylenetriamineenabledrestorationofimpactpropertieswhichwasstudiedbyRong etal. [21].ThereversibilityofC ONbondbreakageandreformationwasalsoenhanced byincorporationofSi Olinkagesintheepoxypolymericchains.Stiffpolyurethanepolymerwithself-healingpropertyutilizingalkoxyaminechemistrywasreportedbyZhang etal. [22].Thesematerialsexhibitedrepeatableself-healingpropertyatroomtemperature andexhibitedimpactfracturerecoveryatroomtemperature.

Thepolymericsystemswhichexhibitself-healingthroughreversiblehydrogenbondinginteractionhadbeenfabricatedsuccessfullybymanyresearchers [23 26] .Selfhealingrubberbyreversiblehydrogenbonds wasfabricatedatroomtemperaturewhich exhibitedlittlecreeponloadbyLiebleretal. [27] .Guadagnoetal. [28] reportedselfhealinginepoxy-MWCNTnanocompositesviareversiblehydrogenbonding.MWCNTs werecovalentlyfunctionalizedwithhydrog enbondingmoieties,suchasbarbiturateand thymine,andincorporatedintorubber-modifiedepoxynetworkestablishedreversible hydrogenbondedMWCNTbridgesacrossthematrix.Here,theyhaveachievedcharacteristicself-healingefficienciesranging formorethan50%.Hydrogelsfunctionalized withpoly(styrene-acrylicacid)core shellnanoparticlesbearingcarboxylgroupshaving self-healingpropertywasfabricatedbyHanetal. [29] .Enhancingmechanicalproperties togetherwithself-healingpropertyisachallengeinthecaseofelastomers.Huangetal. [30] fabricatedanovelself-healingelastomerwithhightensilestress(2.6MPa),high toughness(B14.7MJm 3),highstretchability( B1700%),andexcellentself-healingability(90%).Elastomerswithself-healingproper tyaredesirableforfabricationofflexible electronics.Theelastomerwassynthesiz edbyaone-potpolycondensationreaction between bis (3-aminopropyl)-terminatedpoly (dimethylsiloxane)(PDMS)and2,4 0 -tolylene diisocyanate.Thepreparedelastomerwasfi nallycoordinatedwithAl(III)ions.Both hydrogenbondsandcoordinationbondswereresponsibleforinducingself-healing propertytogetherwithenhancedmechanical property.Finallytheyweresuccessfulin demonstratingaflexibleelectr odewiththeirfabricatedPDMS TDI Alelastomerfilm (Fig.1.3).

Self-healingsystemsmanagedby π π stackinginteractionshavealsogainedattention recently.Supramolecularpolymericsystemsbasedon π π stackinginteractionswereused forimpartingthermoreversiblehealingbehavior.Self-healingofsupramolecularpolymeric systemsbasedonchainfoldingof π-electron-poorreceptorsitesofpolydiimidesitesand π-electron-richchainendsofthepolysiloxanewerereportedbyGreenlandetal. [31] Supramolecularpolymericsystemsbasedonblendofapyrenyl-tweezer-endedpolyamide intercalatingwithachain-foldingpolyimideshowedself-healingpropertyandenhanced toughnesswerereportedbyColquhounetal. [32].Anotherworkdonebythesamegroup [33] reportedbothhydrogenbondingandaromatic π π stackingbetweenthe π-electrondeficientdiimidegroupsandthe π-electron-richpyrenylunitswhichaccountedforselfhealingpropertyofsupramolecularpolymericsystems.

FIGURE1.3 (A)SEMimagesoftheAufilmelectrode.(B)Schematicdemonstrationofthestretchingprocess involvingtheflexibleelectrode.(C)Stress straincurvesofthepolymerfilmsforPDMS TDI Al-3(black),original(red),andhealingelectrode(blue).(D)Photographsofanotchedstrainelectrodeonrelaxedandstretching station.(E)Changeofrelativeresistanceoftheelectrodeunderdifferentstrains.(F)Durabilitytestofthestrain electrodeunderarepeatedstretchingandreleaseof40%.(G)Photographsoftheelectrodeonrelaxedandstretchingstation.(H)PhotographsofthehealingprocessfortheelectrodewithanLEDinserieswithaself-healingelectrode. PDMS,Polydimethylsiloxane.Source: ReprintedwithpermissionfromX.Wu,J.Wang,J.Huang,S.Yang, Robust,stretchable,andself-healablesupramolecularelastomerssynergisticallycross-linkedbyhydrogenbondsandcoordinationbonds.ACSAppl.Mater.Interfaces.11(2019)7387 7396.doi:10.1021/acsami.8b20303,Copyright(2019)American ChemicalSociety.

1.2Roleofnanofillersinself-healingpolymericsystems

Thenanofillersaidinimprovingtheself-healingefficiencyandmechanicalproperties inpolymericsystems.Itwillprovidebetterscratchresistanceandthermalstability. Nanofillersevencatalyzestheself-healingaction.Nanofillerssuchasgraphene,carbon nanotubes,nanosilica,andnanocellulosewereusuallyusedinself-healingpolymeric

systems.Synergesticperformanceofthematerialforvariousfunctionalapplicationsoften compromiseswiththemechanisticperformance.Thereforeimpartingself-healingfunctionsimprovestheoverallperformanceandlifetimeofthematerial.Theeaseoffunctionalizationofthenanofillersalsocouldcontrolthepolymer nanofillerinterfacial movement,interactionchemistriesforhealingaction,mechanicalpropertiesenhancement andstiffnessreinforcement.Usuallythecapsule-basedhealingsystemneedtocompromise withthetensileproperties.Wangetal. [34] demonstratedself-healingpropertiesof rubber MWCNTnanocompositesbasedonDAbonding.MWCNTactedasbothahealant andreinforcingagentinfurfuryl-graftedstyrene-butadienerubber(SBR).ThefurfurylgraftedSBRandfurfuryl-terminatedMWCNTwerereactedwithbifunctionalmaleimide toformDAadduct.Thenanocompositesexhibitedthermalhealingandhigherhealing efficiencywasobservedfornanocompositeswhichweresubjectedtolongerhealingtime andhigherhealingtemperature.Hanetal. [35] developedaconductingpolymerhydrogelsbasedonaviscoelasticpolyvinylalcohol(PVA) boraxgelmatrixandnanostructured cellulosenanofibers polypyrrole(CNFs PPy)complexes.CNFactedasabiotemplate andPPyimpartedconductivepropertytothehydrogels.CNF PPycomplexestanglewith thePVAthroughhydrogenbondingandalsoformreversiblecross-linkingwiththeborate ionsanchoredonthePVAchains.Thereversiblecross-linkingrenderstheself-healing property.

Kongparakuletal. [36] developedaself-healinganticorrosivecoatingbasedonepoxy nanosilicacomposites.Epoxyresinsembeddedwith3wt.%(3-glycidoxypropyl)trimethoxysilane-modifiednanosilicaand10wt.%perfluorooctyltriethoxysilane(POTS)microcapsulesdeliveredthebestanticorrosivepropertieswiththecorrosionrateof0.09mmyear 1 andoxygenpermeabilityabout0.14barrer.Theadditionofmodifiednanosilicaandselfhealingagentapparentlyincreasedthelengthofthediffusionpathwaysandthereby decreasedtheoxygenpermeabilityofthecoating.

Ranaandcoworkers [37] reportedagraphene-basedself-healingsystemwherethe nanofillershadcompensatedthereducedt ensilestrengthduetotheembeddedmicrocapsules.Apartfromthisthenanofillerhadalsoactedasacatalystforself-healing reactioninepoxy-basedsystems.Guadagnoetal. [28] developedanovelepoxynanocompositesexhibitingself-healingpropertiesbyreversiblehydrogenbonding.The functionalizationofMWCNTbyhydrogenbondinggroups,suchasbarbiturateand thymine,hadeffectedininducingself-healingproperty.Kongetal. [38] demonstrated EMIshieldingofFe 3 O 4 -loadedmultiwalledcarbonna notubes/polyazomethine(PAM) nanocomposites.Thesematerialsexhibitedexcellenthealingefficiencyof95%imparted bydynamiciminebonds.ApartfromtheEMIs hieldingeffectiveness,thesenanocompositescouldbedegradedondippinginanacidicsolutionfor30minatroomtemperatureandthedegradedproductscoulda gainbeusedforthesynthesisofthe nanocomposites.

Yuetal. [39] developedahydrogelhavingsuperiormechanicalandself-healingproperty.Hydrogelsexhibitingbothmechanicalstrengthandselfhealabilityarerare.They preparedanovelGO/poly(acryloyl-6-aminocaproicacid)compositehydrogelsexhibiting self-healingpropertyinresponsetopHstimulus.

Thedispersionofnanofillersstillremainsachallengeforresearchers.Theroleofnanofillersinself-healingpolymericsystemswillbedealtmoreinthefollowingchapters.

1.3Keydevelopmentsinthefieldofself-healingpolymericsystems

Researchonself-healingpolymer-basedmaterialswasquiteactivefromtheearly1900s. Withtheadventofinnovativetechniques,keyunderstandinginthefieldofmaterialsciencehasbeenincreased.Self-healingofpolymericsystemscouldbeinducedeitherautonomouslyornonautonomously.Apartfrominducingself-healingpropertieswithout compromisingotherpropertiesofthematerialsisachallengeforpracticalapplications. Self-healingmaterialsareextensivelyusedasstructuralcomponentssuchascoatings,biomedicalapplications,prosthetics,sensingapplications,medicalimplants,electricalapplications,andmembraneseparation.

Oneofthemostimportantapplicationsfortheself-healingpolymericmaterialswas usedforcorrosionprotection.Sunetal. [40] developedasuperhydrophobiccoating obtainedbylayer-by-layerassemblyofpoly(allylaminehydrochloride)andsulfonated poly(etherketone).Shchukinetal. [41] alsodemonstratedlayer-by-layerassembledpolymericcoatingsembeddedwithcorrosioninhibitorencapsulatedinnanocontainerforcorrosionprotection.ThecracksinducedpHchangeswhichreleasedthecorrosioninhibitor benzotriazole.

ParkandBraun [42] utilizedelectrospinningtechniqueforpolysiloxane-basedhealant encapsulationinanacrylatematrix.Here,healingagentswereencapsulatedintoabead onstringmorphologyandelectrospunontoapolymericsubstrate.Theadvantageofthis techniqueunderliesintheabilitytocontrolthesizeofmicrocapsulesandtherebythe releaseofhealingagents.

Polymericelectrolytescouldbeusedasalternativestoliquidelectrolytesforsolvingthe issueofelectrolyteleakageandinflammability.Theself-mendablepolymerelectrolytewill beabletoaddresstheissuesrelatedtoshortcircuitsandservicelifeofthebatterydueto crackformation.Xueetal. [43] hadfabricatedaflexible,highlystretchablepolymerelectrolytehavingself-mendingpropertyviaquadruplehydrogenbondingofureidopyrimidinone(UPy)moietiesinpolyethylenebackbone.Thepolyethyleneglycol(PEG)sidechains imparthighionicconductivity.Upymoietiesimpartphysicalcross-linksviahydrogen bondingresultedinhighlystretchableandflexibleelectrolyte.Apolymericelectrolyte withself-healingpropertywasdevelopedfordevelopinghighperformancelithiumion batteryusingSiO2.UPy-functionalizedSiO2 (SiO2-UPy)facilitatestheuniformdispersion ofSiO2 inthepolymermatrix,whichisessentialforfastconductionofLiions [44].Here, theself-healingpropertyisinducedbyformationofsupramolecularnetworkbetweenthe polymermatrixviaUPyonSiO2 andpolymermatrix.Quadruplehydrogenbondingis responsibleforself-healingproperty.Thepowertransmissioncablesrequiretheinsulating dielectricpolymerswhichneededtobeprotectedfromelectrictreeing.Wangetal. [45] usedPEG-functionalizedironoxide/polypropylenecompositeswhichexhibitedhealing propertyafterdamagedbyelectrictreeingalongwithrestorationofinsulatingproperties also.Polyelectrolytesbasedonpoly(acrylicacid)(PAA)cross-linkedbyhydrogenbonding havingsilicaparticlesexhibitthesamecapacitanceevenafter20cyclesofhealing [46].Pan etal. [47] reportedahydrogelelectrolytebasedonsodiumalginatecross-linkedby dynamiccatechol borateesterbonding.Themostimportantadvantageofthiselectrolyte isthatthehealabilityandcapacitancepropertiesweremaintainedbothatroomtemperatureandlowtemperature.

Parkandcoworkers [48] haddevelopedastretchableandself-healingenergystorage devicebasedonnickelflakes,eutecticgalliumindiumparticlesandcarboxylatedpolyurethane.Ithasexcellenthealingabilityandretains100%stretchabilityafterhealingand showsabout75%electricalhealingefficiency.Thethermallydrivenself-healingat80 Cis duetothereassociationofhydrogenbondsanchoredbycarboxylgrouponthePUsurface. Fig.1.4 representstheself-healingactionofthedevelopeddevice.Multifunctional materialswhichexhibitbothmechanicalself-healingandafunctionalpropertywhich makeitsuitableforrobustapplicationsareachallenge.Self-healingmaterialsexhibiting

FIGURE1.4 Self-healingactionofenergystoragedevicebasedonPU;(A)photosofthedeviceinoriginal, broken,andhealed,(B)GCDprofile,(C)capacityretentionatvariousbreaking/healingcycles,(D)GCDprofiles andcapacityretentionatdifferentstrainsofthedevicewithdifferentstrainsafterbreaking/healing,and(E) deviceunder0%,50%,and100%strainafterbreaking/healing [48] GCD,Galvanostaticchargedischarge.

sensingpropertiesandflexibilitycouldbeusedforsoftrobotics,prostheticsandother applications.Butintegratingbothfunctionsisachallengeforthescientists.Coeetal. [49] fabricatedamaterialbylayer-by-layerassemblyofcopper-cladpolyimidesheets,polyimidesheetsandanultraviolet(UV)-curableepoxy.TheUVcurableresinactedasastructuraladhesiveandself-healingcomponent.Polysiloxaneduetoitsstretchabilitywasused widelyforflexibleelectronicdevices.Jiangetal. [50] haddemonstratedapressuresensor onpolysiloxanecross-linkedwithDAhydrogenbonds.Theincorporationofgraphene nanosheetsimpartedhighmechanicalandelectricalproperties.Thefabricatedsensor undergoesasolid liquid solidtransformationduringself-healingprocess.ThefunctionalizationofPDMSwithfuranandmaleimideandfurtherpolymerizationprocessresulted inaDAproduct.ThethermalreversibilityofDAbondbreakingandformationresultedin self-healingofthepolysiloxaneelastomer.Zhangetal. [51] proposedanovelself-healing designbasedonpolyurethane/silvernanowiresforstrainsensingapplications.Theselfhealingwasinducedinsunlightforthematerialcausingtheexchangeoftheincluded disulfidebonds.Theadvantageofsunlightdrivenhealingisthatthematerialcouldbe usedforapplicationsrelatedtohumanbodysuchashuman machineinteractions,smart prosthetics,andwearablehealthmonitoringdevices.Xuetal. [52] developedaternary polymercompositecomprisingofpolyaniline,PAA,andphyticacidshowinghighstretchability(500%),excellentelectricalconductivity(0.12Scm 1),andself-healingproperties. Theself-healingisfurnishedbythehydrogenbondsandthecompositesishighlystrain andpressuresensitiveandhencecouldbeutilizedasstrainandpressuresensor.Zhang etal. [53] developedanovelself-healingstrainsensorbasedoncommerciallyavailable elastomersthroughasupramolecularassembly.Thesupramolecularhierarchicalnanostructureofcarbonnanotubeswasconstructedbyactivatedcellulosenanocrystalsthrough thermallyreversiblehydrogenbonds.Thesupramolecularassemblyofpolyethyleimine withcarboxyl-functionalizednitrilerubberwasshowingself-healingandexcellentelectricalandmechanicalproperties.

Environmentalpollutioncausedbyeitherhumaninterference/otherfactorsmaypollute thewaterbodiesandmayposeseriousthreattohealthoflivingbeings.Membraneseparationofwastewaterisanemergingtechniquetomeetthechallengesregardingpollution. Membraneseparationisfeasibleonlywhenthematerialcouldbeusedforlongterm.The costissuesforfabricationofmembranesarequitehigh.Luetal. [53] fabricatedamultiwalledcarbonnanotubefilmandpolydivinylbenzenewhichimpartssuperiorhydrophobicity.ThecoatingofPOTS(1H,1H,2H,2H-perfluorooctyltriethoxysilane)impartedselfhealingabilityforthisfilm.Theself-healingofthepolymer-coatedMWCNTfilmwas testedbyetchingthePOTSlayertoO2 plasma.Thissignificantlyreducedthefluorinecontentonthefilmsurface,butafter15minthecontentoffluorinewasrestored.Theyalso observedthedeteriorationofhydrophobicityjustaftertheO2 plasmatreatmentandthe restorationofhydrophobicityafter15min.Themechanismofself-healingisbasedonthe hydrolysisofPOTSinthepresenceofwaterandsubsequentcross-linkingtoformapolysiliconecompoundcausingrestorationofhydrophobicity.Themembraneshowedsuperior abilitytoseparatewater-in-oilemulsionsandoil/watermixtures.Afacileself-healing andsuperwettablenanofibrouspoly(ethylenimine)-poly(acrylicacid)/hyaluronicacid (bPEI-PAA/HA,namedPPH)membranewasfabricatedbyelectrospinningandlayer-bylayerapproachbyLuandcoworkers [54].ApurePANmembranewasfabricatedby

1.4Challengesforfabricatingself-healingmaterialsbasedonpolymericsystems

electrospinningtechnique,followedbydip-coatingofalayer-by-layerassemblyof bPEI-PAA/HA.Theself-healingabilitywasimmediatelyevidencedafter30sinthe presenceofwater.Theself-healingabilityisbroughtaboutbythehydrogenbonding. Whenacrackoccursandkeptincontactwithwater,thepolymershaveahighabilityto swellandfillthegapcausedbythedamage.

Polymericmembranesarewidelyusedinredoxflowbatteriesforseparationofcharge carriersinredoxactiveelectrolytes.Xuetal. [55] synthesizedablockcopolymerfrom vinylbenzylchlorideand2-((4-vinylbenzyloxy)methyl)furanbyRAFTpolymerization whichcouldbeusedasanionexchangemembranes.Theself-healingpropertywasincorporatedbytemperaturecontrolledDAreactionwhichhealedthecrackat150 C.Thematerialdeliveredastablecyclingperformanceover100consecutivecharge/dischargecycles, withaCoulombicefficiencyofmorethan97%andanenergyefficiencyof B79%.

Qinandcoworkers [56] hadfabricatedananisotropic,self-healinghydrogelswithmultiresponsiveactuatingability.Themetalnanostructureassembliescouldprovidedynamic interactionswiththepolymerswhichcouldbeutilizedforself-healingapplications.They proposedthiolate-silver(Ag)linkagesfromsilvernanoparticlesforfabricationoftough andself-healinghydrogels.Awatersolubledisulfideligand N,N-bis(acryloyl)cystamine (BACA)isusedformodifyingsilvernanoparticles.Ag@BACAnanocompositeswere obtainedbymixinginaqueousmediumatroomtemperature,resultinginthecleavageof S-Sbond.UndertheUVradiation,thesolvophobiceffectofsilvernanoparticlescaused theAg@BACAnanocompositesintergrateinto2Dlamellarassemblies.Thepolymerization ofAg@BACAwithpolyacrylamideresultedintheformationofAg/PAMlamellaeunder UVradiation.After30minofUVradiationexposure,SNPPhydrogelswereformedvia photothermalpolymerization.ThelargeamountofreversibleRS-AgsitescouldberegulatedinthepresenceoflightandpHstimulus.ThephotothermaleffectofAgnanoparticlesrenderedtheself-healingpropertyunderNIRlaser.TheaffinityofAgtoLewis protoninstrongacidsrenderedtheself-healingundertheeffectofpH. Fig.1.5 illustrates theself-healingperformanceofSNPPhydrogels.Theuniqueanisotropicstructuremade SNPPgelstoexhibitin-planeandout-of-planebendingactuations.Similarlygold-thiolate interactionswerealsousedasaself-healingmotifwithremarkablemechanicalproperties innanocompositehydrogels [57].

1.4Challengesforfabricatingself-healingmaterialsbasedonpolymericsystems

Therearealotofchallengesrelatedwiththefabricationofself-healingpolymericsystems.Thereliabilityofthematerialisdeterminedbytheefficiencytofullyundergoing healingandregainingtheoriginalproperties.Thereisanotherimportantparameterwhich affectstheself-healingpolymericsystems;regardingthecontinuityofhealinglife-cycleof polymericsystems.Thereisapparentlyanotherimportantparameterwhichshouldbe takencare;thatis,onthelocalizedresponseofself-healingaction.Intrinsicself-healing hadtackledtheproblemtosomeextent.Fortheeffectiveperformanceofthesmartmaterials,thesefactorsshouldbetakenintoaccount.Researchshouldbefocusedinthisaspect. So,moreworksshouldbedoneexploringthenovelself-healingchemistries,repeatedand localizedsupplyofhealingagentsinextrinsichealing,restorationofstrength,stiffness,

1.Self-healingpolymericsystems—fundamentals,stateofart,andchallenges

FIGURE1.5 Self-healingperformanceofSNPPhydrogels.(A)Illustrationofself-healingperformanceunderlaser andpH,(B)time temperatureplotofSNPPhydrogelsatdifferentpowersoflaseroutput,(C)stress straincurves ofSNPPhydrogelsfordifferenttimesofNIRlaserhealing,(D)UV visspectraofAg@BACArecordedtomonitor thebindingbehaviorbetweenBACAandsilverNPsindifferentpHsolutions,and(E)stress straincurvesofthe healedSNPPhydrogelpiecethroughapHmediatedway [56] BACA, N,N-bis(Acryloyl)cystamine; UV,ultraviolet.

toughness,andoverallperformanceofthematerial.Thestabilityofthematerials,performance,andself-healingactionshouldnotbeaffectedatambientconditions.Soresearch shouldbebasedonthesechallenges.

1.5Conclusions

Self-healinginpolymericsystemshasattractedattentionintherecentyears.Selfhealingsystemsmimicsthebiologicalsystems,oftheabilityofthecellularsystemstoheal byitself.Duetowideapplicabilityofpolymericsystemsinvariousapplications,methods toimproveitsstructuralintegrityandlifetimeareimportant.Thischapterdealswiththe fundamentalsofhealinginpolymericsystemsandthedifferenttypesofhealingsystems usedinpolymericsystems.Usuallyextrinsichealingsystemsisaccomplishedbythree approachesbasedonmicro/nanocapsulesembedment,hollowfiberembedment,and microvascularsystem.Itreliesonthefactthatnoexternalstimuliarerequiredforinitiationofself-healingaction.Although,thesesystemshavelimitedactionsincethehealing actionceasesoncethecatalystsareconsumed.Intrinsichealingsystemsrequireanexternal stimulus,whichisbasedonthereversiblechemicalinteractions.Theadventofnanotechnologyhasaidedinincreasingtheself-healingactiontogetherwithimprovingthestiffness ofthematerial.Apparentlymultiresponsivesmartpolymerswerefabricatedwhichwill self-healbasedonthespecificchemicalinteractionsinresponsetodifferentstimuli.More insightsintothechemistriesresponsibleforself-healingactionneedtobeexplored.This willimprovethelifetimeandperformanceofsoftmaterialswhichcouldbeutilizedina widerangeofapplicationssuchascoatings,polymericmembranesforwaterpurification, smartprosthetics,andhealthmonitoringdevices.

References

[1]J.L.Mercy,S.Prakash,8 InvestigationofDamageProcessesofaMicroencapsulatedSelf-Healing MechanisminGlassFiber-ReinforcedPolymers,Elsevier,2019.Availablefrom: https:doi.org/10.1016/B978-008-102289-4.00008-4.

[2]P.Du,X.Wang,Reversiblecross-linkingpolymer-basedself-healingmaterials,Recent.Adv.SmartSelfHealingPolym.Compos(2015)159 179.Availablefrom: https://doi.org/10.1016/B978-1-78242-280-8.00006-6.

[3]J.W.C.Pang,I.P.Bond,‘Bleedingcomposites’—damagedetectionandself-repairusingabiomimeticapproach, Compos.PartAAppl.Sci.Manuf36(2005)183 188.Availablefrom: https://doi.org/10.1016/J.COMPOSITESA. 2004.06.016.

[4]M.Hucker,I.Bond,S.Bleay,S.Haq,Investigationintothebehaviourofhollowglassfibrebundlesunder compressiveloading,Compos.PartAAppl.Sci.Manuf34(2003)1045 1052.Availablefrom: https://doi. org/10.1016/S1359-835X(03)00238-0.

[5]R.S.Trask,I.P.Bond,Biomimeticself-healingofadvancedcompositestructuresusinghollowglassfibres, SmartMater.Struct15(2006)704 710.Availablefrom: https://doi.org/10.1088/0964-1726/15/3/005

[6]S.Bleay,C.Loader,V.Hawyes,L.Humberstone,P.Curtis,Asmartrepairsystemforpolymermatrixcomposites,Compos.PartAAppl.Sci.Manuf32(2001)1767 1776.Availablefrom: https://doi.org/10.1016/S1359835X(01)00020-3

[7]K.S.Toohey,N.R.Sottos,J.A.Lewis,J.S.Moore,S.R.White,Self-healingmaterialswithmicrovascularnetworks,Nat.Mater6(2007)581 585.Availablefrom: https://doi.org/10.1038/nmat1934

[8]M.Samadzadeh,S.H.Boura,M.Peikari,S.M.Kasiriha, A.Ashrafi,Areviewonself-healingcoatingsbasedon micro/nanocapsules,Prog.Org.Coat68(2010)159 164.Availablefrom: https://doi.org/10.1016/J.PORGCOAT. 2010.01.006

[9]C.J.Hansen,W.Wu,K.S.Toohey,N.R.Sottos,S.R.White,J.A.Lewis,Self-healingmaterialswithinterpenetratingmicrovascularnetworks,Adv.Mater21(2009)4143 4147.Availablefrom: https://doi.org/10.1002/ adma.200900588

[10]K.S.Toohey,C.J.Hansen,J.A.Lewis,S.R.White,N.R.Sottos,Deliveryoftwo-partself-healingchemistryvia microvascularnetworks,Adv.Funct.Mater19(2009)1399 1405.Availablefrom: https://doi.org/10.1002/ adfm.200801824

[11]J.Li,Y.Hu,H.Qiu,G.Yang,S.Zheng,J.Yang,Coaxialelectrospunfibreswithgrapheneoxide/PANshells forself-healingwaterbornepolyurethanecoatings,Prog.Org.Coat131(2019)227 231.Availablefrom: https://doi.org/10.1016/j.porgcoat.2019.02.033.

[12]A.M.Peterson,R.E.Jensen,G.R.Palmese,Reversiblycross-linkedpolymergelsashealingagentsforepoxy aminethermosets,ACSAppl.Mater.Interfaces1(2009)992 995.Availablefrom: https://doi.org/ 10.1021/am900104w.

[13]B.J.Adzima,H.A.Aguirre,C.J.Kloxin,T.F.Scott,C.N.Bowman,Rheologicalandchemicalanalysisof reversegelationinacovalentlycross-linkedDiels Alderpolymernetwork,Macromolecules41(2008) 9112 9117.Availablefrom: https://doi.org/10.1021/ma801863d.

[14]J.S.Park,T.Darlington,A.F.Starr,K.Takahashi,J.Riendeau,H.ThomasHahn,Multiplehealingeffectof thermallyactivatedself-healingcompositesbasedonDiels Alderreaction,Compos.Sci.Technol70(2010) 2154 2159.Availablefrom: https://doi.org/10.1016/J.COMPSCITECH.2010.08.017

[15]T.A.Plaisted,S.Nemat-Nasser,Quantitativeevaluationoffracture,healingandre-healingofareversibly cross-linkedpolymer,ActaMater55(2007)5684 5696.Availablefrom: https://doi.org/10.1016/J. ACTAMAT.2007.06.019

[16]J.R.Jones,C.L.Liotta,D.M.Collard,D.A.Schiraldi,Cross-linkingandmodificationofpoly(ethylene terephthalate-co-2,6-anthracenedicarboxylate)byDiels-Alderreactionswithmaleimides,Macromolecules32 (1999)5786 5792.Availablefrom: https://doi.org/10.1021/ma990638z

[17]R.M.Kriegel,K.L.Saliba,G.Jones,D.A.Schiraldi,D.M.Collard,TherapidchainextensionofanthracenefunctionalpolyestersbytheDiels-Alderreactionwithbismaleimides,Macromol.Chem.Phys206(2005) 1479 1487.Availablefrom: https://doi.org/10.1002/macp.200500063

[18]J.A.Syrett,G.Mantovani,W.R.S.Barton,D.Price,D.M.Haddleton,Self-healingpolymerspreparedvialiving radicalpolymerisation,Polym.Chem1(2010)102.Availablefrom: https://doi.org/10.1039/b9py00316a

[19]N.Yoshie,S.Saito,N.Oya,Athermally-stableself-mendingpolymernetworkedbyDiels Aldercycloaddition, Polym.(Guildf.)52(2011)6074 6079.Availablefrom: https://doi.org/10.1016/J.POLYMER.2011.11.007

[20]P.Du,X.Liu,Z.Zheng,X.Wang,T.Joncheray,Y.Zhang,SynthesisandcharacterizationoflinearselfhealingpolyurethanebasedonthermallyreversibleDiels Alderreaction,RSCAdv3(2013)15475.Available from: https://doi.org/10.1039/c3ra42278j.

[21]C.Yuan,M.Q.Zhang,M.Z.Rong,Applicationofalkoxyamineinself-healingofepoxy,J.Mater.Chem.A2 (2014)6558 6566.Availablefrom: https://doi.org/10.1039/c4ta00130c.

[22]Z.P.Zhang,M.Z.Rong,M.Q.Zhang,C.Yuan,Alkoxyaminewithreducedhomolysistemperatureandits applicationinrepeatedautonomousself-healingofstiffpolymers,Polym.Chem4(2013)4648.Available from: https://doi.org/10.1039/c3py00679d.

[23] R.F.M.Lange,M.VanGurp,E.W.Meijer,Hydrogen-bondedsupramolecularpolymernetworks,J.Polym. Sci.PartAPolym.Chem.37(1999)3657 3670.doi:10.1002/(SICI)1099-0518(19991001)37:19 , 3657::AIDPOLA1 . 3.0.CO;2-6.

[24]K.Chino,M.Ashiura,Themoreversiblecross-linkingrubberusingsupramolecularhydrogen-bondingnetworks,Macromolecules34(2001)9201 9204.Availablefrom: https://doi.org/10.1021/ma011253v

[25]C.-C.Peng,V.Abetz,Asimplepathwaytowardquantitativemodificationofpolybutadiene:anewapproach tothermoreversiblecross-linkingrubbercomprisingsupramolecularhydrogen-bondingnetworks, Macromolecules38(2005)5575 5580.Availablefrom: https://doi.org/10.1021/ma050419f

[26]E.Kolomiets,E.Buhler,S.J.Candau,J.-M.Lehn,Structureandpropertiesofsupramolecularpolymersgenerated fromheterocomplementarymonomerslinkedthroughsextuplehydrogen-bondingarrays,Macromolecules39 (2006)1173 1181.Availablefrom: https://doi.org/10.1021/ma0523522

[27]P.Cordier,F.Tournilhac,C.Soulie ´ -Ziakovic,L.Leibler,Self-healingandthermoreversiblerubberfrom supramolecularassembly,Nature451(2008)977 980.Availablefrom: https://doi.org/10.1038/nature06669

[28]L.Guadagno,L.Vertuccio,C.Naddeo,E.Calabrese,G.Barra,M.Raimondo,etal.,Self-healingepoxynanocompositesviareversiblehydrogenbonding,Compos.PartBEng157(2019)1 13.Availablefrom: https:// doi.org/10.1016/J.COMPOSITESB.2018.08.082

[29]J.Chen,R.An,L.Han,X.Wang,Y.Zhang,L.Shi,etal.,Toughhydrophobicassociationhydrogelswithselfhealingandreformingcapabilitiesachievedbypolymericcore-shellnanoparticles,Mater.Sci.Eng.C99 (2019)460 467.Availablefrom: https://doi.org/10.1016/J.MSEC.2019.02.005

[30]X.Wu,J.Wang,J.Huang,S.Yang,Robust,stretchable,andself-healablesupramolecularelastomerssynergisticallycross-linkedbyhydrogenbondsandcoordinationbonds,ACSAppl.Mater.Interfaces11(2019) 7387 7396.Availablefrom: https://doi.org/10.1021/acsami.8b20303.

[31]S.Burattini,H.M.Colquhoun,B.W.Greenland,W.Hayes,Anovelself-healingsupramolecularpolymersystem,FaradayDiscuss143(2009)251.Availablefrom: https://doi.org/10.1039/b900859d.

[32]S.Burattini,B.W.Greenland,W.Hayes,M.E.Mackay,S.J.Rowan,H.M.Colquhoun,etal.,Polymerbasedon tweezer-type π π stackinginteractions:moleculardesignforhealabilityandenhancedtoughness,Chem. Mater23(2011)6 8.Availablefrom: https://doi.org/10.1021/cm102963k.

[33]S.Burattini,B.W.Greenland,D.H.Merino,W.Weng,J.Seppala,H.M.Colquhoun,etal.,Ahealablesupramolecularpolymerblendbasedonaromatic π π stackingandhydrogen-bondinginteractions,J.Am. Chem.Soc132(2010)12051 12058.Availablefrom: https://doi.org/10.1021/ja104446r

[34]X.Kuang,G.Liu,X.Dong,D.Wang,Enhancementofmechanicalandself-healingperformanceinmultiwall carbonnanotube/rubbercompositesviaDiels-Alderbonding,Macromol.Mater.Eng301(2016)535 541. Availablefrom: https://doi.org/10.1002/mame.201500425

[35]Q.Ding,X.Xu,Y.Yue,C.Mei,C.Huang,S.Jiang,etal.,Nanocellulose-mediatedelectroconductiveselfhealinghydrogelswithhighstrength,plasticity,viscoelasticity,stretchability,andbiocompatibilitytoward multifunctionalapplications,ACSAppl.Mater.Interfaces10(2018)27987 28002.Availablefrom: https:// doi.org/10.1021/acsami.8b09656

[36]S.Kongparakul,S.Kornprasert,P.Suriya,D.Le,C.Samart,N.Chantarasiri,etal.,Self-healinghybridnanocompositeanticorrosivecoatingfromepoxy/modifiednanosilica/perfluorooctyltriethoxysilane,Prog.Org. Coat104(2017)173 179.Availablefrom: https://doi.org/10.1016/j.porgcoat.2016.12.020

[37]S.Rana,D.Dohler,A.S.Nia,M.Nasir,M.Beiner,W.H.Binder,“Click”-triggeredself-healinggraphenenanocomposites,Macromol.RapidCommun37(2016)1715 1722.Availablefrom: https://doi.org/10.1002/ marc.201600466

[38]X.Dai,Y.Du,J.Yang,D.Wang,J.Gu,Y.Li,etal.,Recoverableandself-healingelectromagneticwave absorbingnanocomposites,Compos.Sci.Technol174(2019)27 32.Availablefrom: https://doi.org/ 10.1016/j.compscitech.2019.02.018.

[39]H.-P.Cong,P.Wang,S.-H.Yu,Stretchableandself-healinggrapheneoxide polymercompositehydrogels:a dual-networkdesign,Chem.Mater25(2013)3357 3362.Availablefrom: https://doi.org/10.1021/ cm401919c.

[40]Y.Li,L.Li,J.Sun,Bioinspiredself-healingsuperhydrophobic,Coat.Angew.Chem.Int.Ed49(2010) 6129 6133.Availablefrom: https://doi.org/10.1002/anie.201001258.

[41]D.G.Shchukin,M.Zheludkevich,K.Yasakau,S.Lamaka,M.G.S.Ferreira,H.Mohwald,Layer-by-layer assemblednanocontainersforself-healingcorrosionprotection,Adv.Mater18(2006)1672 1678.Available from: https://doi.org/10.1002/adma.200502053

[42]J.-H.Park,P.V.Braun,Coaxialelectrospinningofself-healingcoatings,Adv.Mater22(2010)496 499. Availablefrom: https://doi.org/10.1002/adma.200902465

[43]B.Zhou,D.He,J.Hu,Y.Ye,H.Peng,X.Zhou,etal.,Aflexible,self-healingandhighlystretchablepolymer electrolyte via quadruplehydrogenbondingforlithium-ionbatteries,J.Mater.Chem.A6(2018) 11725 11733.Availablefrom: https://doi.org/10.1039/C8TA01907J

[44]B.Zhou,Y.H.Jo,R.Wang,D.He,X.Zhou,X.Xie,etal.,Self-healingcompositepolymerelectrolyteformed viasupramolecularnetworksforhigh-performancelithium-ionbatteries,J.Mater.Chem.A(2019).Available from: https://doi.org/10.1039/C9TA01214A

[45]Y.Yang,J.He,Q.Li,L.Gao,J.Hu,R.Zeng,etal.,Self-healingofelectricaldamageinpolymersusingsuperparamagneticnanoparticles,Nat.Nanotechnol14(2019)151 155.Availablefrom: https://doi.org/10.1038/ s41565-018-0327-4

[46]Y.Huang,M.Zhong,Y.Huang,M.Zhu,Z.Pei,Z.Wang,etal.,Aself-healableandhighlystretchablesupercapacitorbasedonadualcrosslinkedpolyelectrolyte,Nat.Commun6(2015)10310.Availablefrom: https:// doi.org/10.1038/ncomms10310

[47]F.Tao,L.Qin,Z.Wang,Q.Pan,Self-healableandcold-resistantsupercapacitorbasedonamultifunctional hydrogelelectrolyte,ACSAppl.Mater.Interfaces9(2017)15541 15548.Availablefrom: https://doi.org/ 10.1021/acsami.7b03223

[48]S.Park,G.Thangavel,K.Parida,S.Li,P.S.Lee,Astretchableandself-healingenergystoragedevicebased onmechanicallyandelectricallyrestorativeliquid-metalparticlesandcarboxylatedpolyurethanecomposites, Adv.Mater31(2019)1805536.Availablefrom: https://doi.org/10.1002/adma.201805536.

[49]J.A.Carlson,J.M.English,D.J.Coe,Aflexible,self-healingsensorskin,SmartMater.Struct.15(2006) N129 N135.Availablefrom: https://doi.org/10.1088/0964-1726/15/5/N05.

[50]L.Zhao,B.Jiang,Y.Huang,Self-healablepolysiloxane/graphenenanocompositeanditsapplicationinpressuresensor,J.Mater.Sci54(2019)5472 5483.Availablefrom: https://doi.org/10.1007/s10853-018-03233-6.

[51]Y.X.Song,W.M.Xu,M.Z.Rong,M.Q.Zhang,Asunlightself-healabletransparentstrainsensorwithhigh sensitivityanddurabilitybasedonasilvernanowire/polyurethanecompositefilm,J.Mater.Chem.A7 (2019)2315 2325.Availablefrom: https://doi.org/10.1039/C8TA11435H

[52]T.Wang,Y.Zhang,Q.Liu,W.Cheng,X.Wang,L.Pan,etal.,Highlystretchable,andsolutionprocessable conductivepolymercompositeforultrasensitivestrainandpressuresensing,Adv.Funct.Mater28(2018) 1705551.Availablefrom: https://doi.org/10.1002/adfm.201705551

[53]X.Liu,C.Lu,X.Wu,X.Zhang,Self-healingstrainsensorsbasedonnanostructuredsupramolecularconductiveelastomers,J.Mater.Chem.A5(2017)9824 9832.Availablefrom: https://doi.org/10.1039/ C7TA02416A

[54]Y.Cai,D.Chen,N.Li,Q.Xu,H.Li,J.He,etal.,Self-healingandsuperwettablenanofibrousmembranesfor efficientseparationofoil-in-wateremulsions,J.Mater.Chem.A7(2019)1629 1637.Availablefrom: https://doi.org/10.1039/C8TA10254F

[55]J.Hou,Y.Liu,Y.Liu,L.Wu,Z.Yang,T.Xu,Self-healinganionexchangemembraneforpH7redoxflowbatteries,Chem.Eng.Sci201(2019)167 174.Availablefrom: https://doi.org/10.1016/J.CES.2019.02.033

[56]H.Qin,T.Zhang,N.Li,H.-P.Cong,S.-H.Yu,Anisotropicandself-healinghydrogelswithmulti-responsive actuatingcapability,Nat.Commun.10(2019)2202.Availablefrom: https://doi.org/10.1038/s41467-01910243-8

[57]H.Qin,T.Zhang,H.-N.Li,H.-P.Cong,M.Antonietti,S.-H.Yu,DynamicAu-thiolateinteractioninduced rapidself-healingnanocompositehydrogelswithremarkablemechanicalbehaviors,Chemistry3(2017) 691 705.Availablefrom: https://doi.org/10.1016/J.CHEMPR.2017.07.017.

Typesofchemistriesinvolvedin self-healingpolymericsystems

DepartmentofChemistry,IndianInstituteofTechnologyRopar,Rupnagar,India

2.1Introduction:chemicalaspectsinself-healingprocess

Polymermaterialswithself-healingabilitytorepairthedamagesorcracksfromthe agingandstructuralfailureduetothermal,electrical,mechanical,andweatheraggression increasetheservicelife,safetyindex,andsustainability [1 3].Introducingtheself-healing propertiesinpolymericsystemsandthechemistryofself-healingprocessfortheregenerationofpolymernetworkstructureisgovernedbythechemistryofthedifferentfunctional groupseitherbyreversiblephysicalinteractionsorbychemicalreactionsofthesefunctionalgroups.Fromthechemistrypointofview,theself-healingreactionwillbegoverned bythermodynamicsand/orreactionkinetics.Buthowthechemicalthermodynamicsand/ orreactionkineticsofself-healingpropertiesaresynchronizedwiththeremodelingof physicalnetworkatbulkisintriguing.Ingeneral,thechoiceofself-healingsfunctionality (chemistry)dependsonmanyfactorssuchaseasyincorporationinpolymer,compatibility orsuitabilitywithmonomer,tolerancesoffunctionalgroups,reactivityoffunctional groups,andreactionconditionsaswellasreactionconversions.Thenatureofreactionsis alsoimportantsuchasfasterkineticsversusreversibility,useofcatalystsorexternalstimuliforconstructionoftheself-healingpolymericmaterials.Alsowhetherhealingcomponentsarechemicallyattachedtoapolymerbackboneorphysicallydispersedinapolymer matrixaswellastheintrinsicpropertiesofthepolymersuchasphysical/chemicalcompositionsandconcentrations,density,elasticity,andspecificenergywilldeterminetheir healingability.Forexample,thering-openingmetathesispolymerization(ROMP)ofdicyclopentadiene(DCPD)wasutilizedinmicrocapsule-basedself-healingpolymericmaterials forthefirsttimebyWhiteetal. [4].Lateronothermicrocapsuleschemistrywasdeveloped suchasazide-alkyneclickchemistry,epoxy-aminecross-linking,andhydrosilylationreactions [5].However,thesereactionsareirreversibleinnatureandhencethehealingprocess canbeobservedforasingletime.Thereversiblereactionsundercertainconditionsare

importantforrepeatingtheself-healingprocessmultipletimesviaformationandreformationofdynamiccovalentbondssuchasthermoreversibleDiels Alder(DA)reactions andphotoreversibledisulfidesmetathesisreactions [1].Thereforeitisalsoimportant howeasilytheself-healingprocesscanbecontrolledthroughexternalstimulisuchas temperature,waterormoisture,salts,pH,light,mechanicalstress,electric,ormagnetic fields.Unlikedynamiccovalentbonds,dynamicnoncovalentsupramolecularinteractionsarereversibleinnaturebutrelativelyweakwhencomparedwithcovalentbonds. Hencedynamicnoncovalentbondswithsupramolecularinteractionssuchashydrogen bondingandionicinteractionarecapable ofhealingthedamagesformultiplecycles withoutanyexternalstimuli.Thereforesever alstrategiesandchemistryaredeveloped towarddesigningofself-healingpolymers.In thischapter,varioustypesofchemistries involvedinself-healingpolymericsystemsa rediscussed.Thestrategicdevelopmentof self-healingchemistrywithvariouspolymeric materialsisusefulforfabricatingmaterialsforseveralapplicationssuchasbiomaterials,bioelectronics,sensors,actuatorsand coating,paintstechnologies,electronics,orenergydevicessuchasmembranes,3D/4D printing,tissueengineering,andsoftroboticsskinandanalyzingtheirpotentialforrealworldhigh-performanceapplications [1,6,7]

2.1.1Extrinsicandintrinsicself-healing

Thepurposeofanyself-healingprocessistoregeneratethecross-linkednetwork fromthephysicalinteractionsorchemicalr eactionsofvariousfunctionalgroups.The self-healingprocessescanbeclassifiedintointrinsicorextrinsic(withorwithout add-oncomponents),butthepolymerwillnotrepairbythemselvesunlessitistheir intrinsicproperty.Extrinsicself-healingprocesscomprisesofexternalhealingagents suchasmonomers,catalysts,andcross-link ersintheformofcapsules,fibers,orvascular.Thesereactivehealingagentsareembeddedwithinthepolymericmatrix [3,5,6] .Whencrackordamageoccurs,thehea lingagentsarereleasedfromtherupturedcontainersandflowintothecrackst ohealthematerialsbypolymerizationor throughbondformationfromchemicalreacti ons.Intheextrinsicprocess,thehealing efficienciescanbeachievedover100%ev enwhenthedamageislarge.However,it worksonlyforasingletime,whereastheintrinsicself-healingisrepeatableandthe actioncanbeachievableformultipletimes.Intrinsicself-healingmaterialsare designedinsuchawaythatinthebelowth ecriticallimitofdamage,thedamaged partcanberejoinedbyeitherchemicalcro ss-linkingthroughreversibledynamic covalentbondformationorphysicalcross- linkingvianoncovalentsupramolecular interactions [1,5,8]

2.2Keyrequirementsofself-healingprocess

Designingtheself-healingpolymericmaterialsrequiresunderstandingphysicalinteractions,thechemistry,mechanismofhealingprocess,andthenecessaryconditionsalong withkeyfactorsrequiredfortheself-healingprocess. Fig.2.1 showsthegeneral

FIGURE2.1 Adamage repaircycleinpolymericmaterialsinvolvedinself-healingprocess.Source:Reproduced withpermissionfromW.H.Binder,Self-HealingPolymers:FromPrinciplestoApplications,JohnWiley&Sons,2013, Copyright2013,Wiley-VCH.

approachofself-healingprocessinvolvedphy sicallyandchemically.Theinterdiffusion ofchainsbetweenthepolymericnetworksoc curswhichisessentialforanypolymeric damagesrecovery [3].However,foranyself-healingprocessthekeyrequirementisthe regenerationofthecross-linkednetwork [1,6,7] .Forexample,crackhealinginthermoplasticpolymers(e.g.,amorphous,semicrystalline,blockcopolymers,andfiberreinforcedcomposites)ispossibleduetomole culardiffusionacrosstheinterfaceswhen twopiecesofthesamepolymersarebroughtintocontactaboveitsglasstransitiontemperature(T g ).Diffusioncanbepossiblewhenlow T g orviscousliquidtypeintermediate isgeneratedinsituprocess [9] .However,chemicalfunctionalityisthekeyrequirement torejointhecrackordamagednetworkstruct ureviatheformationofcovalentbondsor supramolecularinteractionorboth.Thispol ymernetworkstructuresareeithercovalent bondingorphysicalcross-linkingtoachieveh ealingefficiencyandregainoriginalphysicalandmechanicalproperties.

Innaturalrubber(NR)theself-healingisanaturalprocesswhichiscontrolledby thediffusionprocessandistermedastack [10] .Theself-healingphenomenonisprimarilythecontributionfromthetackinesspropertyofNR.Tackistheabilityoftwo unvulcanizedelastomericmaterialstoresistseparationafterbringingtheirsurfaces intocontactforashorttimeunderlightpressure.Thetackiscalledautohesivewhen anidenticalchemicalcompositionofunvulcanizedelastomericpiecesistaken,and adhesivetackistermedwhenthetwodissim ilarcompositionsunvulcanizedelastomericmaterials [11] . ApartfromvanderWaalsinteractions,thetackinessdependsonanintimatecontact whichallowstheinterdiffusionofmacromolecularsegmentsacrosstheinterface.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.