Sediment provenance. influences on compositional change from source to sink 1st edition rajat mazumd

Page 1


https://ebookmass.com/product/sediment-provenance-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Lectures on Digital Design Principles (River Publishers Electronic Materials, Circuits and Devices) 1st Edition

Mazumder

https://ebookmass.com/product/lectures-on-digital-design-principlesriver-publishers-electronic-materials-circuits-and-devices-1stedition-pinaki-mazumder/ ebookmass.com

International Economics: An Introduction to Theory and Policy 2nd Edition Rajat Acharyya

https://ebookmass.com/product/international-economics-an-introductionto-theory-and-policy-2nd-edition-rajat-acharyya/

ebookmass.com

From Linear to Circular Food Supply Chains: Achieving Sustainable Change 1st Edition Stella Despoudi

https://ebookmass.com/product/from-linear-to-circular-food-supplychains-achieving-sustainable-change-1st-edition-stella-despoudi/

ebookmass.com

Social Beings: Core Motives in Social Psychology, 3rd Edition 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/social-beings-core-motives-in-socialpsychology-3rd-edition-3rd-edition-ebook-pdf/

ebookmass.com

John Locke's Christianity Diego Lucci

https://ebookmass.com/product/john-lockes-christianity-diego-lucci/

ebookmass.com

Governing the Anthropocene: Novel Ecosystems, Transformation and Environmental Policy Sarah Clement

https://ebookmass.com/product/governing-the-anthropocene-novelecosystems-transformation-and-environmental-policy-sarah-clement/

ebookmass.com

Social Psychology 12th Edition David G. Myers

https://ebookmass.com/product/social-psychology-12th-edition-david-gmyers/

ebookmass.com

Cardiovascular Engineering: A Protective Approach Shu Q. Liu

https://ebookmass.com/product/cardiovascular-engineering-a-protectiveapproach-shu-q-liu/

ebookmass.com

Blood Gases and Critical Care Testing: Physiology, Clinical Interpretations, and Laboratory Applications 3rd Edition John G. Toffaletti

https://ebookmass.com/product/blood-gases-and-critical-care-testingphysiology-clinical-interpretations-and-laboratory-applications-3rdedition-john-g-toffaletti/

ebookmass.com

Computing Patterns in Strings 1st Edition

https://ebookmass.com/product/computing-patterns-in-strings-1stedition-bill-smyth/

ebookmass.com

SEDIMENT PROVENANCE

INFLUENCESONCOMPOSITIONAL CHANGEFROMSOURCETOSINK

DepartmentofAppliedGeology,FacultyofEngineeringandScience,CurtinUniversity,Sarawak,Malaysia

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2017ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearanceCenter andtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise, orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-803386-9

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/

Coarsetoverycoarse-grainedscoriaceoussandstone(darkcolored)interbandedwith finesandstone/siltstone (lightcolored)andmudstone(brownish),Mio-PlioceneMisakiFormation,MiuraPeninsula,Japan.Thecoarse sandstonesarenormallygraded(turbidites)andwerederivedfromvolcanoes.The finerclasticsareindigenous backgroundsedimentsformedinadeepmarinesedimentarybasin(2000 3000mdeep)inanarc-arccollision zoneandthushavedifferentsedimentprovenancefromthecoarserclastics.Mostofthesoftsediment deformationstructurespreservedwithinlaterallycontinuousandselectivestratigraphichorizonshavebeen interpretedasseismite.

Publisher: CandiceJanco

AcquisitionEditor: AmyShapiro

EditorialProjectManager: TashaFrank

ProductionProjectManager: PaulPrasadChandramohan

Designer: MathewLimbert

TypesetbyTNQBooksandJournals

Dedicatedtomywife,SumanaMazumder,forhersupportandpositivity.

Contributors

D.Abbott CityCollegeofNewYork,New York,NY,UnitedStates;Lamont-Doherty EarthObservatoryofColumbiaUniversity, Palisades,NY,UnitedStates

P.Acquafredda UniversitàdegliStudidiBari, Bari,Italy

A.Agangi CurtinUniversity,Bentley,WA, Australia

J.S.Armstrong-Altrin UniversidadNacional AutónomadeMéxico,MéxicoD.F.,México

S.Balakrishnan PondicherryUniversity, Pondicherry,India

R.Baldacconi Freelancer,Taranto,Italy

A.Basu IndianaUniversity,Bloomington,IN, UnitedStates

V.C.Bennett TheAustralianNational University,Canberra,ACT,Australia

P.K.Bose JadavpurUniversity,Kolkata,India

D.Breger Lamont-DohertyEarthObservatory ofColumbiaUniversity,Palisades,NY,United States;MicrographicArts,SaratogaSprings, NY,UnitedStates

N.Chakraborty JadavpurUniversity,Kolkata, India

P.P.Chakraborty UniversityofDelhi,New Delhi,India

M.A.Chan UniversityofUtah,SaltLakeCity, UT,UnitedStates

J.Chiarenzelli St.LawrenceUniversity, Canton,NY,UnitedStates

A.R.Chivas UniversityofWollongong, Wollongong,NSW,Australia

G.daCosta UniversityofJohannesburg, AucklandPark,SouthAfrica

K.Das HiroshimaUniversity,HigashiHiroshima,Japan

P.Dasgupta DurgapurGovernmentCollege, Durgapur,India

S.De PresidencyUniversity,Kolkata,India

W.deLorraine St.LawrenceZincCompany, Gouverneur,NY,UnitedStates

A.Dey JadavpurUniversity,Kolkata,India

P.G.Eriksson UniversityofPretoria,Pretoria, SouthAfrica

C.L.Fergusson UniversityofWollongong, Wollongong,NSW,Australia

V.Festa UniversitàdegliStudidiBari,Bari, Italy

C.R.L.Friend Glendale,Oxon,UnitedKingdom

K.Galinskaya BrooklynCollege,NewYork, NY,UnitedStates

S.Ghosh PresidencyUniversity,Kolkata, India

V.Gusiakov TsunamiLaboratory,ICMMGSD RAS,Novosibirsk,Russia

Y.Han ChinaUniversityofGeosciences, Beijing,China

Z.Han ShandongUniversityofScienceand Technology,Qingdao,China

R.A.Henderson JamesCookUniversity, Townsville,QLD,Australia

A.Hofmann UniversityofJohannesburg, AucklandPark,SouthAfrica

K.Horie NationalInstituteforPolarResearch, Tokyo,Japan

M.Ibanez-Mejia MassachusettsInstituteof Technology,Cambridge,MA,UnitedStates; UniversityofRochester,Rochester,NY,United States

J.Jong JXNipponOilandGasExploration (DeepwaterSabah)Limited,KualaLumpur, Malaysia

F.L.Kessler GoldbachGeoconsultantsO&G, Glattbach,Aschaffenburg,Germany

D.Kratzmann SantaRosaJuniorCollege, Petaluma,CA,UnitedStates

S.Lisco UniversitàdegliStudidiBari,Bari,Italy

D.G.F.Long LaurentianUniversity,Sudbury, ON,Canada

M.Lupulescu NewYorkStateMuseum, Albany,NY,UnitedStates

A.Mandal JadavpurUniversity,Kolkata,India

G.Mastronuzzi UniversitàdegliStudidiBari, Bari,Italy

R.Mazumder CurtinUniversity,Sarawak, Malaysia

W.Mejiama OsakaCityUniversity,Osaka, Japan

M.Moretti UniversitàdegliStudidiBari,Bari, Italy

V.Moretti RegionePuglia ServizioEcologia UfficioProgrammazione,PoliticheEnergetiche, Bari,Italy

S.Mukherjee JadavpurUniversity,Kolkata, India

J.Mukhopadhyay PresidencyUniversity, Kolkata,India;UniversityofJohannesburg, AucklandPark,SouthAfrica

R.Nagarajan CurtinUniversity,Miri, Sarawak,Malaysia

R.Nagendra AnnaUniversity,Chennai,India

A.P.Nutman UniversityofWollongong,Wollongong,NSW,Australia;ChineseAcademyof GeologicalSciences,Beijing,China

R.Offler UniversityofNewcastle,Callaghan, NSW,Australia

M.Pisarska-Jamro _ zy GeologicalInstitute, AdamMickiewiczUniversity,Poznan,Poland

G.Rambolamanana UniversityofAntananarivo, Antananarivo,Madagascar

C.A.Rosiere FederalUniversityofMinas Gerais,BeloHorizonte,Brazil

S.Saha UniversityofDelhi,NewDelhi,India

S.Sanyal JadavpurUniversity,Kolkata,India

S.Sarkar JadavpurUniversity,Kolkata,India

T.Sato INPEXCorporation,Tokyo,Japan

R.Scotti Freelancer,Taranto,Italy

B.Selleck ColgateUniversity,Hamilton,NY, UnitedStates

P.Sengupta JadavpurUniversity,Kolkata, India

G.Shanmugam TheUniversityofTexasat Arlington,Arlington,TX,UnitedStates

H.A.Tawfik TantaUniversity,Tanta,Egypt

M.Tropeano UniversitàdegliStudidiBari, Bari,Italy

Y.Tsutsumi NationalScienceMuseum, Tsukuba,Japan

A.J.(Tom)VanLoon GeocomConsultants, Benitachell,Spain

G.M.Young UniversityofWesternOntario, London,ON,Canada

1

SedimentProvenance:Influence onCompositionalChangeFrom SourcetoSink

CurtinUniversity,Sarawak,Malaysia

OUTLINE

Acknowledgment4References4

Theterm “ provenance ” originatesfromtheLatinword “provenire,” meaningtooriginate. Althoughcommonlyusedtoindicatesourceorparentrockfromwhichsedimentswere generated,theterm “ provenance ” actuallyencompasses all factorsrelatedtosediment production,with “specificreferencetothecompositionoftheparentrocksaswellasthe physiographyandclimateofthesourcearea” (WeltjeandEynatten,2004).Sedimentary provenancedataplayacriticalroleinassessingpalaeogeographicreconstructions,in constraininglateraldisplacementsinorogens,incharacterizingcrustthatisnolonger exposed,inmappingdepositionalsystems,insubsurfacecorrelation,andinpredicting reservoirquality(Haughtonetal.,1991;WeltjeandEynatten,2004;Garzantietal.,2014; Bhattacharyaetal.,2016).

Thesourcetosink(S2S)isanapproachthatconnectsareasofsedimentproductionwith sitesoftransferandlocationsofstoragethroughthequanti ficationofearthprocessesina budgetarymanner(Walshetal.,2016;Bhattacharyaetal.,2016).Understandably,sediment transport,climate,life,environment,diagenesis/lithi fication,andcontemporaneoustectonismalsohavesignificantin fluencesonsedimentcomposition/geochemistryalongthe wayfromsourcetosink.Therecentspecialissueof EarthScienceReviews (Walshetal., 2016)presentsseveralinterestingrecenttoMioceneS2Ssedimentprovenancestudieson

differentcontinents.OneofthecriticalareasthatdeservescloserscrutinybytheS2Scommunityislinkingthepresentandthepast(Walshetal.,2016).Aspointedoutby Walshetal. (2016), “therecontinuestobetoomuchcommunitydisconnectamong ‘modern’ (process), Quaternaryanddeep-timeresearchers.” Itmustbenotedthatresearchershaveundertaken provenanceanalysisofmucholder(asoldasearlyArchean)sedimentarydepositsofthemajorcratonicblocksoftheworld,includingthoseofAntarcticaandGreenland(see Eriksson etal.,2004 andreferencestherein).Inspiteofsignificanttechnologicaldevelopmentand consequentscientificadvancementinlast20years,thereisalmostnomemoir/specialpublication/bookthattreatssedimentaryrocksfromanS2Sperspective.Thisbookprovidesa criticalandcomprehensiveoverviewaswellasnewdata-basedsedimentprovenance analysesfromPrecambriantorecentfromseveralcontinentsandwill fillinthegapinthe knowledgebase.

Thecontentofthebookhasbeendividedinto19chapters.The first(Basu)isacritical appraisaloftheconceptualevolutionandtheenhancedscopeofinquiriesintotheprovenanceofsiliciclasticsediments.VanLoonetal.havetracedthesourceofbio/siliciclastic beachsandsoftheApulianCoastofItaly.Theiranalysesrevealawave-erodedlithified sandsourceforthebeachsandsandcontributionfromawidevarietyoforganisms.Van LoonandPisarska-Jamro _ zyhaveundertakenadetailedheavymineralstudyofPleistocene sandurs,ice-marginalvalleyandanearbyriverinPoland,andhaveshownthatheavy mineralanalysescansigni ficantlycontributetothereconstructionofthepathwayofsedimentaryparticlesandofthechangesintheheavy-mineralspectrafromsourcetosink.The hydraulicconditionsprevailingduringsedimenttransportationhavetheprimecontrolon sedimentdispersalpatterns,andthushaveasignificantinfluenceonthechangesinsediment compositionduringthejourneyfromsourcetosink.Dasguptahascriticallyreviewedthe problematicaspectsofpaleohydraulicparameterreconstructionsfromprimarysedimentary structuresandbelievesthatquantitativemethodologyforthepreciseestimationofpaleohydraulicparametersfromdepositionalsedimentarystructures “isyettobedevelopedthrough systematiclaboratoryand fieldexperimentsthatcanberepeatedandempiricallyverified.”

SedimentologicalanalysisoftheLowerCretaceoussiliciclasticrocks(sandstones)ofthe Pondicherryembryonicriftbasin,IndiabySarkaretal.clearlyrevealscratonicsourcegaining relativematuritytowardthedistaldepositionalsetting.Variabledegreesofmixingoffelsic andmaficcomponentsandsource-shiftingasaconsequenceofriftinghavebeenestablished bytheseauthors.Nagarajanetal.haveundertakenpetrographicandgeochemicalanalyses ofNeogeneSibutiandLambirformations,eastMalaysia(Borneo).Theirresearchindicates derivationofsedimentsfromrecycledfelsicprovenanceinapredominantlycontinentalto passivemarginsettingassociatedwithriftingoftheproto-SouthChinaSeaduringtheearly tomiddleMiocene.Theoriginof “V”-shapedelongateddunecomplexesofMadagascar (Chevroncomplexes)isdisputed;Abbottetal.havearguedagainsttheAeolianoriginof thesedunecomplexes.Theirsedimentological(grain-size),micropaleontological,and geochronologicaldatafromthreedunecomplexesofMadagascarindicatethesedune complexesarethedepositionalproductofaHolocenemegatsunamipossiblyrelatedtoa Holocenelandslide,orbolideimpact(Abbottetal.).ManyfundamentalproblemsofcontouriteresearchhavebeenpointedoutbyShanmugaminhisdetailedandcriticalreview.The contouritedomain,accordingtoShanmugam,is “stillinastateof fluxafternearly60years ofresearch ” becauseofthosefundamentalproblems. 1.SEDIMENTPROVENANCE:INFLUENCEONCOMPOSITIONALCHANGEFROMSOURCETOSINK

Continentalsequencesgenerallyrecordastrongin fl uenceofsedimentsourceondepositionalfaciesandprovideexcellentopportunitiesforS2Sanalyses.SatoandChanhaveundertakenadetailedsedimentologicalanaly sisoftheEoceneDuchesneRiverformationof theUintaBasin,Utah,USA,andhavedemonstratedhowdifferentsourceinputscontrol sedimentaryfaciesdevelopmentandsandstonepetrophysicalpropertiesinthesink.Their studyrevealstheimportanceofsedimentp rovenanceanalysisforexplorationof fl uvial sandstonereservoirs.VanLoonetal.haveexaminedaseriesoflensesoflimestonebreccia fromtheLateCambrian(Furongian)ChaomidianFormationinShandongProvince,China andinterpretedtheseasaconsequenceoffra gmentationfollowedbyslidingofabreccia layerfromtheparentlayer(thesource)toitsd epositionalsite(thesink).Longhasexamined chertsofUpperJurassictoLowerCretaceousTa ntalusFormation,insouth-centralYukon, Canada.Hisstudyrevealsthatalargeslabof CacheCreekwasobductedoverstrataofthe Yukon Tananaterrane,andthisnowerodedslabwasthesourceofchertintheTantalus piggybackbasins.

LateNeoproterozoictoearlyMesozoicsed imentarysuccessionoftheTasmanidesof easternAustraliadevelopedinanactiveplate marginsetting.Multidisciplinaryresearch undertakenbyFergussonrevelsprovenanc eswitchingbetweenthedevelopmentsof igneous-dominateddetritusrelatedtoadjoin ingmagmaticarcs(e.g.,theMacquarieArc), andinteractionswithGondwana-derivedclastics.Chiarenzelliutilizeddetritalzirconsin anupperamphibolitefaciesterraintodocumentsedimentprovenanceandbasinevolution, andtoprovideinitialtemporalconstraints onsedimentation.Dasetal.havepresented detritalrecordsofsedimentprovenanceand itsshiftintheMesoproterozoicSinghora Group,centralIndia.Senguptaetal.inferredsedimentaryprovenance,timingofsedimentation,andmetamorphismfromasuiteofmetapelitesfromtheChotanagpurGraniteGneiss Complex,easternIndia,anddiscussedtheirimplicationsforProterozoictectonicsinthe east-centralpartoftheIndianshield. Mukhopadhayaetal.haveundertakenSEM CLfabricanalysisofquartzframeworkpopulatio nfromtheMesoarcheanKeonjharQuartzite fromSinghbhumCraton,easternIndia.These authorshavediscussedimplicationsofprovenanceanalysisfortheuppercontinentalcrustalevolution.CostaandHofmannhave undertakenprovenanceanalysisofdetrital pyriteintheMesoarchaeanWitwatersrand BasinofSouthAfrica,theworld’slargestgolddeposit.Accordingtotheseauthors,detrital pyriteismainlyderivedfromsedimentaryso urcesandsyn-sedimentaryprecipitates. Younghasdiscussedtheiceagesinearthhistory, “puzzling” paleolatitudes,andregional provenanceoftheicesheets.AccordingtoYoung, “theevolutionofmetazoans,climaxing withthe ‘ Cambrianexplosion, ’ mayhavebeenacceleratedbyrapidandradicalenvironmentalchangesassociatedwithglaciations. ” Theworld ’ soldestsedimentarystructures arepreservedindolomiticcarbonates,banded ironformations,volcaniclasticsedimentary rocks,andveryraresandstonesandconglomeratesinthe3.7 3.8billionyearsoldIsua supracrustalbeltinNorthAtlanticcraton(Gr eenland).TheholisticappraisaloftheIsua supracrustalsbyNutmanetal.indicatestheyformed overa100-million-yearperiodin supra-subductionzonesettings

Istronglybelievethatastate-of-theartexpositionofsedimentprovenanceanalyseswill helptoidentifykeyissuesandgapsintheexistingknowledgebaseandinitiatenewresearch tounderstandsourcerockcharacteristics,paleoweathering,paleoclimate,tectonics,and ultimately,theevolutionofcontinentalcrust.

Acknowledgment

Iamgratefultoallcontributors,reviewers,andcolleaguesatElsevier,especiallyTashaFrankandMarisaLaFleur, whosupportedmeinvariousways.IgratefullyacknowledgeinfrastructuralsupportprovidedbytheFacultyof EngineeringandScience,CurtinUniversity,Sarawak,Malaysia.ProfessorsKennethEriksson,PatrickG.Eriksson, andChristopherFedocriticallycommentedontheoriginalbookproposalandhelpedmetoorganizethebook.

References

Bhattacharya,J.P.,Copeland,P.,Lawton,T.F.,Holbrook,J.,2016.Estimationofsourcearea,riverpaleo-discharge, paleoslope,andsedimentbudgetsoflinkeddeep-timedepositionalsystemsandimplicationsforhydrocarbon potential.EarthScienceReviews153,77 110.

EduardoGarzanti,E.,Vermeesch,P.,Padoan,M.,Resentini,A.,Vezzoli,G.,Andò,S.,2014.Provenanceofpassivemarginsand(SouthernAfrica).JournalofGeology122,17 42.

Eriksson,P.G.,Altermann,W.,Nelson,D.R.,Mueller,W.,Catuneanu,O.,2004.ThePrecambrianEarth,Temposand Events.ElsevierScience,966p.

Haughton,P.D.,Todd,S.P.,Morton,A.C.,1991.Sedimentaryprovenancestudies.In:Morton,A.C.,Todd,S.P., Haughton,P.D.W.(Eds.),DevelopmentsinSedimentaryProvenanceStudies,57.GeologicalSocietySpecial PublicationNo,pp.1 11.

Wals,J.P.,Wiberg,P.L.,Aalto,R.,Nittrouer,C.A.,Kuehl,S.A.,2016.Source-to-sinkresearch:economyoftheEarth’ s surfaceanditsstrata.EarthScienceReviews153,1 6.

Weltje,G.J.,VonEynatten,H.,2004.Quantitativeprovenanceanalysisofsediments:reviewandoutlook.SedimentaryGeology171,1 11. 1.SEDIMENTPROVENANCE:INFLUENCEONCOMPOSITIONALCHANGEFROMSOURCETOSINK

A.Basu

IndianaUniversity,Bloomington,IN,UnitedStates

1.INTRODUCTION

Curiosityaboutoriginisafundamentalhumanurge.Investigatingtheprovenanceofsiliciclasticdebrisandrocksisasubsetofthatcuriosity.HenryCliftonSorbysagaciouslydetermined,morethan150yearsago,onthebasisofopticalpetrography,thatthequartzarenitic

rockoftheMillstoneGritinYorkshirewasderivedfromgraniticgrus: “Therockhadbeen originallyformedfromamixtureofquartzsandandfelsparsand,but,afterdeposition, thefelsparhavingbeendecomposedintoaclay-likematerial,hasbeenforcedbythepressure ofthesuper-incumbentrocksintothespacesbetweenthegrainsofquartzsand” (Sorby,1859, p.672).Itstillstandsthatsiliciclasticrocks,formedbydiageneticpreservationofthedetritus fromthelandsandmountainsthathadbeendestroyedandonlytheruinsofwhichmight havesurvived,aretheonlyancientrepositoriesavailableforprovenanceanalysis.Theoptical microscopewasestablishedbySorbyastheprincipaltoolforprovenancedetermination.It stillis,althoughmanyotheranalyticaltechniquesandtoolshavevastlycontributedtoa farbetterunderstandingofprovenanceanalysisinthemilieuoftheEarthsystem.Atpresent, itiscommontousetraceandrareearthelementdistributions,stableisotopesystematics, robustU-Pbages,magneticresonance,Ramanspectra,aswellasopticalandbackscattered electronimagesofsinglemineralsandwholerockstoinferprovenance.Conceptually,investigationstosolvelocalandsomewhatregionalproblems(Groves,1931;Mackie,1897; Johnson,1872)haveevolvedtoaddressingproblemsofglobalplatetectonicsthroughtime (Myrowetal.,2015;Burrettetal.,2014;Uddinetal.,2007;Argnanietal.,2004;Wombacher andMuenker,2000;KrönerandSengor,1990)andtotrackcrustalgrowth(Avigadetal., 2012;BodetandSchärer,2000).Yet,inferringwhathavebeenlost,i.e.,temporalassemblages ofparentrocks,fromabodyofleftover,drifted,andmodifieddetritus,remainsinexact(e.g., Fitchesetal.,1990). Pettijohnetal.(1972,p.298)wrote: “Thequestionofprovenanceisoneof themostdifficultproblemsthesedimentarypetrographeriscalledontosolve.” TheHoly Grailofthatomnipresentuniquesignatureofprovenanceinsiliciclasticmaterialisstill eludingsedimentarygeologists(e.g., Garzanti,2015;ArtemeivaandShulgin,2015).

2.PURPOSEANDSCOPE

Thepurposeofthischapteristopresentacriticalappraisaloftheconceptualevolutionand theenhancedscopeofinquiriesintotheprovenanceofsiliciclasticsediments.Thetopicis popular.Tensofthousandsofpeer-reviewedpapershavebeenpublishedonthetopic;in 2016alone,thenumberhasexceeded1000ifnot2000!Thescopeofthispaperisrestricted totheinquiriesthathaveforgedfundamentallynewinsightsintoEarthprocessesandEarth history.Afewpredictionsaboutlinesofresearcharemade,whicharelikelytocontinuefor another20years(see Suttner,1989 forcomparison).Althoughmethodologyisnottheprimaryfocusofthepaper,researchinsiliciclasticprovenancehasadvancedintandemwith advancesinnewtoolsandnewdataprocessingcapabilities.Hence,methodologicaladvances areweavedintothediscourse.Theauthordoesnotapologizefornotcitingmanyremarkable worksbecausethisisnotacomprehensivehistoricalreviewbutashortcritique.

Sixgroundbreakingadvancesinprovenancestudiesarerecognizedinthischapter (Fig.2.1). Sorby(1859;alsoseequoteabove)relatedspeci ficrockstoasandstonebodyon thebasisofpetrographyrecognizingthatdetritalfeldsparswouldlosetheiridentitythrough diagenesis.Thuswasbornmodernprovenancestudies. Mackie(1897) calculatedthepercent contributionofdifferentsourcerockstotheproportionofmineralsinsandandsandstones. Thatwastheprimarykernelofwhatwouldbeknownasquantitativeprovenanceanalysis (WeltjeandvonEynatten,2004;BasuandHake,1984).Theimportanceofclimateandrates

SIX MILESTONES

FIGURE2.1 Sixmilestonesinsiliciclasticprovenanceresearch.Thegraphshowstheyearofsignificantpublicationandthenumberofyearsoftheirshelf-lives. 3.MATERIALSANDRELEVANTPROPERTIES

Dickinson Plate Reconstruction

Allen Paleogeography

KryninePaleoclimate

Mackie

Sorby

Quantitative Source Rock

Contribution

Specific Source Rock / Type

oferosioncontrollingtherelativede structionoffeldsparsatthesource( Krynine,1935 ) addedanewdimensiontoprovenanceinvestigations( NesbittandYoung,1982;Suttner etal.,1981;Ruxton,1970). Allen(1965) deducedhowdifferentpaleodrainagesystems wouldgiverisetocoevalsedimentaryprovinces(Fig.2.2 )withdifferentmineralcompositions,thusaddingpetrographicconstraintstoreconstructionsofpaleogeographyandsedimentaryprovinces(Suttner,1974;Dickinson,1970 ).Inagiantleap, DickinsonandSuczek (1979) establishedapositivelinkagebetweenassemblagesofrocksinvariousplatetectonic settingsandmodalcompositionsofsandstones derivedfromthoseplatetectonicassociations(Dickinson,1980,1985;Dickinsonetal.,1983).TheDickinsonianeraofglobaltectonic provenancestudieshadbegunandhasswayeditssceptersincethen(Bhattacharyyaand Das,2015;Nageletal.,2014;Uddinetal.,2007;CawoodandNemchin,2000;Ingersoll, 1990;ValloniandZuffa,1984;Bhatia,1983 ).Whereasprovenancestu dieshaveprincipally andoverwhelminglyinvestigatedthedistributionoftheearth’ ssur fi cialrocksandclimate, theyarenowreachingdeepintothesubsurface exploringandtrackingcrustalgrowth (BodetandSchärer,2000).

3.MATERIALSANDRELEVANTPROPERTIES

Thesiliciclasticmaterialsstudiedforprovenanceanalysesbelongtotwogroups:(1)samplesofthewholerockorthatofasizefraction,and(2)singlegrainsofdetritalminerals.For theformer,petrographicmodalanalysis,chemicalanalysisformajorandtraceelements,and isotopicanalysisforthedeterminationof εNd aretheprincipalmethodsemployedinprovenancestudies.Determinationoftherelativeproportionsofheavyminerals,andthepresence orabsenceofdiagnosticminerals,hasbeencommon,butisnotasextensivelyusedanymore.

FIGURE2.2 PaleogeographicreconstructionofthedepositionalbasinoftheOldRedSandstoneinsouthern Wales(UK)onthebasisof fieldgeology(mappingprimarysedimentarystructuresandinferringpaleocurrent direction)andtherelativedistributionofmicrocline,orthoclase,andplagioclase.Modifiedafter Allen(1965). 2.EVOLUTIONOFSILICICLASTICPROVENANCEINQUIRIES:ACRITICALAPPRAISAL

Forheavyminerals,(1)physicalpropertiessuchascolor,optical,andX-raycrystallography, Ramanspectroscopy,andcathodoluminescence;(2)concentrationsofmajor,minor,andtrace elements;andespecially(3)systematicsofbothstableandradioisotopesincludingabsolute ages,aremoreinuse.

4.INVESTIGATIVETECHNIQUESANDINSIGHTFULRESULTS

4.1OpticalMicroscopy

Opticalmicroscopyhasbeenandcontinuestobethemainstayofprovenanceinvestigationsforidentificationofmineralgrainsassmallas w20 mminsiliciclasticrocks.Objective andreproduciblemodalanalysesofsandstones,however,werehamperedforovera

100yearsbecause “rockfragments” defiedthetraditionaldescriptionof “twoormoremineralsinagrainofsand.” Wouldagrainofrutilatedquartzoragrainofperthitebecountedas arockfragment?Resultsofmodalanalysesarecommonlyplottedintriangulardiagrams ostensiblyforuniformcommunicationwiththethreepolesmarkedasQ,F,andLorRor RF.Threeformal,fairlyrigorous,butdifferentdefinitions(zcountingmethods)havebeen erected(Suttneretal.,1981;Folk,1974;Dickinson,1970;see AppendixI).Modalanalyses bythesethreemethodsofthesamethinsectionofasandstoneplotdifferently(Fig.5in Zuffa, 1985).ThemethodbyDickinson,morepopularlycalledtheGazzi-Dickinson(G-D)method, hasprovedtobethemostusefulandmostwidelyused.Modaldata,collectedbytheG-D methodandplottedintheDickinsondiagram(Fig.2.3),ef ficientlydiscriminatederivation ofsand-sizedsiliciclasticdetritusfromdifferenttectonicprovenance(Dickinson,1985; Dickinsonetal.,1983;DickinsonandSuczek,1979).Allthreemethods,quitewisely,retained theidentificationoftheoriginallabilemineralssuchasfeldsparsas “feldspars” evenifthey werealteredfullytoclaymineralsaslongasthedetritalgrainsretainedtheiroutlinesand othercharacteristicfeaturessuchasghosttwinning.Becauseexperiencedsubjectivejudgment isnecessaryforsuchidentification,automatedanalyticalimageanalysistodeterminethe modalcompositionofsandstonesisstillnotpossible.Butsee Bangs-RooneyandBasu (1994) forapossiblealternative.

4.2ChemicalCompositionsofBulkRocks

Bhatia(1983) and BhatiaandCrook(1986) discoveredthatdifferentsandstonesuitesfrom differenttectonicsettingsinAustralia,plotdifferentlyinCaO-Na2O-K2O,La-Th-Sc,Th-Sc-Zr, Ti/ZrversusLa/Sc,andLa/YversusSc/Crspaces.Theyconductedstatisticalanalysisof

FIGURE2.3 ThebasicQFLdiagramtoplot modalcompositionofsandstones,counted following Gazzi(1966) and Dickinson(1970) Manyhaveassignedtectonicprovenanceoftheir modaldataaccordingly.Adaptedfrom Dickinson(1985)

theirdataasdid RoserandKorsch(1988) onadditionaldatatovalidatethediscriminatory powerofthegeochemicalapproach.Otherfollow-upstudiesbearthemout.Becauseweatheringanddiagenesisconvertrock-formingmineralsintoclay,chemicalcompositionsof whole-rocksrepresenttheirmineralcompositionsatthetimeoftheirsamplingandanalysis. Theydonotrequirethesubjectivejudgmentofanoperatortodecidewhatshouldbecounted asaprecursordetritalgrain(e.g.,feldspar,mica,rockfragment).Elementsthatarerelatively immobileunderlow-temperatureaquaticalterations,andtheirelementalratios,likelyretain theiroriginalrelativeabundancesinsedimentaryrocks(Alietal.,2014).Onesuchplotof ppmTh-Sc-Zr/10(Fig.2.4)isverywidelyusedasatemplateforprovenancediscrimination (Bhatia,1983).Techniquesforanalyzingrock-material(e.g.,XRF,INAA,ICPMS,etc.)have improvedconsiderablyinthelast30yearsandmanymoreelementscannowbeanalyzed atever-smallerconcentrationsandwithever-higherprecision.Theenlargedmoreprecise chemicaldatabasehasledtoquitesuccessfuluseofmultidimensionaldiscriminantfunction analysistoinfertectonicprovenanceofsiliciclasticsedimentaryrocks(Armstrong-Altrin, 2014).

Thesetwoavenuesfortrackingprovenance,utilizingwhole-rocksamples,havebeenand arethemosttraveled,andlikelytostayso,albeitwithsomeadjustments(seeCritiquebelow).

4.3PopulationsofSingleDeritalMinerals

Provenance-sensitivepropertiesofpopulationsofsinglegrainsofthesamemineralhave beendeterminedbymanydifferentmethods(e.g.,opticalmicroscopy,XRD,SEMwith BSEandCLdetectors,EPMA,LA-MC-ICPMS,SHRIMP,nanoSIMS)moretoidentifysource rocktypesandpetrologicprovincesthantoidentifyplatetectonicprovenance.Quartzisan extremelydurableandthemostabundantdetritalmineralinclasticsedimentaryrocks.Its physicalpropertiessuchasundulosityofopticalextinction(Basuetal.,1975)andCLcolor

FIGURE2.4 ThestandardLa-Th-Scplotto discriminatetectonicprovenanceofsandstones andshales(BhatiaandCrook,1986). PCM,passivecontinentalmargin; ACM,activecontinental margin; CIA,continentalislandarc; OIA,oceanic islandarc.Alsopottedarethe fieldsofmodern sedimentsfromfelsic,intermediate,andmafic sourcerocksinColorado(USA)showingthe inadequacyofthestandardplot(Cullers,2002). Adaptedfrom Sinhaetal.(2007)

(AugustssonandReker,2012),andchemicalpropertiessuchastraceelementconcentrations (Götze,2009;Dennen,1967),havebeenusedwidelyinprovenancestudies.Discountingdiamond,zirconisthemostdurabledetritalheavymineralinsedimentaryrocks.Insituanayses ofindividualdetritalzircongrainsbySHRIMPorLA-MC-ICPMStodeterminetheirtrace elementcharacteristics,andisotopicdistributionsofU-PbandLu-Hfinthem,haveproven tobethemostusefulandmostproductiveininvestigatingsiliciclasticprovenanceinrecent years(e.g., Fornellietal.,2015;Fosdicketal.,2011;Grimesetal.,2007;Fedoetal.,2003; CompstonandPidgeon,1986).Manydetritalzircons,becauseoftheirdurabilityinrockformingsystems,commonlyhavesuccessiveovergrowthsonanigneousormetamorphic core.Absoluteagesofthecoreandtheovergrowthsrecordthegenetichistoryoftheirsource rocks(e.g., Wintschetal.,2007).Additionally,alargecollectionofdetritalzirconsyieldsa largenumberofabsoluteagesofparentrocks.Thedataarebestviewedinplotsofageversus frequency(Fig.2.5A B; Bickfordetal.,2013,2009).Inferringprovenanceofsiliciclasticsedimentsfromspectraofdetritalzircongeochronologyrequiresknowledgeofthegeology, includingmagmaticandmetamorphicevents,inthepotentialsourcearea.Forexample, Fig.2.5 showstwodetritalzirconspectrafromtwodifferentformationsintwodifferentProterozoicbasinswithadominant w2.5Gapeakbutonewithadditionalminoragepeaks, whichconfirmtwoseparatesourcedomains. DickinsonandGehrels(2010) usedtheages of5655detritalzirconsinMesozoicsandstonesinColorado(USA)toinferthepaleogeographyandpaleotectonicsofNorthAmerica.Inacomparativestudyofthelithotectoniczones oftheHimalayasandtheProterozoic earlyCambriansuccessionsintheIndianpeninsula, McKenzieetal.(2011) discovered “thatrocksofsimilardepositionalagebearstrikingly similardetritalzirconagedistributions.” Ifso,detritalzirconagespectrathusbecomesa robusttoolforidentifyingiso-provenancesedimentaryprovinces.Althoughnotasdurable, butbecauseofitslowerblockingtemperature,U-Pbagesofdetritalmonazitestrackthemetamorphichistoryandthecontributionfrommetamorphicrocksinassociationwithgranitic bodies(e.g., Hietpasetal.,2010).Crystallizationagesofmonazitescanbeobtainedbythe cheaperandeasierCHIMEmethod(Th-U-Pb)withdedicatedEPMA,andareusefulin trackingprovenance(Pe-Piperetal.,2014;SuzukiandKato,2008).Datingrutile(U-Pb)isa newdevelopment(Braccialietal.,2013).Followingthetrailofdetritalzircons(>480Ma) andrutile(w10Ma), Bracciallietal.(2015) havediscoveredthe “timingofrivercaptureof theYarlungTsangpobytheBrahmaputra.” Thesefewexamplesshowhowthescopeofsedimentaryprovenancestudieshasbroadenedinthelastfewyears.Despitesuchsuccesswith detritalzircongeochronology,itisnecessarytonotethatnoneofthemostdurableminerals (e.g.,diamond,quartz,zircon,tourmaline,rutile,etc.)occurinallparentrocksofimportance. Therefore,relianceonthepropertiesofonlyoneoftheseminerals,zircongeochronologyfor example,maybeseverelymisleadinginidentifyingsourceregionsdominatedbymafic volcanicrocks.

Major,minor,andtraceelementconcentrationsinmanyotherdetritalminerals,e.g.,feldspar(TrevanaandNash,1979 ),garnet(Morton,1985 ),tourmaline( vanHinsbergetal., 2011),magnetite-ilmenite-hematite(DillandKlosa,2010;Grigsby,1990),pyroxene (Cawood,1991 ),andotherheavyminerals( MangeandWright,2007 ),determinedmostly withEPMA,havebeenwidelyusedtosolvemostlylocalandregionalproblemssuchas paleogeography,paleodrainagepatterns,andstratigraphiccorrelations(Mortonetal., 2013).

2.EVOLUTIONOFSILICICLASTICPROVENANCEINQUIRIES:ACRITICALAPPRAISAL

FIGURE2.5 Detritalzirconagespectraof(A)OakShale(lateNeoproterzoic?orlateMesoproterozoic?)inthe Cuddapahbasin,India,and(B)KansapatharSandstone(bracketedbetween1000and1400Ma)intheChhattisgarh basin,Indiashowingthatthemainsourceforbothsedimentaryunits some600kmapart arethe w2.5Gagranitic rocksoftwodifferentcratons.Fieldgeologyprecludesanycorrelationoracommonprovenance.After Bickfordetal. (2009,2013).

5.THECRITIQUE

5.1BulkMineralogicalCompositions

Empiricalstudiesled DickinsonandSuczek(1979),Dickinsonetal.(1983),and Bhatiaand Crook(1986) toidentifytectonicprovenancesinNorthAmericaandAustraliainwell-de fined spacesinQFLandLa-Th-Scandadditional/subsidiaryplots.Becausetheirsamplingwas geographicallyandtemporallylimited,itwouldbedoubtfuliftheirresultscouldbetaken asgeneraltemplates.Afewcounter-examplestotheirperceiveduniversalapplicabilityare discussedbelowwithsomeexplanatorynotes.Onemightnotehereinparenthesis,thatstatisticaltestsoftheverydatasetsusedtoerecttheQFLtemplatescanachieve “ success ” upto 85%andnomore(Molinarolietal.,1991).

Climateisasigni ficantfactorincontrollingthecompositionofsandsattheirorigin.The largeorographicbarrieroftheHimalayashasamuchwetterandwarmerclimatetoitssouth thantoitsnorth.EvenasmallorographicbarrierinJamaicahasthesamecontrast(Gupta, 1975).Compositionsofsandsgeneratedonthetwosidesofsuchorographicbarriersareobviouslydifferent,althoughtheyhavebeensourcedfromthesamemountainrange(zorogen). Quartzenrichmentatthesourcebecauseofclimaticeffectshasbeenwelldocumentedin modernsandsandancientsandstones(e.g., Garzantietal.,2015;Mack,1984;Suttneretal., 1981).Long-distancetransportofsandwithmultiplestoragesin floodplains,andreworking onthebeach,mayproduce “quartzsand” irrespectiveofitsultimateprovenance.Incontrast, beachsandsinPapuaafteraveryshorttransportdownasteepslope,eveninthehothumid climate,retainthequartz-poorcharacteroftheirsourceofavolcanicislandarc(Ruxton, 1970).Rivers,longorshort,mayalsocollectdetritusenroute,includingrecycledgrains fromoldertectonicregimes,orcrossothertectonicregimes,whichcompromisetheirQFL signature(e.g., Mack,1984;DickinsonandSuzcek,1979).Actually,compositionsofsome modernsandsareshowntobeaffectedbydifferentdegreesofweathering,systemsoftransport,andenvironmentsofdepositionsuf ficientlyenoughtodefyQFL-typeexpectations(e.g., Garzanti,2015;Garzantietal.,2015;andtheextensivereferencestherein).Diageneticprocessesdestroylabilegrainsinsandstonestodifferentdegreesandintheextrememaybe flushedawaybygroundwater flow,leavingsecondaryporesandproducingdiagenetic quartzarenitesthat,ofcourse,donotretainaQFLmemoryoftheirtectonicprovenance (McBride,1987).Diagenesisalsoproducespseudomatrixoutoflabilegrains,especiallyfeldsparandargillaceousgrains(Dickinson,1970;Sorby,1859).Ifnotconvertedfullytopseudomatrix,precursors(e.g.,feldspars,volcaniclithicfragments,schist,shale)ofsomeofthe argillaceousgrainsmaybeidentifiedandcountedassuch.Butthepreservationisvariable. Hence, Helleretal.(1985) recommendedthatasandstonewith >20%pseudomatrixshould notbeincludedintheQFL-typeprovenanceanalysis.

InDickinson’scompilationofthepetrographyofPhanerozoicNorthAmericansandstones,carbonaticsandgrainsareinsigni ficantandneglected.Theyare,however,quiteprofuseinsandstonesderivedfromMediterraneanorogens(Zuffa,1980).Whereasdisregarding suchsandstonesinQFL-typeprovenanceanalysis(Dickinson,1985,p.336)wouldnotnecessarilyinvalidatetectonicinferences,itwouldleaveouttheprovenanceinformationcontained inthecarbonaticgrains,especiallythosewithfossils.Theycouldalsodistortthemodaldata notenvisagedintheQFLmodel.Additionally,QFL-typemodaldatacouldbedistortedifa

fewsandstoneshadmixedheritagewithrecycledgrains,andhadsuffereddifferentialweatheringunderdifferentclimaticconditionsthatwouldproduceerraticquartzconcentrations (Mack,1984).

Basalticfragmentsandcalcicplagioclasecomenotonlyfromrocksinmagmaticarcsbut alsofromlargeintraplateigneousprovinces(seemapinFig.1of Xia,2014)thatoccurin “continentalblock” tectonicprovenance.Asomewhatunnoticedpapershowshowthe QFLcompositionsofsandsderivedprincipallyfromthelargest floodbasaltofthepresent time theDeccanTrapsinIndia plotprimarilyinthemagmaticarcprovenance fieldand alsoinother fields(inresponsetoquartzenrichmentbecauseofweatheringunderhothumid tropicalclimate)intheQFLdiagram(seeFigs.2and3of Garzanti,2015,andFig.3of Saha etal.,2010).Theinterpretativeerroris potentially enormouswhenProterozoicandArchean (meta-)sandstonesplottinginthemagmaticarc fieldsareusedasindicatorsofconvergent boundariesofthepast.Notrecognizing “anorogenicmagmatic” fieldsassubstantialsources ofvolcanicfragmentsinsiliciclasticsedimentaryrocksisadeficiencyoftheDickinsonian QFL-typeprovenanceanalysis(Garzanti,2015).Sedimentaryrocksandtheirmetamorphic equivalentsareabundantinorogens,especiallyinPhanerozoicorogens.Fragmentsofsuch rocksarepronetobeargillaceousorrenderedargillaceousthroughweatheringanddiagenesis.Thus,countedwiththeGDmethod,suchgrainswouldplotattheL-pole(Fig.2.3)and indicatetheirrecycledorogenprovenance.However,upliftedcontinentalblocksinmany partsoftheworldcradlemany flat-lyingundeformedandunmetamorphosedsedimentary rockssuchasinmanyoftheProterozoicandtheLatePaleozoic MesozoicbasinsintheerstwhileGondwana-Laurentiacontinents.Sedimentarylithicfragmentsderivedfromthese basins,plottingattheL-pole,wouldstronglydistortinterpretationsoftectonicprovenance.

Many,manymonomineralicquartzgrainsinsiliciclasticsediments,thiswritercontends, arerecycledfragmentsofsedimentaryrocks.Detritalquartzgrainswithovergrowthsare morecommonlyseeninmodernsedimentsthaninancientsandstoneswhere,inrarecases, abradedovergrowthsarepreserved(Basuetal.,2013;Critellietal.,2003;Garzantietal., 2003).Suchrarequartzgrainsarerecycledsedimentaryrockfragments;butmostothers remainunidentifiedassuch.QFL-typeanalysesmisstherelevantprovenanceinformation. Asofnow,however,wehavenootherpetrographicmeanstodistinguish first-cyclequartz fromrecycledquartz.

5.2BulkChemicalCompositions

Chemicalcompositionsofsiliciclasticsedimentaryrockshavetheadvantageofrepresentingthebulksedimentandnotonlythesand-sizedfractionasinthecaseofpetrographicanalysesalthoughtheylackthemineralogicalinformation,i.e.,anydirectknowledgeofthe hostsofthechemicalcomponents.Forexample,quartzorcalcitecementedquartzarenites willshowanomalousenrichmentofSiO2 orCaOandassociatedtraceelementsoverwhat wasdepositedoriginally.Likewise,adiageneticquartzarenitewithsecondaryporesafter feldsparwillshowanomalouslydepletedAl2O3,Na2O,K2O,andassociatedtraceelements. Barringsuchextremes,chemicalcompositionsofthemuddypartsofsandstonesaddtothe informationaboutthediageneticproductsoflabiledetritalgrains,whicharenowpreserved as “matrix” sensulatu.Ifwemakeanassumption,asveryeloquentlyandboldlystatedby Ali etal.(2014),thatweatheringanddiageneticprocessesbehavelikeaclosedsystemwith

respecttoafewcriticalandlessmobileelements,thenespeciallytheirratios(e.g.,La/Sc, Th/Sc,Cr/Th,Th/Co,La/Co,Eu/Eu*,Ba/Co,Nb/La,etc.)inbinaryorternaryplotswould discriminatetheirtectonicprovenance.Infact,allempiricalchemicalmodelsfordiscriminatingtectonicprovenance(e.g., RoserandKorsch,1986;BhatiaandCrook,1986)aredependentonthisassumption.

ThegeneralreservationsabouttheQFLapproachmentionedabovealsoapplytothe geochemicalapproach.TheempiricaldatafromthesamplesuitesfromAustraliaandNew Zealandarenotuniversallyapplicable.Forexample,chemicalcompositionsofsandsderived primarilyfromtheDeccanbasaltsintheIndianpeninsulaplotallalongthefullstretchfrom theoceanicarctothepassivemargin fieldinallcommonlyusedgeochemicaltectonicprovenancediagrams(Figs.7to10in Sahaetal.,2010).Inaseriesofpapers,Cullersdemonstrated thatthediscriminationbetweenOceanicIslandArc,ContinentalIslandArc,ActiveContinentalMargins,andPassiveContinentalMarginsisactuallyadiscriminationbetweentherelativedominanceofultramafic,mafic,intermediate,andfelsicsuitesofrocksinsourceareas (e.g., Cullers,2002 andreferencestherein). Fig.2.3 showsthecommonLa-Th-Scdiagram of BhatiaandCrook(1986) inwhich Sinhaetal.(2007) haveplottedtherock-type fieldsof Cullers(1994).Chemicalprocessesduringweatheringanddiagenesisaffecttheultimate chemicalcompositionsofsedimentaryrocks.Someelementsortheirratiosmaybefarless affectedthanothersandretaintheiroriginalparentrockcharacteristics(cf. Alietal.,2014). Someothers,althoughusedinprovenancedetermination,maybeaffectedmore.For example,redoxconditionsduringpedogenesisanddiagenesisaffecttheoxidationstates andsolubilityofFe,Cr,Eu,Ce,U,etc.(e.g., Maulanaetal.,2014;Mukhopadhyayetal., 2014;Ozeetal.,2004;ShieldsandStille,2001;PanandStauffer,2000;Panahietal.,2000;Sverjensky,1984).Thisindicatesthat,forexample,relianceonEuandCeanomaliesasprovenanceindicatorsmayhavetobetempered.

Itisclearthat,byandlarge,chemicalsignaturesofthesourcerock-typesarepreservedin theirdetritus.But,asinthecaseofmineralogicalcompositions,chemicalcompositionsofsiliciclasticdetritusdonotuniquelyidentifytectonicprovenance(Basuetal.,2016).Indeed, PePiperetal.(2016) concludes “Detritalgeochemistryaloneshowstoomuchvariabilityto interpretprovenance.”

5.3PropertiesofSingleMinerals

Fresh,unaltereddetritalminerals,individuallyorinanassemblage,preservetheirparental identities.Forexample,simultaneouspresenceofhigh-Crspinel,uvarovite,andNi-richforsteriteinasandstonewouldindicatederivationfromultramaficbodiessuchaskimberlite clanrocks.Therarityofsuchanassociationofmineralsinasuiteofheavymineralsmakes theexampleratherunrealistic.Inreality,alldetritalminerals,otherthandiamond,quartz, zircon,andtosomeextenttourmaline,rutile,andgarnet,arequitepronetodifferentialpreservationinthesedimentarymilieu.Thus,althoughsomeoftheirphysical,chemical,andisotopiccompositionsarediagnosticoftheirprovenance,theirabsencedoesnotnecessarily excludeundetectedprovenances.

Evendetritalzircongeochronology,despitethesuccessesdescribedabove,hasmorethan onenemesis.Smallzircongrains(<30 mm)arenotreadilyamenabletodatingbecausethe commonlyusedanalyzingbeams,laserorion,arenotmuchsmaller.Henceapopulation

ofsmalldetritalzirconsmaygounrepresentedintheresults.Becausezirconissodurable,itis recycledmanytimeswithsomemechanicalattrition,andolderdetritalzirconstendtobe smallerthanyoungerzircons. Lawrenceetal.(2011) haveshownthatdifferentsizefractions ofdetritalzirconsmayhavedifferentagesandinferencesaboutprovenancefromjustone sizefractionmaynotbecorrect. Vermeesch(2004) calculatesthat,tobestatisticallyadequate, atleast117grainsofdetritalzirconsshouldbedated.Thisnumber,ofcourse,willgoupifthe diversityofagesgoesupinasample(seealso Andersen,2005).Similaritybetweentwoage spectra,givenahighprobabilityofasinglesource,mayaidinstratigraphiccorrelation (McKenzieetal.,2011);but,the “similarity” mustbetestedstatistically.Itiseasiertoinfer differentprovenancefromevenminordissimilaritybetweenagespectra(Fig.2.5A B). Zirconscomefromfelsicrocks.Forprovenancestudies,theymissmaficandultramaficsources, forwhichbaddeleyitemustbesought.Therefore,zirconsalonecannotcomprehensively demarcateprovenance.Similarreservationsapplytopopulationsofothersingleminerals.

6.DISCUSSION

Forabout170years, fieldgeologyandopticalmicroscopicpetrographyhavebeenand continuetoprovidetheprincipaldatabaseforprovenanceinterpretationofsiliciclasticsedimentaryrocks.Inthelast50years,chemicalandisotopicanalyseshavesupplementedsuch inquiries(e.g., Blatt,1967;Middleton,1960).Bothmethodsandtheirsubsidiarieshaveinvestigatedbulkcompositionsandthoseofindividualminerals.Thescopehasexpandedfrom findinglocalorregionalcontextsofsandstonegenesistotheplatetectonicregime(s)ofprovenance.Ithasbecomeabundantlyclearthatnosinglemethod,orevenacombinationofafew methods,canalwaysarriveatauniquesolution.Forexample, ArtemeivaandShulgin(2015) showedthatgeophysicalcharacteristicsoftheLadogaRiftintheBaltics theriftmodel widelyacceptedprincipallyonthebasisofchemicalcompositionsofvolcanicrocks conformtocraton-margindeformationandnotarift.Thecurrenttrendistomoveaway frompigeonholecharacterizationoftectonicprovenanceandtoweighinthegeological context sensulatu. Garzanti(2015) dispenseswiththeoriginalQFLapproachonthebasis ofextensiveworkonmodernsediments.Forpetrographicmodalanalyses,Zuffa(personal communication)recommendscountingabout50graintypesand500pointsstrictlyfollowing Chayes(1956);buthestillrelies,verywisely,onthepetrographiccharacteristicsofeachgrain. Thetrendisalsoevidentinthegeochemicalrealmwherethedominanceandmixingofchemicalcharacteristicsofsourcerocksprovidethe first-orderinference(e.g., Cullers,2002,2000). Aconsensusisemergingthatsourcerocktypesinferredfrommineralogicalandchemical compositionsofsiliciclasticrocksalonedonotuniquelyidentifytectonicprovenances(cf. Nieetal.,2012).

Onecurrenttrendistouseonlythequantitativedatacollectedwithexistingmethodologiesandapplyingrobustmultivariatestatisticalprocedurestoextractprovenanceinformation(e.g., Armstrong-Altrin,2014;Weltje,2012).Theresultslookpromisingsofar,butthey areconstrainedbythe flawsintheoriginalpremiseandlimitedsampling,insuccessfully erectinguniversallyapplicableboundariesoftemplatesfortectonicprovenance determination.

7.THEFUTURE

Forcenturies,bothcuriosityandsocietalneedshaveinspiredbasicandappliedscienti fic research.Searchfortheoriginalsourcerocksorevenintermediate “stop-overs ” ofeconomic placerdeposits,suchasofdiamondandgold,arewell-knowntime-honoredexamples(e.g., Oppenheim,1943;Atkin,1904).Thereisnowaconcentratedeffortinthefossilfuelindustry topredictthepetrophysicalpropertiesofsubsurfacesiliciclasticrocksonthebasisoftheir inferredprovenanceandtheestimatedextentoftheirdiagenesis(e.g., HeinzandKairo, 2007).Suchstudiesandpredictivemodelswillgrowasneedsforfossilfuelincrease.Contemporaryclimaticchangeisareality.Localandglobalpaleoclimatesofthelasthundredsto thousandsofyears,asre flectedinmodernalluvialtodeep-seasediments(e.g., Asahara etal.,2012;Paletal.,2012;Luglietal.,2007),arecluestopredictingtheimmediatefuture. Becausetheresultsrequirecorrectionsandnormalizationforthesourcerockinput,provenancestudiesofmodernsedimentswillexpandtodecoupletectonicandclimaticsignatures.

Thecurrenttrendsinmeasurementsanddefiningoriginalcharacteristicsofdetritalminerals,which survive inthesedimentarymilieu,arelikelytogainprominenceinthenext 20yearsorso(cf. Suttner,1989).Determinationofabsoluteagesofcrystallizationofindividualmineralgrainsandtheovergrowthsonthem,forexample,zircon,monazite,rutile,feldspar,andothers,arelikelytoincreasemanifold.Ifsomeofthemineralgrainsarerecycled (e.g.,zircon,rutile),thentheirhistories,especiallytherecordsofpostdepositionalheating events,wouldhelpin “purifying” theprocessofidentifyingrelevantprovenance.Thedistributionsoftraceelementsandstableisotopes(e.g.,O,S,Si,Ti,Cr,Fe,Ni)lockedupinminerals(e.g.,zircon,quartz,rutile,pyroxene,etc.)arecommonlyindicativeoftheenvironments oftheircrystallization.Insituanalysesforsuchclues(e.g., Hofmannetal.,2009;Götzeetal., 2004)arelikelytobecomecommoninthenextdecadeortwo.

Thuswefollow Mackie(1897) inouroptimisticyetcautiousreasoning,andsay: “Thedust oftheoldlandshasbeenbuiltintothenew.Wehavetakenthesetinyfragments witnesses ofavenerablepast andaskedthemtotellussomethingoftheancientworldwhichthey beheld,” andconfess,withhumility,thatprovenanceremainsthemostdifficultproblem forasedimentarygeologisttosolve(Pettijohnetal.,1972).

8.CONCLUSIONS

Sixgiantconceptualleapsinthelast170yearsconstitutethefoundationsofcontemporary provenancestudiesofsiliciclasticsedimentsandsedimentaryrocks.Theyhavebeenevaluated,constrained,modified,andcontestedovertheyears.Thesenewconceptshavesurvived thetestsoftimeandarelikelyto “goonforever ” (Tennysonisgratefullyacknowledged). However,therearecaveats.

Therevolutionarymineralogical(QFL)approachby Dickinson(1985) followedupbythe chemicalapproach(elementalratios)erectedby BhatiaandCrook(1986),todeterminethe tectonicprovenanceofsiliciclasticrocks,andthusunravelthegeologicalhistoriesofdepositionalbasins,orogens,andplatemovement,donotnecessarilyleadtouniquesolutions. Neglectingcarbonaticdetritus,ignoringtheextentofrecycledoriginofdetritalquartz, ignoring floodbasaltsaspartsofupliftedcontinental/cratonicblocks,ignoringthediversity

2.EVOLUTIONOFSILICICLASTICPROVENANCEINQUIRIES:ACRITICALAPPRAISAL

ofuni-sourceddetritalmineralassemblagesunderdiverseclimaticconditions,andnot consideringtheeffectsofvariableamountsofporespacesandpore- fillingcements,are someofthefactorsthathaveaffectedtheempiricalrubricsforinferringtectonicprovenances.

Multivariatedataanalysesappeartodiscriminateafewtectonicprovenancesquitewell. Butitisnotclearifincorporatingnewdatafrom,forexample,continental floodbasalts, wouldstillprovideuniquesolutions.

Physical,chemical,andisotopicpropertiesofsinglemineralsareemergingasstronger discriminatingparametersinprovenancestudies.

Provenanceresearchhasgonebacktoitsrootsofidentifyingrocktypesintheirsource areasinsteadofuniquelyidentifyingtectonicprovenance.

Acknowledgments

ThispaperisdedicatedtothememoryofWilliamR.Dickinson,whorevolutionizedsedimentaryprovenance research.

IndianaUniversity,NASA,andNSFhavesupportedmyresearchovertheyears.Dr.RajatMazumderkindly askedmetowritethischapter.ReviewsandfeedbackfromProfessorDanielaFontana(UniversitáModena,Italy), Dr.KasturiBhattacharyya(IITKGP,India),Dr.SarbaniPatranabis-Deb(ISI,India),andespeciallyDr.Suzanne Kairo(ExxonMobil,USA)helpedincorrectingerrorsandomissions.Iamgratefultoall.

References

Ali,S.,Stattegger,K.,Garbe-Schönberg,D.,Frank,M.,Kraft,S.,Kuhnt,W.,2014.TheprovenanceofCretaceousto QuaternarysedimentsintheTarfayabasin,SWMorocco:evidencefromtraceelementgeochemistryandradiogenicNd-Srisotopes.JournalofAfricanEarthSciences90,64 76.

Allen,J.R.L.,1965.UpperOldRedSandstone(Farlovian)paleogeographyinsouthWalesandtheWelshborderland. JournalofSedimentaryPetrology35,167 195.

Andersen,T.,2005.Detritalzirconsastracersofsedimentaryprovenance:limitingconditionsfromstatisticsand numericalsimulation.ChemicalGeology216,249 270.

Argnani,A.,Fontana,D.,Stefani,C.,Zuffa,G.G.,2004.LateCretaceouscarbonateturbiditesoftheNorthernApennines:shakingAdriaattheonsetofAlpinecollision.JournalofGeology112,251 259.

Armstrong-Altrin,J.S.,2014.Evaluationoftwomultidimensionaldiscriminationdiagramsfrombeachanddeep-sea sedimentsfromtheGulfofMexicoandtheirapplicationtoPrecambrianclasticsedimentaryrocks.International GeologyReview57,1446 1461.

Artemieva,I.M.,Shulgin,A.,2015.IstheProterozoicLadogaRift(SEBalticShield)arift?PrecambrianResearch259, 34 42.

Asahara,Y.,Takeuchi,F.,Nagashima,K.,Harada,N.,Yamamoto,K.,Oguri,K.,Tadai,O.,2012.ProvenanceofterrigenousdetritusofthesurfacesedimentsintheBeringandChukchiSeasasderivedfromSrandNdisotopes: implicationsforrecentclimatechangeintheArcticregions.DeepSeaResearchPartII:TopicalStudiesinOceanography61 64,155 171.

Atkin,A.J.R.,1904.Thegenesisofthegold-depositsofBarkerville(BritishColumbia)andthevicinity.Quarterly JournaloftheGeologicalSociety(London)60,389 393.

Augustsson,C.,Reker,A.,2012.Cathodolumenescencespectraofquartzasprovenanceindicatorsrevisited.Journal ofSedimentaryResearch82,559 570.

Avigad,D.,Gerdes,A.,Morag,N.,Bechstädt,T.,2012.CoupledUPb-HfofdetritalzirconsofCambriansandstones fromMoroccoandSardinia:implicationsforprovenanceandPrecambriancrustalevolutionofNorthAfrica. GondwanaResearch21,690 703.

Bangs-Rooney,C.,Basu,A.,1994.Provenanceanalysisofmuddysandstones.JournalofSedimentaryResearchA64, 2 7.

Basu,A.,Hake,H.,1984.Anexperimentinquantitativeprovenanceinterpretation.GeologicalSocietyofAmerica, AbstractswithPrograms16,439.

Basu,A.,Young,S.W.,Suttner,L.J.,James,W.C.,Mack,G.H.,1975.Re-evaluationoftheuseofundulatoryextinction andpolycrystallinityindetritalquartzforprovenanceinterpretation.JournalofSedimentaryPetrology45, 873 882.

Basu,A.,Schieber,J.,Patranabis-Deb,S.,Dhang,P.C.,2013.Recycleddetritalquartzgrainsaresedimentaryrockfragmentsindicatingunconformities:examplesfromtheChhattisgarhSupergroup,Bastarcraton,India.Journalof SedimentaryPetrology83,368 376.

Basu,A.,Bickford,M.E.,Deasy,R.,2016.Inferringtectonicprovenanceofsiliciclasticrocksfromtheirchemicalcompositions:adissent.SedimentaryGeology336,26 35. http://dx.doi.org/10.1016/j.sedgeo.2015.11.013

Bhatia,M.R.,Crook,K.A.W.,1986.Traceelementcharacteristicsofgraywackesandtectonicsettingdiscriminationof sedimentarybasins.ContributionstoMineralogyandPetrology92,181 193.

Bhatia,M.R.,1983.Platetectonicsandgeochemicalcompositionofsandstones.JournalofGeology91,611 627.

Bhattacharyya,K.,Das,S.,2015.SandstonepetrologyandgeochemistryoftheKolhanBasin,easternIndia:implicationsforbasintectonics.JournalofGeology&Geosciences4. http://dx.doi.org/10.4172/2329-6755.1000196.

Bickford,M.E.,Basu,A.,Patranabis-Deb,S.,Dhang,P.,2009.DepositionalhistoryoftheMesoproterozoicChhattisgarh basin,centralIndia:constraintsfromnewSHRIMPzirconages.GeologicalSocietyofAmerica,Abstracts41,541.

Bickford,M.E.,Saha,D.,Schieber,J.,Kamenov,G.,Russell,A.,Basu,A.,2013.NewU-PbagesofzirconsintheOwk Shale(KurnoolGroup)withreflectionsonProterozoicporcellanitesinIndia.JournaloftheGeologicalSocietyof India82,207 216.

Blatt,H.,1967.Provenancedeterminationsandrecyclingofsediments.JournalofSedimentaryPetrology37, 1031 1044.

Bodet,F.,Schärer,U.,2000.EvolutionoftheSE-AsiancontinentfromU-PbandHfisotopesinsinglegrainsofzircon andbaddeleyitefromlargerivers.GeochimicaetCosmochimicaActa64,2067 2091.

Bracciali,L.,Parrish,R.R.,Horstwood,M.S.A.,Condon,D.,Najman,Y.,2013.U-PbLA-(MC)-ICP-MSdatingofrutile: newreferencematerialsandapplicationstosedimentaryprovenance.ChemicalGeology347,82 101.

Bracciali,L.,Najman,Y.,Parrish,R.R.,Akhter,S.H.,Millar,I.,2015.TheBrahmaputrataleoftectonicsanderosion: earlyMiocenerivercaptureintheEasternHimalaya.EarthandPlanetaryScienceLetters415,25 37.

Burrett,C.,Zaw,K.,Meffre,S.,Lai,C.K.,Khositanont,S.,Chaodumrong,P.,Udchachon,M.,Ekins,S.,Halpin,J., 2014.TheconfigurationofGreaterGondwana:evidencefromlaICPMS,U-Pbgeochronologyofdetritalzircons fromthePalaeozoicandMesozoicofSoutheastAsiaandChina.GondwanaResearch26,31 51.

Cawood,P.A.,Nemchin,A.A.,2000.Provenancerecordofariftbasin:U/PbagesofdetritalzirconsfromthePerth Basin,WesternAustralia.SedimentaryGeology134,209 234.

Cawood,P.A.,1991.Characterisationofintra-oceanicmagmaticarcsourceterranesbyprovenancestudiesofderived sediments.NewZealandJournalofGeologyandGeophysics34,347 358.

Chayes,F.,1956.PetrographicModalAnalysis,113p.Wiley,NY.

Compston,W.,Pidgeon,R.T.,1986.JackHills,evidenceofmoreveryolddetritalzirconsinWesternAustralia.Nature 321,766 769.

Critelli,S.,Arribas,J.,LePera,E.,Tortosa,A.,Marsaglia,K.M.,Latter,K.K.,2003.Therecycledorogenicsandprovenancefromanupliftedthrustbelt,BeticCordillera,SouthernSpain.JournalofSedimentaryResearch73,72 81.

Cullers,R.L.,1994.Thecontrolsonthemajorandtraceelementvariationofshales,siltstones,andsandstonesof Pennsylvanian-PermianagefromupliftedcontinentalblocksinColoradotoplatformsedimentinKansas, USA.GeochimicaetCosmochimicaActa58,4955 4972.

Cullers,R.L.,2000.Thegeochemistryofshales,siltstonesandsandstonesofPennsylvanian-Permianage,Colorado, USA:implicationsforprovenanceandmetamorphicstudies.Lithos51,181 203.

Cullers,R.L.,2002.Implicationsofelementalconcentrationsforprovenance,redoxconditions,andmetamorphic studiesofshalesandlimestonesnearPueblo,CO,USA.ChemicalGeology191,305 327.

Dennen,W.H.,1967.Traceelementsinquartzasindicatorsofprovenance.GeologicalSocietyofAmericaBulletin78, 125 130.

Dickinson,W.R.,Gehrels,G.E.,2010.InsightsintoNorthAmericanPaleogeographyandPaleotectonicsfromU-Pb agesofdetritalzirconsinMesozoicstrataoftheColoradoPlateau,USA.InternationalJournalofEarthSciences 99,1247 1265.

Dickinson,W.R.,Suczek,C.A.,1979.Platetectonicsandsandstonecompositions.AAPGBulletin63,2164 2182.

Dickinson,W.R.,Beard,L.S.,Brakenridge,G.R.,Erjavec,J.L.,Ferguson,R.C.,Inman,K.F.,Knepp,R.A., Lindberg,A.F.,Ryberg,P.T.,1983.ProvenanceofNorthAmericanPhanerozoicsandstonesinrelationtotectonic setting.BulletinoftheGeologicalSocietyofAmerica94,222 235.

2.EVOLUTIONOFSILICICLASTICPROVENANCEINQUIRIES:ACRITICALAPPRAISAL

Dickinson,W.R.,1970.Interpretingdetritalmodesofgraywackesandarkose.JournalofSedimentaryPetrology40, 695 707.

Dickinson,W.R.,1980.Platetectonicsandkeypetrologicassociations.In:Strangway,D.W.(Ed.),TheContinental CrustandItsMineralDeposits.GeologicalSocietyofCanadaSpecialPaper20,pp.341 360.

Dickinson,W.R.,1985.Interpretingprovenancerelationsfromdetritalmodesofsandstones.In:Zuffa,G.G.(Ed.), ProvenanceofArenites.NATOASIC-148,pp.333 361.

Dill,H.,Klosa,D.,2010.Heavymineral-basedprovenanceanalysisofMesozoiccontinental-marinesedimentsatthe westernedgeoftheBohemianMassif,SEGermany:withspecialreferencetoFe-Timineralsandthecrystal morphologyofheavyminerals.InternationalJournalofEarthSciences1 17.OnlineFirst.

Fedo,C.M.,Sircombe,K.N.,Rainbird,R.H.,2003.Detritalzirconanalysisofthesedimentaryrecord.Reviewsin MineralogyandGeochemistry53,277 303.

Fitches,W.R.,Muir,R.J.,Maltman,A.J.,Bentley,M.R.,1990.IstheColonsay-westIslayblockofSWScotlandan allochthonousterrane?evidencefromDalradiantilliteclasts.JournalofGeologicalSociety(London)147,417 420. Folk,R.L.,1974.PetrologyofSedimentaryRocks.Hemphill’s,p.184.

Fornelli,A.,Micheletti,F.,Langone,A.,Perrone,V.,2015.FirstU-PbdetritalzirconagesfromNumidiansandstones insouthernApennines(Italy):EvidencesofAfricanprovenance.SedimentaryGeology320,19 29.

Fosdick,J.C.,Romans,B.W.,Fildani,A.,Bernhardt,A.,Calderón,M.,Graham,S.A.,2011.Kinematicevolutionofthe Patagonianretroarcfold-and-thrustbeltandMagallanesforelandbasin,ChileandArgentina,51 300 S.Geological SocietyofAmericaBulletin123,1679 1698.

Garzanti,E.,Andò,S.,Vezzoli,G.,Dell’era,D.,2003.Fromriftedmarginstoforelandbasins:investigatingprovenanceandsedimentdispersalacrossdesertArabia(Oman,U.A.E.).JournalofSedimentaryResearch73,572 588.

Garzanti,E.,Andò,S.,Padoan,M.,Vezzoli,G.,ElKammar,A.,2015.ThemodernNilesedimentsystem:processes andproducts.QuaternaryScienceReviews130,9 56.

Garzanti,E.,2015.Fromstatictodynamicprovenanceanalysis:sedimentarypetrologyupgraded.Sedimentary Geology130,9 56. http://dx.doi.org/10.1016/j.sedgeo.2015.07.010

Gazzi,P.,1966.Learenariedel flyschsopracretaceodell’Appenninomodense:correlazioniconil flyschdiMinghidoro.MineralogicaetPetrograficaActa12,69 97.

Götze,J.,Plötze,M.,Graupner,T.,Hallbauer,D.K.,Bray,C.J.,2004.Traceelementincorporationintoquartz:acombinedstudybyICP-MS,electronspinresonance,cathodoluminescence,capillaryionanalysis,andgaschromatography.GeochimicaetCosmochimicaActa68,3741 3759.

Götze,J.,2009.Chemistry,texturesandphysicalpropertiesofquartz-geologicalinterpretationandtechnicalapplication.MineralogicalMagazine73,645 671.

Grigsby,J.D.,1990.Detritalmagnetiteasaprovenanceindicator.JournalofSedimentaryPetrology60,940 951.

Grimes,C.B.,John,B.E.,Kelemen,P.B.,Mazdab,F.K.,Wooden,J.L.,Cheadle,M.J.,Hanghøj,K.,Schwartz,J.J.,2007. Traceelementchemistryofzirconsfromoceaniccrust:amethodfordistinguishingdetritalzirconprovenance. Geology35,643 646.

Groves,A.W.,1931.TheunroofingoftheDartmoorGraniteandthedistributionofitsdetritusinthesedimentsof southernEngland.QuarterlyJournaloftheGeologicalSociety87,62 96.

Gupta,A.,1975.StreamcharacteristicsineasternJamaica,anenvironmentofseasonal flowandlarge floods. AmericanJournalofScience275,825 847.

Heins,W.A.,Kairo,S.,2007.Predictingsandcharacterwithintegratedgeneticanalysis.In:Arribas,J.,Critelli,S., Johnsson,M.J.(Eds.),SedimentaryProvenanceandPetrogenesis:PerspectivesfromPetrographyandGeochemistry.GeologicalSocietyofAmerica,SpecialPaper,420,345 379.

Heller,P.,Peterman,Z.E.,O’Neil,J.R.,Shafiqullah,M.,1985.IsotopicprovenanceofsandstonesfromtheEocenetyee formation,Oregoncoastrange.BulletinoftheGeologicalSocietyofAmerica96,770 780.

Hietpas,J.,Samson,S.,Moecher,D.,Schmitt,A.K.,2010.Recoveringtectoniceventsfromthesedimentaryrecord: detritalmonaziteplaysinhigh fidelity.Geology38,167 170.

Hofmann,A.E.,Valley,J.W.,Watson,E.B.,Cavosie,A.J.,Eiler,J.M.,2009.Sub-micronscaledistributionsoftrace elementsinzircon.ContributionstoMineralogyandPetrology158,317 335.

Ingersoll,R.V.,1990.Actualisticsandstonepetrofacies:discriminatingmodernandancientsourcerocks.Geology18, 733 736.

Johnson,M.H.,1872.Sourcesofsandstone.Nature6,26.

Kröner,A.,Sengor,A.M.C.,1990.ArcheanandProterozoicancestryinlatePrecambriantoearlyPaleozoiccrustal elementsofsouthernTurkeyasrevealedbysingle-zircondating.Geology18,1186 1190.

Krynine,P.D.,1935.Arkosedepositsinthehumidtropics.AstudyofsedimentationinsouthernMexico.American JournalofScience29(Series5),353 363.

Lawrence,R.L.,Cox,R.,Mapes,R.W.,Coleman,D.S.,2011.Hydrodynamicfractionationofzirconagepopulations. GeologicalSocietyofAmericaBulletin123,295 305.

Lugli,S.,Dori,S.M.,Fontana,D.,2007.AlluvialsandcompositionasatooltounravellateQuaternarysedimentation oftheModenaPlain,northernItaly.In:Arribas,J.,Critelli,S.,Johnsson,M.J.(Eds.),SedimentaryProvenanceand Petrogenesis;PerspectivesfromPetrographyandGeochemistry.GeologicalSocietyofAmerica,SpecialPaper, 420,57 72.

Mack,G.H.,1984.Exceptionstotherelationshipbetweenplatetectonicsandsandstonecomposition.JournalofSedimentaryPetrology54,212 220.

Mackie,W.,1897.ThesandsandsandstonesofeasternMoray.EdinburghGeologicalSocietyTransactions7, 148 172.

Mange,M.A.,Wright,D.T.,2007.HeavyMineralsinUse.In:DevelopmentsinSedimentology,58.Elsevier,1283pp. Maulana,A.,Yonezu,K.,Watanabe,K.,2014.Geochemistryofrareearthelements(REE)intheweatheredcrusts fromthegraniticrocksinSulawesiIsland,Indonesia.JournalofEarthScience25,460 472.

McBride,E.F.,1987.DiagenesisoftheMaxonsandstone(EarlyCretaceous),MarathonRegion,Texas:adiagenetic quartzarenite.JournalofSedimentaryPetrology57,98 107.

McKenzie,N.R.,Hughes,N.C.,Myrow,P.M.,Xiao,S.,Sharma,M.,2011.CorrelationofPrecambrian CambriansedimentarysuccessionsacrossnorthernIndiaandtheutilityofisotopicsignaturesofHimalayanlithotectoniczones. EarthandPlanetaryScienceLetters312,471 483. Middleton,G.V.,1960.Chemicalcompositionsofsandstones.GeologicalSocietyofAmericaBulletin71,1011 1026. Molinaroli,E.,Blom,M.,Basu,A.,1991.Methodsofprovenancedeterminationtestedwithdiscriminantfunction analysis.JournalofSedimentaryPetrology61,900 908.

Morton,A.,Hounslow,M.W.,Frei,D.,2013.Heavy-mineral,mineral-chemicalandzircon-ageconstraintsonthe provenanceofTriassicsandstonesfromtheDevoncoast,southernBritain.Geologos19,67 85. Morton,A.C.,1985.Anewapproachtoprovenancestudies:electronmicroprobeanalysisofdetritalgarnetsfrom MiddleJurassicsandstonesoftheNorthSea.Sedimentology32,553 566. Mukhopadhyay,J.,Crowley,Q.G.,Ghosh,S.,Ghosh,G.,Chakrabarti,K.,Misra,B.,Heron,K.,Bose,S.,2014.OxygenationoftheArcheanatmosphere:NewpaleosolconstraintsfromeasternIndia.Geology42,923 926.

Myrow,P.M.,Hughes,N.C.,Derry,L.A.,McKenzie,N.R.,Jiang,G.,Webb,A.A.G.,Banerjee,D.M.,Paulsen,T.S., Singh,B.P.,2015.NeogenemarineisotopicevolutionandtheerosionofLesserHimalayanstrata:implications forCenozoictectonichistory.EarthandPlanetaryScienceLetters417,142 150.

Nagel,S.,Castelltort,S.,Garzanti,E.,Lin,A.T.,Willett,S.D.,Mouthereau,F.,Limonta,M.,Adatte,T.,2014.Provenanceevolutionduringarc continentcollision.SedimentarypetrographyofMiocenetoPleistoceneSedimentsin thewesternforelandbasinofTaiwan.JournalofSedimentaryResearch84,513 528.

Nesbitt,H.W.,Young,G.M.,1982.EarlyProterozoicclimatesandplatemotionsinferredfrommajorelementchemistryoflutites.Nature299,715 717.

Nie,J.,Horton,B.K.,Saylor,J.E.,Mora,A.S.,Mange,M.,Garzione,C.N.,Basu,A.,Moreno,C.J.,Caballero,V., Parra,M.,2012.Integratedprovenanceanalysisofaconvergentretroarcforelandsystem:U-Pbages,heavyminerals,Ndisotopes,andsandstonecompositionsoftheMiddleMagdalenaValleybasin,northernAndes, Colombia.Earth-ScienceReviews110,111 126.

Oppenheim,V.,1943.DiamondsinthenortheasternBolivianAndes.EconomicGeology38,658 661.

Oze,C.,Fendorf,S.,Bird,D.K.,Coleman,R.G.,2004.Chromiumgeochemistryinserpentinizedultramaficrocksand serpentinesoilsfromtheFranciscancomplexofCalifornia.AmericanJournalofScience304,67 101.

Pal,D.K.,Bhattacharyya,T.,Sinha,R.,Srivastava,P.,Dasgupta,A.S.,Chandran,P.,Ray,S.K.,Nimje,A.,2012.Clay mineralsrecordfromLateQuaternarydrillcoresoftheGangaPlainsandtheirimplicationsforprovenanceand climatechangeintheHimalayanforeland:SpecialIssue:Quaternary fluvialsystemsofTropics.Palaeogeography, Palaeoclimatology,Palaeoecology356 357,27 37.

Pan,Y.,Stauffer,M.R.,2000.CeriumanomalyandTh/Ufractionationinthe1.85GaFlinFlonPaleosol:cluesfrom REE-andU-richaccessorymineralsandimplicationsforpaleoatmosphericreconstruction.AmericanMineralogist 85,898 911.

Panahi,A.,Young,G.M.,Rainbird,R.H.,2000.Behaviorofmajorandtraceelements(includingREE)during PaleoproterozoicpedogenesisanddiageneticalterationofanArcheangranitenearVilleMarie,Quebec,Canada. GeochimicaetCosmochimicaActa64,2199 2220.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.